

Prova de Polinômios – ITA

- 1 (ITA-13) Seja n > 6 um inteiro positivo não divisível por 6. Se, na divisão de n² por 6, o quociente é um número ímpar, então o resto da divisão de n por 6 é
- a) 1
- b) 2
- c) 3
- d) 4
- **2** (ITA-12) As raízes x_1 , x_2 e x_3 do polinômio $p(x) = 16 + ax - (4 + \sqrt{2})x^2 + x^3$ estão relacionadas equações: $x_1 + 2x_2 + \frac{x_3}{2} = 2$ pelas
- $x_1 2x_2 \sqrt{2}x_3 = 0$. Então, o coeficiente a é igual a
- a) $2(1-\sqrt{2})$ b) $2(2+\sqrt{2})$ c) $4(\sqrt{2}-1)$

- d) $4 + \sqrt{2}$
 - e) $\sqrt{2} 4$
- **3** (ITA-12) Considere um polinômio p(x), de grau 5, com coeficientes reais. Sabe-se que -2i e $i-\sqrt{3}$ são duas de suas raízes. Sabe-se, ainda, que dividindo-se p(x) pelo polinômio q(x) = x - 5 obtém-se resto zero e que $p(1) = 20(5+2\sqrt{3})$. Então, p(-1) é igual
- a) $5(5-2\sqrt{3})$ b) $15(5-2\sqrt{3})$ c) $30(5-2\sqrt{3})$
- d) $45(5-2\sqrt{3})$ e) $50(5-2\sqrt{3})$
- 4 (ITA-11) Se 1 é raiz de multiplicidade 2 da equação $x^{4} + x^{2} + ax + b = 0$, com $a, b \in R$, então $a^{2} - b^{3}$ é
- A) -64 B) -36 C) -28 D) 18 E) 27
- 5 (ITA-11) Com respeito à equação polinomial 2x4 3x3 - 3x2 + 6x - 2 = 0 é correto afirmar que
- A () todas as raízes estão em Q.
- B () uma única raiz está em $\mathbb Z$ e as demais estão em $\mathbb Q$ $\setminus \mathbb{Z}$.
- C () duas raízes estão em Q e as demais têm parte imaginária não-nula.
- D () não é divisível por 2x 1.
- E () uma única raiz está em $\mathbb{Q} \setminus \mathbb{Z}$ e pelo menos uma das demais está em $\mathcal{R} \setminus \mathbb{Q}$.
- **6** (ITA-10) Sabe-se que o polinômio $p(x) = x^5 ax^3 + ax^2$ -1, $a \in \Re$, admite a raiz -i. Considere as seguintes afirmações sobre as raízes de p:
- I. Quatro das raízes são imaginárias puras.
- II. Uma das raízes tem multiplicidade dois.
- Apenas uma das raízes é real. III.

- Destas, é (são) verdadeira (s) apenas
- (A) I. (B) II. (C) III.
- (D) I e III. (E) II e III.
- **7** (ITA-10) Um polinômio real $p(x) = \sum_{n=0}^{5} a_n x^n$, com
- $a_{\scriptscriptstyle 5}=4$, tem três raízes reais distintas, a, b e c, que

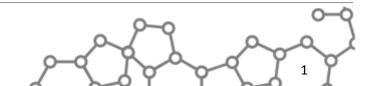
satisfazem o sistema
$$\begin{cases} a+2b+5c=0\\ a+4b+2c=6\\ 2a+2b+2c=5 \end{cases}$$

- Sabendo que a maior das raízes é simples e as demais têm multiplicidade dois, pode-se afirmar que p(1) é igual a
- (A) 4. (B) 2. (C) 2. (D) 4. (E) 6.
- **8** (ITA-10) Considere o polinômio $p(x) = \sum_{n=0}^{13} a_n x^n$ $a_0 = -1$ e $a_n = 1 + ia_{n-1}$, com coeficientes
- I. $p(-1) \notin R$ II. $|p(x)| \le 4(3+\sqrt{2}+\sqrt{5}), \forall x \in [-1,1]$ III. $a_8 = a_4$

n = 1, 2, 3, ..., 15. Das afirmações:

