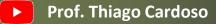
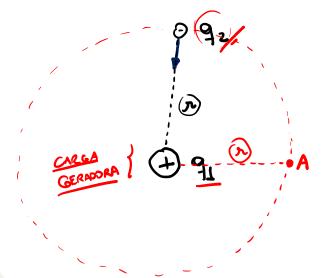


Eletroquímica





Potencial

Definição

ELÉTRICA =
$$\frac{K9_19_2}{N^2}$$
 (LEI DE COULOMB)

ELLÉTRICA =
$$-\frac{kq_1q_2}{r} = \left(-\frac{kq_1}{r}\right) \cdot q_2 = q_2 \cdot V$$

POTENCIAL: V

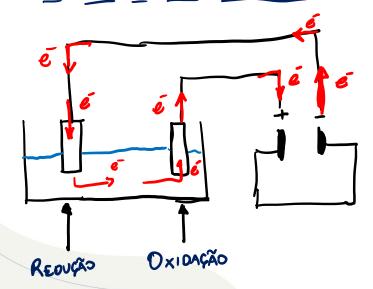
* POTENCIAL : É UMA GRANDEZA INTENSIVA

=> O POTENCIAL ELETRICO É CALCULADO EM

UMA DETERMINADA POSIÇÃO DO ESPAÇO

=> INDEPENDE DA CARGA ALI LOCALIZADA

O potencial é uma grandeza intensiva


CONCLUSZO: QUANDO MULTIPLICA MOS UMA REAGÃO QUÍMICA POR UMA CONSTANTE POSITIVA,
O POTENCIAL NÃO SE ALTERA

$$Ag^{+}(\alpha q) + e^{-} - Ag(s)$$
 $E_{31Ag}^{-} + 0,80V$
 $Ag^{+}(\alpha q) + 2e^{-} - 2Ag(s)$
 $E_{31Ag}^{0} + 0,80V$

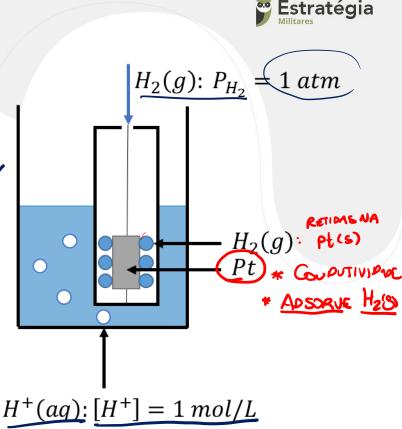
Gerador de Tensão

BATERIA: OS ELÉTRONS SAEM DO POLO NEGATIVO E VÃO PARA O POLO POSITIVO

Potencial Padrão

Definições Básicas

=> PADRÃO (E°): QUANDO AS CONCENTRAÇÕES DE TODAS AS ESPÉCIES QUÍMICAS DISSOLVIDAS ENVOLVIDAS NA REAÇÃO DA PILHA SEJA IGUAL A JIMAL E QUE AS PRESSÕES PARCIAIS DOS GASES SEJAMIOVAIS A John


I J = I mol/L PGINS = I atm

Eletrodo Padrão de Hidrogênio

=> ÉUM NÍVEL DE REFERÊNCIA PARA A MEDIDA DOS POTENCIAIS

$$\frac{2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(q)}{I \text{ atm}} E^{-} = 0,00V$$

