

9ª OLIMPÍADA DE QUÍMICA DO RIO DE JANEIRO – 2014

MODALIDADE EM3

Leia atentamente as instruções abaixo:

- Esta prova destina-se exclusivamente aos alunos da 3ª série do ensino médio.
- A prova contém vinte questões objetivas, cada uma com cinco alternativas, das quais apenas uma é correta. Assinale na folha de respostas a alternativa que julgar correta.
- A prova deve ter um total de SETE páginas, sendo a primeira folha a página de instruções e a sétima a folha de respostas.
- Cada questão tem o valor de um ponto.
- A duração da prova é de **DUAS** horas.
- O uso de calculadoras comuns ou científicas é permitido.
- Fica proibida a consulta de qualquer material.

Rio de Janeiro, 05 de setembro de 2014.

Realização:

Apoio:

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM3 – 1^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

TABELA PERIÓDICA DOS ELEMENTOS

1																	18
1 H 1,0	2											13	14	15	16	17	2 He 4,0
3 Li 6,9	4 Be 9,0					n° atômico SÍMBOLO massa atômica				5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2		
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,0	17 Cl 35,5	18 Ar 39,9
19 K 39,0	20 Ca 40,0	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 55,0	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc 98	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 127,0	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57 – 71	72 Hf 178,5	73 Ta 181,0	74 W 183,8	75 Re 186,2	76 Os 190,2	77 Ir 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 T ℓ 204,4	82 Pb 207,2	83 Bi 209,0	84 Po 209	85 At 210	86 Rn 222
87 Fr 223	88 Ra 226	89 –103	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 262	108 Hs 265	109 Mt 266									
Série Lantai	e dos nídeos	57 La 138,9	58 Ce 140,1	59 Pr 140,9	60 Nd 144,2	61 Pm 145	62 Sm 150,4	63 Eu 152,0	64 Gd 157,3	65 Tb 159,0	66 Dy 162,5	67 Ho 164,9	68 Er 167,3	69 Tm 168,9	70 Yb 173,0	71 Lu 174,97	
Série Actin	e dos nídeos	89 Ac 227	90 Th 232,0	91 Pa 231,0	92 U 238,0	93 Np 237	94 Pu 244	95 Am 243	96 Cm 247	97 Bk 247	98 Cf 251	99 Es 252	100 Fm 257	101 Md 258	102 No 259	103 Lr 262	

DADOS: $P \cdot V = n \cdot R \cdot T$ $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ $T(K) = 273 + T(^{\circ}C)$

QUESTÕES

Texto para as Questões 01 e 02

Os elementos \mathbf{X} e \mathbf{Z} são do mesmo período da Tabela Periódica. Sabe-se que o elemento \mathbf{X} tem apenas um elétron na camada de valência e que seu estado de oxidação mais estável é +3. Seu raio atômico é menor que o raio atômico do elemento \mathbf{Z} . O elemento \mathbf{Z} forma apenas o cátion \mathbf{Z}^{2+} e este não apresenta elétrons em subníveis d.

01 − A distribuição eletrônica de **X** é

(a) $1s^{1}$

(d) $[Kr] 5s^1$

(b) [Ne] $3s^23p^1$

(e) [Xe] $4f^{14} 5d^{10} 6s^1$

(c) [Ar] $3d^5 4s^1$

 $02 - \mathbf{Z}$ é o elemento

(a) cálcio.

(b) hélio.

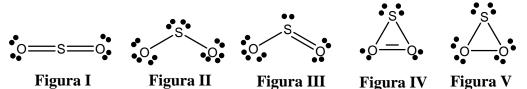
(c) magnésio.

(d) mercúrio.

(e) zinco.

 $03 - \mathrm{Em}$ uma viagem, uma família completou o tanque do carro três vezes. A capacidade total do tanque é de 55,0 L e nos três abastecimentos o carro ainda tinha 1/4 do tanque com combustível. Ao chegar ao destino final, havia metade tanque com combustível. Se no início da viagem o tanque estava completamente cheio e o carro foi abastecido somente com etanol hidratado, uma solução a 80,0 % (m/m) e densidade 0,820 g/cm³, qual foi o volume (aproximado), em m³, de dióxido de carbono produzido na queima de todo combustível consumido? Considere as seguintes condições: T = 25,0 °C; P = 1,00 atm.