- é(são) verdadeira(s) apenas (A) I. (B) II. (C) III. (D) I e II. (E) II e III.
- 9 (ITA-09) O polinômio de grau 4 $(a+2b+c)x^4+(a+b+c)x^3-(a-b)x^2+(2a-b+c)x+2(a+c)$
- com $a,b,c \in IR$, é uma função par. Então, a soma dos módulos de suas raízes é igual a
- a) $3 + \sqrt{3}$
- b) $2 + 3\sqrt{3}$
- c) $2 + \sqrt{2}$

- d) $1+2\sqrt{2}$
- e) $2 + 2\sqrt{2}$
- **10** (ITA-09) Suponha que os coeficientes reais $a \in b$ equação $x^4 + ax^3 + bx^2 + ax + 1 = 0$ são tais que a equação admite solução não real r com $|r| \neq 1$. Das seguintes afirmações:
- I. A equação admite quatro raízes distintas, sendo todas não reais.
- II. As raízes podem ser duplas.
- III. Das quatro raízes, duas podem ser reais.
- é (são) verdadeira (s)



- a) apenas I. b) apenas II.
- c) apenas III. d) apenas II e III. e) nenhuma.
- 11 (ITA-08) Um polinômio P é dado pelo produto de 5 polinômios cujos graus formam uma progressão geométrica. Se o polinômio de menor grau tem grau igual a 2 e o grau de P é 62, então o de maior grau tem grau igual a:
- a) 30 b) 32 c) 34 d) 36 e) 38
- **12** (ITA-08) Considere o polinômio $p(x) = a_5x^5 + a_4x^4 + a_5x^5 + a_4x^4 + a_5x^5 + a_4x^4 + a_5x^5 + a$ $a_3x^3 + a_2x^2 - a_1$, em que uma das raízes é x = -1. Sabendo-se que a₁, a₂, a₃ a₄ e a₅ são reais e formam, nesta ordem, uma progressão aritmética com a₄ = ½, então p(-2) é igual a:
- a) -25 b) -27 c) -36e) - 40d) – 39
- **13** (ITA-08) Sobre a equação polinomial $2x^4 + ax^3 + bx^2$ -cx - 1 = 0, sabemos que os coeficientes a, b, c são reais, duas de suas raízes são inteiras e distintas e 1/2-i/2 também é sua raiz. Então, o máximo de a, b, c é igual a: a) -1 b) 1 c) 2 d) 3 e) 4
- 14 (ITA-08) É dada a equação polinomial $(a + c + 2)x^3 + (b + 3c + 1)x^2 + (c - a)x + (a + b + 4) = 0$ Com a, b, c reais, sabendo-se que esta equação é recíproca de primeira espécie e que 1 é uma raiz, então o produto abc é igual a:
- a) -2 b) 4 c) 6 d) 9 e) 12
- 15 (ITA-07) Seja Q(z) um polinômio do quinto grau, definido sobre o conjunto dos números complexos, cujo coeficiente de z^5 é igual a 1. Sendo $z^3 + z^2 + z + 1$ um fator de Q(z), Q(0) = 2 e Q(1) = 8, então, podemos afirmar que a soma dos quadrados dos módulos das raízes de Q(z) é igual a
- a) 9 b) 7 c) 5 d) 3 e) 1
- 16 (ITA-07) Sendo c um número real a ser determinado, decomponha o polinômio $9x^2 - 63x + c$, numa diferença de dois cubos $(x+a)^3 - (x+b)^3$

Neste caso, |a+|b|-c| é igual a

- a) 104 b) 114 c) 124 d) 134 e) 144
- 17 (ITA-06) Seja p um polinômio com coeficientes reais, de grau 7, que admite 1 - i como raiz de multiplicidade 2. Sabe-se que a soma e o produto de todas as raízes de p são, respectivamente, 10 e - 40. Sendo afirmado que três raízes de p são reais e distintas e formam uma progressão aritmética, então, tais raízes são

