

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA - 1974

01. Sejam A, B e C conjuntos contidos num mesmo conjunto U. Seja x um elemento de U, define-se:

$$\bigcap_{B}A=\{x\in U\,/\,x\in B\ e\ x\not\in A\}$$

Então, $C^{(A \cup B)}$ é igual a:

- a) $C A \cup C B$. b) $C A \cap C B$.

- d) O conjunto vazio.
- e) n.d.a.
- **02.** Sejam A, B e D subconjuntos não vazios o conjunto dos números reais. Sejam as funções $f: A \to B(y = f(x)), \quad g: D \to B(x = g(t)), \quad e \quad a$ função composta $g \circ f : E \to K$ (e, $Z = (g \circ f)(t) = f(g(t))$. Então os conjuntos E e K são tais que: são tais que: **a)** $E \subset A$ e $K \subset D$ **b)** $E \subset B$ e $K \supset A$

- c) $E \supset D$, $D \neq E$ e $K \subset B$ d) $E \subset D$ e $K \subset B$

- e) n.d.a.
- **03.** O volume de um tetraedro regular de aresta igual a ℓ
- a) $\ell\sqrt{2}$ b) $\frac{\ell^2\sqrt{3}}{2}$ c) $\frac{\ell^2\sqrt{2}}{2}$ d) $\frac{\ell^3\sqrt{3}}{2}$
- **04.** Seja a > 0 o 1º termo de uma progressão aritmética de razão r e também de uma progressão geométrica de razão $q = 2r\sqrt{3}/3a$. A relação entre a e r para que o terceiro termo da progressão geométrica coincida com a soma dos 3 primeiros termos da progressão aritmética é:
- **a**) r = 3a. **b**) r = 2a. **c**) r = a. **d**) $r = \sqrt{2a}$. **e**) n.d.a.
- 05. Sobre a raiz da equação podemos afirmar:

$$3^{x} - \frac{15}{3^{x-1}} + 3^{x-3} = \frac{23}{3^{x-2}}$$

- a) não é real.
- **b**) é menor que -1.
- c) está no intervalo [0, 6].
- **d**) é um número primo.

e) n.d.a.

06. A condição para que $\binom{n}{k}$ seja o dobro de $\binom{n}{k-1}$

é que:

- a) n + 1 seja múltiplo de 3.
- **b)** n seja divisível por 3.

d) n = 2k.

- c) n-1 seja par.
- **e)** n.d.a.
- **07.** Sejam as matrizes

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}, \quad \mathbf{Z} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- **a)** BA = I. **b)** BA = AB. **c)** A = 2B. **d)** AI = BZ. **e)** n.d.a.
- **08.** Seja a equação matricial

$$\begin{bmatrix} 1 & 4 & 5 & x \\ 3 & -1 & 7 & y \\ 1 & -22 & -11 & z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Podemos afirmar:

- a) a equação tem uma e somente uma solução.
- **b)** a equação tem duas e somente duas soluções.
- c) a equação tem três e somente três soluções.
- d) a equação não tem solução.
- e) n.d.a.
- **09.** O valor da expressão $x = \frac{2tg\theta}{1 t\sigma^2 \theta}$, quando

$$\cos \theta = -\frac{3}{7}$$
 e tg $\theta < 0$, é:

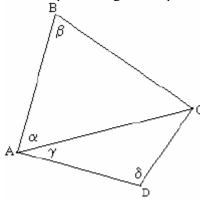
- **a)** $4\sqrt{10}/31$ **b)** $-2\sqrt{10}/3$ **c)** $2\sqrt{10}/15$
- **d)** $3\sqrt{10}/7$ **e)** n d a

10.
$$\left[\frac{1-\operatorname{tg} x}{1+\operatorname{tg} x}\right]^2 \quad \text{vale:}$$

- a) $\frac{1-2sen2x}{1+sen2x}$ b) $\frac{1+2sen2x}{1-sen2x}$ c) $\frac{1+sen2x}{1+sen2x}$
- d) $\frac{1-sen2x}{1+sen2x}$ e) n.d.a.

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA - 1974

11. Seja BC = CD no quadrilátero ABCD, mostrado na figura abaixo. Então podemos garantir que:



$$\mathbf{a)} \ \frac{sen\gamma}{sen\delta} = \frac{sen\alpha}{sen\beta}$$

b)
$$\delta \alpha = \beta \gamma$$

$$\mathbf{c)} \ \mathsf{tg} \alpha. \mathsf{tg} \beta = \mathsf{tg} \delta. \mathsf{tg} \gamma$$

d)
$$BC^2 = AD$$
. AB

12. A reta que passa pelas interseções das circunferências $x^2 + y^2 = 1$ e $(x - 1)^2 + (y - 1)^2 = 2$, é tal que:

a) tem equação
$$\frac{3}{5}x - \frac{2}{3}y + \frac{1}{4} = 0$$

- b) não passa pela origem.
- c) passa pela origem.
- d) não é perpendicular à reta que passa pelos centros das circunferências.
- **e)** n.d.a.

13. Os zeros da função $P(x) = 3x^6 - 8x^5 + 3x^4 + 2x^3$

- a) todos inteiros. b) 2 imaginários puros e 4 reais.
- c) todos racionais. d) 4 racionais e 2 irracionais.
- e) n.d.a.

14. A equação xⁿ - 1, onde n é um número natural maior do que 5, tem:

- a) 1 raiz positiva, 1 raiz negativa e (n 2) raízes complexas quando n é par.
- **b**) 1 raiz positiva, (n-1) raízes não reais quando n é par.
- c) 1 raiz negativa, (n-1) raízes complexas quando n é ímpar.
- d) 1 raiz positiva, 1 raiz negativa e (n 2) raízes complexas quando n é um número natural qualquer. **e)** n.d.a.

