

MOVIMENTO UNIFORME

1. (UERJ 2016) A figura abaixo mostra dois barcos que se deslocam em um rio em sentidos opostos. Suas velocidades são constantes e a distância entre eles, no instante t, é igual a 500 m.

Nesse sistema, há três velocidades paralelas, cujos módulos, em relação às margens do rio, são:

- $|V_{barco 1}| = |V_{barco 2}| = 5 \text{ m/s};$
- $| V_{\text{águas do rio}} | = 3 \text{ m/s}.$

Estime, em segundos, o tempo necessário para ocorrer o encontro dos barcos, a partir de t.

2. (UERJ	2013)	Um	moto	rista	dir	ige
um autor	móvel em	n um	trech	o pla	no	de
um viadu	ito. O mo	ovime	nto é	retil	ínec) (
uniforme						

A intervalos regulares de 9 segundos, o motorista percebe a passagem do automóvel sobre cada uma das juntas de dilatação do viaduto.

Sabendo que a velocidade do carro é 80 km/h, determine a distância entre duas juntas consecutivas.

4. (UERJ 2011) Uma partícula se afasta
de um ponto de referência O, a partir de
uma posição inicial A, no instante t = 0 s,
deslocando-se em movimento retilíneo e
uniforme, sempre no mesmo sentido.

A distância da partícula em relação ao ponto O, no instante $t=3,0\,$ s, é igual a 28,0 m e, no instante $t=8,0\,$ s, é igual a 58,0 m.

Determine a distância, em metros, da posição inicial A em relação ao ponto de referência O.

5. (UFC 2010) Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento I, em uma loja, sendo que uma delas desce e a outra sobe. A escada que desce tem velocidade

 $V_A = 1$ m/s e a que sobe e V_B . Considere o tempo de descida da escada igual a 12 s. Sabendo-se que as pessoas se cruzam a 1/3 do caminho percorrido pela pessoa que sobe, determine:

- a. a velocidade $V_{\scriptscriptstyle R}$ da escada que sobe.
- b. o comprimento das escadas.

C.	а	raz	ão	entr	9	OS	tem	pos	gastos	na
de	SC	cida	e r	ıa su	bio	da	das	pess	oas.	

	·	

6. (FUVEST 2010) Pedro atravessa a nado, com velocidade constante, um rio de 60 m de largura e margens paralelas, em 2 minutos. Ana, que boia no rio e está parada em relação à água, observa Pedro, nadando no sentido sul-norte, em uma trajetória retilínea, perpendicular às margens. Marta, sentada na margem do rio, vê que Pedro se move no sentido sudoeste-nordeste, em uma trajetória que forma um ângulo θ com a linha perpendicular às margens. As trajetórias, como observadas por Ana e por Marta, estão indicadas nas figuras a sequir, respectivamente por PA e PM

Se o ângulo θ for tal que $\cos \theta = 3/5$ (sen $\theta = 4/5$), qual o valor do módulo da velocidade:

- a. de Pedro em relação à água?
- b. de Pedro em relação à margem?

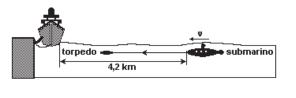
	- 1	/			. ~	`		-
	α	20112	Δm	rΔ	コーコー	$^{\sim}$	margem	1
– .	uа	ayua	CIII		ıaçav	а	IIIai yelli	

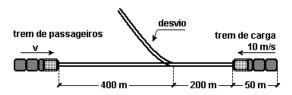
7. (UFRJ 2007) Numa competição, Fernanda nadou 6,0 km e, em seguida, correu outros 6,0 km. Na etapa de natação, conseguiu uma velocidade escalar média de 4,0 km/h; na corrida, sua velocidade escalar média foi de 12 km/h.

- a. Calcule o tempo gasto por Fernanda para nadar os 6,0 km.
- b. Calcule a velocidade escalar média de Fernanda no percurso total da prova.