- a) $3/2 \sqrt{193}/6$, 3, $3/2 + \sqrt{193}/6$
- b) $2-4\sqrt{13}$, 2, $2+4\sqrt{13}$
- c) -4, 2, 8d) -2, 3, 8
 - e) -1, 2, 5
- **18** (ITA-06) Sobre o polinômio p(x) = $x^5 5x^3 + 4x^2 3x$ - 2 podemos afirmar que
- a) x = 2 não é raiz de p.
- b) p só admite raízes reais, sendo uma delas inteira, duas racionais e duas irracionais.
- c) p admite uma única raiz real, sendo ela uma raiz inteira.
- d) p só admite raízes reais, sendo duas delas inteiras.
- e) p admite somente 3 raízes reais, sendo uma delas inteira e duas irracionais.
- **19** (ITA-06) Considere o polinômio $p(x) = x_3 (a + 1)$, onde a \in Z. O conjunto de todos os valores de a, para os quais o polinômio p (x) só admite raízes inteiras, é
- a) $\{2n, n \in IN\}$
- b) $\{4n^2, n \in IN\}$
- c) $\{6n 4n, n \in IN\}$
- d) $\{n (n + 1), n \in IN\}$
- e) IN
- 20 (ITA-05) No desenvolvimento de $(ax^2 2bx + c + 1)^5$ obtém-se um polinômio p(x) cujos coeficientes somam 32. Se $0 \in -1$ são raízes de p(x), então a soma $a + b + c \in$ igual a
- a) $-\frac{1}{2}$
- b) $-\frac{1}{4}$ c) $\frac{1}{2}$ d) 1 e) $\frac{3}{2}$
- 21 (ITA-05) O número complexo 2 + i é raiz do polinômio $f(x) = x^4 + x^3 + px^2 + x + q$
- com p, q ∈ IR. Então, a alternativa que mais se aproxima da soma das raízes reais de f é

d) 5

- b) -4 c) 6
- e) -5
- 22 (ITA-04) Para algum número real r, o polinômio 8x3 $-4x^2 - 42x + 45$ é divisível por $(x - r)^2$. Qual dos números abaixo está mais próximo de r?
- a) 1,62 b) 1,52 c) 1,42 d) 1,32 e) 1,22

- 23 (ITA-04) Dada a equação x^3 + (m + 1) x^2 + (m + 9) x + 9 = 0, em que m é uma constante real, considere as seguintes afirmações:
- $I Se \mathbf{m} \in] -6, 6[$, então existe apenas uma raiz real.
- II Se $\mathbf{m} = -6$ ou $\mathbf{m} = +6$. então existe raiz com multiplicidade 2.
- III \forall **m** \in **R**, todas as raízes são reais.

Então, podemos afirmar que é (são) verdadeira(s) apenas.

d) II e III a) I b) II c) III e) l e II

24 - (ITA-03) Dividindo-se o polinômio $P(x) = x^5 + ax^4 +$ $bx^2 + cx + 1$ por (x - 1), obtém-se resto igual a 2,. Dividindo-se P(x) por (x + 1), obtém-se resto igual a 3. Sabendo que P(x) é divisível por (x - 2), tem-se que o valor de $\frac{ab}{c}$ é igual a:

a) -6 b) -4 c) 4 d) 7

25 - (ITA-02) A divisão de um polinômio f(x) por (x-1)(x - 2) tem resto x + 1. Se os restos das divisões de f(x)por x – 1 e x – 2 são, respectivamente, os números a e b, então $a^2 + b^2$ vale

- a) 13
- b) 5
- c) 2
- d) 1 e) 0

26 - (ITA-02) Sabendo que a equação $x^3 - px^2 = q^m$, p, q > 0, q \neq 1, m \in N, possui três raízes reais positivas a, b, e c, então

$$log_{q}\left[abc\left(a^{2}+b^{2}+c^{2}\right)^{\!\!a+b+c}\right]$$

é igual a:

- a) $2m + p \log_{\Omega} p$
- d) m plog_q p
- b) $m + 2p \log_q p$
- e) m 2p log_q p
- c) $m + p \log_{\mathbf{q}} p$
- 27 (ITA-01) O valor da soma a + b para que as raízes do polinômio $4x^4 - 20x^3 + ax^2 - 25x + b$ estejam em progressão aritmética de razão 1/2 é.
- a) 36 b) 41 c) 26 d) -27 e) -20
- 28 (ITA-01) Sabendo que é de 1024 a soma dos coeficientes do polinômio em x e y, obtido pelo desenvolvimento do binômio (x + y)m, temos que o número de arranjos sem repetição de m elementos, tomados 2 a 2, é:
- a) 80 b) 90 c) 70 d) 100 e) 60
- 29 (ITA-01) O polinômio com coeficientes reais $P(x) = x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ tem duas raízes distintas, cada uma delas com multiplicidade 2, e duas de suas raízes são 2 e i. Então, a soma dos coeficientes é igual a:
- a) -4 b) -6 c) -1 d) 1 e) 4

