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Preface

Many contest problems concern series and sequences. Each year contest problems

become more and more challenging and even an “A” math student without special

preparation for such problems could feel frustrated and lost. Based on my own

experience, the first time I had to consider a series, different from an arithmetic or

geometric progression, it was at my city math olympiad when I was in 9th grade.

I remember that one of the problems looked like this.

Evaluate the sum 1

1þ ffiffi
2

p þ 1ffiffi
2

p þ ffiffi
3

p þ 1ffiffi
3

p þ ffiffi
4

p þ . . .þ 1ffiffiffiffiffiffiffi
1977

p þ ffiffiffiffiffiffiffi
1978

p .

I knew that this sum exists because they would not ask to evaluate it otherwise. I

noticed that there are 1977 terms to add, and of course it would not be math contest

if there was not some interesting approach to find this sum without putting 1977

over the common denominator. The first thing I tried worked. I multiplied the

numerator and denominator of one fraction by the quantity that differed from its

denominator by only the sign. Then I applied the formula of the difference of two

squares, which made the denominator of the fraction one.

For example, 1ffiffi
2

p þ ffiffi
3

p ¼
ffiffi
3

p � ffiffi
2

pffiffi
3

p þ ffiffi
2

pð Þ ffiffi
3

p � ffiffi
2

pð Þ ¼
ffiffi
3

p � ffiffi
2

pffiffi
3

pð Þ2� ffiffi
2

pð Þ2 ¼
ffiffi
3

p � ffiffi
2

p
1

¼ ffiffiffi
3

p � ffiffiffi
2

p
.

Replacing each fraction as above by “rationalizing its denominator,” I noticed

that all radicals were canceled, except the first term and last terms,
ffiffiffi
2

p � 1þ ffiffiffi
3

p

� ffiffiffi
2

p þ ffiffiffi
4

p � ffiffiffi
3

p þ ffiffiffi
5

p � ffiffiffi
4

p þ . . .þ ffiffiffiffiffiffiffiffiffiffi
1978

p � ffiffiffiffiffiffiffiffiffiffi
1977

p ¼ ffiffiffiffiffiffiffiffiffiffi
1978

p � 1:
The answer was obtained!

After winning the City Olympiad, I was sent to the Regional Math Olympiad and

was again surprised that two or three problems there were on topics that were not

yet covered in our classes at school. One of the problems was on sequences, but

again, it was different from the arithmetic and geometric progressions that we

learned in algebra class. Here it is.
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Find the formula for the nth term of the sequence of numbers: 1, 1, 2, 3, 5, 8,

13, 21, 34, . . .

I remember that I looked at those numbers, noticed that each term starting from

the third one is the sum of the two preceding terms. That allowed me to create the

formula for the sequence: anþ2 ¼ an þ anþ1, a1 ¼ a2 ¼ 1:
Knowing nothing about the Fibonacci sequence and what this sequence actually

described, I started thinking this way, “This sequence is not an arithmetic progres-

sion because the difference of any consecutive terms is not the same.” I asked

myself a question, “What if the terms of this sequence belong to a geometric

progression?” Then they must satisfy the formula above. The idea appeared to be

good and after manipulations, I found the answer. I solved this problem without any

preliminary knowledge about the Fibonacci sequence and derived “my method” of

dealing with the sequences given by recursion.

I show how I solved that problem from 10th grade in detail by demonstrating it as

Problem 24, Chapter 1 of this book. Why do I write about these two examples from

my own Olympiad experience and emphasize my lack of the knowledge about

special sequences? There are several reasons for this but the first is to understand

that nobody knows everything. We learn by organizing information and thoughts,

not by simply storing them. I do not ask you to reinvent the wheel each time.

However, I ask you to understand rather than simply memorize.

My method of teaching mathematics is constructed on four simple premises:

1. It is my opinion that creativity can be developed by considering some interesting

approaches while also gaining routine background knowledge. For example, a

difference of squares formula that I used to solve the first problem is not boring if

considered in conjunction with an example of use such as one from my other

book Methods of Solving Nonstandard Problems for the solution of 39999 �
40001 without a calculator.

2. Math education is now mostly oriented on teaching mathematics by “having

fun.” But “fun” should not be skin deep. I noticed that many math educators

show their students the amazing Fibonacci sequence, generate it, and show its

properties using videos or slides. Yes, students probably would recognize that

the sequence given at the Math Olympiad in 1978 was Fibonacci. Many would

be able to find some of its terms either by hand or by using a graphing calculator.

I am not sure that many would derive the formula for its nth term. A deeper

understanding of mathematical concepts can be fun, and it is far more rewarding

in the long term.

3. Concepts should not stand in isolation. For example, there is a connection

between the golden ratio and the Fibonacci sequence which generates it. The

golden ration of nature is the result of a simple recurrent relationship! Connec-

tions generate new insight and further enhance concepts.
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4. The learning of mathematics should have a human purpose. Perhaps that purpose

is merely to compete. That is good enough! Many modern contest problems have

sequences and series either directly or as a part of a problem. Hence, as an

instructor, it is a good idea to help those who want to participate in math contests

to learn more about sequences and series by exploring the topics in order that one

would create their own beautiful solutions to a problem.

If you are struggling with math, this book is for you. Most math books start from

theoretical facts and give one or two examples and then a set of problems. In this

book almost every statement is followed by problems. You are not just memorizing

a theorem—you apply the knowledge immediately. Upon seeing a similar problem

in the homework section you will be able to recognize and solve it. While each

section of the book can be studied independently, the book is constructed to

reinforce patterns developed at stages throughout the book. This helps you see

how math topics are connected.

What Is This Book About?

This book is not a textbook. It is a learning and teaching tool that helps the reader to

develop a creative learning experience. It gives many examples of series, partial, or

infinite sums of which can be evaluated using methods taught in this book. Let us

consider the problem to evaluate the series (Problem 50),
1
1�2 þ 1

2�3 þ 1
3�4 þ . . .þ 1

2016�2017.
I want to share my experience with my Calculus 2 class when learning series and

sequences. Although some of my students answered correctly that there are 2016

terms and recognize the formula of the nth term as 1
n� nþ1ð Þ, usually nobody in class

can find this finite sum. I tell them a story how I evaluated this sum in 9th grade by

noticing that each fraction can be written as a difference of two unit fractions

1

2 � 3 ¼ 1

2
� 1

3
, ::::

1

n nþ 1ð Þ ¼
1

n
� 1

nþ 1
:

They quickly replace each term by the difference and evaluate the sum as

1� 1
2017

¼ 2016
2017

. This would do nothing for most of my students and they would

not remember this “trick” as nobody remembers telephone numbers anymore unless

I asked them next class to evaluate the following infinite sum:

1

2
þ 1

6
þ 1

12
þ 1

20
þ 1

30
þ :::: ðP:1Þ

Those who recognized that this series is an infinite form of the finite series given

before would evaluate its partial sum as Sn ¼ 1� 1
nþ1

and hence using the limit as

n approaches infinity would state that the series is convergent to 1.
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Further, we will discuss the so-called Leibniz harmonic triangle, related to

Pascal’s triangle, but that has only unit fractions recorded in the form of a triangle.

The sum of the series represents the sum of all elements of the second diagonal of

the infinite Leibniz triangle and my students learn that the sum is one using a

different approach (Problem 67). Next, I ask my students to modify the Leibniz

triangle so that it has only denominators of each fraction instead of fractions

themselves (Figure 2.2). Let us construct a sequence of the denominators:

2, 6, 12, 20, 30, 42, . . . , n nþ 1ð Þ, . . .. Students see that the same numbers belong

to the second diagonal of the modified Leibniz triangle! I tell my students that these

numbers are special and that each of them is a double so-called triangular number,

known by the Ancient Greeks, 2000 BC.

Consider the sequence 1, 3, 6, 10, 15, 21, . . . n nþ1ð Þ
2

, . . .. Greeks visualized

each such number placed in a triangle of side 1, 2, 3, 4, etc. The total number of the

balls that could fit a triangle of side nwould represent the nth triangular number. We

construct by hand several triangular numbers and learn their properties (Figure P.1).

Many properties are formulated and solved as problems in this book. For

example,

Can you explain why the formula for the nth triangular number is
n nþ1ð Þ

2
?

This is where we recall how each was constructed and where my students see

that it is the sum of all natural numbers between 1 and n. Thus,

1 ¼ 1

3 ¼ 1þ 2

6 ¼ 1þ 2þ 3. . . :

It is useful to be reminded how the famous mathematician Gauss evaluated such

a sum at the age of 10. The story is told frequently in algebra and calculus

books, but here students can actually use the idea in deriving

Tn ¼ 1þ 2þ 3þ . . .þ n ¼ n nþ1ð Þ
2

. For example, can we evaluate the sum of the

first n triangular numbers, 1þ 3þ 6þ 10þ 15þ . . .þ n nþ1ð Þ
2

? Different methods

of finding this and other sums are taught in this book. Younger students would

probably enjoy a geometric approach, and calculus students would really benefit

from applying sigma notation and well-known summation formulas (Problem 38).

Figure P.1 Triangular

Numbers
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What actually impresses all my present and former students is the connection

between the sequence of natural numbers, sequence of triangular numbers,

sequence of triangular numbers and tetrahedral numbers, etc. I demonstrate that

the nth partial sum of triangular numbers is the corresponding tetrahedral number

(Problems 36 and 39). Denote a tetrahedral number by Tr(n). Then Tr nð Þ ¼ Pn
1

Tn

¼ Pn
1

n nþ1ð Þ
2

¼ n nþ1ð Þ nþ2ð Þ
6

(Figure P.2). Here we can briefly discuss that although

formulas for the nth terms of either triangular or tetrahedral numbers look like

fractions, the numbers are always integers, because the product of two consecutive

natural numbers is always a multiple of two and a product of three consecutive

integers is always divisible by 6.

Let us return to the sum of the numbers in the second diagonal of the Leibniz-

modified triangle (Figure 2.2),

2þ 6þ 12þ 20þ 30þ 42þ . . .þ n nþ 1ð Þ ¼ 2
Xn
k¼1

k k þ 1ð Þ
2

� �

¼
Xn
k¼1

k k þ 1ð Þ

¼ n nþ 1ð Þ nþ 2ð Þ
3

:

We can see that with n increasing, this sum will increase without bound and that the

corresponding infinite sum of the reciprocals of each number 1
k kþ1ð Þ

� �
converges to

unity. The series of Eq. P.1 is called a “telescopic series” and plays a very important

role in the convergence of infinite series. Jacob Bernoulli used a slight modification

of this series for the comparison test and found the upper boundary for the infinite

sum of the Dirichlet series, 1
12
þ 1

22
þ 1

32
þ . . .. This problem is named Basel’s

problem and was solved by Leonhard Euler 40 years after being proposed (Chapters

2 and 3). Euler found that the series converges to π2

6
.

Finding the sum for infinite series for which it is impossible to evaluate the

partial sum is often a challenging problem. Many mathematicians of all ages at

some point of their life tried to find a number associated with certain infinite series.

1 4=1+3 10=1+3+6

Figure P.2 Tetrahedral

numbers

Preface xi

http://dx.doi.org/10.1007/978-3-319-45686-7_2
http://dx.doi.org/10.1007/978-3-319-45686-7_3


The first step is to establish whether the series is convergent or not. This is why I

describe the famous convergence theorems for numerical and functional series in

Chapter 3. Chapter 3 might not look like competition material, but it does have

many unique methods for finding partial and infinite sums. Let us consider one of

the problems from Chapter 3.

Find the sum of an infinite series 1
4
þ 1

36
þ 1

144
þ 1

400
þ 1

900
þ 1

1764
þ . . ..

This series can be rewritten in terms of the Dirichlet and telescopic series and

converges to π2

3
� 3:

I start from an exploration of the properties of well-known arithmetic and

geometric sequences that are familiar to high school students. By giving my

students many problems during the 25 years of my teaching experience, I noticed

that they are very adept in pattern recognition. They might recognize that this is a

Fibonacci sequence and determine succeeding terms by the two preceding terms.

However, as I mentioned above, it is usually hard for them to analytically find the

formula for the nth term or even to add the numbers: 2þ 9þ 16þ 23þ . . .þ 352.

Yes, they find that the terms differ by 7 and that the first term is 2. But many

students panic because they do not know how many terms there are, in order to

apply the Gauss counting approach. This is why students need to study arithmetic

and geometric progressions. For example, the nth term of the series, 352, can be

written as an ¼ 2þ n� 1ð Þ � 7 ¼ 7n� 5 ¼ 352 ) n ¼ 51: Next, we can use

Gauss’s formula and evaluate the sum as

S51 ¼ 2þ 352

2

� �
� 51 ¼ 9027:

Many challenging problems of arithmetic, geometric, and other sequences can be

found in the book. For example, knowledge of geometric series will allow you to

solve interesting problems such as,

Find the sum of 2016 numbers 3þ 33þ 333þ 3333þ . . .þ 333:::3|fflfflffl{zfflfflffl}
2016

.

Other methods will be used to evaluate a sum like,

Evaluate the sum, S ¼ 1
2! þ 2

3! þ 3
4! þ . . .þ 2015

2016!.

An important feature of this book is that most Statements, Lemmas, and Theo-

rems have detailed proofs. I remember how one graduate student who was teaching
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geometry in a private high school rushed to report to me about finding “the formula

for a prime number.” He stated that it is 2n � 1. On my question “Why?,” he replied

that 22 � 1 ¼ 3, 23 � 1 ¼ 7 are primes. When I asked what about 24 � 1 ¼ 15 that

is not prime? He was confused and said “I did not go that far. . ..” This story sounds
like a joke, but it really happened and demonstrates that any statement must be

proven. His “formula” was wrong and it was proven wrong by contradiction.

Particular cases must be generalized and proven, for example, by mathematical

induction, directly, or by contradiction.

This book is a collection of simple and complex problems on series and

sequences that are selected to motivate the reader to start solving challenging

problems. For example, the following problem requires similar ideas to Problem

50 and also generalizes the method and develops proof skills.

The numbers a1, a2, . . . , an, anþ1 are terms of an arithmetic sequence.