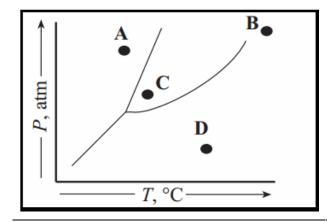
(a) 48,3


(b) 52,5

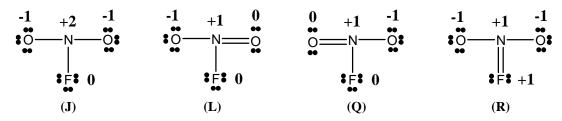
(c)78,4

(d) 96,6

(e) 105


04 – Observe as estruturas representadas nas figuras abaixo:

A estrutura de Lewis mais adequada para o SO₂ é aquela vista na figura:


(a) I. (b) II. (c) III. (d) IV. (e) V.

05 − A figura abaixo mostra o diagrama de fases do etanol. Dentre os pontos **A**, **B**, **C** e **D**, é possível identificar condições supercríticas

- (a) no ponto A.
- (b) no ponto B.
- (c) no ponto A e D.
- (d) nos pontos **B** e **C**.
- (e) nos pontos C e D.
- 06 Para a elaboração da estrutura de eletrônica de determinadas moléculas é fundamental o conhecimento da carga formal. A Carga formal é definida para cada átomo na estrutura e representa o número de elétrons que um átomo "ganharia" ou "perderia" na formação de uma ligação. Com relação às cargas formais em espécies covalentes, **NÃO** são favoráveis as estruturas que apresentam:
- Cargas iguais em átomos adjacentes.
- Cargas opostas em átomos não adjacentes.
- Cargas elevadas em qualquer átomo.
- Cargas em desacordo com a eletronegatividade dos átomos.

Analise as quatro estruturas apresentadas para a molécula do NO₂F:

As seguintes afirmativas têm como base as estruturas apresentadas e as informações sobre a carga formal.

- I) A estrutura (**J**) é a mais estável de todas porque apresenta apenas ligações simples.
- II) As estruturas (L) e (Q) são equivalentes e são as mais favoráveis dentre as quatro.
- III) Na estrutura (R) a distribuição das cargas está de acordo com a eletronegatividade dos átomos.
- IV) Apenas a estrutura (\mathbf{J}) não apresenta todos os átomos com o octeto completo.

Estão corretas **SOMENTE** as afirmativas

(a) I e III. (b) II e IV. (c) III e IV. (d) I, II e IV. (e) I, II e III.

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM3 – 1^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

Texto para as Questões 07 e 08.

O bafômetro, aparelho utilizado pelos agentes da LEI SECA, é um aparelho que permite determinar a concentração de bebida alcóolica em uma pessoa, analisando o ar exalado dos pulmões. O motorista deve assoprar o bafômetro com força no canudinho, que conduzirá o ar de seus pulmões para um analisador contendo uma solução ácida de dicromato de potássio. Nesta reação, além do etanol ser convertido em ácido acético, o cromo presente no íon dicromato, de cor alaranjada, é transformado em Cr³+, de coloração verde. Quanto maior a concentração de álcool, mais intensa é a coloração esverdeada obtida.

07 – O álcool presente no "bafo" é convertido em ácido acético, conforme mostra a equação abaixo:

$$C_2H_5OH + K_2Cr_2O_7 + H_2SO_4 \rightarrow C_2H_4O_2 + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_2$$

Os coeficientes para o balanceamento da equação são, respectivamente,

(a) 1/2/3/5/9/8/10

(d) 3 / 2 / 8 / 3 / 2 / 3 / 12

(b) 2/3/8/9/4/1/12

(e) 3 / 2 / 8 / 3 / 2 / 2 / 11

(c) 2/2/2/8/8/3/10

08 – No processo citado no texto, o etanol se transforma em ácido acético, sob a ação do dicromato de potássio. Logo, é possível afirmar que o dicromato de potássio atua como

(a) catalisador.

- (b) inibidor.
- (c) agente precipitante.
- (d) agente oxidante.
- (e) agente redutor.
- 09 O gás natural veicular é, na realidade, uma mistura de metano e etano, que são dois compostos orgânicos do tipo hidrocarbonetos, da classe dos alcanos ou parafinas, cuja fórmula geral é C_nH_{2n+2} . Os hidrocarbonetos são compostos derivados do petróleo e podem ser obtidos pela destilação fracionada do "ouro negro".