30 - (ITA-00) Sendo 1 e 1+2i raízes da equação $x^3 + ax^2 + bx + c = 0$, em que a,b e c são números reais, então:

- (A) b+c=4 (B) b+c=3 (C) b+c=2
- (D) b+c=1 (E) b+c=0

31 - (ITA-00) Seja p(x) um polinômio divisível por x-1. Dividindo-o por $x^2 + x$, obtêm-se o quociente $Q(x) = x^2 - 3$ e o resto R(x). Se R(4) = 10, então o coeficiente do termo de grau 1 de P(x) é igual a :

(A) - 5 (B) - 3 (C) - 1 (D) 1 (E) 3

32 - (ITA-99) Seja p(x) um polinômio de grau 3 tal que $p(x) = p(x + 2) - x^2 - 2$, para todo $x \in \mathbb{R}$. Se – 2 é uma raiz de p(x), então o produto de todas as raízes de p(x) é:

- a) 36
- b) 18
- c) 36
- d) -18 e) 1

33 - (ITA-99) A equação polinomial p(x) = 0 de coeficientes reais e grau 6 é recíproca de 2ª espécie e admite i como raiz. Se p(2) = $-\frac{105}{8}$ e p(-2) = $\frac{255}{8}$, então a soma de todas as raízes de p(x) é igual a:

- a) 10
- b) 8
- c) 6
- d) 2

34 - (ITA-98) Seja a um número real tal que o polinômio $p(x) = x^6 + 2x^5 + ax^4 - ax^2 - 2x - 1$

admite apenas raízes reais. Então:

- a) $a \in [2, \infty[$
- b) $a \in [-1, 1]$ c) $a \in [-\infty, -7]$
- d) $a \in [-2, -1[$
- e) $a \in [1, 2]$

35 - (ITA-98) Seja p(x) um polinômio de grau 4 com coeficientes reais. Na divisão de p(x) por x - 2 obtém-se um quociente q(x) e resto igual a 26. Na divisão de p(x) por $x^2 + x - 1$ obtém-se um quociente h(x) e resto 8x - 15. Sabe-se que q(0) = 13 e q(1) = 26. Então, h(2) + h(3) éigual a:

a) 16 b) zero c) -47 d) -28 e) 1

36 - (ITA-97) Seja S o conjunto de todas as raízes da equação $2x^{6} - 4x^{5} + 4x - 2 = 0$. Sobre os elementos de S podemos afirmar que:

- a) Todos são números reais.
- b) 4 são números reais positivos.
- c) 4 não são números reais.
- d) 3 são números reais positivos e 2 não são reais.
- e) 3 são números reais negativos.
- 37 (ITA-97) Sejam $p_1(x)$, $p_2(x)$ e $p_3(x)$ polinômios na variável real x de graus n₁, n₂ e n₃, respectivamente, com $n_1 > n_2 > n_3$. Sabe-se que $p_1(x)$ e $p_2(x)$ são divisíveis

por $p_3(x)$. Seja r(x) o resto da divisão de $p_1(x)$ por $p_2(x)$. Considere as afirmações:

I - r(x) é divisível por $p_3(x)$.

II - $p_1(x) - \frac{1}{2} p_2(x)$ é divisível por $p_3(x)$.

III - $p_1(x)$ r(x) é divisível por $\{p_3(x)\}^2$.

Então,

- a) Apenas I e II são verdadeiras
- b) Apenas II é verdadeira.
- c) Apenas I e III são verdadeiras.
- d) Todas as afirmações são verdadeiras
- e) Todas as afirmações são falsas

38 - (ITA-96) Considere o polinômio:

$$P(z) = z^6 + 2z^5 + 6z^4 + 12z^3 + 8z^2 + 16z$$

- a) Apenas uma é real.
- b) Apenas duas raízes são reais e distintas.
- c) Apenas duas raízes são reais e iguais.
- d) Quatro raízes são reais, sendo duas a duas distintas.
- e) Quatro raízes são reais, sendo apenas duas iguais.