•			
•			
•			

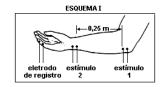
8. (UNESP 2007) Mapas topográficos da Terra são de grande importância para as mais diferentes atividades, tais como navegação, desenvolvimento de pesquisas ou uso adequado do solo. Recentemente, a preocupação com o aquecimento global fez dos mapas topográficos das geleiras foco de atenção de ambientalistas pesquisadores. levantamento 0 topográfico pode ser feito com grande precisão utilizando os dados coletados por altímetros em satélites. O princípio é simples e consiste em registrar o tempo decorrido entre o instante em que um pulso

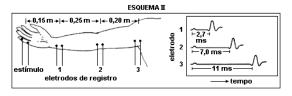



de laser é emitido em direção à superfície da Terra e o instante em que ele retorna ao satélite, depois de refletido pela superfície na Terra. Considere que o tempo decorrido entre a emissão e a recepção do pulso de laser, quando emitido sobre uma região ao nível do mar, seja de 18×10^{-4} s. Se a velocidade do laser for igual a 3×10^{8} m/s, calcule a altura, em relação ao nível do mar, de uma montanha de gelo sobre a qual um pulso de laser incide e retorna ao satélite após 17.8×10^{-4} segundos.	11. (UFRJ 2006) Um estudante a caminho da UFRJ trafega 8,0 km na Linha Vermelha a 80 km/h (10 km/h a menos que o limite permitido nessa via). Se ele fosse insensato e trafegasse a 100 km/h, calcule quantos minutos economizaria nesse mesmo percurso.
	12. (UFRJ 2006) Um atleta dá 150 passos por minuto, cada passo com um metro de extensão. Calcule quanto tempo ele gasta, nessa marcha, para percorrer 6,0 km.
9. (UFRJ 2007) Em uma recente partida de futebol entre Brasil e Argentina, o jogador Kaká marcou o terceiro gol ao final	
de uma arrancada de 60 metros. Supondo que ele tenha gastado 8,0	
segundos para percorrer essa distância,	
determine a velocidade escalar média do jogador nessa arrancada.	
	13. (UFRJ 2005) Nas Olimpíadas de 2004, em Atenas, o maratonista brasileiro Vanderlei Cordeiro de Lima liderava a prova quando foi interceptado por um fanático. A gravação cronometrada do episódio
	indica que ele perdeu 20 segundos desde o instante em que foi interceptado até o
10. (UFPE 2006) Um automóvel faz o percurso Recife-Gravatá a uma velocidade média de 50 km/h. O retorno, pela mesma estrada, é realizado a uma velocidade média de 80 km/h. Quanto, em percentual, o tempo gasto na ida é superior ao tempo gasto no retorno?	instante em que retomou o curso normal da prova. Suponha que, no momento do incidente, Vanderlei corresse a 5,0 m/s e que, sem ser interrompido, mantivesse constante sua velocidade. Calcule a distância que nosso atleta teria percorrido durante o tempo perdido.

14. (UFPE 2005) Um submarino em combate lança um torpedo na direção de um navio ancorado. No instante do lançamento o submarino se movia com velocidade v = 14 m/s. O torpedo é lançado com velocidade v(ts), em relação ao submarino. O intervalo de tempo do lançamento até a colisão do torpedo com o navio foi de 2,0 min. Supondo que o torpedo se moveu com velocidade constante, calcule v(ts) em m/s.

15. (UFRJ 2004) Dois trens, um de carga e outro de passageiros, movem-se nos mesmos trilhos retilíneos, em sentidos opostos, um aproximando-se do outro, ambos com movimentos uniformes. O trem de carga, de 50 m de comprimento, tem uma velocidade de módulo igual a 10 m/s e o de passageiros, uma velocidade de módulo igual a v. O trem de carga deve entrar num desvio para que o de passageiros possa prosseguir viagem nos mesmos trilhos, como ilustra a figura. No instante focalizado, as distâncias das dianteiras dos trens ao desvio valem 200 m e 400 m, respectivamente.




Calcule o valor máximo de v para que não haja colisão.

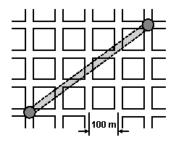
16. (UERJ 2004) A velocidade com que os nervos do braço transmitem impulsos elétricos pode ser medida, empregandose eletrodos adequados, através da estimulação de diferentes pontos do braço e do registro das respostas a estes estímulos.

O esquema I, adiante, ilustra uma forma de medir a velocidade de um impulso elétrico em um nervo motor, na qual o intervalo de tempo entre as respostas aos estímulos 1 e 2, aplicados simultaneamente, é igual a 4 ms.

O esquema II, ilustra uma forma de medir a velocidade de um impulso elétrico em um nervo sensorial.

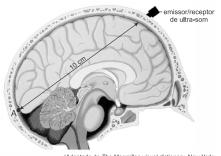
(Adaptado de CAMERON, J. R. et alii. Physics of the Body. Madison: Medical Physics Publishing, 1999.)