$$E_{H^{+}H_{2}} = 0,00V$$

Tabela de Potenciais Padrão

$$F_e^{2+}(aq) + e^- \longrightarrow F_e^{2+}(aq) = 0.77 v$$

$$- F_e^{2+}(aq) + 2e^- \longrightarrow F_e(e) = 0.71 v$$

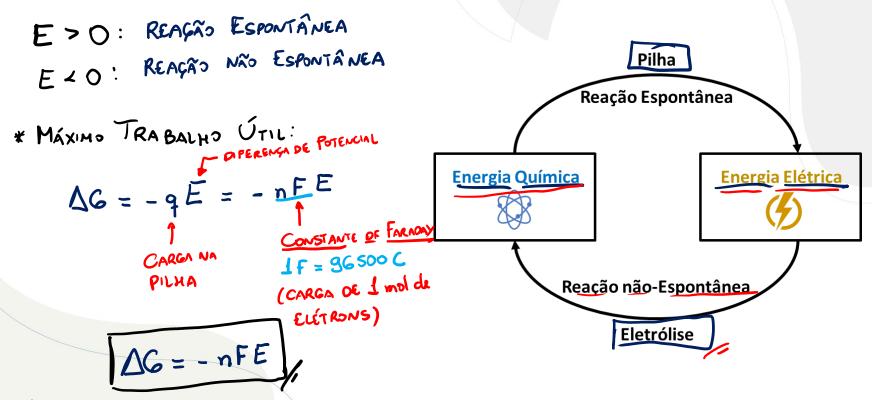
=> O POTENCIAL DE OXIDAÇÃO CORRESPONDE AD SIMÉTRICO DO POTENCIAL DE REDU-CÃO

Fet (ag) - Fe3+ (ag) + e	E°= -0,77 V
Fe (5) - Fe (09) + 2e	F°= +0.45 V
Fe (5) - Fe" (09) + de	

Reação de Redução	Potencial Padrão E⁰ (V)
$2e^- + F_{2(g)} \to 2F_{(aq)}^-$	+2,87
$5e^- + 8H^+_{(aq)} + MnO^{4(aq)} \rightarrow Mn^{2+}_{(aq)} + 4H_2O$	+1,51
$2e^- + Cl_{2(g)} \rightarrow 2Cl_{(aq)}^-$	+1,36
$6e^{-} + 14H_{(aq)}^{+} + Cr_{2}O_{7(aq)}^{2-} \rightarrow 2Cr_{(aq)}^{3+} + 7H_{2}O$	+1,33
\checkmark 4e ⁻ + 4H ⁺ _(aq) + O _{2(g)} → 2H ₂ O	+1,23
$2e^- + Br_{2(l)} \rightarrow 2Br_{(aq)}^-$	+1,07
$3e^- + 4H^+_{(aq)} + NO^{3(aq)} \rightarrow NO_{(g)} + 2H_2O$	+0,96
$e^- + Ag^+_{(aq)} \rightarrow Ag_{(s)}$	+0.80
$e^- + Fe_{(aq)}^{3+} \to Fe_{(aq)}^{2+}$	(+0,77)
$2e^- + I_{2(s)} \to 2I_{(aq)}^-$	+0,54
$4e^- + 2H_2O + O_{2(g)} \rightarrow 4OH_{(aq)}^-$	+0,41
$2e^- + Cu^{2+} \rightarrow Cu_{(s)}$	+0,34
$e^- + AgCl_{(s)} \rightarrow Ag_{(s)} + Cl_{(aq)}^-$	+0,22
$2e^- + Sn_{(aq)}^{4+} \rightarrow Sn_{(aq)}^{2+}$	+0,15
$2e^- + 2H^+_{(aq)} \rightarrow H_{2(g)}$	0,00
15 V	

Tabela de Potenciais Padrão

Reação de Redução	Potencial Padrão E⁰ (V)
$2e^- + Sn^{4+}_{(aq)} \rightarrow Sn^{2+}_{(aq)}$	+0,15
$2e^- + 2H^+_{(aq)} \to H_{2(g)}$	0,00
$2e^- + Sn_{(aq)}^{2+} \rightarrow Sn_{(S)}$	-0,14
$e^- + Cr_{(aq)}^{3+} \rightarrow Cr_{(aq)}^{2+}$	-0,41
★ $2e^- + Fe_{(aq)}^{2+} \to Fe_{(s)}$	-0,45
$3e^- + Cr_{(aq)}^{3+} \rightarrow Cr_{(s)}$	-0,74
$2e^- + Zn_{(aq)}^{2+} \rightarrow Zn_{(s)}$	-0,76
$3e^- + Al_{(aq)}^{3+} \rightarrow Al_{(s)}$	-1,67
$2e^- + Mg_{(ag)}^{2+} \to Mg_{(s)}$	-2,37
$e^- + Na_{(aq)}^+ \rightarrow Na_{(s)}$	-2,71
$2e^- + Ca_{(aq)}^{2+} \rightarrow Ca_{(s)}$	-2,87
$e^- + Li^+_{(aq)} \rightarrow Li_{(s)}$	-3,04


