

# MATEMÁTICA

Frente: Matemática I

PROFESSOR(A): FABRÍCIO MAIA

# EAD - ITA/IME

# **AULAS 19 E 20**

**Assunto:** Equações Trigonométricas



#### Resumo Teórico

## **Equações Trigonométricas**

Em Álgebra, costumamos definir as equações como toda sentença matemática aberta expressa por uma igualdade. Assim, uma equação é dita trigonométrica quando em sua composição o valor desconhecido aparece relacionado com seno, cosseno, tangente, cotangente, secante ou cossecante. Resolvê-la, consiste em encontrar os valores que verificam a sentença.

#### Seno, Cosseno e Tangente (Arcos Notáveis)

| α               | senlpha              | cosα                 | tgα                  |  |  |  |  |  |
|-----------------|----------------------|----------------------|----------------------|--|--|--|--|--|
| 0               | 0 1                  |                      | 0                    |  |  |  |  |  |
| $\frac{\pi}{6}$ | $\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ |  |  |  |  |  |
| $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | 1                    |  |  |  |  |  |
| $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$        | $\sqrt{3}$           |  |  |  |  |  |
| $\frac{\pi}{2}$ | 1                    | 0                    | A                    |  |  |  |  |  |



#### **Exercícios**

- **01.** Com relação à equação  $\frac{\text{tg}^3 \text{x} 3 \cdot \text{tg} \text{x}}{1 3 \cdot \text{tg}^2 \text{x}} + 1 = 0$ , podemos afirmar
  - A) no intervalo  $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$  a soma das soluções é igual a 0.
  - B) no intervalo  $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$  a soma das soluções é maior que 0.
  - C) a equação admite apenas uma solução real.
  - D) existe uma única solução no intervalo  $\left[0, \frac{\pi}{2}\right]$ .
  - E) existem duas soluções no intervalo  $\left[-\frac{\pi}{2},0\right]$ .

- **02.** O número de soluções da equação  $(1 + \sec\theta) \cdot (1 + \csc\theta) = 0$ , com  $\theta \in [-\pi, \pi]$ , é
  - A) 0
  - C) 2
  - E) 4

- D) 3
- **03.** Os valores de  $x \in [0, 2\pi]$  que satisfazem a equação  $2 \cdot \text{sen} x \cos x = 1$ 

  - A)  $\arccos\left(\frac{3}{5}\right) \in \pi$  B)  $\arcsin\left(\frac{3}{5}\right) \in \pi$
  - C)  $\arcsin\left(-\frac{4}{5}\right) e \pi$  D)  $\arccos\left(-\frac{4}{5}\right) e \pi$
  - E)  $arccos\left(\frac{4}{F}\right) e \pi$
- **04.** Sejam  $\alpha$  e  $\beta$  números reais tais que  $\alpha$ ,  $\beta$ ,  $\alpha + \beta \in ]0$ ,  $2\pi[$  satisfazem as equações  $\cos^2\left(\frac{\alpha}{3}\right) = \frac{4}{5}\cos^4\left(\frac{\alpha}{3}\right) + \frac{1}{5}e\cos^2\left(\frac{\beta}{3}\right) = \frac{4}{7}\cos^4\left(\frac{\beta}{3}\right) + \frac{3}{7}$ .

Então, o menor valor de  $cos(\alpha + \beta)$  é igual a

A) -1

- B)  $-\frac{\sqrt{3}}{2}$
- C)  $-\frac{\sqrt{2}}{2}$

- E) 0
- **05.** Se  $\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$ , calcule o valor S.

$$S = \frac{3\cos y + \cos 3y}{\cos x} + \frac{3\sin y - \sin 3y}{\sin x}$$

**06.** Seja a equação  $\frac{\text{sen}(2x)}{\text{tax}} = \frac{1}{2}$ . As soluções dessa equação para

 $X \in \left[-\frac{\pi}{2}, \pi\right]$  formam um polígono no círculo trigonométrico de

- A)  $\frac{\sqrt{3}}{2}$

E) 1



# MÓDULO DE ESTUDO

**07.** Determine o conjunto solução da equação:

| $(\operatorname{sen} x)\left(1+\operatorname{tg} x\operatorname{tg}\frac{x}{2}\right)=4-\operatorname{cotg}$ | = 4 – cotg x |
|--------------------------------------------------------------------------------------------------------------|--------------|
|--------------------------------------------------------------------------------------------------------------|--------------|