Prove that 1
a1�a2 þ 1

a2�a3 þ . . .þ 1
an�anþ1

¼ n
a1�anþ1

:

After recognizing different sequences, one might like the following problem,

Find the nth term of a sequence 3, 13, 30, 54, 85, 123,. . ..

The given sequence is not an arithmetic sequence; however, the differences of

two consecutive terms are 10, 17, 24, 31, 38, . . . and are in an arithmetic progres-

sion with common difference d¼ 7. This means that the given sequence of numbers

3, 13, 30, 54, . . . is the sequence of partial sums of this arithmetic progression and

that its nth term can be evaluated as an ¼ Sn d ¼ 7ð Þ ¼ 2�3þ n�1ð Þ�7
2

� n ¼ 7n�1ð Þ�n
2

.

The techniques used in this book are basic to understanding series and

sequences. As early as 2000 BC, the Babylonians created tables of cubes and

squares of the natural numbers and proved the summation of natural numbers,

their squares, and cubes by a geometric approach. These formulas are in nearly

every textbook still today and are used in finding other sums of finite series. While

remembering these formulas by heart is a very good idea, it is better to be able to

prove each formula by at least one of the methods demonstrated in this book.

Memorization cannot replace understanding. Read the book with a pen and paper

and be ready to derive a forgotten mathematical identity if it is needed.

Versions of problems solved by the Ancient Babylonians and Greeks often

reappear in modern math contests. Their importance to modern mathematics is

fundamental and unavoidable. For example, here is one of the problems of

Chapter 1 of the book that was known to ancient mathematicians.

Prove that a cube of a natural number n can be uniquely written as a sum of

precisely n odd consecutive numbers.
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We prove this statement and find formulas for the first and last odd numbers for

any given n. For example, the cube of 7 is uniquely represented by the sum of seven

odd numbers, 73 ¼ 43þ 45þ 47þ 49þ 51þ 53þ 55 ¼ 343, 1000 by 10 consec-

utive odd numbers, etc. Would you like to know how? The answer is in the book.

This book is not a textbook. Some knowledge of algebra and geometry such as

what is introduced in secondary school is necessary to make full use of the material

of Chapters 1 and 2. Knowledge of calculus is needed for better understanding of

Chapter 3. However, a mastery of these subjects is not a prerequisite. You will use

your knowledge of secondary school mathematics in order to better delve into the

analysis of sequence and series and their properties as you develop problem-solving

skills and your overall mathematical abilities.

The book is divided into four chapters: Introduction to Sequences and Series,

Further Study of Sequences and Series, Series Convergence Theorems and Appli-

cations, Real-Life Applications of Arithmetic and Geometric Sequences. One hun-

dred twenty homework problems with hints and detailed solutions are given at the

end of the book. There are overlaps in knowledge and concepts between chapters.

These overlaps are unavoidable since the threads of deduction we follow from the

central ideas of the chapters are intertwined well within our scope of interest. For

example, we will on occasion use the results of a particular lemma or theorem in a

solution but wait to prove that lemma or theorem until it becomes essential to the

thread at hand. If you know that property you can follow along right away and, if not,

then you may find it in the following sections or in the suggested references.

Many figures are prepared with MAPLE, Excel, and Geometer’s Sketchpad.

Additionally, Chapters 1 and 4 have a number of screenshots produced by a popular

graphing calculator by Texas Instruments. These graphs are shown especially for

the benefit of students accustomed to using calculators in order to introduce them to

analytical methods. Sometimes by comparing solutions obtained numerically and

analytically, we can more readily see the advantages of analytical methods while

referring to the numerically calculated graphs to give us confidence in our results.

Following the new rules of the US Mathematics Olympiad, I suggest that you

prepare all sketches by hand and urge you not to rely on a calculator or computer to

solve the homework problems.

This book covers geometric, arithmetic and other sequences and their applica-

tions, sigma notation, and series. You will learn how to evaluate a limit in calculus

analytically using arithmetic and geometric sequences and how to take an integral

in just one step by recognizing a similarity with a sum like 1
1�5 þ 1

5�9 þ 1
9�13 þ . . . .

Additionally, we will teach you how to find any term of a sequence given by a

recursion formula and will introduce the so-called generating functions. You will

have fun learning about figurate numbers and their properties and the application of

mathematical induction to sequences and series. This book will also assist the

reader in how to prove lemmas and theorems using different methods. Working

on projects that Chapter 4 offers, you will see a connection of arithmetic and

geometric series and sequences with real-life problems (radioactive decay, mort-

gage, loan, debts, etc.) and the wise use of technology for mathematics. This book
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will be very useful for beginners and for those who are looking challenge them-

selves. The book can be helpful for self-education, for people who want to do well

in math classes, or for those preparing for competitions. It is also meant for math

teachers and college professors who would like to use it as an extra resource in their

classroom.

How Should This Book Be Used?

Here are my suggestions about how to use the book. Read the corresponding section

and try to solve the problem without looking at my solution. If a problem is not

easy, then sometimes it is important to find an auxiliary condition that is not a part

of the problem, but that will help you to find a solution in a couple of additional

steps. I will point out ideas we used in the auxiliary constructions so that you can

develop your own experience and hopefully become an expert soon. If you find any

question or section too difficult, skip it and go to another one. Later you may come

back and try to master it. Different people respond differently to the same question.

Return to difficult sections later and then solve all the problems. Read my solution

when you have found your own solution or when you think you are just absolutely

stuck. Think about related problems that you could solve using the same or similar

approach and compare that to corresponding problems in the Homework section.

Create your own problem and write it down along with your original solution. Now

it is your powerful method. You will use it when it is needed.

I promise that this book will make you successful in problem solving. If you do

not understand how a problem was solved or if you feel that you do not understand

my approach, please remember that there are always other ways to do the same

problem. Maybe your method is better than one proposed in this book. If a problem

requires knowledge of trigonometry or number theory or another field of mathe-

matics that you have not learned yet, then skip it and do other problems that you are

able to understand and solve. This will give you a positive record of success in

problem solving and will help you to attack the harder problem later. Do not ever

give up!

I hope that upon finishing this book you will love math and its language as

I do. Good luck and my best wishes to you!

Denton, TX, USA Ellina Grigorieva, Ph.D.
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Chapter 1

Introduction to Sequences and Series

I think everyone has met a problem like this at least once in life, “What is the next

number of 1, 4, 9, 16, . . .” or “Continue the sequence: 1, 1, 2, 3, 5, 8, . . ..” Perhaps,

“Predict the 49th term of the sequence, 1
3
, 1
10
, 1
17
, 1
24
, . . ..” These three problems

have something in common. They are sequences of numbers (numerical sequences)

and can be written in the form a1, a2, . . ., ak . . ., an,...., where a1, a2, and an are the
first, second, and nth terms of the sequence.

Definition. A finite sequence of numbers {an} is a list for which there is a

rule that associates each natural numbern ¼ 1, 2, 3, . . . ,N n2ℕð Þwith only
one member of the list, an. An infinite sequence associates all natural

numbers to a unique element of the list.

For example, an ¼ n2, an ¼ sin nð Þ, an ¼ �1ð Þn � 2nþ 1ð Þ, etc.
In the aforementioned problems, you want to find a rule relating numbers in the

sequence—a pattern. You might notice that the first sequence is a sequence of the

squares of all natural numbers starting from 1, therefore, the next term after

16 would be 25, then 36 and so on. The second sequence is a Fibonacci sequence.

It would take a while to find the relationship between its terms, but having some

experience, you would come up with the idea,

2 ¼ 1þ 1

3 ¼ 1þ 2

5 ¼ 2þ 3

8 ¼ 3þ 5:

Every succeeding term of the sequence is the sum of the two preceding terms, so we

can say that the term after 8 will be 5þ 8 ¼ 13, then 8þ 13 ¼ 21 and so

on. This can be written in a recursive form as
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a1 ¼ 1

a2 ¼ 1

anþ2 ¼ an þ anþ1, n � 1:

So if you know the preceding terms, you can find the following term. However, this

does not give you the answer right away for the value of the 100th or 2017th member

of the sequence. For many sequences given recursively, finding an explicit formula

for the nth term can be a challenging task. You will learn some analytical methods

and get experience by reading this chapter.

In order to quickly explore the Fibonacci and other sequences, we can also use a

graphing calculator (Figures 1.1, 1.2, and 1.3). A TI 83/84 graphing calculator can

generate the Fibonacci sequence recursively on the home screen in FUNCTION

MODE.

A TI 83/84 calculator treats a sequence as a function u(n) whose domain is the

set of positive integers. The functional value u(n) represents the nth term, an, of the
sequence.

Figure 1.1 {1,1} [ENTER]

{Ans(2), Ans(1)þAns(2)} [ENTER]

{1, 2} [ENTER]

{2, 3} [ENTER]

{3, 5} [ENTER]

{5, 8} [ENTER]

{8, 13} and so on

Figure 1.2 Using sequence

mode we can plot or make a

table of the sequence u(n) as
a function of n and enter the
function
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Returning to our original problems, the last sequence appears easier, because

each fraction has one as the numerator. Considering only the sequence of numbers

with denominators: 3, 10, 17, 24, . . ., we notice that the difference between two

consecutive terms is constant and equals 7. Such a sequence is called an arithmetic

sequence with the first term 3 and common difference 7. So the numbers

3, 10, 17, 24, 31, 38, 45, . . . can be described by the formula un ¼ 7n� 4 and the

given by a sequence of reciprocals, an ¼ 1
un
¼ 1

7n�4
, n2N.

At this point, we have introduced some practical sequences. You have recog-

nized a pattern and even used technology to explore the sequences. Now it is time to

look at the sequences from a different angle.

1.1 Sequences and Series

Although for all three sequences mentioned in the introduction in which any term

can be evaluated, these numerical sequences are different. Thus, while the terms of

the first and the second sequences are nondecreasing as n is increasing, the terms of

the last sequence are decreasing.

Definition. A numerical sequence {an} is called nondecreasing

(nonincreasing) if for any natural number n2ℕ, it is true that

an � anþ1 an � anþ1ð Þ. The sequence, {an} is increasing (decreasing) if

for any natural number n2ℕ, an < anþ1 an > anþ1ð Þ.

Corollary 1.1 describes sequences with positive terms.

Corollary 1.1 Consider the ratio of two consecutive terms of the sequence.

If anþ1

an
> 1 then the sequence is strictly increasing. If anþ1

an
< 1, then it is a

strictly decreasing sequence.

Figure 1.3 Create a table
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Let us solve our first problem.

Problem 1 Prove that a sequence anf g, an ¼ 2n

n! , n2ℕ is strictly increasing

starting from the second term.

Proof. Consider the ratio anþ1

an
¼ 2nþ1

nþ1ð Þ! � n!2n ¼ 2
nþ1

and set it less than 1,

2

nþ 1
< 1

nþ 1 > 2

n > 1:

The least natural number greater than 1 is n ¼ 2. The proof is complete.

A series is the sum of the terms of a sequence. Finite sequences and series have

defined first and last terms, whereas infinite sequences and series continue indefi-

nitely. For example, the following series is a finite arithmetic series of 26 terms with

the first term 3 and common difference d ¼ 8, 3þ 11þ 19þ . . .þ 203.

In mathematics, given an infinite sequence of numbers {an} a series is informally

the result of adding all those terms together, a1 þ a2 þ a3 þ . . .. These can be

written more compactly using the summation symbol ∑, (sigma notation). Thus,Pn
k¼m

ak means a sum of all terms, ak, from the term with number k ¼ m to the term

with number k ¼ n. We say that k ¼ m is the lower index and k ¼ n is the upper

index of summation. For example, 1þ 2þ 3þ � � � þ 100 is the sum of all natural

numbers from 1 to 100 and can be written as
P100
n¼1

n.

Let us consider the sum 1þ 4þ 9þ 16þ 25þ � � � þ 10, 000. Each term in this

series is a square of a natural number, ak ¼ k2, where 1 � k � 100, so that the

series can be written as
P100
n¼1

n2. Also, the series 1
8
þ 1

27
þ 1

81
þ . . .þ 1

1, 000, 000 ¼
P100
n¼2

1
n3

represents summation from n¼ 2 to n¼ 100.

The terms of the series are often produced according to a certain rule, such as by

a formula, or by an algorithm. As there are an infinite number of terms, this notion is

often called an infinite series. Unlike finite summations, infinite series need tools

from mathematical analysis to be fully understood and manipulated. In addition to

their ubiquity in mathematics, infinite series are also widely used in other quanti-

tative disciplines such as physics and computer science.
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Definition. Expression a1 þ a2 þ ::þ an þ . . . , where anf g ¼ a1, a2, . . . ,
an, . . . is a numerical sequence called a series, and an is the common term of

the series. A series is considered to be defined if the common term of the

series is known as a function of number n, an ¼ f nð Þ.

Problem 2 Find a series using the formula for un for:

a) un ¼ 1
n nþ1ð Þ; b) un ¼ 3 � 2n�1; c) un ¼ �1ð Þn.

Solution.

a. If un ¼ 1
n nþ1ð Þ ; then

1
1�2 þ 1

2�3 þ 1
3�4 þ . . .þ 1

n nþ1ð Þ þ . . . ¼ P1
n¼1

1
n nþ1ð Þ.

b. If un ¼ 3 � 2n�1, then 3þ 3 � 2þ 3 � 22 þ 3 � 23 þ . . .þ 3 � 2n�1 þ . . . ¼P1
n¼1

3 � 2n�1

c. If un ¼ �1ð Þn, then �1þ 1� 1þ 1þ . . .þ �1ð Þn þ . . . ¼ P1
n¼1

�1ð Þn.

Problem 3 Given the common term of the series un ¼ n
n2þ1

, a) Evaluate u5;

b) Find the ratio unþ1

un
.

Solution.

a. u5 ¼ 5
52þ1

¼ 5
26

b. unþ1

un
¼ nþ1ð Þ n2þ1ð Þ

nþ1ð Þ2þ1ð Þn ¼
n3þn2þnþ1
n3þ2n2þ2n

Problem 4 Find the formula for the common term if the first five terms of the

series are given by 1
1�3 þ 1

2�4 þ 1
3�5 þ 1

4�6 þ 1
5�7 þ . . .