Diferença de Potencial

Reações Espontâneas x Não Espontâneas

Reações Espontâneas x Não Espontâneas

$$+ Cu^{2+}(qq) + 2e^{-} - Cu(s) = +0,34$$

$$E^{\circ} = -0.76V$$
s)
$$E^{\circ} = +0.34V$$

$$E^{\circ} = +0.34 \text{ V}$$

$$E^{\circ} = +0.76$$

REAGNO GLOBAL:
$$Z_n(s)$$
 \longrightarrow $Z_n^{2+}(oq)$ + $Z_n^{2-}(oq)$ + $Z_n^{2-}(oq)$ \longrightarrow $Z_n^{2+}(oq)$ + $Z_n^{2-}(oq)$ \longrightarrow Z_n^{2-}

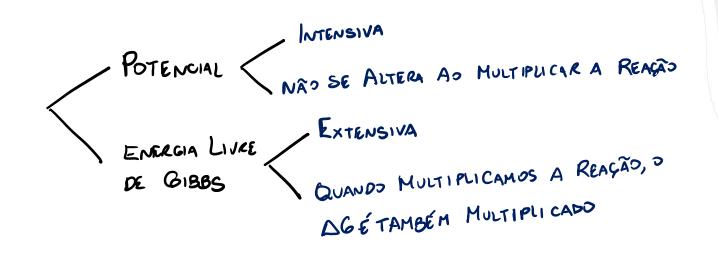
$$Z_n(s) + C_n^{2+}(aq) \longrightarrow Z_n^{2+}(aq) + C_n(s) E^o = 0,34 - (-0,76) = 0,34 + 0,76 = 1,10V$$

$$dd_p DA PILHA$$

Eletroquímica Prof. Thiago Cardoso

PILHA: Zn(5) | Zn2+ (oq) | Cu2+ (oq) | Cu(5)

Relação com o ΔG

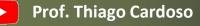

* PARA A PILHA DE DANIELL:

$$Z_n^{2+}(\alpha_q) + Cu(s) \longrightarrow Z_n(s) + Cu^{2+}(\alpha_q) = 1,10V$$

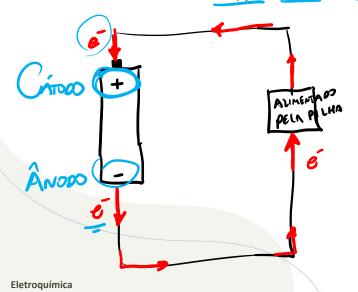
$$E^{\circ} = 1,10 \text{ V}$$

 $\Delta C^{\circ} = -nFE^{\circ} = -4.96500.1,10 = -424,6 \text{ KJ/mol}$

Relação com o **\Delta G**



Montagem de uma Pilha



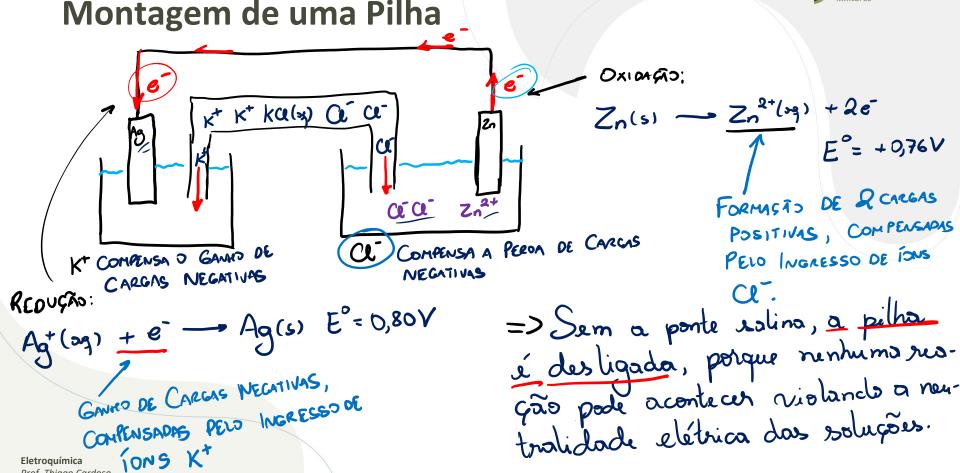
= ÂNDOD É O ELETRODO EM QUE ACONTECE A OXIDAÇÃO * DE ONDE PARTEM OS ELÉTRONS

=> CÁTODO: É O ELETRODO EM QUE ACONTECE A REDUÇÃO

* PARA ONDE VÃO OS ELÉTRONS

Montagem de uma Pilha

$$\mathcal{E}_{2}$$
: $Ag^{+}(\alpha q) + e^{-} \longrightarrow Ag^{(s)} \qquad \stackrel{E^{\circ} = +0.80 \text{ V}}{= -0.76 \text{ V}}$


$$Z_{n}^{2+}(\alpha q) + 2e^{-} \longrightarrow Z_{n}(s) \qquad \stackrel{E^{\circ} = -0.76 \text{ V}}{= -0.76 \text{ V}}$$