- 08. O número de soluções da equação  $cos(8x) = sen(2x) + tg^2(x) + cotg^2(x)$  no intervalo [0,  $2\pi$ ) é:

C) 2

- E) 8
- 09. Determine o conjunto das soluções reais da equação  $3\cos^2\left(\frac{x}{2}\right) - tg^2x = 1$ .
- **10.** Sejam **a** um número real e **n** o número de todas as soluções reais e distintas  $x \in [0, 2\pi]$  da equação  $\cos^8 x - \sin^8 x + 4 \sin^6 x = a$ . Das afirmações:
  - I. Se a = 0, então n = 0;
  - II. Se  $a = \frac{1}{2}$ , então n = 8;
  - III. Se a = 1, então n = 7;
  - IV. Se a = 3, então n = 2.

é(são) verdadeira(s)

- A) apenas I
- B) apenas III
- C) apenas I e III
- D) apenas II e IV
- E) todas
- 11. Seja  $x \in [0, 2\pi]$  tal que  $sen(x)cos(x) = \frac{2}{5}$ . Então, o produto e a soma de todos os possíveis valores de tg(x) são, respectivamente
  - A) 1 e 0
- C) -1 e 0
- E)  $-1 e \frac{5}{3}$
- **12.** Resolva a equação  $\cos^4 3x \sin^4 3x = \frac{\sqrt{3}}{2}$
- **13.** Sabe-se que uma das raízes da equação  $y^2 9y + 8 = 0$  pode ser representada pela expressão  $e^{\left(\operatorname{sen}^2x+\operatorname{sen}^4x+\operatorname{sen}^6x+\ldots\right) \ell n 2}$ . Sendo  $0 < x < \frac{\pi}{2}$ , o valor da razão  $\frac{\cos x}{\cos x+\sin x}$  é

Observação: ln2 representa o logaritmo neperiano de 2.

- A)  $\frac{\sqrt{3}-1}{2}$
- B)  $\sqrt{3} 1$

C)  $\sqrt{3}$ 

- D)  $\frac{\sqrt{3}+1}{2}$
- E)  $\sqrt{3} + 1$
- **14.** Resolva a equação  $(\log_{\cos x} \operatorname{sen}^2 x) \cdot (\log_{\cos^2 x} \operatorname{sen} x) = 4$ .
- **15.** Resolva a equação sen<sup>6</sup> x + cos<sup>6</sup> x =  $\frac{5}{8}$

| GABARITO |    |    |    |    |    |    |    |  |
|----------|----|----|----|----|----|----|----|--|
| 01       | 02 | 03 | 04 | 05 | 06 | 07 | 08 |  |
| В        | Α  | Α  | В  | *  | Α  | *  | С  |  |
| 09       | 10 | 11 | 12 | 13 | 14 | 15 |    |  |
| *        | E  | В  | *  | Α  | *  | *  |    |  |

- **\*05:** S = 4
- \*07:  $S = \left\{ x \in \mathbb{R} / x = \frac{\pi}{12} + k\pi \text{ ou } x = \frac{5\pi}{12} + k\pi, k \in \mathbb{Z} \right\}$
- **\*09:**  $\cos x = -\frac{1}{2} \rightarrow x = \pm \frac{2\pi}{2} + 2k\pi; k \in \mathbb{Z}$

$$\cos x = \frac{1}{3} \rightarrow x = \pm \arccos\left(\frac{1}{3}\right) + 2k\pi; k \in \mathbb{Z}$$

- **\*12:**  $6x = \pm \frac{\pi}{6} + k \cdot 2\pi, k \in \mathbb{Z}$  $x = \pm \frac{\pi}{36} + k \cdot \frac{\pi}{3}, k \in \mathbb{Z}$  $S = \left\{ x \in \mathbb{R} / x = \pm \frac{\pi}{36} + k \cdot \frac{\pi}{3}, k \in \mathbb{Z} \right\}$
- \*14:  $S = \left\{ x \in \mathbb{R} / x = \arcsin\left(\frac{\sqrt{5} 1}{2}\right) + k \cdot 2\pi, k \in \mathbb{Z} \right\}$
- \*15:  $S = \left\{ x \in \mathbb{R} / x = \frac{(2k+1)\pi}{8}, k \text{ inteiro} \right\}$



### Anotações

SUPERVISOR/DIRETOR: MARCELO PENA – AUTOR: FABRÍCIO MAIA
DIG.: ESTEFANIA – REV.: TEREZA