Podemos destacar outros hidrocarbonetos de grande importância como o eteno ou etileno, o etino ou acetileno, o benzeno e o isooctano (2,2,4-trimetilpentano).

O tipo de hibridação dos átomos de carbono em cada um dos quatro compostos citados no parágrafo anterior é

	Eteno	Etino	Benzeno	Isooctano
(a)	sp	sp	sp ³	sp ²
(b)	sp ²	sp ³	sp ³	sp
(c)	sp ³	sp ²	sp	sp ³
(d)	sp ²	sp	sp ²	sp ³
(e)	sp	sp ²	sp ²	sp

10 – Desde década de 70, o etanol tem sido utilizado como combustível. Sua combustão total é representada abaixo:

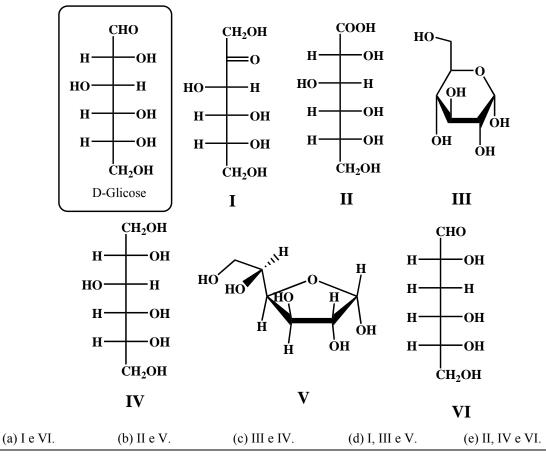
$$C_2H_5OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$$

 $\Delta H = -327 \text{ kcal/mol}$

Qual a quantidade de calor liberada, em kcal, na queima de um tanque de combustível (50,0 L), que contenha somente etanol? (Considere que a massa específica do etanol é $0,800~\text{g/cm}^3$)

- (a) $2,61 \cdot 10^5$
- (b) $2.84 \cdot 10^5$
- (c) $3,27 \cdot 10^5$
- (d) $3.55 \cdot 10^5$
- (e) $3.92 \cdot 10^5$
- 11-A solução 0,500 mol·L $^{-1}$ de certo soluto corresponde a uma solução 8,20 % (m/v). O soluto dessa solução é o
- (a) bicarbonato de amônio.
- (c) fosfato de sódio.
- (e) sulfato de alumínio.

- (b) cloreto cúprico.
- (d) nitrato férrico.


9^a Olimpíada de Química do Rio de Janeiro – 2014 EM3 – 1^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

12 – A figura abaixo mostra as moléculas glicose e de triacilglicerol, precursoras de dois grandes combustíveis verdes: o etanol e o biodiesel, respectivamente. As principais funções orgânicas presentes nestas moléculas são

- (a) Aldeído, álcool primário, álcool secundário, éster, alceno Z.
- (b) Aldeído, álcool primário, álcool terciário, éter, alceno Z.
- (c) Cetona, álcool primário, álcool secundário, éster, alceno E.
- (d) Aldeído, álcool secundário, álcool terciário, éter, alceno Z.
- (e) Ácido carboxílico, álcool primário, álcool secundário, éster, alceno E.

13 – Dentre as moléculas representadas nas estruturas abaixo, SOMENTE são isômeros da D-Glicose as de número

99

9^a Olimpíada de Química do Rio de Janeiro – 2014 EM3 – 1^a Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

Texto para as Questões 14 e 15.

Um laboratório utilizou $25,0\,$ mL de uma solução de ácido sulfúrico para a análise de uma solução de um hidróxido formada pelo cátion de um metal alcalino terroso. Preparou-se $500\,$ mL da solução de ácido sulfúrico a partir da diluição de $10,0\,$ mL de uma solução $18,0\,$ mol·L $^{-1}$.