Solution. It follows from the type of the denominators that un ¼ 1
n nþ2ð Þ.
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Problem 5 Find the first three terms for each series:

a)
P1
n¼1

n2

2�4�6�...�2n

b)
P1
n¼1

cos nπ
n3

c)
P1
n¼1

2n

n!.

Solution.

a. u1 ¼ 1=2, u2 ¼ 22

2�4 ¼ 1
2
, u3 ¼ 32

2�4�6 ¼ 9
48
¼ 3

16

b. u1 ¼ cos π
13

¼ �1, u2 ¼ cos 2π
23

¼ 1
8
, u3 ¼ cos 3π

33
¼ � 1

27

c. u1 ¼ 2
1! ¼ 2, u2 ¼ 22

2! ¼ 2, u3 ¼ 23

3! ¼ 8
6
¼ 4

3

A partial sum Sn is the sum of n terms of a sequence. Let us consider the

sequence {ai} and its partial sums,

S1 ¼ a1

S2 ¼ a1 þ a2

S3 ¼ a1 þ a2 þ a3

. . .

Sn ¼ a1 þ a2 þ a3 þ . . .þ an:

Definition. The partial sum Sn of the series u1 þ u2 þ ::þ un þ . . . ¼P1
n¼1

un

is the sum of the first n terms of the series, i.e., Sn ¼ u1þ
u2 þ ::þ un ¼

Pn
k¼1

uk.

For the series
P1
n¼1

1
2n
, S1 ¼ u1 ¼ 1

2
, S2 ¼ u1 þ u2 ¼ 1

2
þ 1

22
¼ 3

4
, S3 ¼ u1 þ u2þ

u3 ¼ S2 þ 1
23
¼ 3

4
þ 1

8
¼ 7

8
. Each series

P1
n¼1

un is associated with the sequence of its

partial sums {Sn}. If the limit of the partial sums (S1, S2, S3, . . ., Sk, . . .) converges as
n ! 1, then we say the infinite series converges.

• If limSn
n!1

¼ S, the S is called the sum of the infinite series

a1 þ a2 þ . . .þ an þ . . . ¼ S.
• If limSn

n!1
does not exist, then we say the infinite series diverges.
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Although the following are both examples of infinite series, the first series are

divergent and second are convergent. The first series is an infinite arithmetic series

(a sum of all natural numbers is obviously divergent because it increases without

bound) and the second is a geometric decreasing series, which soon will be shown

to be always convergent:

1þ 2þ 3þ . . .þ nþ . . . ¼
X1
n¼1

n

1þ 1

3
þ 1

9
þ . . .þ 1

3n�1
þ . . . ¼

X1
n¼1

1

3n�1
:

Problem 6 is not so straightforward because it asks to find the terms of the series

given the formula for its partial sum.

Problem 6 Given a sequence n
nþ2

n o
. Find a series for which this sequence

represents a sequence of its partial sums.

Solution. By the condition Sn ¼ n
nþ2

, we can evaluate the first term as u1 ¼ S1

¼ 1
1þ2

¼ 1
3
and the second term as the difference between the second and first partial

sums, u2 ¼ S2 � S1 ¼ 2
2þ2

� 1
1þ2

¼ 1
6
. The nth term formula is

un ¼ Sn � Sn�1 ¼ n
nþ2

� n�1
n�1þ2

¼ n
nþ2

� n�1
nþ1

¼ 2
nþ1ð Þ nþ2ð Þ.

The series can be expressed as 1
3
þ 1

6
þ 1

10
þ . . .þ ¼

X1
n¼1

2

nþ 1ð Þ nþ 2ð Þ. Note,
that this series is an infinite series of reciprocals of triangular numbers. More

information about which you can find in this and the following chapters.

Answer. 1
3
þ 1

6
þ 1

10
þ . . .þ ¼ P1

n¼1

2
nþ1ð Þ nþ2ð Þ.

Definition. The series
P1
n¼1

un is convergent if the sequence of its partial sums

{Sn} is convergent, i.e., there exists the limit lim
n!1 Sn ¼ S. Then we writeP1

n¼1

un ¼ S.
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Definition. The series
X1
n¼1

un is divergent if the sequence of its partial sums

{Sn} is divergent, i.e., the limit of the sequence of partial sums does not exist

or it is infinite.

In Problem 7 an infinite series is introduced using the limiting transition.

Problem 7 Investigate convergence (divergence) of the series,

1
1�2 þ 1

2�3 þ . . .þ 1
n nþ1ð Þ þ . . . ¼ P1

n¼1‘

1
n nþ1ð Þ, if Sn ¼ 1� 1

nþ1
.

Solution. Because lim
n!1 Sn ¼ 1, the series is convergent and

P1
n¼1

un ¼ 1.

Remark. To find Sn usually is a creativity problem. You may find it using methods

explained further in Chapter 2 of this book.

1.2 Arithmetic Progression

Definition. If a sequence of numbers is such that the difference between any

two consecutive numbers in the sequence is the same, the numbers are said to

be in an arithmetic sequence (progression).

Thus, 5, 10, 15, 20, . . . forms an arithmetic progression in which any two consec-

utive numbers differ by 5. A number within an arithmetic sequence is called a term

and a difference between any two consecutive terms is called the “common

difference.” Let us show that if the first term of an arithmetic progression and the

common difference are given, the entire sequence is defined. Let a1 be the first term
of an arithmetic sequence and d be its common difference. Then

a2 ¼ a1 þ d
a3 ¼ a2 þ d ¼ a1 þ 2d
a4 ¼ a3 þ d ¼ a1 þ 3d
� � �
an ¼ an�1 þ d ¼ a1 þ n� 1ð Þd:

We notice that any particular term of the sequence can be found as a sum of the first,

a1, and the common difference d multiplied by the number of the term minu 1.

8 1 Introduction to Sequences and Series
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(This can be easily proven by mathematical induction, please try it as a homework

exercise.) So if we wanted to find the 12th term of the previous sequence 5, 10,

15,. . ., we would use the formula,

an ¼ a1 þ n� 1ð Þd ð1:1Þ

with a1 ¼ 5, d ¼ 5, a12 ¼ a1 þ 11 � d ¼ 60.

Maybe it is not always obvious but arithmetic progression has many applications

in different branches of mathematics, for example in number theory. If a number

n is divisible by m (n is a multiple ofm), then it can be written asn ¼ m � k, where n,
k, and m are integers. If m is an arbitrary integer, the multiples of m are all numbers:

0, � m, � 2m, � 3m, � 4m, ::::::, � km. If a natural number n is not divisible by a
number m we say that n divided by m gives a remainder r and can be written in the

form, n ¼ m � k þ r; where 1 � r � m� 1.

Suppose that you have 20 apricots and must divide them equally between three

children. Everyone can get 6 apricots and two apricots will stay in the basket. If

originally you had 19 apricots, then again every kid would get 6 with one remaining

in the basket. Three children with 0 remaining would equally divide 18 apricots.

If a natural number N is a multiple of 3, it can be represented in the form N¼ 3k,
where k¼ 1, 2, 3,.... For example, 18¼ 3∙6, 9¼ 3∙3, 300¼ 3∙100 etc. All natural

numbers that are not multiples of 3 when divided by 3 give a remainder of 1 or 2. It

can be written in the form N¼ 3k+ 1 or N¼ 3k + 2. For example, 20 ¼ 3 � 6þ 2

(2 is a remainder), 301 ¼ 3 � 100þ 1 (1 is a remainder), etc. Therefore, all natural

numbers and multiples of 3 can be written as

3, 6, 9, 12, 15, 18, . . . , 3k: ð1:2Þ

All natural numbers divided by 3 with remainder of 1 can be listed as

1, 4, 7, 10, 13, 16, . . . , 3k þ 1, . . . , where k ¼ 0, 1, 2, 3, . . . ð1:3Þ

Finally, all natural numbers divided by 3 with remainder of 2 can be listed as

2, 5, 8, 11, 14, 17, . . . , 3k þ 2, . . . , where k ¼ 0, 1, 2, 3, . . . ð1:4Þ

We can visualize all existing natural numbers as those that are multiples of 3 (3k),
those that divided by 3 leave a remainder of 1 (3kþ 1) and those that when divided

by 3 leave a remainder of 2 (3kþ 2). It is like dividing a “big pie” of all natural

numbers into three pieces. Moreover, the numbers that belong to one such “piece of

the pie” given by Eqs. 1.2–1.4 are corresponding terms of the arithmetic progres-

sions with the same common difference (d¼ 3) and different first term,

b1 ¼ 3, b1 ¼ 1, b1 ¼ 2, respectively.
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Problem 8 Find all numbers that are simultaneously the terms of the both

arithmetic sequences: 3, 7, 11,. . ., 407 and 2, 9, 16,. . ., 709.

Solution. The nth term of the first sequence is

an ¼ 3þ 4ðn� 1Þ: ð1:5Þ

The kth term of the second sequence can be written as

bk ¼ 2þ 7 k � 1ð Þ: ð1:6Þ

Therefore, we have to find such numbers n and k that an ¼ bk, 1 � n � 102, 1

� k � 102: Equating Eqs. 1.5 and 1.6, we obtain 4nþ 4 ¼ 7k. This equation has

integer solutions if and only if its right hand side is divisible by 4, i.e., k¼ 4s. It is
clear that s can be 1, 2, . . ., 25 because k¼ 1, 2,. . ., 102,

4 nþ 1ð Þ ¼ 7 � 4s
nþ 1¼ 7s

n¼ 7s� 1

since 1 � n � 102, then 1 � s � 14: Therefore, there are exactly 14 numbers

that are terms of both arithmetic sequences. We can find all of them either

from Eq. 1.5 using the substitution n ¼ 7s� 1 or from Eq. 1.6 using

k ¼ 4s, s ¼ 1, 2, 3, . . . , 14:

Answer. 23, 51, 79, . . ., 387.

Problem 9 Prove that the numbers
ffiffiffi
2

p
,
ffiffiffi
3

p
,
ffiffiffi
5

p
cannot be the terms of an

arithmetic sequence.

Proof. When I give this problem to my students, they very often say that

irrational numbers
ffiffiffi
2

p
,
ffiffiffi
3

p
,
ffiffiffi
5

p
cannot differ from each other by the same number.

Others take calculators and try to validate this statement by estimation:ffiffiffi
3

p � ffiffiffi
2

p � 0:318,
ffiffiffi
5

p � ffiffiffi
3

p � 0:514. However, estimation on a calculator cannot

be considered as a rigorous proof. Moreover, even if we accept the fact that the

consecutive differences are not the same, we still have to prove that the numbers

cannot be just three non-neighboring terms of the arithmetic sequence.

Let us provide a correct proof by contradiction. Assume that
ffiffiffi
2

p
,
ffiffiffi
3

p
,
ffiffiffi
5

p
are the

kth, the mth and the nth terms of the arithmetic sequence with the first term of a1 and
common difference of d:
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ffiffiffi
2

p ¼ ak ¼ a1 þ k � 1ð Þdffiffiffi
3

p ¼ am ¼ a1 þ m� 1ð Þdffiffiffi
5

p ¼ an ¼ a1 þ n� 1ð Þd:

Subtract the second and the first equations, and then the third and the second.

Finally, dividing the results of subtractions we obtain
ffiffi
3

p � ffiffi
2

pffiffi
5

p � ffiffi
3

p ¼ m�k
n�m. The right side

of this is a rational number, because m, k, n are natural numbers. Denote this

number by r,

r ¼
ffiffiffi
3

p � ffiffiffi
2

pffiffiffi
5

p � ffiffiffi
3

p :

which can be written as r
ffiffiffi
5

p � ffiffiffi
3

p� � ¼ ffiffiffi
3

p � ffiffiffi
2

p
. Squaring both sides of the

equation above, we obtain: r2
ffiffiffiffiffi
15

p � ffiffiffi
6

p ¼ 8r2�5
2

. The right side of this equation is

again a rational number and we can denote it by s: r2
ffiffiffiffiffi
15

p � ffiffiffi
6

p ¼ s. Squaring both

sides again, after simplification we have
ffiffiffiffiffi
10

p ¼ 15r4�s2þ6
6r2 . This relationship indi-

cates that
ffiffiffiffiffi
10

p
is a rational number. However,

ffiffiffiffiffi
10

p
is irrational. Therefore, we

obtained the contradiction. Our original assumption was wrong and
ffiffiffi
2

p
,
ffiffiffi
3

p
,
ffiffiffi
5

p
cannot be terms of the same arithmetic sequence. The proof is complete.

Suppose we want to find the sum of the first n terms of an arithmetic sequence,

called a partial sum. Denote such a sum as Sn, then

S1 ¼ a1

S2 ¼ a1 þ a2

S3 ¼ a1 þ a2 þ a3

. . .

Sk ¼ a1 þ a2 þ a3 þ ::::þ ak

. . .

Sn ¼ a1 þ a2 þ . . .þ ak þ . . .þ an:

How do we evaluate it? Some of you may remember the story of how 10-year-old

Carl Friedrich Gauss (German mathematician, 1777–1855) added all natural num-

bers from 1 to 100 in his math class. He wrote them in two rows,

1 þ 2 þ 3 þ � � � þ 98þ 99þ 100 ascending orderð Þ and
100þ 99þ 98þ � � � þ 3 þ 2 þ 1 descending orderð Þ:
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He noticed that the sum in each column is 101. There are 100 columns and the sum

of in row is the same, it is the unknown. Therefore, he multiplied 101 by 100 then

divided by 2 because we need only a single sum, not a double,

S100 ¼ 100 1þ 100ð Þ
2

¼ 50 � 101 ¼ 5050:

Let us use the same idea to obtain Sn.

Sn ¼ a1 þ a1 þ dð Þ þ a1 þ 2dð Þ þ . . .þ a1 þ n� 2ð Þdð Þ þ a1 þ n� 1ð Þdð Þ
Sn ¼ an þ an � dð Þ þ an � 2dð Þ þ . . .þ an � n� 2ð Þdð Þ þ an � n� 1ð Þdð Þ:

Again if we add elements by columns, in each column we will get a1 þ anð Þ. There
are n such columns, so 2Sn ¼ n a1 þ anð Þ or dividing both sides by 2,

Sn ¼ a1 þ anð Þ
2

� n: ð1:7Þ

Replacing the nth term, an, in terms of a1 and d we obtain another form for Sn,

Sn ¼ 2a1 þ n� 1ð Þdð Þ
2

� n: ð1:8Þ

We leave it to the reader to obtain this form on her own. Notice that Eq. 1.8 can be

more useful, because an is usually unknown. Let us solve Problem 10 now.