* O ELETRODO COM MAIOR POTENCIAL DE REDUÇÃO É O QUE SE REDUZ

$$Z_{n}(s) \xrightarrow{\text{PATOR}} Z_{n}^{2+}(s) = +0.80 \text{ V} \xrightarrow{\text{PATOR}} Z_{n}^{2+}(s) \xrightarrow{\text{PATOR}} Z_{n}^{$$

$$2Ag^{+}(\alpha q) + Zn(s) \longrightarrow 2Ag(s) + Zn^{2+}(\alpha q) = \pm 1,56 V$$

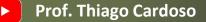
(IME – 2018 – 1ª Fase) Considere que a reação abaixo ocorra em uma pilha.

$$2 Fe^{+++} + Cu \rightarrow Cu^{++} + 2 Fe^{++}$$

Assinale a alternativa que indica o valor correto do potencial padrão dessa pilha.

Fe⁺⁺
$$\rightarrow$$
 Fe⁺⁺⁺ + e⁻ E⁰ = -0,77 V
Cu⁺⁺ + 2 e⁻ \rightarrow Cu + e⁻ E⁰ = +0,34 V

$$2F_{2}^{3+} + 2F_{2}^{3+} + 2F_{2}^{2+} + E^{\circ} = +977 \vee 2F_{2}^{3+} + C_{1}(5) - C_{1}^{2+}(5) + 2F_{2}^{3+} + C_{2}^{3+} + C_{1}(5) - 2F_{2}^{2+} + C_{2}^{3+} + C_{2}^{3+} + C_{3}^{3+} + C_{4}^{3+} + C_{4}^{3+$$



- a) +1,20 V
- b) -0,43 V
- c) +1,88 V
- d) -1,20 V +0,43 V

Potencial da Soma de Eletrodos

Estratégia Militares

A Lei de Hess vale para o Potencial?

Mão, porque o potencial é uma grandeza intensira.

Ex.:
$$F_{e}^{3+}(\alpha q) + e^{-} \rightarrow F_{e}^{2+}(\alpha q)$$
 $E_{J}^{\circ} = +0,77V$ $\Delta G_{J}^{\circ} = -1.F.E_{J}^{\circ}$ $F_{e}^{2+}(\alpha q) + 2e^{-} \rightarrow F_{e}(s)$ $E_{JJ}^{\circ} = -0,45V$ $\Delta G_{JJ}^{\circ} = -2.F.E_{JJ}^{\circ}$ $F_{e}^{3+}(\alpha q) + 3e^{-} \rightarrow F_{e}(s)$ $E_{JJ}^{\circ} = ?$ $\Delta G_{JJ}^{\circ} = -3.F.E_{JJ}^{\circ}$

$$+3.7.E_{\Pi}^{\circ} = +1.7.E_{1}^{\circ} + 27.E_{\Pi}^{\circ} : 3E_{\Pi}^{\circ} = 1.E_{1}^{\circ} + 2.E_{\Pi}^{\circ} :$$

$$E_{II} = \frac{1.E_{5}^{\circ} + 2.E_{II}^{\circ}}{3} = \frac{1.(+0.77) + 2.(-0.45)}{3} = \frac{0.77 - 0.90}{3} = \frac{-0.13}{3}$$

$$= -0.043 \text{ V/}$$

Eletrólise

Prof. Thiago Cardoso

Leis de Faraday

$$Q = \eta_{\text{delnas}} = I.t$$

Leis de Faraday

Ez.: Eletrólise de um Sougas O,J mol/L
$$Cu(NO_3)_2$$
 USANOS $\underline{I} = \underline{I},93$ A .