solução de ácido sulfúrico a partir da diluição de 10,0 mL de uma solução 18,0 mol·L ⁻¹ .								
14 – Sabendo que na análise foram consumidos 22,5 mL da solução da base para total neutralização do ácido, qual é a concentração da solução básica, em mol·L ⁻¹ ?								
(a) 0,0800	(b) 0,100	(c) 0,200	(d) 0,400	(e) 0,800				
15 – Admitindo qu qual seria o pH, apr (a) 0,6			sturados com os 25,0 (d) 12,4	mL da solução do ácido, (e) 13,4				
16 – O processo de formação da "chuva ácida" pode ocorrer de várias formas. Uma delas envolve um processo que começa na queima de combustíveis fósseis contendo enxofre. Admitindo que o enxofre está na forma de uma substância simples, este processo ocorre em três etapas: Na primeira etapa, a queima do enxofre forma um óxido em que o enxofre tem nox +4. Nesta etapa ocorre a liberação de 297 kJ de energia para cada mol de óxido formado. Na segunda etapa, o óxido formado na etapa anterior reage com o oxigênio do ar atmosférico, formando outro óxido, em que o enxofre apresenta nox +6. A energia liberada é de 99 kJ por mol de óxido produzido. Na última etapa, o óxido formado na segunda etapa reage com a água, que se encontra no estado gasoso no ar atmosférico e forma um ácido que precipita junto com a chuva, caracterizando assim a "chuva ácida". A variação de entalpia nessa última etapa é de –132 kJ/mol de ácido. Determine o valor, em kJ/mol, da variação de entalpia padrão de formação do ácido formado na terceira etapa, sabendo que a variação de entalpia padrão de formação da água no estado gasoso, em kJ/mol, é de –286.								
(a) -814	(b) -682	(c) -242	(d) + 132	(e) + 913				
17 – O gás oxigênio pode ser obtido em laboratório pela decomposição do peróxido de hidrogênio ou do clorato de potássio, que forma, além do gás oxigênio, o cloreto de potássio. Para se obter um mol de gás oxigênio, utiliza-se certa massa de clorato de potássio (m ₁) ou de peróxido de hidrogênio (m ₂). A razão m ₁ /m ₂ é, aproximadamente,								
(a) 0,3	(b) 0,7	(c) 1,2	(d) 1,6	(e) 3,0				
18 – Uma solução aquosa S_1 , de concentração C_1 , foi submetida ao seguinte tratamento: a metade de seu volume total foi transferida para um cilindro graduado onde se adicionou igual volume de água. Após homogeneização, foi formada uma nova solução S_2 , de concentração C_2 . Retirou-se uma alíquota da solução S_2 que foi transferida para outro cilindro, onde se adicionou água para formar uma nova solução, S_3 , de concentração C_3 . Se a concentração C_3 é cem vezes menor que C_1 , o volume final da solução S_3 é, em relação ao volume da alíquota retirada da solução S_2 ,								
(a) cem vezes maio		(c) vinte vezes maior.	(e) cinco	vezes maior.				
(b) cinquenta vezes	maior.	(d) dez vezes maior.						
gás hidrogênio para	a a formação de		inada condição a qua	ênio e igual quantidade de ntidade de gás hidrogênio ara este processo é (e) 78,1				
	0,30 mol de gá	is oxigênio e produziu 8		de carbono, hidrogênio e arbono e 5,4 g de água. A				

$9^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro – 2014 EM3 – $1^{\underline{a}}$ Fase

ABQ RJ - Colégio Pedro II - CMRJ - IFRJ

FOLHA DE RESPOSTA – EM3

Nome:							
_							
Questão 01	(a)	(b)	(c)	(d)	(e)		
Questão 02	(a)	(b)	(c)	(d)	(e)		
Questão 03	(a)	(b)	(c)	(d)	(e)		
Questão 04	(a)	(b)	(c)	(d)	(e)		
Questão 05	(a)	(b)	(c)	(d)	(e)		
Questão 06	(a)	(b)	(c)	(d)	(e)		
Questão 07	(a)	(b)	(c)	(d)	(e)		
Questão 08	(a)	(b)	(c)	(d)	(e)		
Questão 09	(a)	(b)	(c)	(d)	(e)		
Questão 10	(a)	(b)	(c)	(d)	(e)		
Questão 11	(a)	(b)	(c)	(d)	(e)		
Questão 12	(a)	(b)	(c)	(d)	(e)		
Questão 13	(a)	(b)	(c)	(d)	(e)		
Questão 14	(a)	(b)	(c)	(d)	(e)		
Questão 15	(a)	(b)	(c)	(d)	(e)		
Questão 16	(a)	(b)	(c)	(d)	(e)		
Questão 17	(a)	(b)	(c)	(d)	(e)		
Questão 18	(a)	(b)	(c)	(d)	(e)		
Questão 19	(a)	(b)	(c)	(d)	(e)		
Questão 20	(a)	(b)	(c)	(d)	(e)		

Número de acertos:	
--------------------	--