Problem 10 Find the sum of all natural numbers between 1 and 1000 that are

not divisible by 13.

Solution. Let S be the unknown sum, then S can be written in the form:

S ¼ S1000 �M, where S1000 is the sum of all natural numbers between 1 and

1000, and M is the sum of all multiples of 13 less than 1000. It is clear that

S1000 is the sum of the first 1000 terms of an arithmetic sequence, 1þ 2þ 3

þ� � � þ 999þ 1000 with a1 ¼ 1 and a1000 ¼ 1000. Using Eq. 1.7 we have

S1000 ¼ 1þ1000
2

� 1000 ¼ 500, 500. All multiples of 13 can be written in the

form 13k, and their sum as M ¼ 13þ 13 � 2þ 13 � 3þ . . .þ 13 � k;

13k � 1000 ð1:9Þ

M ¼ 13 � 1þ 2þ 3þ . . .þ kð Þ ð1:10Þ

M can be evaluated as soon as we know k. From Eq. 1.9 we have k � 1000
13

¼ 76:923,

then the greatest natural number k satisfying the inequality is 76, i.e.,
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1000 ¼ 13 � 76þ 12, k ¼ 76. Now we can derive M from Eq. 1.10.

M ¼ 13 1þ 2þ 3þ � � � þ 76ð Þ and using Eq. 1.7 again, we get

M ¼ 13 � 1þ76ð Þ
2

� 76 ¼ 13 � 77 � 38 ¼ 38038. Subtracting M from S1000 we obtain

S ¼ 500, 500� 38, 038 ¼ 462, 462.

Answer. The sum is equal to 462,462.

Sometimes a problem can be solved in one or two steps even if it seems to have

too many unknowns.

Problem 11 {an} is an arithmetic progression with a non-zero common

difference. The sum of all terms between the fourth and the fourteenth is

77. Find the number of the term of the sequence that is equal to 7.

Solution. From the premise of the problem, we can write

a4 þ a5 þ a6 þ . . .þ a14 ¼ 77

or
a4 þ a14

2
� 11 ¼ a1 þ 3d þ a1 þ 13d

2
� 11

a1 þ 8dð Þ � 11 ¼ 77

Dividing both sides of the last equation by 11 we obtain a1 þ 8d ¼ 7. But we have

to find which term of the sequence equals 7. Because for an arithmetic sequence

an ¼ a1 þ n� 1ð Þd, then a1 þ 8d ¼ a9 ¼ 7:

Answer. The 9th term is 7.

Problem 12 Find the sum of the first 19 terms of the arithmetic sequence

{an} such that a4 þ a8 þ a12 þ a16 ¼ 224.

Solution. 1) Because an ¼ a1 þ n� 1ð Þd we can express each term of the given

equality in terms of a1 and d. Thus,

a4 þ a8 þ a12 þ a16 ¼ a1 þ 3d þ a1 þ 7d þ a1 þ 11d þ a1 þ 15d ¼ 224

4 a1 þ 9dð Þ ¼ 56 � 4

so a1 þ 9d ¼ 56. 2) Let us find S19 using Eq. 1.8: S19 ¼ 2a1þ18dð Þ
2

� 19
¼ a1 þ 9dð Þ � 19 ¼ 56 � 19 ¼ 1064.

Answer. The sum of the first 19 terms is 1064.

Remark. Sometimes even if you have too many unknowns you can solve a

problem. In part 1, we obtained an expression that connects the first term of the
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sequence and its common difference. In part 2 we just replaced a1 þ 9d by 56.

Notice that we solved this problem without knowing the values of a1 and d.

Problem 13 The sum of all even 2-digit numbers was divided by one such

number, a multiple of 9. There was no remainder. The quotient differs from

the divisor by only the order of the digits. What is the divisor?

Solution. All even two-digit numbers are terms of the arithmetic sequence with

a1 ¼ 10 and d ¼ 2. The last term is known as well, that is, 98. Using the formula of

the nth term of an arithmetic sequence we can find the number of terms in the series.

an ¼ a1 þ n� 1ð Þd
98 ¼ 10þ n� 1ð Þ � 2
n ¼ 45:

Now let us find the sum of 45 terms of the sequence,

S45 ¼ a1þa45
2

� 45 ¼ 10þ98
2

� 45 ¼ 54 � 45 ¼ 2430, from which we see that

2430¼ 54∙45. 54 and 45 are multiples of 9, two-digit numbers, and also 54 is

even. Because 2430� 54 ¼ 45, then 54 is the divisor, a multiple of 9. Forty-five is

the quotient—a multiple of 9. Fifty-four and 45, like mirror images differ by only

the order of digits. We find that the divisor is 54.

Let us show that there is only a single solution, 54, of this problem. By the

condition of the problem, 2430 divided by some even two-digit number has no

remainder, and the quotient differs from the divisor only by the order of its digits.

Using a decimal representation of a two digit number xy, we can write it as

xy ¼ 10xþ y, and we know xþ y ¼ 9. (Remember? If a number is divisible by

9, then the sum of its digits must be a multiple of 9. In this case the sum of the digits

must be nine only. Do you know why other multiples of 9, such as 18, 27, 36, etc.

would not work?). Now we obtain a system of two equations in two variables:

2430 ¼ 10xþ yð Þ 10yþ xð Þ
xþ y ¼ 9

(
, x ¼ 9� y

y2 � 9yþ 20 ¼ 0

�
, x ¼ 5, y ¼ 4

x ¼ 4, y ¼ 5

�

We found two numbers 54 and 45 satisfying the given system. But 54 is the only

answer because 54 is an even number.

Answer. 54.
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Problem 14 The product of the third and the sixth terms of an arithmetic

sequence is 406. The ninth term of the sequence divided by the fourth term

gives a quotient of 2 and a remainder of 6. Find the first term and the common

difference of the arithmetic sequence.

Solution. Let {an} be an arithmetic sequence. We are going to rewrite the condi-

tion and then express each term using a1 and d:

a3 � a6 ¼ 406

a9 ¼ a4 � 2þ 6

(
a1 þ 2dð Þ a1 þ 5dð Þ ¼ 406

a1 þ 8d ¼ a1 þ 3dð Þ � 2þ 6:

�

Remember the formula,

Dividend ¼ Divisor � Quotientþ Remainder?

Let us first simplify the second equation of the system,

a1 þ 8d ¼ 2a1 þ 6d þ 6

a1 ¼ 2d � 6:

Substituting a1 from here into the first equation of the system above, we have

4d � 6ð Þ 7d � 6ð Þ ¼ 406 so 14d2 � 33d � 185 ¼ 0. This quadratic equation has

two roots, d ¼ 33� ffiffiffiffiffiffiffiffiffi
11449

p
28

¼ 33�107
28

; so d ¼ 5; �37
14
.

Two different values for a common difference will give us two different arith-

metic sequences:

1. anf g, a1 ¼ 4, d ¼ 5 and

2. anf g, a1 ¼ �79
7
, d ¼ �37

14
.

Answer. 1. anf g, a1 ¼ 4, d ¼ 5 and 2. anf g, a1 ¼ �79
7
, d ¼ �37

14
.

Problem 15 The second term of some arithmetic progression containing

only whole numbers is 2 and the sum of squares of the third and the fourth

terms is less than 4. Find the first term of the progression.
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Solution.
a2 ¼ 2

a3
2 þ a4

2 < 4

(

Using properties of an arithmetic progression, we can rewrite a3 and a4 in terms of

the second term, a2, and a common difference, d,

a3 ¼ a2 þ d ¼ 2þ d

a4 ¼ a2 þ 2d ¼ 2þ 2d:

Now we can simplify the system

2þ dð Þ2 þ 2þ 2dð Þ2 < 4

4þ 4d þ d2 þ 4þ 8d þ 4d2 < 4

5d2 þ 12d þ 4 < 0

d ¼ �6� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36� 20

p

5
¼ �6� 4

5
:

In order to satisfy the inequality, d must be in the range �2 < d < �0:4, but
because the arithmetic progression contains only whole numbers and the second

term equals 2, its common difference, d, can be only a whole number. From the

inequality above, we obtain d¼�1. Then a1 ¼ a2 � d ¼ 2� �1ð Þ ¼ 3.

Answer. 3.

Problem 16 Prove that if 25, 43, and 70 are terms of infinite arithmetic

progression, then 2005 also belongs to this progression.

Proof. By the condition of the problem,

25 ¼ a1 þ kd
43 ¼ a1 þ nd
70 ¼ a1 þ md

) 18 ¼ ðn� kÞd
27 ¼ ðm� nÞd ) 9 ¼ ðm� 2nþ kÞd:

�8<
:

Because 2005¼ 1935þ 70, and 1935 is a multiple of 9, we have the chain of true

relationships:

2005 ¼ 70þ 9 � 215 ) 2005 ¼ a1 þ md þ 215 � ðm� 2nþ kÞ � d
¼ a1 þ dð216m� 430nþ 215kÞ ¼ a1 þ d � l:

The statement is proven.
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1.3 Geometric Progression

Definition.

A geometric progression is a sequence of numbers in which the ratio of any

two consecutive terms is the same.

Thus, 3, 21, 147, 1029, 7203, . . . is a geometric progression with the first term 3 and

the common ratio
21

3
¼ 147

21
¼ � � � ¼ 7. Let us denote the first term of our sequence

as b1 and the common ratio as r. Then
b1

b2 ¼ b1 � r
b3 ¼ b2 � r ¼ b1 � r2
. . .

bn ¼ b1 � rn�1

b1, b1r, b1r
2, . . . , b1r

n�1, . . .

ð1:11Þ

The geometric progression of Eq. 1.11 is said to be increasing or decreasing

according to whether r is greater or less than one. If r > 1, each term is greater

than the preceding term, while if r > 0 but is less than 1 each term is less than the

preceding term.

Let us find the sum of the first n terms of a geometric sequence,

Sn ¼ b1 þ b1 � r þ b1 � r2 þ . . .þ b1 � rn�1: ð1:12Þ

Multiplying both sides of Eq. 1.12 by r, we obtain a new equation,

r � Sn ¼ b1 � r þ b1 � r2 þ . . .þ b1 � rn�1 þ b1 � rn: ð1:13Þ

Subtracting Eq. 1.13 from Eq. 1.12,

Sn � rSn ¼ b1 � b1r
n

Sn 1� rð Þ ¼ b1 1� rnð Þ:

Dividing both sides by 1� rð Þ we obtain

Sn ¼ b1 1� rnð Þ
1� r

: ð1:14Þ

If r > 1 then it is better to use Sn in a different form,
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Sn ¼ b1 rn � 1ð Þ
r � 1

: ð1:15Þ

Let us return to a geometric series with infinitely many terms,

S ¼ b1 þ b1 � r þ b1 � r2 þ . . .þ b1 � rn�1 þ . . . ð1:16Þ

If the number of terms is infinitely great (n approaches infinity), then the expression
on the right of Eq. 1.16 is called an infinite geometric series. Consider an infinite

decreasing geometric series. The partial sum is Sn ¼ b1 1�rnð Þ
1�r . If jrj < 1andn ! 1, t

hen rn ! 0 and

lim
n!1 Sn ¼ b1

1� r
: ð1:17Þ

We notice that the sequence of partial sums has a limit.

However, if jrj > 1 by Eq. 1.15 the sequence of the partial sums will dramati-

cally increase without bound. In order to illustrate this phenomenon, let us solve

Problem 17.

Problem 17 Suppose a family has twin boys, Brian and Paul, and each is

asked to choose a gift for their birthday that will be in three weeks. Brian said

that he would like to get $10 each day for three weeks and Paul asked for

2 cents on day one, 4 cents on day two and so on, doubling the amount each

day for three weeks. Which gift would you choose?

Solution. What I usually hear right away is, “Of course 10 bucks is the better

choice! I will end up with $210!” When I say, “Let us check the second opportu-

nity,” some students think there might be a trick and ask for time to think.

Let us write down the sequence: 2, 4, 8, 16, 32, 64, 128, 256, . . ., 1024, . . . or 21,
22, 23, 24, 25, 26,...., 210, . . . Each term is the amount of money on a particular day

n. For example, 8 cents¼ 23 is how much the parents would give Paul on day

3, and 2n cents on day n. This sequence is an increasing geometric sequence with

the first term equal to 2 and the common ratio, r ¼ 2 > 1and it grows very fast. On

day 5 choosing the first gift, Brian would have $50 and Paul, choosing the second,

only 2 25 � 1
� � ¼ 62cents. On day 21, however, Paul would get 221 cents, and

adding all amounts from the preceding 20 days using the formula for a sum of the

first 21 terms of a geometric sequence, we have

2þ 22 þ 23 þ . . .þ 221 ¼ 2 221 � 1
� �
2� 1

¼ 222 � 2 ¼ $41, 943:02
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which is much more than $210! Maybe in offering two gifts these parents had no

idea how much they could lose if they agreed with Paul’s plan. You do not want to

be that ignorant parent in the future!

Remark. On a TI 83/84 graphing calculator you can see how much money

you would get after 2 days, 3 days and so on, up to 21 days. Type CUM SUM

(Seq (2^(nþ 1)� 2, n, 1, 21) and press [ENTER] to get {2, 6, 14, . . ., 4, 194, 300 }.

Here is another simple example for you. You know that any rational number can

be represented as a fraction n
m, such that the numerator n is an integer and the

denominator, m is a natural number. It is easy to see that for example 2.3¼ 23/10 or

5¼ 20/4, but when asked how to rewrite 0.313131. . . as a fraction, some students

have a hard time. We will teach you how to use infinite geometric series to rewrite

any repeated decimal as a fraction.

Problem 18 Rewrite these repeating decimals as fractions:

a) 0.333. . . b) 0.777. . . c) 0.454545. . . d) 1.227027027. . . .