39 - (ITA-95) A divisão de um polinômio P(x) por $x^2 - x$ resulta no quociente $6x^2 + 5x + 3$ e resto – 7x. O resto da divisão de P(x) por 2x + 1 é igual a:

- a) 1
 - b) 2 c) 3
- d) 4

40 - (ITA-95) Sabendo que $4 + i\sqrt{2}$ e $\sqrt{5}$ são raízes do polinômio $2x^5 - 22x^4 + 74x^3 + 2x^2 - 420x + 540$, então a soma dos quadrados de todas as raízes reais é:

- a) 17 b) 19 c) 21 d) 23 e) 25

41 - (ITA-94) Seja P(x) um polinômio de grau 5, com coeficientes reais, admitindo 2 e i como raízes. Se P(1)P(-1) < 0, então o número de raízes reais de P(x)pertencentes ao intervalo] - 1, 1[é:

- a) 0
- b) 1
- c) 2
- d) 3

42 - (ITA-93) Sabendo-se que a equação de coeficientes

 $x^{6} - (a + b + c)x^{5} + 6x^{4} + (a - 2b)x^{3} - 3cx^{2} + 6x - 1 = 0$ é uma equação recíproca de segunda classe, então o número de raízes reais desta equação desta equação é:

- a) 0
- b) 2
- c) 3
- d) 4

43 - (ITA-93) Considere a equação de coeficientes reais

$$x^5 + mx^4 + 2\frac{P}{m}x^3 - 316x^2 + 688x + P = 0, m \neq 0$$

para a qual 1 + 3i é raiz. Sabendo-se que a equação admite mais de uma raiz real e que suas raízes reais formam uma progressão geométrica de razão inteira q cujo produto é igual a 64, podemos afirmar que P/m é igual a:

- a) 20
- b) 30
- c) 40
- d) 120
- e) 160

44 - (ITA-92) Sejam a e b constante reais. Sobre a equação: $x^4 - (a + b)x^3 + (ab + 2)x^2 - (a + b)x + 1 = 0$ podemos afirmar que:

- a) Não possui raiz real se a < b < -3.
- b) Não possui raiz real se a > b > 3.
- c) Todas as raízes são reais se $|a| \ge 2$ e $|b| \ge 2$.
- d) Possui pelo menos uma raiz real se $-1 < a \le b < 1$.
- e) n.d.a.

45 - (ITA-91) Os valores de m de modo que a equação x³ $-6x^2 - m^2x + 30 = 0$ tenha duas de suas raízes somando um, são:

- a) 0
- b) $\sqrt{3}$ e 3
- c) 1 e 1

- d) 2 e 2
- e) nda

46 - (ITA-91) Seja S o conjunto de todas as raízes da equação $12x^3 - 16x^2 - 3x + 4 = 0$. Podemos afirmar que:

- a) $S \subset]-1,0[\cup]0,1[\cup]1,2[$
- b) $S \subset]-2,-1[\cup]0,1[\cup]3,4[$
- c) $S \subset [0, 4]$
- d) $S \subset]-2,-1[\cup]1,2[\cup]3,4[$
- e) n.d.a.

47 - (ITA-91) Considere as afirmações:

I - A equação $3x^4 - 10x^3 + 10x - 3 = 0$ só admite raízes

II - Toda equação recíproca admite um número par de raízes.

III - As raízes da equação $x^3 + 4x^2 - 4x - 16 = 0$. São exatamente o dobro das raízes de $x^3 + 2x^2 - x - 2 = 0$.

- a) Apenas I é verdadeira.
- b) Apenas II é falsa.
- c) Apenas III é verdadeira.
- d) Todas são verdadeiras.
- e) n.d.a.