Determine a velocidade de propagação do impulso elétrico:


no nervo motor, em km/h;

no nervo sensorial, em m/s, entre os eletrodos 2 e 3.

17. (UNICAMP 2004) Os carros em uma cidade grande desenvolvem uma velocidade média de 18 km/h, em horários de pico, enquanto a velocidade média do metrô é de 36 km/h. O mapa adiante representa os quarteirões de uma cidade e a linha subterrânea do metrô.


- a. Qual a menor distância que um carro pode percorrer entre as duas estações?
- b. Qual o tempo gasto pelo metrô (Tm) para ir de uma estação à outra, de acordo com o mapa?
- c. Qual a razão entre os tempos gastos pelo carro (Tc) e pelo metrô para ir de uma estação à outra, Tc/Tm? Considere o menor trajeto para o carro.

TEXTO PARA A PRÓXIMA QUESTÃO:

Uma pessoa, movendo-se a uma velocidade de 1 m/s, bateu com a cabeça em um obstáculo fixo e foi submetida a uma eco-encefalografia. Nesse exame, um emissor/receptor de ultrassom é posicionado sobre a região a ser investigada. A existência de uma lesão pode ser verificada por meio da detecção do sinal de ultrassom que ela reflete.

18. (UERJ 2004) Observe, na figura adiante, que a região de tecido encefálico a ser investigada no exame é limitada por

ossos do crânio. Sobre um ponto do crânio se apoia o emissor/receptor de ultrassom.

(Adaptado de The Macmillan visual dictionary, New York:

- a. Suponha a não existência de qualquer tipo de lesão no interior da massa encefálica. Determine o tempo gasto para registrar o eco proveniente do ponto A da figura.
- b. Suponha, agora, a existência de uma lesão. Sabendo que o tempo gasto para o registro do eco foi de 0,5 x 10⁻⁴s, calcule a distância do ponto lesionado até o ponto A.

Dados:

- velocidade do som no tecido encefálico= 1.540 m/s
- velocidade do som no osso= 3.360 m/s
- espessura do osso da caixa craniana= 1 cm

19. (UNICAMP 2003) A velocidade linear de leitura de um CD é 1,2 m/s.

Um CD de música toca durante 70 minutos, qual é o comprimento da trilha gravada?

Um CD também pode ser usado para gravar dados. Nesse caso, as marcações que representam um caracter (letra, número ou espaço em branco) têm 8 µm de comprimento. Se essa prova de Física

fosse gravada em CD, quanto tempo relação ao piso e em sentidos contrários seria necessário para ler o item a) desta entram nas esteiras e continuam questão? $1 \, \mu m = 10^{-6} \, m$. caminhando como anteriormente, como mostra a figura. As esteiras rolantes têm comprimento total de 120 m. 20. (UFRJ 2003) Um maratonista percorre a distância de 42 km em duas horas e \vec{V}_{e2} quinze minutos. Determine a velocidade escalar média, em km/h, do atleta ao longo 120 m do percurso. V., В 21. (UNICAMP 2018) Esteiras rolantes a. Calcule o tempo necessário para que a horizontais são frequentemente instaladas pessoa cheque até a outra extremidade em grandes aeroportos para facilitar o da esteira rolante. deslocamento das pessoas em longos b. Quanto tempo depois de entrarem corredores. A figura ao lado mostra nas esteiras as pessoas e passam duas esteiras rolantes que se deslocam uma pela outra? em sentidos opostos com velocidades constantes em relação ao piso em repouso $(\vec{v}_{e1} \ e \ \vec{v}_{e2})$ e de mesmo módulo, igual a Em um mesmo instante, duas pessoas (representadas por A e B) que se deslocavam com velocidade constante de módulo igual a $v_A = 1,5 \text{ m/s}$ e $v_B = 0,5 \text{ m/s}$ em **ANOTAÇÕES**

1.

Para calcular o tempo necessário para o encontro dos barcos, é preciso calcular a velocidade relativa do sistema. Note que os barcos se movem em sentidos contrários (um de encontro ao outro) e paralelamente a velocidade que as águas do rio se move. Assim, pode-se dizer que, adotando a velocidade das águas do rio na mesma direção e sentido do barco 1, a velocidade relativa é dada por: $v_r = (v_{b_1} + v_{rio}) + (v_{b_1} - v_{rio})$

Perceba que a velocidade relativa é independente do sentido das velocidades das águas, pois devido aos sentidos opostos do barco, ela sempre irá ser anulada. Substituindo os valores fornecidos no enunciado. tem-se:

$$\boldsymbol{v}_{r}=\left(5+3\right)+\left(5-3\right)$$

 $v_r = 10 \text{ m/s}$

Com a velocidade relativa, pode-se calcular o tempo do encontro:

$$t = \frac{d}{v_r} = \frac{500}{10}$$

$$t = 50 \text{ s}$$

$$v = \frac{\Delta s}{\Delta t} \rightarrow \frac{80}{3.6} (\text{m/s}) = \frac{\Delta s}{9(s)}$$

$$\Delta s = \frac{9.80}{3.6} \big(m \big)$$

∴ ∆s = 200m

3.