Solution. Every repeating decimal has one or more digits after the decimal point

repeating infinitely many times and can be written as a geometric series. For

example, many of us know that 0:333 . . . ¼ 1=3. Let us prove this using Eq. 1.17,

0:33 . . . 3� � � ¼ 3

10
þ 3

100
þ 3

1000
þ � � � þ 3

10n
þ � � � ¼ 3

10
� 1

1� 1
10

¼ 1

3
:

By analogy

0:777 . . . 7 . . . ¼ 7

10
þ 7

100
þ 7

1000
þ . . . ¼ 7

9
and

0:4545 . . . 45 . . . ¼ 45

100
þ 45

10000
þ . . . ¼ 45

100
� 1

1� 1=100
¼ 45

99
¼ 5

11
:

In the number 1.227027. . .27. . ., we have only 027 repeating infinitely many times.

This number can be represented as

1:227027 . . . 027 . . . ¼ 12

10
þ 27

1000
þ 27

1000000
þ . . .

¼ 6

5
þ 27

1000
� 1

1� 1

1000

¼ 6

5
þ 3

111
¼ 681

555
:

Answers a) 1/3, b) 7/9, c) 5/11, d) 681/555.
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Problem 19 Let {an} be an arithmetic sequence such that its 1st, 20th, and 58th

terms are consecutive terms of some geometric sequence. Find the common

ratio of the geometric sequence.

Solution. Because a1, a20, and a58 are terms of some arithmetic sequence; let us

express them in terms of a1 and d, where a1 is the first term and d is a common

difference,

a1 ¼ a1

a20 ¼ a1 þ 19d

a58 ¼ a1 þ 57d;

but a1, a20, and a58 are simultaneously the first, second, and third terms of some

geometric sequence {bn}. Thus,

b1 ¼ a1

b2 ¼ a1 þ 19d

b3 ¼ a1 þ 57d:

The common ratio is

r ¼ b2
b1

¼ b3
b2

¼ a1 þ 19d

a1
¼ a1 þ 57d

a1 þ 19d

from which we have

a1 þ 19dð Þ2 ¼ a1 a1 þ 57dð Þ
a1

2 þ 38da1 þ 361d2 ¼ a1
2 þ 57da1

19a1d � 361d2 ¼ 0:

Factoring the last equality we have 19d a1 � 19dð Þ ¼ 0 because

a1 6¼ a20 6¼ a58, d 6¼ 0, and a1 ¼ 19d. Replacing a1 by 19d in the formula for

the common ratio, we obtain r ¼ 19dþ57d
19dþ19d ¼ 76

38
¼ 2.

Answer. The common ratio is 2.

Problem 20 (ASHME) Define a sequence of real numbers a1, a2, a3, . . . by

a1 ¼ 1 and a3nþ1 ¼ 99a3n for all n � 1. Find a100.
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Solution. If a3nþ1 ¼ 99a3n, then taking the cubic root of both sides we obtain
anþ1

an
¼ ffiffiffiffiffi

993
p

. This expression means that the given sequence is geometric with

common ratio r ¼ ffiffiffiffiffi
993

p
and the first term a1 ¼ 1. To find a100 we apply the formula

for the nth term, an ¼ a1r
n�1 so a100 ¼ 1 � ffiffiffiffiffi

993
p Þ99 ¼ 9933
�

.

Answer. 9933.

Problem 21 (Rivkin) The roots of the equation x3 � 7x2 þ 14xþ a ¼ 0 are

terms of an increasing geometric progression. Solve it.

Solution. Let x1, x2, and x3 be the roots of the equation. Applying Vieta’s

Theorem for a cubic equation or factoring the given cubic equation as x� x1ð Þ
x� x2ð Þ x� x3ð Þ ¼ 0 and after equating corresponding coefficients,

x1x2x3 ¼ �a

x1 þ x2 þ x3 ¼ 7

x1x2 þ x1x3 þ x2x3 ¼ 14:

Since the roots are consecutive terms of a geometric sequence, then we have

x1 þ x1r þ x1r
2 ¼ 7

x21r þ x21r
2 þ x21r

3 ¼ 14

x31r
3 ¼ �a:

Dividing the second equation by the first, x1 ¼ 2
r. Substituting it into the second

equation we have 2r2 � 5r þ 2 ¼ 0 which has two roots, r1 ¼ 1
2
and r2 ¼ 2. Since

the progression would be increasing only for r ¼ 2, then x1 ¼ 1, x2 ¼ 2, x3 ¼ 4:

Moreover, x31r
3 ¼ 8 ¼ �a, a ¼ �8.

Answer. 1, 2, 4.

Problem 22 Find the sum of 2016 numbers:

3þ 33þ 333þ 3333þ � � � þ 333 . . . 3|fflfflfflfflffl{zfflfflfflfflffl}
2016 times

.
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Solution. Denote this sum by S. Because

3 � 3 ¼ 9 ¼ 10� 1

3 � 33 ¼ 99 ¼ 100� 1

3 � 333 ¼ 999 ¼ 1000� 1, . . .

we can evaluate the given sum as

3S ¼ 10� 1ð Þ þ 100� 1ð Þ þ 1000� 1ð Þ þ . . .þ 102016 � 1
� �

¼ 10þ 102 þ . . .þ 102016
� �� 2016 ¼ 10 � 102016 � 1

� �
10� 1

� 2016

¼ 102017 � 10

9
� 2016:

Finally, dividing by 3, we obtain S ¼ 102017�10
27

� 2016
3

¼ 102017�10
27

� 672:

Answer. S ¼ 10 102016�1ð Þ
27

� 672:

Problem 23 (Kolmogorov) Is it possible that 100, 101, and 102 are the terms

(not necessarily consecutive) of a geometric progression?

Solution. Assume that it is possible and that the following is valid:

bi ¼ 100 ¼ b1 � ri�1, bj ¼ 101 ¼ b1 � rj�1, bk ¼ 102 ¼ b1 � rk�1:

From the above, we can easily find

101

100
¼ rj�i,

102

101
¼ rk�j:

If raise both sides of the first equation to the power of k � jð Þ and both sides of the

second equation to the power of j� ið Þ, then the right sides of the both equations

will become identical. Thus, we have 101
100

� �k�j ¼ r j�ið Þ k�jð Þ ¼ 102
101

� �j�i
. This can be

rewritten as 101k�i ¼ 102j�i � 100k�j. This equation cannot have integer solutions

because the left side is odd and the right hand side is even.

Answer. One-hundred, 101, and 102 cannot be terms of a geometric progression.
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1.4 Finding the nth Term of a Sequence or Series

If we write sequence of numbers such as 1, 4, 7, 10, 13, . . . or 1
2
, 1
4
, 1
8
, 1
16
, 1
32
, . . .,

or 1, 4, 9, 16, 25, 36, . . . we may ask questions like, “What is the 25th terms of the

sequence?” or “What number of terms sums to 625 for the third sequence?”

Fortunately for us it will be easy to recognize an arithmetic progression in the

first sequence witha1 ¼ 1 and d ¼ 3:You can also call that a sequence of all natural
numbers that divided by 3, give a remainder of 1 and write it with the formula

an ¼ 3nþ 1, n ¼ 0, 1, 2, 3, . . .. The second sequence is a geometric progression

with B1 ¼ 1
2
and r ¼ 1

2
or you may see that each term of this sequence is some

power of ½ so that each term can be written as an ¼ 1
2

� �n
, n ¼ 1, 2, 3 . . .. The third

sequence is a sequence of consecutive squares with the nth term of

an ¼ n2, n ¼ 1, 2, 3, . . ..
All sequences are different. For example, the sequence 2, 3, 5, 7, 11,

13, 17, 19, 23, . . . that represents a sequence of prime numbers, the formula for

an does not exist (in any fixed length closed form). We will discuss here only such

sequences that have a fixed length formula for the nth term, even though finding this

formula can sometimes be a challenging task.

1.4.1 Finding the nth Term of a Fibonacci Type Sequence

Let us look at the problem that was offered at the Volgograd District Math

Olympiad in 1977.

Problem 24 Find the nth term of a sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Solution. I remember that I looked at the numbers and noticed that each of them is

a sum of the two preceding numbers. Then I reformulated the problem as

A certain sequence a1, a2, . . ., an satisfies the conditions

a0 ¼ a1 ¼ 1, anþ2 ¼ anþ1 þ an. Find an.

When I had this problem in 1977, I was in the 9th grade and did not know

anything about the Fibonacci sequence or about methods of solving recurrent

sequences. However, I knew geometric progression and I started thinking: “Is

there any geometric progression, the terms of which would satisfy the condition

of the problem?” So I started. Assume that it does exist, then
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an ¼ a1r
n�1, anþ1 ¼ a1r

n, anþ2 ¼ a1r
nþ1. Substituting this into the recursion for-

mula anþ2 ¼ anþ1 þ an, I obtained the equation, a1r
nþ1 ¼ a1r

n þ a1r
n�1. After

canceling common terms, I ended up solving a quadratic equation,

r2 � r � 1 ¼ 0, with two irrational roots: r1 ¼ 1� ffiffi
5

p
2

, r2 ¼ 1þ ffiffi
5

p
2

.

Because the answer did not depend on the value of the first term, I knew that to

the given recursion would satisfy infinitely many geometric progressions with

common ratios above, as well as their linear combinations. In fact, if {an}{bn}
are geometric progressions with common ratios r1, r2 respectively, then

a1r1
nþ1 ¼ a1r1

n þ a1r1
n�1

b1r2
nþ1 ¼ b1r2

n þ b1r2
n�1

and a sequence {cn} such that cn ¼ A � an þ B � bn will also satisfy the given

recursion because

cnþ1 ¼ A � anþ1 þ B � bnþ1

cnþ2 ¼ A � anþ2 þ B � bnþ2

Let us show that cnþ2 ¼ cn þ cnþ1:

cnþ2 ¼ cn þ cnþ1

¼ ðA � an þ B � bnÞ þ ðA � anþ1 þ B � bnþ1Þ
¼ Aðan þ anþ1Þ þ Bðbn þ bnþ1Þ
¼ A � anþ2 þ B � bnþ2

¼ cnþ2

Next, we can try to get the general formula for the nth term as a combination of the

roots,

an ¼ A
1� ffiffiffi

5
p

2

 !n�1

þ B
1þ ffiffiffi

5
p

2

 !n�1

: ð1:18Þ

We can use the values for the first and second terms to create a system and solve for

A and B,

Aþ B ¼ 1,

�A
ffiffiffi
5

p þ B
ffiffiffi
5

p ¼ 1

�
, A ¼ � 1� ffiffiffi

5
p� �

2
ffiffiffi
5

p B ¼ 1þ ffiffiffi
5

p

2
ffiffiffi
5

p
(

:

Substituting the values for A and B into Eq. 1.18 and simplifying, I obtained the

formula for the nth term of the Fibonacci sequence
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an ¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !nþ1

� 1� ffiffiffi
5

p

2

 !nþ1
0
@

1
A: ð1:19Þ

You can verify this formula for the nth term, by checking some of the terms listed

above

a1 ¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !2

� 1� ffiffiffi
5

p

2

 !2
0
@

1
A ¼ 1

a3 ¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !4

� 1� ffiffiffi
5

p

2

 !4
0
@

1
A

¼ 1ffiffiffi
5

p 1þ ffiffiffi
5

p

2

 !2

� 1� ffiffiffi
5

p

2

 !2
0
@

1
A � 1þ ffiffiffi

5
p

2

 !2

þ 1� ffiffiffi
5

p

2

 !2
0
@

1
A ¼ 3:

Fibonacci’s sequence was discovered by Leonardo Pisano (born in Italy, circa

1170) and shows up in a lot of real-life occurrences such as the growth of flowers,

plants, and pine cones. The series starts with zero and one and then the next number

is the former number and its former number added together. The sequence is 0, 1,

1, 2, 3, 5, 8, 13, 21, 34 . . . where a1 ¼ 1, a2 ¼ 1, and anþ2 ¼ an þ anþ1.

Pisano came up with this sequence when he was asked a problem about the

breeding of rabbits and how many would be around if you started with a pair of

rabbits and each pair had one female and one male baby rabbit and then the

breeding continued with the new pair of rabbits. See Appendix 1 for a MAPLE

program written for Fibonacci’s rabbit reproduction. This problem, however, was

unrealistic because it assumed that each pair of rabbits had one female and one male

rabbit as well as siblings breeding together to produce the next offspring. The

problem also assumed that the birth would happen every month and no rabbit would

die. Although Fibonacci’s sequence was not realistic with the mating of rabbits, the

sequence can be seen in other parts of nature.

Fibonacci found an interesting comparison between a term and its neighbor in

the sequence. He took the ratios of a term and its following neighbor and produced a

sequence that converged to numbers called Phi. Using the formula from above to

determine the ratios of the Rn term, the ratio is anþ1

an
. Looking at the formula from

above as well, dividing both sides by an+1, it becomes anþ2

anþ1
¼ an

anþ1
þ anþ1

anþ1
Substituting

Rn in, the new formula is Rnþ1 ¼ 1
Rn
þ 1. Now letting n approach infinity, it reaches

some limit, L, allowing for the following equation L ¼ 1
L þ 1. Multiplying every-

thing by L,

L2 ¼ 1þ L
L2 � L� 1 ¼ 0:
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Using the quadratic equation, the two roots areΦ ¼ 1þ ffiffi
5

p
2

and φ ¼ 1� ffiffi
5

p
2

. Taking the

first 11 terms we have 1
1
, 2
1
, 3
2
, 5
3
, 8
5
, 13
8
, 21
13
, 34
21
, 55
34
, 89
55
, 144
89

, . . . or 1, 2, 1.5, 1.6667,

1.6, 1.625, 1.6153, 1.619, 1.6176, 1.618, 1.618, . . .. These ratios end up converging

to a number known as Phi, which is equal to
ffiffi
5

p þ1
2

. This number is known as the

“golden ratio.”

To get phi, the same process is done, but going backwards with the sequence.

Earlier, the numbers were added together to get the next term, here they are

subtracted to get the next term going backwards. So the terms are

1, � 1, 2, � 3, 5, � 8, 13, � 21, 34, � 55, . . .. As ratios they are
1
�1

, � 1
2
, 2
�3

, � 3
5
, 5
�8

, � 8
13
, 13
�21

, � 21
34
, 34
�55

, . . . or �1, � 0:5, � 0:6667, � 0:6,

�0:625, � 0:6154, � 0:619, � 0:6176, � 0:6182, . . .. The ratios end up converg-

ing to a number known as phi, which is equal to 1� ffiffi
5

p
2

. Going back to the quadratic

equations roots, the numbers known as Phi and phi can be produced either by ratios

or by the quadratic equation that we obtained above.