48 - (ITA-90) Seja p(x) = $16x^5 - 78x^4 + ... + \alpha x - 5$ um polinômio de coeficientes reais tal que a equação p(x) = O admite mais do que uma raiz real e ainda, a + bi é uma raiz complexa desta equação com ab ≠ 0. Sabendo-se que $\frac{1}{a}$ é a razão da progressão geométrica formada pelas raízes reais de p(x) = 0 e que a soma destas raízes reais vale $\frac{7}{8}$ enquanto que o produto é $\frac{1}{6}$, o valor de α

a) 32 b) 56 c) 71

d) 11

e) 0

49 - (ITA-90) Sabendo-se que 3x - 1 é fator de $12x^3 19x^2 + 8x - 1$ então as soluções reais da equação $12(3^{3x})$ $-19(3^{2x}) + 8(3^{x}) - 1 = 0$ somam:

b) 1 c)-
$$\frac{1}{3}$$
log₃12 d) - 1 e) log₃7

50 - (ITA-88) Se P(x) e Q(x) são polinômios com coeficientes reais, de graus 2 e 4 respectivamente, tais que P(i) = 0 e Q(i) = 0 então podemos afirmar que:

- a) P(x) é divisível por x + 1.
- b) P(x) é divisível por x 1.
- c) P(x).Q(x) é divisível por $x^4 + 2x^2 + 1$.
- d) P(x) e Q(x) são primos entre si.
- e) Q(x) não é divisível por P(x).

51 - (ITA-87) Multiplicando-se por 2 as raízes da equação $x^3 - 2x^2 + 2x - 1 = 0$ vamos obter raízes da seguinte equação:

a)
$$2y^3 - 6y^2 + 6y - 4 = 0$$
 b) $y^3 - 4y^2 + 8y - 8 = 0$

b)
$$v^3 - 4v^2 + 8v - 8 = 0$$

$$8y^3 - 8y^2 + 4y - 1 = 0$$

d)
$$y^3 - 8y^2 + 8y + 8 = 0$$

d)
$$y^3 - 8y^2 + 8y + 8 = 0$$
 e) $4y^3 - 4y^2 - 4y - 8 = 0$

52 - (ITA-85) Como $ax^4 + bx^3 + 5x + 3 = 0$ é recíproca e tem o 1 como raiz, o produto das raízes reais desta a) 2 b) -1d) 3 e) 4 c) 1

53 - (ITA-83) Dado o polinômio P definido por P(x) = sen θ – (tg θ)x + (sec² θ)x², os valores de θ no intervalo [0, 2π] tais que P admita somente raízes reais são:

- a) $0 \le \theta \le \pi/2$
- b) $\pi/2 < \theta < \pi$ ou $\pi < \theta < 3\pi/2$
- c) $\pi \le \theta \le 3\pi/2$ ou $3\pi/2 < x \le 2\pi$
- d) $0 \le x \le 3\pi/2$
- e) $\pi/2 \le x < 3\pi/2$

54 - (ITA-83) Determine o polinômio P de 3º grau que representa uma raiz nula e satisfaz a condição P(x - 1) = $P(x) + (2x)^2$ para todo x real. Com o auxílio deste, podemos calcular a soma $2^2 + 4^2 + ... + (2n)^2$, onde n é um número natural, que é igual a:

a)
$$\frac{4}{3}$$
n³ - 2n² - $\frac{2}{3}$ n d) 4n³ + 2n² + n

d)
$$4n^3 + 2n^2 + r$$

b)
$$\frac{4}{3}$$
n³ + 2n² + $\frac{2}{3}$ n e) n³ + n² + 2n

e)
$$n^3 + n^2 + 2r$$

c)
$$\frac{4}{3}$$
n³ - 2n² + $\frac{2}{3}$ n

55 - (ITA-83) As equações $x^3 + ax^2 + 18 = 0$ e $x^3 + nbx + 12 = 0$, onde a = b são constantes reais e n um inteiro, têm duas raízes comuns. Das afirmativas abaixo, qual é a verdadeira?

- a) As raízes não comuns às equações têm sinais opostos.
- b) As raízes não comuns às equações são negativas quando a é negativo.
- c) A soma das raízes não comuns às equações é 5.
- d) b e n possuem o mesmo sinal.
- e) As raízes comuns às equações dependem de n.

GABARITO

1	С
2	С
3	С
4	С
5	E
6	С
7	Α
8	E
9	E
10	Α
11	В
12	Α
13	С
14	E
15	В
16	В
17	E
18	E
19	D
20	Α
21	E
22	В
23	E
24	E
25	Α
26	В
27	В
28	В

29	Α
30	С
31	С
32	С
33	С
34	С
35	Α
36	D
37	D
38	В
39	E
40	В
41	В
42	D
43	SR
44	С
45	С
46	Α
47	В
48	С
49	Α
50	С
51	В
52	В
53	С
54	В
55	D