Até o próximo encontro, a soma das distâncias percorridas é igual ao comprimento da pista, d= 3

$$d_1 + d_2 = d \implies v_1 t + v_2 t = d \implies 5 t + 4 t = 3 \implies 9 t = 3 \implies t = \frac{1}{2}h = 20 min.$$

$$t_1 = 3 \text{ s} \Rightarrow S_1 = 28 \text{ m}; t_2 = 8 \text{ s} \Rightarrow S_2 = 58 \text{ m}.$$

Calculando a velocidade:

$$v = \frac{\Delta S}{\Delta t} = \frac{58-28}{8-3} = \frac{30}{5} \ \, \Rightarrow \ \, v = 6 \, \, m/s \text{.}$$

Calculando a posição inicial A (no instante t = 0):

$$v = \frac{\Delta S}{\Delta t} \ \Rightarrow \ 6 = \frac{28 - S_{_A}}{3 - 0} \Rightarrow \ 28 - S_{_A} = 18 \ \Rightarrow S_A = 28 - 18 \Rightarrow S_A = 10 \ m$$

5.

a. Consideremos que cada pessoa esteja em repouso em relação à escada em que está. Se a escada que sobe percorre 1/3 do comprimento de seu comprimento e a que desce percorre 2/3 desse mesmo comprimento, a velocidade da a escada que sobe é metade da velocidade da escada que desce. Ou seja:

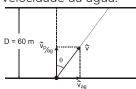
$$v_{B} = \frac{v_{A}}{2} = \frac{1}{2} \implies v_{B} = 0.5 \text{ m/s}.$$

b. Se o tempo de descida é $t_d = 12$ s, o comprimento (l) da escada é:

$$l = v_A t_d = 1 (12) \Rightarrow l = 12 \text{ m}.$$

c. Como a distância percorrida é a mesma tanto na descida como na subida (as escadas têm mesmo comprimento), temos:

$$v_A\,t_d = v_B\,t_s \ \Rightarrow \ \frac{t_d}{t_s} = \frac{v_B}{v_A} = \frac{0.5}{1} \ \Rightarrow \ \frac{t_d}{t_s} = \frac{1}{2}\,. \label{eq:value_def}$$


Pensando de uma maneira mais simples, se escada que sobe tem metade da velocidade ela gasta o dobro do tempo, ou seja:

$$t_s = 2 t_d \Rightarrow \frac{t_d}{t_s} = \frac{1}{2}$$

6.

Dados: Largura do rio: D= 60 m; Δt = 2 min = 120 s; $\cos \theta = \frac{4}{5}$ e sen $\theta = \frac{3}{5}$.

A figura abaixo ilustra as velocidades, sendo: v a velocidade de Pedro em relação à margem; v_{p/aq} a velocidade de Pedro em relação à água e vada velocidade da água.

- a. $v_{p/ag} = \frac{D}{\Delta t} = \frac{60}{120}$ $v_{p/ag} = 0.5 \text{ m/s}.$
- b. Da figura:

$$\cos\theta = \frac{v_{p/ag}}{v} \Rightarrow \frac{3}{5} = \frac{0.5}{v} \Rightarrow v = \frac{2.5}{3} \Rightarrow v = 0.83 \text{ m/s}.$$

c. Da mesma figura:

$$sen \ \theta = \frac{v_{ag}}{v} \Rightarrow \frac{4}{5} = \frac{v_{ag}}{2,5/3} \Rightarrow 5v_{ag} = \frac{10}{3} \Rightarrow v_{ag} = \frac{10}{15} \Rightarrow v_{ag} = 0.67 \text{ m/s}.$$

7.

a. O tempo gasto foi $\Delta t_1 = \Delta s_1/v_1 = 6.0 \text{ km}/(4.0 \text{ km})$ km/h). Portanto, $\Delta t_1 = 1.5$ h.

b. Na segunda etapa, o tempo gasto foi $\Delta t_2 = \Delta s_2/v_2 = 6.0$ km/(12 km/h), ou seja, $\Delta t_2 = 0.5$ h. A velocidade escalar média no percurso total da prova foi $v = (\Delta s_1 + \Delta s_2)/(\Delta t_1 + \Delta t_2) = (6.0$ km + 6.0 km)/(1.5 h + 0.5 h). Portanto, v = 6.0 km/h.