Binet was a French mathematician who is credited with finding the nth term of

the Fibonacci sequence in 1843,

F nð Þ ¼ Φn � φnffiffiffi
5

p

where Phi and phi come from the golden ratio explained in the above paragraph.

Binet’s formula is the only working formula other than Fibonacci and Lucas’ that

can represent the sequence correctly. A proof for Binet’s formula is as follows:

L2 ¼ Lþ 1

L3 ¼ L � L2 ¼ L Lþ 1ð Þ ¼ L2 þ L ¼ Lþ 1ð Þ þ L ¼ 2Lþ 1

L4 ¼ L � L3 ¼ L 2Lþ 1ð Þ ¼ 2L2 þ L ¼ 2 Lþ 1ð Þ þ L ¼ 3Lþ 2

L5 ¼ L4 þ L3 ¼ 5Lþ 3

. . .

Ln ¼ F nð ÞLþ F n� 1ð Þ:

Let Φ ¼ 1þ ffiffi
5

pð Þ
2

, φ ¼ 1� ffiffi
5

pð Þ
2

, then

Φn ¼ F nð ÞΦþ F n� 1ð Þ
φn ¼ F nð Þφþ F n� 1ð Þ

(
) Φn � φn ¼ F nð Þ Φ� φð Þ

F nð Þ ¼ Φn � φn

Φ� φ
¼ Φn � φnffiffiffi

5
p :

However, the result was known to Daniel Bernoulli, Leonard Euler, and Abraham

de Moivre more than a century before Binet.
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A French mathematician, Lucas, spent some of his time studying the Fibonacci

sequence and related his sequence of numbers to Fibonacci’s sequence. The

Fibonacci sequence in the following formula defines the Lucas sequence,

Ln ¼ Fn�1 þ Fnþ1. The first few Lucas numbers are 1, 3, 4, 7, 11, 18, 29, 47,

76, etc. Lucas numbers also have that property for n > 2; Ln ¼ Ln�1 þ Ln�1:
Something to notice, a Lucas number is always greater than its corresponding

Fibonacci numbers except for L1. The Lucas numbers also converge to the golden

ratio. In the Homework you are asked to find the formula for the nth Lucas number,

Ln ¼ 1þ ffiffi
5

p
2

� 	n
þ 1� ffiffi

5
p
2

� 	n
:

Many new Fibonacci type sequences can be created and continue to fascinate

mathematicians. The following problem appeared in “Quant” magazine that

published many challenging problems. Russian teachers recommended their high

school students to try solving the problems. The magazine would come out monthly

but solutions to selected problems would be given only in the following issue.

Problem 25 Consider the sequence, the terms of which are given by the

following recursive formula un ¼ 7un�1 � 6un�2, u1 ¼ 1, u2 ¼ 2. Find the

formula for the nth term of the sequence.

Solution. First we should evaluate several terms of the sequence

un ¼ 7un�1 � 6un�2, u1 ¼ 1, u2 ¼ 2 ð1:20Þ

as 1, 2, 8, 44, 260, . . .. A pattern cannot be seen right away. It would be nice if the

formula for the nth term looked like an exponential function with some base, similar

to a geometric progression, so let us try un ¼ rn, un�1 ¼ rn�1, un�2 ¼ rn�2 and

then substitute it into Eq. 1.20 to produce rn ¼ 7rn�1 � 6rn�2. Dividing both

sides by rn�2, we obtain the following quadratic equation and its zeros,

r2 � 7r þ 6 ¼ 0

r1 ¼ 1, r2 ¼ 6:

Next, let us try a linear combination of both r values for the nth term,

un ¼ Ar n1 þ Br n2 : ð1:21Þ

Substituting this into Eq. 1.20 we obtain Ar n1 þ Br n2 ¼ 7 Arn�1
1 þ Brn�1

2

� �
�6 Arn�2

1 þ Brn�2
2

� �
which could be written as A r1

n � 7r1
n�1 þ 6r1

n�2ð Þ ¼
�B r2

n � 7r2
n�1 þ 6r2

n�2ð Þ. Since the expression inside each parentheses is zero

then Eq. 1.21 is a true representation for the nth term of the recursive sequence of

Eq. 1.20. We have only to find coefficients A and B by using the values for the first

and second terms,

1.4 Finding the nth Term of a Sequence or Series 27



un ¼ A � 1n þ B � 6n ¼ Aþ B � 6n
u1 ¼ 1, Aþ 6B ¼ 1

u2 ¼ 2, Aþ 36B ¼ 2:

Solving the system we obtain that A¼ 24/30¼ 4/5 and B¼ 1/30. Therefore,

un ¼ 4

5
þ 1

30
� 6n ¼ 4þ 6n�1

5
: ð1:22Þ

Trying several values for n in Eq. 1.22, any member of the sequence can be

obtained:

u1 ¼ 4þ 61�1

5
¼ 4þ 1

5
¼ 1

u2 ¼ 4þ 62�1

5
¼ 4þ 6

5
¼ 2

u3 ¼ 4þ 63�1

5
¼ 4þ 36

5
¼ 40

5
¼ 8, etc:

Answer. un ¼ 4þ6n�1

5
; n ¼ 2, 3, 4 . . ..

A second order recursion depends on the roots of a quadratic

(characteristic) equation. What if the equation has two equal roots, like

r2 � 4r þ 4 ¼ r � 2ð Þ2 ¼ 0, r1,2 ¼ 2 ? This would represent a recursion as

the one of Problem 26.

Problem 26 Find several terms of the sequence and the formula for its nth

term. Given xnþ1 ¼ 4xn � 4xn�1, x0 ¼ 1, x1 ¼ 6.

Solution. We can see that xn ¼ 2n alone would not work. You might try

several other things and then come up with the idea that

xn ¼ 2n Aþ nBð Þ ¼ A � 2n þ nB � 2n. Substituting the values for the first two terms

of the sequence into this formula, we can evaluate A and B,

A ¼ 1

2Aþ 2B ¼ 6,B ¼ 2

so xn ¼ 2n 2nþ 1ð Þ , n ¼ 0, 1, 2, 3, . . .. Using this, we can find any term of the

sequence.
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Answer. 1, 6, 20, 56, 144, 832, . . .

Remark. How do we know that the answer is correct? From the condition of the

problem, all terms, starting from the third must be divisible by 4. It works (20, 56,

144, 832, . . .). Moreover, each term, starting from the third is the difference

between two preceding terms times 4. It also works because 20 ¼ 4 � 6� 1ð Þ,
56 ¼ 4 � 20� 6ð Þ, 144 ¼ 4 � 56� 30ð Þ, etc.

1.4.2 Finding Recurrent Formula for a Known Sequence

If a sequence is given and its nth term is known, we can attempt to describe such a

sequence by recursion, i.e., to describe the nth term of the sequence as a function of

the previous terms, for example as an ¼ an�1 þ an�2. Thus, Fibonacci type

sequence is given if we know its first and second term, etc.

Definition. In general, a recursion is a relationship an ¼ F n, an�1, an�1,ð
. . . , an�kÞ that allows evaluating all terms of a sequence by knowing its

first k terms.

Often the nth term of a recurrent sequence is given by

an ¼ ψ an�1, an�1, . . . , an�kð Þ þ f nð Þ, n � k: ð1:23Þ

This is called a recursion of the kth order. If f nð Þ ¼ 0, then such a recursion is called

homogeneous of the kth order. Any sequence {yn} that makes Eq. 1.23 true is called

a solution of a recurrent relationship.

The first k terms of a recurrent sequence can be arbitrary. Assume that we have

initial conditions:

a0 ¼ α0, a1 ¼ α1, . . . , ak�1 ¼ αk�1 ð1:24Þ

Next, we can solve Eq. 1.23 subject to initial conditions of Eq. 1.24. This problem

is similar to solving a Cauchy initial value problem for a differential equation of

the kth order. If a function ψ is linear then Eq. 1.23 can be rewritten as a

linear recursion, an þ p1 nð Þan�1 þ p2 nð Þan�2 þ . . .þ pk nð Þan�k ¼ f nð Þ, where

piðnÞ i¼ 1,2,3,. . ., k are the coefficients. Here we discuss linear homogeneous

recursions with constant coefficients.

Definition. A recursion, an þ p1 nð Þan�1 þ p2 nð Þan�2 þ . . .þ pk nð Þan�k ¼ 0

is linear and homogeneous and the corresponding sequence a0, a1, a2, a3, . . .
is a recurrent sequence of the kth order.
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If the coefficients pi nð Þ ¼ pi are constants, then

an þ p1an�1 þ p2an�2 þ . . .þ pkan�k ¼ 0 ð1:25Þ

is a linear homogeneous recursion with constant coefficients.

Lemma 1.1 Let yn1, y
n
2 be solutions of recursion Eq. 1.25, then any of their

linear combinations is also a solution of Eq. 1.25.

Proof. Denote zn ¼ c1y
1
n þ c2y

2
n and substitute it into Eq. 1.25,

c1y
1
n þ c2y

2
n þ p1 c1y

1
n�1 þ c2y

2
n�1

� �þ . . .þ pk c1y
1
n�k þ c2y

2
n�k

� �
¼ c1 y1n þ p1y

1
n�1 þ p2y

1
n�2 þ . . .þ pky

1
n�k

� �
þc2 y2n þ p1y

2
n�1 þ p2y

2
n�2 þ . . .þ pky

2
n�k

� �
¼ 0:

The statement is proven.

As we do in the previous section, we can look for a solution of Eq. 1.25 in the

form yn ¼ rn.

Definition. A polynomial equation,

rk þ p1r
k�1 þ p2r

k�2 þ . . .þ pk�1r þ pk ¼ 0 ð1:26Þ

is a characteristic equation for a recurrent sequence of order k of the type of
Eq. 1.25. A sequence r(n) is called its solution.

For example, the Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, . . . given by the

second order recursion as anþ2 ¼ 1 � anþ1 þ 1 � an is a linear recurrent sequence of
the second order. We can rewrite it as anþ2 � anþ1 � an ¼ 0. The characteristic

equation for a Fibonacci sequence is r2 � r � 1 ¼ 0 and it is a quadratic. As you

remember, we found a formula for its nth term in the previous section.

Theorem 1.1 If r1, r2, . . ., rm are the roots of characteristic equation Eq. 1.26

of multiplicities s1, s2, . . ., sm, respectively, such that s1 þ s2 þ . . .þ sm ¼ k,

then the solutions r n1 , nr
n
1 , . . . , n

s1�1r n1 , ::::, r nm, nr
n
m, . . . , n

sm�1r nm are funda-

mental solutions of the recursion of Eq. 1.25.
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Many of the sequences explored above are recurrent type sequences of a

different order. It may surprise you that well-known arithmetic and geometric

sequences are also examples of recurrent sequences!

Let us show that a geometric progression is a linear recurrent sequence of the

first order and that an arithmetic sequence is a linear recurrent sequence of the

second order. For a geometric progression each its terms is a product of the previous

term and its common ratio, r, so that anþ1 ¼ r � an. The characteristic equation is

linear; therefore, a geometric progression that is a recurrent sequence of the first

order.

For an arithmetic progression we know that each term, starting from the second

is an arithmetic mean of its neighbors, so anþ1 ¼ anþanþ2

2
, that can be solved for anþ2

as anþ2 ¼ 2anþ1 � an. Now we know that any arithmetic progression is a

recurrent sequence of second order with characteristic equation r2 � 2r þ 1 ¼ 0,

which means that the fundamental solutions to the recursion are

y1 ¼ 1, y2 ¼ n ) an ¼ c1 � 1þ c2 � n.
Let us demonstrate that this indeed describes the arithmetic sequence, for

example, for numbers 2, 5, 8, 11, . . . that divided by 3 give a remainder of

2. Substituting n ¼ 1, a1 ¼ 2, and n ¼ 2, a2 ¼ 5 into the formula for the nth

term above, we have a system,

c1 þ c2 ¼ 2

c1 þ 2c2 ¼ 5

�
) c1 ¼ �1, c2 ¼ 3 ) an ¼ 3n� 1:

On the other hand, we can obtain the same expression by using the formula for the nth

term of an arithmetic sequence, a1 ¼ 2, d ¼ 3 ) an ¼ 2þ n� 1ð Þ � 3 ¼ 3n� 1:
Next, let us consider a sequence of the squares of natural numbers. For this sequence

we know that a1 ¼ 1, a2 ¼ 22 ¼ 4, a3 ¼ 32 ¼ 9, . . . an ¼ n2. We will evaluate

three consecutive squares, next to nth term,

anþ1 ¼ nþ 1ð Þ2 ¼ n2 þ 2nþ 1 ¼ an þ 2nþ 1 ) anþ1 � an ¼ 2nþ 1

anþ2 ¼ nþ 2ð Þ2 ¼ n2 þ 4nþ 4 ¼ nþ 1ð Þ2 þ 2nþ 3 ) anþ2 � anþ1 ¼ 2nþ 3

anþ2 ¼ anþ1 þ 2nþ 1ð Þ þ 2 ¼ 2anþ1 � an þ 2 ) anþ2 � 2anþ1 þ an ¼ 2

anþ3 ¼ nþ 3ð Þ2 ¼ nþ 2ð Þ2 þ 2nþ 5

¼ anþ2 þ 2nþ 3ð Þ þ 2

¼ anþ2 þ anþ2 � anþ1ð Þ þ anþ2 � 2anþ1 þ anð Þ
anþ3 ¼ 3anþ2 � 3anþ1 þ an :

We extracted the difference between two consecutive terms of the sequence and

substituted it into the next step. We did it until the difference between two

consecutive terms did not contain anything besides a liner combination of the

previous terms. Indeed, a sequence of squares of natural numbers is a recurrent

sequence of the third order with a characteristic equation: r3 � 3r2 þ 3r � 1 ¼ 0.

1.4 Finding the nth Term of a Sequence or Series 31



Let us solve Problem 27.

Problem 27 Describe a sequence of consecutive cubes by a recurrent

formula.