$$n_{\alpha} = 1.93.3000 = 1930.30.10^{3} = 30.$$

$$m_{Cu} = n_{Cu} \cdot M_{Cu} =$$

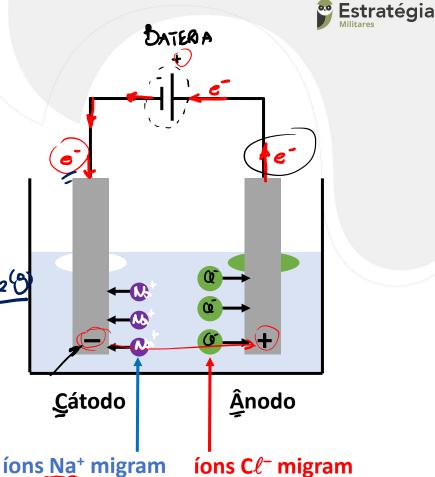
$$= 30.10^{-3} \cdot 64 =$$

$$= 1920.10^{-3} \pm 1.929$$

Eletrólise Ígnea

=> NO ESTADO LÍQUIDO

Obs.: Os compostos iônicos são condutores no estado líquido.


Eletrólise Ígnea

Nace (1) Fundido

REDUÇÃO: 2Nat +2e- 2Na (l)

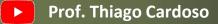
Oxidação: 20l - O2(g) + 2e

REAGOS GOODL: 2Not + 20 - 2No(1) + Ch2(8)

para o cátodo

para o cátodo

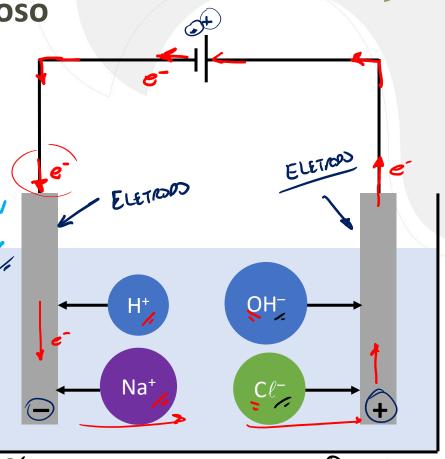
Quais es produtes da életrôlise égnes de HCl (1)?)


2 HCl (1) Elépesse H2(9) + Cl2(8)?

Não há reação, porque HCl (l) não é condutor. Portanto, não conduz corrente elétrica, portanto, não sofre eletrálise.

Eletrólise em Meio Aquoso

Eletrólise em Meio Aquoso


=> nesse caso, os ions da água

também podem sofrer des conqu.

Cároos competição pela redução

$$\times$$
 Na^t(\approx) + e⁻ \longrightarrow Na (s) $E^{\circ}=-2,71$ \vee

Postição

Estratégia

Anoso:

$$2CL(0q) \longrightarrow CL_2(g) + 2e^- E^0 = -1,36V$$

 $4OH^-(0q) \longrightarrow 2H_2O(e) + O_2(g) + 4e^- E^0 \longrightarrow 2H_2O(e) + O_2(g) + 4e^- E^0$

REGRAS DE DESCARGA:

Eletrólise em Meio Aquoso

KEGRAS DE PRIORIDADE DE DESCARGA

REDUÇÃO:

* Somente es metais nobres des-Corredom

Cu, Hg, Ag, Au, Pt

* Em todos os outros casos, o metal não descorrega. A signa se reduz

2H+ (ag) + 2e- -> H2(9)

2H20(1) + 2e -> H2(9) +20+(34)

OXI DAÇÃO :

* Não des corregam es 2 nions oxigenades.


Messe coso, a síqua sola esido esis

* Demois ânions descarregam

Eletrólise em Meio Aquoso

Eletrólise em Meio Aquoso

•

Now SON (on)
$$\longrightarrow$$
 2Nh (on) + SON (on)
NATO DESCARRECA NATO DESCARRECA

REDUSATO: 2H2O(1) + 2e \longrightarrow H2(5) + 2OH (ong)

OXIDASÃO: H2O(1) \longrightarrow 2H (ong) + \bigcirc 2(9) + 2e \longrightarrow

TISTICINES NO (1) \longrightarrow 2H (ong) \longrightarrow 1(0) (1) \longrightarrow 1(0) \longrightarrow 1(

REDUÇÃO: somente es metais nobres des corregam

Oxidação: es ânions oxigenados não des corregim