8.

 $v = \Delta S/\Delta t$

 $3.10^8 = \Delta S/18.10^4$

 $3.10^8.18.10^4 = \Delta S \rightarrow \Delta S = 54.10^4 \text{ m}$

 $v = \Delta S/\Delta t$

 $3.10^8 = \Delta S/17, 8.10^4$

 $3.10^8.17,8.10^4 = \Delta S \rightarrow \Delta S = 53,4.10^4 \text{ m}$

A diferença é de 54.10^4 - $53,4.10^4$ = $0,6.10^4$ m = 6.103 m = 6000 m

Como esta diferença compreende duas vezes a altura da montanha em relação ao nível do mar, esta é de 6000/2 = 3000 m

9.

v = 7, 5 m/s

10.

60%

11.

Para o movimento uniforme pode-se empregar S=v.t., onde S é a distância percorrida; v a velocidade constante do móvel e t é o tempo usado para percorrer a distância S, com a velocidade v. Na primeira situação 8=80.t=>t=1/10h=6 min. De forma análaga para a segunda situação t'=8/100 h = 4.8 min. O que implica numa economia de tempo de 6-4.8=1.2 minuto, ou 1 min 12 s.

12.

Se cada passo possui 1 m de extensão e o atleta realiza 150 passos por minuto, então a velocidade do atleta é de 150 m/min. Dado que a distância percorrida é de 6,0 km = 6000 m, tem-se:

v = d/t ==> 150 = 6000/t ==> t = 6000/150

t = 40 min

13.

d = 100m.

14. 21 m/s.

15. 16 m/s

16.

- a. 225 km/h
- b. 50 m/s

17.

- a. 700 m
- b. 50 s
- c. 2,8

18.

a. $t = 2(t_1 + t_2) = 2\left(\frac{1}{336.000} + \frac{10}{154.000}\right)$

 $b. \ \ t = 2 \left(\frac{1}{336.000} + \frac{x}{154.000} \right) = 0.5 \times 10^{-4}$

x= 3,4 cm em relação ao emissor

d = 10 - 3,4 = 6,6 cm

19.

- a. $\Delta S = 5040 \text{m}$
- b. O item a) possui 80 caracteres (incluindo espaços em branco). Logo, as marcações do item têm um comprimento de $80 \times 8 \times 10^{-6} = 6,4 \times 10^{-4}$ m. Para calcular o tempo necessário para ler o item: $\Delta t = 5,33 \times 10^{-4}$ s.

20.

v = (42.4)/9 = 18,7 km/h

21.

a. Como a pessoa A caminha no mesmo sentido da esteira e1, sua velocidade em relação ao solo é igual à soma das duas velocidades.

$$v_{A1} = v_A + e_{e1} = 1,5 + 1 \Rightarrow v_{A1} = 2,5 \text{ m/s.}$$

Para que a pessoa chegue até a outra extremidade tempo é:

$$t_1 = \frac{\Delta S}{v_{A1}} = \frac{120}{2,5} \Longrightarrow \boxed{ t_1 = 48 \text{ s.} }$$

b. Quando a pessoa B está na esteira e2, sua velocidade em relação ao solo é:

$$v_{B2} = v_B + e_{e2} = 0.5 + 1 \Longrightarrow \underline{v_{B2}} = 1.5 \text{ m/s}.$$

Como as pessoas A e B deslocam-se em sentidos opostos, velocidade relativa entre elas é:

$$v_{A/B} = v_{A1} + v_{B2} = 2.5 + 1.5 \Rightarrow v_{A/B} = 4 \text{ m/s.}$$

Em relação à pessoa B o espaço percorrido pela pessoa A é:

$$\Delta S_{A/B} = 120 \text{ m.}$$

Calculando o instante em que uma passa pela $t_{enc} = \frac{\Delta S_{A/B}}{v_{A/B}} = \frac{120}{4} \Rightarrow \boxed{t_{enc} = 30 \text{ s.}}$ outra, depois de entrarem nas esteiras:

		ANOTAÇÕES	
	Ų		
l —			
_			