**PROFESSOR: LAFAYETTE** 

TROI ESSON: EAFATETT

**DATA:** 18/11/19

**MEDICINA** 

**QUESTÃO 01** (UniRV GO/2018) Assinale V (verdadeiro) ou F (falso) para as alternativas.

♠ A distância do ponto P(7, -8) ao centro da circunferência de equação

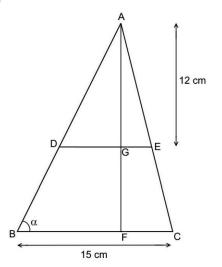
$$x^2 + y^2 - 4x - 8y - 3 = 0$$
 é 13 unidades.

A equação geral da reta que passa pelos centros das circunferências de equações

$$(x + 2)^2 + (y - 1)^2 = 19$$

$$x^2 + y^2 + 6x - 4y + 9 = 0$$
 é  $y = -x - 1$ .

- Para que a equação  $x^2 + y^2 2x + 10y k + 28 = 0$  seja de uma circunferência devemos ter k = 2.
- **O** O perímetro do quadrado inscrito na circunferência de equação:  $(x-1)^2 + (y-3)^2 = 16 \text{ é } 16 \sqrt{2}$  unidades.


**QUESTÃO 02 |** (UniRV GO/2018) Um poliedro convexo composto de 12 faces pentagonais regulares e 20 faces hexagonais regulares foi confeccionado inspirado numa bola de futebol.



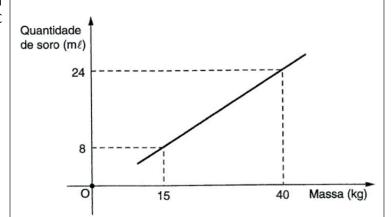
Assinale V (verdadeiro) ou F (falso) para as alternativas.

- A Este poliedro possui 180 arestas.
- **B** O número de vértices desse poliedro é 60.
- **©** Se cada aresta mede 6 cm, a área ocupada pelos hexágonos é de 648  $\sqrt{3}$  cm<sup>2</sup>.
- A medida de cada ângulo interno do pentágono regular é 108º.

**QUESTÃO 03** | (UniRV GO/2017) A figura mostra um triângulo ABC de altura AF e cujos segmentos AG e BC medem, respectivamente 12 cm e 15 cm.



Considerando que a área do trapézio BCED representa 64% da área do triângulo ABC e que sec  $\alpha=\sqrt{5}$  , assinale (V) se verdadeira ou (F) se falsa:


- A medida do segmento AF é 15 cm.
- **B** A área do trapézio BCED é 96 cm<sup>2</sup>.
- **•** A área do triângulo ADG é 14,4  $\sqrt{5}$  cm<sup>2</sup>.
- A área do triângulo AGE representa 56,25% da área do trapézio FCEG.

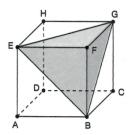
**QUESTÃO 04** | (UniRV GO/2017) Em cada afirmação, abaixo, marcar (V) se verdadeira ou (F) se falsa.

- Se uma reta é paralela a um plano, então ela é paralela a todas as retas do plano.
- Três retas paralelas e distintas podem ser coplanares ou podem formar três planos.
- O Duas retas que possuem um ponto em comum são concorrentes.
- Uma reta e um plano são paralelos. Podemos afirmar que toda reta perpendicular a essa reta é perpendicular ao plano.

**QUESTÃO 05** | (UniRV GO/2017) Considere as alternativas abaixo e assinale (V) para as verdadeiras e (F) para as falsas.

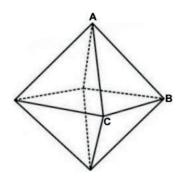
- **A** Seja  $\lambda$  uma circunferência de equação  $x^2 + y^2 6x 4y + 9 = 0$ . Sabe-se que um quadrado, cujos lados são paralelos aos eixos cartesianos, está inscrito em  $\lambda$ . O perímetro desse quadrado inscrito nessa circunferência vale 8  $\sqrt{2}$  u.m.
- A reta do gráfico abaixo indica a quantidade de soro (em ml) que um indivíduo deve tomar em função de sua massa (em kg), num tratamento de imunização. A quantidade de soro a ser ministrada será dividida em 8 aplicações idênticas. Com base nessas informações, pode-se afirmar que a quantidade em mililitros de soro que cada indivíduo de 85 kg receberá em cada aplicação deverá ser de 7 ml.




- O perímetro de um triângulo ABC cujas coordenadas dos vértices são dadas por A(1, 3), B(7, 3) e C(7, 11) é 24 u.m.
- As retas (r):2x 3y + 5 = 0 e (s):4x 6y 1 = 0 representadas no plano cartesiano são perpendiculares.