Solution. Using the technique described and the formula for the nth term of the

sequence, let us write down several terms starting from n:

an ¼ n3

anþ1 ¼ nþ 1ð Þ3 ¼ n3 þ 3n2 þ 3nþ 1 ¼ an þ 3n2 þ 3nþ 1

anþ1 � an ¼ 3n2 þ 3nþ 1

anþ2 ¼ nþ 2ð Þ3 ¼ anþ1 þ 3 nþ 1ð Þ2 þ 3 nþ 1ð Þ þ 1

¼ anþ1 þ 3n2 þ 3nþ 1ð Þ þ 6nþ 6

¼ 2anþ1 � an þ 6 nþ 1ð Þ )
anþ2 � 2anþ1 þ an ¼ 6 nþ 1ð Þ
anþ3 ¼ 2anþ2 � anþ1 þ 6 nþ 2ð Þ
¼ 2anþ2 � anþ1 þ 6 nþ 1ð Þ þ 6

anþ3 ¼ 2anþ2 � anþ1 þ anþ2 � 2anþ1 þ an þ 6 )
anþ3 � 3anþ2 þ 3anþ1 � an ¼ 6 :

Because six is just a number, we know that finding the next term will be sufficient to

find a recursion,

anþ4 ¼ 3anþ3 � 3anþ2 þ anþ1 þ 6

¼ 3anþ3 � 3anþ2 þ anþ1 þ anþ3 � 3anþ2 þ 3anþ1 � an
anþ4 ¼ 4anþ3 � 6anþ2 þ 4anþ1 � an :

Therefore, a sequence of natural cubes is a recurrent sequence of the 4th order with

characteristic equation, r4 � 4r3 þ 6r2 � 4r þ 1 ¼ 0.

Answer. anþ4 ¼ 4anþ3 � 6anþ2 þ 4anþ1 � an.

Remark. Recurrent formulas are very useful in computer programming. In order

to evaluate some quantity given by a recursion, we can evaluate its value on the

nþ 1ð Þ iteration by knowing the value of a quantity on the nth and n� 1ð Þ step.
When solving problems on evaluating finite or infinite sums of series, or if we

are trying to evaluate a limit of a sequence of partial sums, it is important to have a

recurrent formula of the nth term of a series. Often it is not easy to establish a

relationship between consecutive terms of a sequence or series. For example,
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consider 10
3
, 102

9
, 103

27
, . . . , 10n

3n
, . . .. Obviously, the nth term is an ¼ 10

3

� �n
and two

consecutive terms are connected by the formula, anþ1 ¼ 10
3
� an. It is a geometric

progression and linear recursion of the first order.

Problem 28 Find a recursion for the sequence x2

1�2�3 ,
x3

2�3�4 ,
x4

3�4�5 , . . .

Solution. Let us find the formula for the nth and nþ 1ð Þ terms of

an ¼ xnþ2

n�1ð Þn nþ1ð Þ , anþ1 ¼ xnþ3

n nþ1ð Þ nþ2ð Þ. Next, we will find the ratio of two terms,

anþ1

an
¼ x� n�1ð Þ

nþ2
) anþ1 ¼ an � x n�1ð Þ

nþ2
.

If you remember at the beginning of the book, we introduced several sequences

on a calculator. The Fibonacci sequence was introduced by a recursion. You can try

to find the terms of this sequence by using the same ideas and by first setting x ¼ 1
2

and then for example x ¼ 2.

Problem 29 (Moscow Math Olympiad 1993) Evaluate the 100th term of a

sequence with x1 ¼ 4, x2 ¼ 6 such that xn is a minimal natural composite

number greater than 2xn�1 � xn�2, 8n � 3: Derive the formula for the nth

term of the sequence.

Solution. Consider some of the terms of the sequence,

2x2 � x1 ¼ 8 ) x3 ¼ 9 > 8

2x3 � x2 ¼ 12 ) x4 ¼ 14 > 12:

The 4th term cannot be 13 because 13 is prime. Let us continue by analogy

2x4 � x3 ¼ 28� 9 ¼ 19 ) x5 ¼ 20 > 19

2x5 � x4 ¼ 40� 14 ¼ 26 ) x6 ¼ 27 > 26

2x6 � x5 ¼ 54� 20 ¼ 34 ) x7 ¼ 35 > 34:

Notice there is some pattern in

x3 ¼ 9

x4 ¼ 14 ¼ x3 þ 5

x5 ¼ 20 ¼ x4 þ 6

x6 ¼ 27 ¼ x5 þ 7

x7 ¼ 35 ¼ x6 þ 8:
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It looks like we can predict the formula xn ¼ xn�1 þ nþ 1, n > 3: Using this

formula for different n starting from n ¼ 3, we obtain

x5 ¼ x4 þ 6 ¼ x3 þ 5þ 6

x6 ¼ x5 þ 7 ¼ x3 þ 5þ 6þ 7

x7 ¼ x6 þ 8 ¼ x3 þ 5þ 6þ 7þ 8

x8 ¼ x7 þ 9 ¼ x3 þ 5þ 6þ 7þ 8þ 9

. . .

xn ¼ xn�1 þ nþ 1 ¼ x3 þ 5þ 6þ 7þ 8þ 9þ . . .þ nþ nþ 1ð Þ:

The sum inside parentheses is easy to recognize if we replace the third term (9) by

2þ 3þ 4¼ 9, then the nth term can be calculated as

xn ¼ 2þ 3þ 4þ 5þ . . .þ nþ nþ 1 ¼ nþ 1ð Þ nþ 2ð Þ
2

� 1

¼ n nþ 3ð Þ
2

:

Since xn ¼ n nþ3ð Þ
2

) x100 ¼ 100�103
2

¼ 5150:

Now, by mathematical induction let us prove that xn ¼ n nþ3ð Þ
2

, n � 4 satisfies

the problem.

1. Assume that the formula is correct. The statement is true for n ¼ 4 because

x4 ¼ 14 ¼ 4�7
2
.

2. Assume that the formula is true for n ¼ k, i.e., xk ¼ k kþ3ð Þ
2

.

3. Let us show that it is true for n ¼ k þ 1, i.e., xkþ1 ¼ kþ1ð Þ kþ4ð Þ
2

. Using recursion,

we obtain 2xk � xk�1 ¼ 2 � k kþ3ð Þ
2

� k�1ð Þ kþ2ð Þ
2

¼ kþ1ð Þ kþ4ð Þ
2

� 1. By the condition

of the problem xkþ1 must be the first composite number greater than
kþ1ð Þ kþ4ð Þ

2
� 1. Clearly, the first part of this number

kþ1ð Þ kþ4ð Þ
2

is a composite

number itself and it is precisely one more than
kþ1ð Þ kþ4ð Þ

2
� 1:

Case 1. If k is odd number, then k þ 1ð Þ is an even number and so

xkþ1 ¼ kþ1ð Þ
2

� k þ 4ð Þ.
Case 2. If k is an even k þ 4ð Þ is also even number and xkþ1 ¼ k þ 1ð Þ � kþ4ð Þ

2
.

The proof is complete.

Answer. 5150.

1.4.3 Other Sequences

If a sequence or series are neither arithmetic nor geometric, then finding its nth term
can be a challenging task. For example, let us consider the following five terms of a

sequence: 4, � 1
3
, 2
7
, 5
11
, 8
15
, . . .. Because most of the terms are fractions, it helps to
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find the formula separately for the numerator and for the denominator, so un ¼ an
bn
.

In this particular case, we see that the numerators form an arithmetic progression

with common difference of 3, first term 4, and the denominator numbers form

arithmetic progression with a common difference of 5 and first term 1. So it can be

written as un ¼ 3n�7
4n�5

.

Problem 30 Find the formula the nth term of the series,
3
2
þ 9

64
þ 1

24
þ 81

4096
þ . . ..

Solution. At first, it looks like the numerators are formed by powers of three and

that the denominator by the powers of two, but the third term (1/24) seems to be not

following this “rule.” Our first idea, 3n

2n
, however, might help us in finding correct

formula for the nth term of the series. Can we assume that this first guessed formula

may be multiplied by an unknown factor, such as un ¼ 1
vn

3n

2n
? Just write down

several known terms,

n ¼ 1 u1 ¼ 3

2
¼ 1

v1
� 3
2

) v1 ¼ 1 ¼ 14

n ¼ 2 u2 ¼ 9

64
¼ 1

v2
� 9
4

) v2 ¼ 16 ¼ 24

n ¼ 3 u3 ¼ 1

24
¼ 1

v3
� 27
8

) v3 ¼ 81 ¼ 34

n ¼ 4 u4 ¼ 81

4096
¼ 1

v4
� 81
16

) v4 ¼ 256 ¼ 44

Based on the four terms, we can see that the assumption was correct and that vn
¼ n4 so un ¼ 1

n4 � 3
2

� �n
:

Answer.

un ¼ 1

n4
� 3

2


 �n

:

Problem 31 Given an infinite series, 1
2
þ 2 � 1

4
þ 3 � 1

8
þ 4 � 1

16
þ 5 � 1

32
þ . . .þ,

find its nth term and the sum of its first n terms.

Solution. The nth term is un ¼ n � 1
2n

and the nth sum is

Sn ¼ 1 � 1
2
þ 2 � 1

4
þ 3 � 1

8
þ 4 � 1

16
þ 5 � 1

32
þ . . .þ n � 1

2n
. Since all terms are positive,

we will benefit from regrouping terms of this sum,

1.4 Finding the nth Term of a Sequence or Series 35



Sn ¼ 1

2
þ 1

4
þ 1

8
þ . . .þ 1

2n


 �
þ 1

4
þ 1

8
þ 1

16
þ . . .þ 1

2n


 �

þ 1

8
þ 1

16
þ . . .þ 1

2n


 �
þ . . .þ 1

2n�1
þ 1

2n


 �
þ 1

2n
:

Now the partial sum can be found as the sum of n geometric series with common

difference of ½ and the first term of ½, ¼, etc. The first sum is

1

2
� 1� 1

2

� �n
1� 1

2

 !
¼ 1� 1

2


 �n

:

The second sum is

1

4
þ 1

8
þ 1

16
þ . . .

1

2n
¼ 1

2
� 1

2
þ 1

4
þ 1

8
þ . . .

1

2n�1


 �

¼ 1

2
� 1
2

1� 1
2

� �n�1

1� 1

2

0
B@

1
CA ¼ 1

2
1� 1

2


 �n�1
 !

:

The third sum is

1
8
þ 1

16
þ . . .þ 1

2n
¼ 1

4
1
2
þ 1

4
þ 1

8
þ . . . 1

2n�2

� 	
¼ 1

4
� 1
2

1� 1
2ð Þn�2

1�1
2


 �
¼ 1

4
1� 1

2

� �n�2
� 	

, etc.

Adding terms inside all parentheses, we obtain

Sn ¼ 1� 1

2


 �n

þ 1

2
1� 1

2


 �n�1
 !

þ 1

4
1� 1

2


 �n�2
 !

þ1

8
1� 1

2


 �n�3
 !

þ � � � þ 1

2n�1
1� 1

2


 �
:

The expression on the right can be rewritten as

1þ 1

2
þ 1

4
þ 1

8
þ . . .þ 1

2n�1
� 1

2n
þ 1

2
� 1

2n�1
þ 1

4
� 1

2n�2
þ . . .þ 1

2n�1
� 1
2


 �
:

Notice that each term inside parentheses is the same,
1

2n
.

Finally, we get Sn ¼ 1 � 1� 1
2n

� �
1
2

� n � 1
2n

¼ 2� 1

2n�1
� n

2n
. The limit of the

partial sums obviously converges to S1 ¼ 2:
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Answer. un ¼ n
2n
, Sn ¼ 2� 1

2n�1 � n
2n
, S1 ¼ 2:

What if each term of a sequence is a partial sum of an arithmetic progression?

Then

a1 ¼ S1, S1 ¼ b1

a2 ¼ S2, S2 ¼ b1 þ b2, b2 ¼ b1 þ 1 � d
a3 ¼ S3, S3 ¼ b1 þ b2 þ b3, b3 ¼ b1 þ 2 � d

. . .

an ¼ Sn, Sn ¼ b1 þ b2 þ b3 þ . . .þ bn, bn ¼ b1 þ n� 1ð Þ � d:

Let us examine this by solving Problem 32.

Problem 32 Find the nth term of a sequence 3, 13, 30, 54, 85, 123, . . . .
Evaluate its 57th term.

Solution. Clearly this is neither a geometric nor an arithmetic sequence. However,

if we subtract pairs of consecutive terms, we obtain,

13� 3 ¼ 10

30� 13 ¼ 17

54� 30 ¼ 24

85� 54 ¼ 31

123� 85 ¼ 38:

The given sequence is not an arithmetic sequence, however, the differences of two

consecutive terms, 10, 17, 24, 31, 38, . . .. are in an arithmetic progression with

common difference d ¼ 7. This means that the given sequence of numbers 3, 13,

30, 54, . . . is the sequence of partial sums of this arithmetic progression and that its

nth term can be evaluated as

an ¼ Sn ¼ 2 � 3þ ðn� 1Þ � 7
2

� n

¼ ð7n� 1Þ � n
2

:

In order to find the 57th term, we will substitute n ¼ 57,

a57 ¼ 7�57�1ð Þ�57
2

¼ 199 � 57 ¼ 200 � 57� 57 ¼ 11, 343:

Answer. an ¼ 7n�1ð Þn
2

, a57 ¼ 11, 343:
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Problem 33 Find the formula for nth term of a sequence 1, 3, 6, 10, 15, 21,

28, 36, 45, . . . .

Solution. Notice that 1 ¼ 1, 3 ¼ 1þ 2, 6 ¼ 1þ 2þ 3, 10 ¼ 1þ 2þ 3þ 4,

15 ¼ 1þ 2þ 3þ 4þ 5, etc. By induction, the nth term is a sum of the first

n natural numbers. Therefore, its formula can be found as

an ¼ Sn ¼ 1þ 2þ 3þ . . .þ n ¼ 2�1þ 1 � n�1ð Þ
2

� n ¼ n nþ1ð Þ
2

. It is easy to check that

a7 ¼ S7 ¼ 1þ 2þ . . .þ 7 ¼ 7�8
2
¼ 28: We can evaluate the series using the for-

mula for the sum of the arithmetic progression, emphasizing the value of the

common difference.

