B1Zµ

Curso Preparatório ESA em Bizus/2018

Apostila da Semana 17

Inequações do 1º Grav / Polígonos Regulares

Prof. Claudio Castro

Preparatório Bizus – Semana 17 Prof. Claudio Castro

1. Joana corre tanto quanto Renata e menos do que Juliana. Fernanda corre tanto quanto Juliana.

I. Álgebra: Inequações do 1º Grau

a) Fernanda corre mais que Joana. b) Juliana corre menos do que Joana.			c) Juliana corre menos do que Renata. d) Renata corre mais do que Fernanda.		
2. A capacidade	de um reservatório	de água é ma	ior que 250 litro	os e menor qu	ue 300 litros. O
número x de litros	s que há nesse rese	ervatório satisfaz	$\frac{x}{2}$ à inequação $\frac{x}{2}$	+1<127.	
	tiva que apresenta (b) 251 litros.		água há nesse	reservatório.) 255 litros.
 Assinale a me a) 2 	nor solução inteira o b) 3 c) 4		x-10 > 2. 12 e)	60	
4. Considere a in	equação $\frac{x+1}{-x-5} \le 0$), com $x \in IR$.			
Qual é o conjunto	solução da inequaç b) (-∞, -5)	ão?	c) [0,∞)	d) [–5, ∞)	e) (−1, ∞)
	os números reais, o				→ 1 é o intervalo
a)] – ∞, –3[b) $\left] -\infty, -\frac{3}{7} \right[$	c) $]-\frac{3}{7}$,∞[d)] – 3, ∞[
	soluções da inequa	ação $\frac{-x+3}{2x-1} > 0$	onde x perten	ce ao conjun	to dos números
naturais é: a) 3	b) 4	c) 5	d) 6	e) 8	
quantidade de pr expressão 2p+1	enda de uma mero odutos vendidos. , 1, em que p é a que e vendidos para que	Já, o preço de uantidade de pr	custo para pro odutos produzid	oduzi-la é ob	tido através da
a) 4.	b) 5.	c) 6.	d) 7.	e) 8.	
distâncias diárias	a pelo menos 5 km percorridas por La diária percorrida po	aura e Rita em	suas caminhada		
a) 4.	b) 5.	c) 6.	d) 7.	e) 8.	
9. O número de s a) 4.	soluções inteiras da b) 3.	inequação x - c) 2.	1 < 3x - 5 < 2x + 1 d) 1.	, é e) 0	

10. Considere estas desigualdades A quantidade de números inteiros x que

satisfaz simultaneamente às duas desigualdades é:

- a) 11
- b) 10
- c) 9
- d) 8
- e) 7

11. O número de soluções inteiras da inequação $\frac{2x+6}{14-2x} \ge 0$ é:

- a) 8
- b) 9
- c) 10
- d) 11
- e) infinito

12. A soma dos números inteiros x que satisfazem

 $2x + 1 \le x + 3 \le 4x \text{ \'e}$:

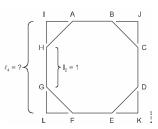
- a) 0
- b) 1
- c) 2
- d) 3
- e) -2

13. Os possíveis valores de x que verificam a desigualdade $-1 \le 3x - 2 \le 1$ são tais que a $\le x \le b$. Então o valor de a + b é igual a:

- a) 1/3
- b) 2/3
- c) 4/3
- d) 5/3
- e) 7/3

14. Considere a inequação $(x - 1)(x - 4) \le 0$. Considerando os números inteiros que a satisfazem. É correto concluir que:

- a) Só dois deles são positivos.
- d) O produto de todos eles é zero.
- b) A soma de todos eles é dez.
- e) O produto de todos é um número negativo.
- c) O maior deles é múltiplo de 3.

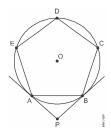

15. Quantos números inteiros satisfazem simultaneamente as desigualdades a seguir?

- $2x + 3 \le x + 7 \le 3x + 1$
- a) 4
- b) 1
- c) 3
- d) 2
- e) 5

II. Geometria: Polígonos Regulares

1. A figura mostra um octógono regular de lado $\overline{GH} = \ell_8 = 1$. Prolongamos os lados AB, CD, EF e GH para obter o quadrado IJKL. Quanto mede o lado $\overline{\text{IL}} = \ell_4$?

- a) 2
- b) $1+\sqrt{2}$
- c) $1-\sqrt{2}$ d) $\frac{12}{5}$

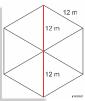

2. Seis circunferências de raio 5 cm são tangentes entre si duas a duas e seus centros são vértices de um hexágono regular, conforme a figura abaixo.

O comprimento de uma correia tensionada que envolve externamente as seis circunferências mede, em cm,

- a) $18 + 3\pi$.
- c) $18 + 6\pi$.
- e) $36 + 6\pi$.

- b) $30 + 10\pi$.
- d) $60 + 10\pi$.

3. Na figura a seguir, o pentágono regular está inscrito numa circunferência de centro O e as semirretas PA e PB são tangentes à circunferência nos pontos A e B, respectivamente. A medida do ângulo APB, em graus, é igual a


a) 36.

b) 72.

c) 108.

d) 154.

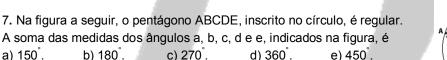
4. Um pai possui um terreno no formato de um hexágono regular com lado 12 m. Ele pretende construir um muro dividindo o terreno em dois trapézios de mesma área, um com frente para uma rua e outro para a outra, que serão dados para seus dois filhos. Qual o comprimento do muro?

a) 12 m.

b) 18 m.

c) 24 m.

d) 30 m.


e) 36 m.

- 5. O apótema do guadrado inscrito numa circunferência é igual a 2 cm. O lado do hexágono regular inscrito nessa mesma circunferência, em cm, é
- 6. Considere um quadrado com $3\sqrt{2}$ cm de lado, inscrito em um círculo como mostra a figura. O raio desse círculo mede, em centímetros

a) 2.

b) $\sqrt{3}$. c) $\frac{(3\sqrt{3})}{2}$. d) 3. e) $2\sqrt{3}$.

8. Qual a razão entre os raios dos círculos circunscrito e inscrito de um triângulo equilátero de lado a?

a) 2.

b) $\sqrt{3}$.

c) $\sqrt{2}$. d) 3a. e) $\sqrt{3a^2}$.

9. Se um círculo de 5 cm de raio está inscrito em um hexágono regular, o perímetro do hexágono, em centímetros, é igual a

a) $20\sqrt{3}$

b) $18\sqrt{3}$

c) $15\sqrt{2}$ d) $12\sqrt{3}$ e) $9\sqrt{2}$

10. Um carimbo com o símbolo de uma empresa foi encomendado a uma fábrica. Ele é formado por um triângulo equilátero que está inscrito numa circunferência e que circunscreve um hexágono regular. Sabendo-se que o lado do triângulo deve medir 3 cm, então a soma das medidas, em cm, do lado do hexágono com a do diâmetro da circunferência deve ser:

a) 7

b) $1 + 2\sqrt{3}$

c) $2\sqrt{3}$ d) $1+\sqrt{3}$ e) 77/32