**QUESTÃO 06** (UniRV GO/2017) Assinale (V) se verdadeira ou (F) se falsa.

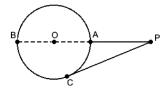
- ⚠ Um poliedro convexo de 27 arestas possui faces triangulares e heptagonais. Se esse poliedro apresenta a soma dos ângulos das faces igual a 6120º, pode-se afirmar que ele possui 4 faces heptagonais.
- Observe a representação de um suporte para as obras de arte de uma exposição. O suporte tem 60 cm de altura, igualmente distribuídos pelos cilindros, as peças maiores têm 1 m de diâmetro e a menor, 60 cm. O valor do custo de 20 peças de cimento, sabendo que o metro cúbico da massa pronta de cimento para moldar vale R\$ 30,00 será de R\$ 235,84. (use:  $\pi = 3,1$ )




 **A pirâmide EFGB da figura que está inscrita num cubo de aresta 6 cm, possui área total de 18**  $(3 + \sqrt{3})$  cm<sup>2</sup>.



**①** Se um cilindro equilátero possui área lateral de 40  $\pi$  cm², então, pode-se afirmar que esse cilindro apresenta uma área total de 60  $\pi$  cm².


**QUESTÃO 07** | (UniRV GO/2017) Um joalheiro, pretendendo alavancar suas vendas, fabricou um pingente no formato de um octaedro regular representado na figura abaixo. Sabese que o material utilizado na fabricação desse pingente é transparente e que sua área total é de 432  $\sqrt{3}$  mm².



Com base no texto, assinale V (verdadeiro) ou F (falso) para as alternativas.

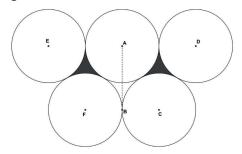
- **A** altura do triângulo da face ABC do octaedro mede 9  $\sqrt{2}$  mm.
- **③** Para que esse octaedro seja inscrito em um cubo, a aresta desse cubo deve ser  $6\sqrt{3}$  mm.
- **O** volume desse pingente é de 864  $\sqrt{3}$  mm<sup>3</sup>.
- **①** Se joalheiro colocar uma pérola esférica inscrita nesse pingente, o volume dessa pérola será de  $36 \pi$  mm<sup>3</sup>.

**QUESTÃO 08** | (UniRV GO/2017) A figura abaixo representa uma circunferência de centro em O e cujos segmentos PC e PA, medem respectivamente 8  $\sqrt{3}$  cm e 8 cm.



Assinale V (verdadeiro) ou F (falso) para as alternativas.

- **(A)** O raio da circunferência mede 8  $\sqrt{2}$  cm.
- **3** A medida de BC =  $10 \sqrt{2}$  cm.
- A medida do ângulo BÔC = 120°.
- **1** A área do triângulo BCP mede 288 cm<sup>2</sup>.


**QUESTÃO 09** | (UniRV GO/2017)

## **Anéis Olímpicos**

A principal representação dos Jogos Olímpicos é a bandeira estampada com os anéis olímpicos, que também são a marca do COI (Comitê Olímpico Internacional). Os cinco aros interligados que compõem o estandarte possuem cores diferentes, cada uma representando um continente: azul, a Europa; amarelo, a Ásia; preto, a África; verde, a Oceania; e vermelho, as Américas. Os anéis entrelaçam-se para dar voz a valores como o universalismo e o humanismo. Os aros que compõem a bandeira são de cores diferentes para representar o respeito às diversidades de todas as nações e contrastam com o fundo branco, que representa a paz entre os continentes. Quando foi criado, esse símbolo tinha o objetivo de se opor ao nacionalismo exagerado que levava à tensão entre países no início do século XX.

(Disponível em: http://brasilescola.uol.com.br/educacao-fisica/simbolos-o-limpicos.htm. Acesso em: 07 de set. 2016 (adaptado).

Considere um aluno que representou esses anéis olímpicos por meio de circunferências idênticas e tangentes duas a duas em um plano cartesiano, sendo que as coordenadas dos pontos A e B foram respectivamente (5,  $2\sqrt{3}$ ) e (-4,  $-\sqrt{3}$ ), conforme figura abaixo.



Assinale V (verdadeiro) ou F (falso) para as alternativas.

- **A** O raio de cada uma das circunferências mede 6 unidades.
- **B** A área hachurada entre os anéis é de 36  $\sqrt{3}$  18 $\pi$ .
- **6** A equação da circunferência com centro no ponto A é  $x^2 + y^2 10x 4\sqrt{3}y + 1 = 0$ .
- O ângulo obtuso formado pela intersecção das retas CD e ED é 135º.

## GABARITO

| 01 | VVFV | 04  | FVFF | 07  | VFVF |
|----|------|-----|------|-----|------|
| 02 | FVFV | 05  | VFVF | 08  | FFVF |
| 03 | FVFV | 061 | FFVV | 091 | VFVI |