15. O valor absoluto da soma das dias menores raízes da equação $x^2 + 1/x^2 + x + 1/x = 4$ é:

a) 2. **b)** 3. **c)**
$$\frac{4-\sqrt{3}}{2}$$
 d) 4. **e)** n.d.a.

16. Se a, b e c são raízes da equação $x^{3} - 2x + 3x - 4 = 0$, então o valor de 1/a + 1/b + 1/c

a) 1/4 **b)** -1/4 **c)** 3/4 **d)** 3/2 **e)** n.d.a.

17. O conjunto de todos os valores de x para os quais existe um y real de modo que

$$y = log_{10} \left[log_{10} \left(\frac{7 - 2x - x^2}{3 - 4x^2} \right) \right]$$

é dado por:

- a) intervalo aberto A, de extremos $-\sqrt{2}$ e $\sqrt{2}$.
- **b)** intervalo aberto A, de extremos $-\sqrt{3}$ e $\sqrt{3}$.
- c) intervalo aberto A, de extremos 0 e $\sqrt{3}/2$.
- **d**) intervalo aberto A, de extremos $-\sqrt{3}/2$ e 1.
- e) n.d.a.

18. Um lado de um triângulo ABC mede ℓ cm. Os valores dos ângulos e dos lados do triângulo formam duas progressões aritméticas. A área S desse triângulo é:

a)
$$\ell^2 (\sqrt{3} + 1)$$
 cm².

a)
$$\ell^2(\sqrt{3}+1)$$
 cm². b) $\ell^2(\sqrt{3}-1)$ cm².

c)
$$\ell^2 \sqrt{3}$$
 cm².

d)
$$\frac{\ell^2 \sqrt{3}}{4}$$
 cm².

e) n.d.a.

19. Sendo a₁, a₂, ..., a_n números reais, o maior valor de n tal que as igualdades ao lado são verdadeiras é:

$$log_{10} 123478 = a_1$$

 $log_{10} a_1 = a_2$

$$\log_{10} a_{n-1} = a_n$$

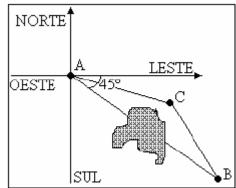
a) n = 3. **b**) n = 4. **c**) n = 5. **d**) n = 6. **e**) n.d.a.

INSTITUTO TECNOLÓGICO DE AERONÁUTICA PROVA DE MATEMÁTICA - 1974

20. Seja $M = 1/a^2 + 1/b^2 + 1/c^2$, onde a, b e c são as raízes da equação $x^3 - \sqrt{3}x^2 + 54 = 0$. Então podemos afirmar que:

- a) $\log_3 M$ é um número irracional
- **b**) $\log_3 M$ é um número primo
- c) $\log_3 M = 5/3$
- **d**) $\log_3 M = -5/2$
- e) n.d.a.

21. Deseja-se construir uma ferrovia ligando o ponto A ao ponto B que está $40\sqrt{2}$ km a sudeste de A. Um lago, na planície onde estão A e B impede a construção em linha reta. Para contornar o lago, a estrada será construída e 2 trechos retos com o vértice no ponto C, que está 36 km a leste e 27 km ao sul de A. O comprimento do trecho CB

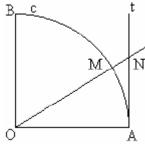


a) 182 . **b)** 183 . **c)** 184 . **d)** 185 . **e)** n.d.a.

22. O conjunto dos valores de k, pra os quais $f(x) = x^3 - 2x^2 + 3x - k$ tem um ou três zeros reais entre 1 e 2, é:

- **a**) k < 2.
- **b)** 1 < k < 2. **c)** 2 > k ou k > 6.
- **d**) k > 7.
- **e)** n.d.a.

23. Seja c um quarto de circunferência AB de raio R e centro O, e seja t a reta tangente a c em A. Traça-se pelo centro O de c uma reta que corta c num ponto M, e corta a reta tangente num ponto N, distintos de A. Se k a razão entre o volume gerado pelo setor OAM e o volume gerado pelo triângulo OAN, ambos obtidos girando-se de 2π em torno de AO. O comprimento do segmento AN é igual ao raio R se:



- **a)** 1 < k < 2.5 **b)** $2.5 \le k \le 3$ **c)** $0 < k \le 2$
- **d)** 0 < k < 1.5 **e)** nda

24. Um cone equilátero está inscrito em uma esfera de raio 4 cm. Cortam-se os sólidos (esfera e cone) por um plano paralelo à base, de modo que a diferença entre as áreas das secções seja igual à área da base do cone. O raio da secção do cone é:

- **a)** $2\sqrt{3}cm$ **b)** $\sqrt{3}cm$ **c)** $\sqrt{3}/3cm$
- **d**) $4\sqrt{3}/3cm$
- **e)** n.d.a.

25. Seja a_k um número complexo, solução da equação $(z+1)^5 + z^5 = 0$, K = 0, 1, 2, 3, 4. Podemos afirmar

- a) todos os z_k , K = 0, 1, ..., 4 estão sobre uma circunferência.
- **b**) todos os z_k , K = 0, 1, ..., 4 estão sobre uma reta paralela ao eixo real.
- c) todos os z_k , K = 0, 1, ..., 4 estão sobre uma reta paralela ao eixo imaginário.
- d) a equação não admite solução.
- **e)** n.d.a.