Answer. an ¼ n nþ1ð Þ
2

.

I need to mention that the numbers 1, 3, 6, 10, 15, 21, 25, . . . have a special

name—they are triangular numbers. Ancient Greeks knew about these numbers and

even gave them this name. Greeks tried to solve problems geometrically. Imagine a

triangle where each side is formed by n dots or n billiard balls. If we arrange four

such triangular numbers as in Figure 1.4, we can see how the number of the “balls”

in each case denoted by T(n) can be calculated. For example, we can add the balls

by the rows.

Lemma 1.2 A triangular number can be evaluated as

T nð Þ ¼ n nþ 1ð Þ
2

ð1:27Þ

Proof. T nð Þ ¼ 1þ 2þ 3þ . . .þ n ¼ n nþ1ð Þ
2

.

What was unusual about the sequence of triangular numbers is that each term is

the partial sum of an arithmetic progression with first term one and common

difference one. Are there other sequences like this? Yes, there are infinitely many

sequences with similar properties.

Figure 1.4 Triangular numbers
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Lemma 1.3 Given a sequence {ai} of natural numbers and consider another

sequence {bi}, such that

b1 ¼ a1
b2 ¼ a2 � a1
b3 ¼ a3 � a2
. . .
bn ¼ an � an�1

If {bi} is an arithmetic sequence with common difference, d, i.e.,

d ¼ bi � bi�1, bi ¼ b1 þ n� 1ð Þ � d, i > 1, i2ℕ then {ai} is the sequence

of partial sums for this arithmetic progression. Its nth term can be calculated

as an ¼ Sn ¼ 2a1þ n�1ð Þd
2

� n.

Let us start from some arithmetic sequences with the same first term 1 and

common difference d ¼ 1, d ¼ 2, d ¼ 3, and d ¼ 4, respectively and put next to

them the corresponding sequence of its partial sums:

1, 2, 3, 4, 5, . . . , b1 ¼ 1, d ¼ 1 ) S1 ¼ 1, S2 ¼ 3, S3 ¼ 6, S4 ¼ 10, S5 ¼ 15, . . .

1, 3, 5, 7, 9, . . . , b1 ¼ 1, d ¼ 2) S1 ¼ 1, S2 ¼ 4, S3 ¼ 9, S4 ¼ 16, S5 ¼ 25, . . .

1, 4, 7, 10, 13, 16, . . . , b1 ¼ 1, d ¼ 3) S1 ¼ 1, S2 ¼ 5, S3 ¼ 12, S4 ¼ 22, S5 ¼ 35, . . .

1, 5, 9, 13, 17, 21, . . . , b1 ¼ 1, d ¼ 4 ) S1 ¼ 1, S2 ¼ 6, S3 ¼ 15, S4 ¼ 28, S5 ¼ 45, . . .

Since we have already worked with the first sequence, consider the second

sequence: 1, 4, 9, 16, 25,. . .. If we did not have a discussion above, we could easily
predict any term of this sequence, because obsiously each term is a perfect square of

a number of the term n, i.e., an ¼ n2:On the other hand, a sequence of the squares is
a sequence of partial sums for the arithmetic sequence: 1, 3, 5, 7, 9, . . . and the

following is true:

a1 ¼ 12 ¼ 1

a2 ¼ 22 ¼ 1þ 3

a3 ¼ 32 ¼ 1þ 3þ 5

a4 ¼ 42 ¼ 1þ 3þ 5þ 7

a5 ¼ 52 ¼ 1þ 3þ 5þ 7þ 9

. . .

an ¼ n2 ¼ 1þ 3þ 5þ . . .þ 2n� 1ð Þ

Hence, additionally, we can state Lemma 1.4.
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Lemma 1.4 Each square can be represented as a sum of n consecutive odd

numbers, starting from 1.

Ancient Greeks called this a sequence of square numbers and tried to prove

everything geometrically. For example, they knew that if one takes one stone and

three stones, then one can make a square with side two. If one takes additionally five

stones and places them around the square of side two, then one will make a square

of side three, etc. (Figure 1.5). Read more about these numbers in Section 1.5.

Problem 34 Given a sequence 1, 5, 12, 22, 35, 51, 70, 92, 117, . . .. What is

the 50th term of the sequence and find the formula for the nth term.

Solution. We can see that each term can be described by an ¼ n 3n�1ð Þ
2

, n2ℕ: So

a50 ¼ 50� 3�50�1ð Þ
2

¼ 3725: Did you recognize this sequence as a sequence of partial

sums of an arithmetic progression with one as the first term and common difference

of 3? Thus, the following is true:

a1 ¼ S1 ¼ b1 ¼ 1 a1 ¼ 1

a2 ¼ S2 ¼ b1 þ b2 ¼ 5) b2 ¼ 4, d ¼ b2 � b1 ¼ 4� 1¼ 3, a2 ¼ 1þ 4

a3 ¼ S3 ¼ b1 þ b2 þ b3 ¼ 12) b3 ¼ 7, d ¼ b3 � b2 ¼ 7� 4¼ 3, a3 ¼ 1þ 4þ 7

a4 ¼ S4 ¼ S3 þ b4 ¼ 22) b4 ¼ 10, d ¼ 3 , a3 ¼ 1þ 4þ 7þ 10

� � �

an ¼ Sn ¼
2 � 1þ n� 1ð Þ � 3

2
� n¼ 3n� 1ð Þn

2

Answer. The 50th term is 3725.

Figure 1.5 A sequence of square numbers
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Remark. These numbers also have a geometric interpretation and are called

pentagonal numbers. The nth number represents the number of balls that can fit a

side of a regular pentagon with side n (Figure 1.6).

Ancient Greeks constructed pentagonal numbers using stones, which in this

book we call “balls.” First, we have one ball. Next, we put two balls on each side

of a second pentagon for a total of five. Then we put three balls on each side on the

third pentagon for a total of 12, etc. It is interesting that each pentagon can be

developed from triangular numbers. For example, for the third one, we can put four

balls on the bottom and then add to it three triangular numbers, each containing

three balls, and so on. This allows us to derive the formula for the nth pentagonal
number as P nð Þ ¼ nþ 3 � T n� 1ð Þ.

The formula for the pentagonal numbers can also be derived algebraically. By

evaluating the nth term as the nth partial sum of the arithmetic progression with the

first term 1 and common difference of 3, we obtained a formula that can be

rewritten as an ¼ 2þ3 n�1ð Þ
2

� n ¼ nþ 3 � n�1ð Þn
2

, where the expression inside the

box is the formula for the n� 1ð Þ term of the sequence of triangular numbers. In

general, any kth figurate number can be constructed out of triangular numbers by

nþ k � 2ð Þ � T n� 1ð Þ. The nth term of a k-angular number (or kth figurate number)

is the partial sum of an arithmetic progression with the first term of 1 and the

common difference of d ¼ k � 2. You could see that for a triangular number

d ¼ 1 ¼ 3� 2, for a pentagonal number d ¼ 3 ¼ 5� 2, and hence an nthhexagonal
number would correspond to the partial sum of an arithmetic progression with first

term 1 and the common difference of d¼ 6� 2¼ 4, etc.

We can create a general formula for the nth term of a k-angular number,

ak
n ¼ 2 � 1þ n� 1ð Þ k � 2ð Þ

2
� n

¼ nþ k � 2ð Þ � n� 1ð Þn
2

¼ nþ k � 2ð Þ � T n� 1ð Þ:

ð1:28Þ

Figure 1.6 Pentagonal numbers
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Remark. K-polygonal numbers (or k-angular) are nonnegative integers

constructed geometrically from the regular polygons. The kth polygonal number

can be calculated by

Pk nð Þ ¼ k � 2ð Þn n� 1ð Þ
2

þ n

¼ k � 2ð Þn n� 1ð Þ þ 2n

2
:

Thus, the nth terms for first 8 polygonal numbers can be evaluated by

P3 nð Þ ¼ T nð Þ ¼ n nþ 1ð Þ
2

, P4 nð Þ ¼ n2, P5 nð Þ ¼ n 3n� 1ð Þ
2

,

P6 nð Þ ¼ n 2n� 1ð Þ, P7 nð Þ ¼ n 5n� 3ð Þ
2

, P8 nð Þ ¼ n 3n� 2ð Þ:

Generalized octagonal numbers can be found from P8 xð Þ ¼ x 3x� 2ð Þ, x2Z:
While regular octagonal numbers 1, 8, 21, 40, 65,. . . are obtained for natural

x, the sequence of the generalized octagonal numbers includes additional

numbers obtained for a negative value of x in such a way that each octagonal

number is surrounded by generalized numbers: 0, 1 , 5, 8 , 16, 21 , 33,

40 , 56, 65 , 85, . . ..

Problem 35 Find the 25th term and a formula for the nth term for the

sequence, 1, 7, 19, 37, 61, 91, . . .

Solution. Inspecting each term, we notice that each one is the difference of two

consecutive cubes. Thus, 7 ¼ 8� 1, 19 ¼ 27� 8, 37 ¼ 64� 27, etc. Therefore,

an ¼ n3 � n� 1ð Þ3 ¼ 3n2 � 3nþ 1: The 25th term is 1801.

These numbers also have a geometric interpretation and are called centered

hexagonal numbers. Imagine a hexagonal shape and let us fit it by balls without

empty spaces including the center. Then the total number of balls that fit a hexagon

of side nwill be given byan ¼ 3n2 � 3nþ 1and for example in a hexagon with side

2 we can place 7 balls, with side 3 there are 19 balls, and with side 4 there are

37 balls, etc. (Figure 1.7). From this figure, you can see that the 5th centered

hexagonal number (61) is one more than six times the 4thtriangular number (10).

Hence, the nth centered hexagonal number is precisely one more than six times the

n� 1ð Þ triangular number.

We can prove this statement algebraically, if we rewrite the formula for the nth

term as an ¼ 3n n� 1ð Þ þ 1 ¼ 6 � n n�1ð Þ
2

þ 1.

Answer. an ¼ 3n2 � 3nþ 1, a25 ¼ 1801:
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Problem 36 Find the nth term of the sequence 1, 6, 15, 28, 45, 66, 91, . . ..

Solution. By manipulating the numbers, we notice that each is a product of n and

corresponding odd number 2n� 1ð Þ,

a1 ¼ 1 ¼ 1 � 1
a2 ¼ 6 ¼ 2 � 3
a3 ¼ 15 ¼ 3 � 5
a4 ¼ 28 ¼ 4 � 7

. . .

an ¼ n 2n� 1ð Þ

Hence, any term of the given sequence can be written as an ¼ 2n2 � n:
This sequence also has a geometric interpretation and is called the sequence of

hexagonal numbers. The nth term of the sequence represents the number of balls

that can fit a hexagon of side n. Four hexagonal numbers: 1, 6, 15 and 28 are shown

in Figure 1.8. Moreover, these numbers are represented by the partial sums of an

arithmetic sequence with the first term 1 and the common difference of

4. Therefore each term of this sequence can be calculuated using Eq. 1.28 by the

substitution of k ¼ 6.

Figure 1.7 Centered

hexagonal number

Figure 1.8 Hexagonal numbers
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Problem 37 Find the formula for a general term of the sequence 1, 4, 10, 20,

35, 56, 84, 120,. . .and find its 20th term.

Solution. Some numbers in the sequence are odd and some are even. Let us

multiply each number by 6, so we will obtain another sequence of the numbers

that is related to the given one: 6, 24, 60, 120, 210, 336, 504,. . .. Notice that each
term of this sequence is the product of three consecutive integers,

6¼ 1 � 2 � 3
24¼ 2 � 3 � 4
60¼ 3 � 4 � 5

120¼ 4 � 5 � 6
. . .

bn ¼ n nþ 1ð Þ nþ 2ð Þ, an ¼ bn
6
:

Finally, a general formula and its 20th term of the given sequence are

an ¼ n nþ1ð Þ nþ2ð Þ
6

, a20 ¼ 1540:

The sequence of numbers of Problem 37 also have a geometric interpretation and

are called tetrahedral numbers. Each number equals the total number of balls that

can fit a tetrahedron of side n. In Figure 1.9, three consecutive tetrahedral numbers

are constructed. If n ¼ 4, we can put one additional ball inside the triangle of the

base. Denote an nth tetrahedral number by Tr(n). Using Figure 1.9 we can find a

geometric way to calculate Tr(n),

10=1+3+64=1+31

Figure 1.9 Tetrahedral numbers
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Tr 1ð Þ ¼ 1

Tr 2ð Þ ¼ 1þ 3 ¼ 4

Tr 3ð Þ ¼ 1þ 3þ 6 ¼ 10

. . .

Tr nð Þ ¼ T 1ð Þ þ T 2ð Þ þ . . .þ T nð Þ;

where T(n) is the corresponding triangular number. Substituting Eq. 1.27 for a

triangular number in the formula above, we obtain Tr nð Þ ¼ Pn
n¼1

T nð Þ ¼
Pn
n¼1

n nþ1ð Þ
2

¼ n nþ1ð Þ nþ2ð Þ
6

. We will learn how to evaluate the sum of the box by

solving Problem 40.

Pythagoras (Greek mathematician, 570–490 BC) created the so-called triangular

pyramidal numbers that differ from the tetrahedral numbers starting from the 4th

term. Imagine the 4th tetrahedral term constructed without a ball inside the base

triangle. This would generate a sequence of pyramidal numbers: 1, 4, 10, 19,

31, 46, 64, . . . (Figure 1.10). The nth number is the sum of balls that can fit

triangles with sides of 1, 2, 3, 4, 5, . . ., n balls. Thus, the base triangle will contain

3 � n� 1ð Þ balls. To get the nthpyramidal number, we need to add the balls in all

n triangles,

19  =  1  +  3  +  6  +  9

Figure 1.10 The 4th

pyramidal number
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p nð Þ ¼ 1þ 3þ 6þ 9þ 12þ 15þ . . .þ 3 n� 1ð Þ
¼ 1þ 3 � 1þ 2þ 3þ 4þ 5þ . . .þ n� 1ð Þð Þ

¼ 1þ 3 n� 1ð Þn
2

:

1.5 Summation Formulas Known to Ancient
Babylonians and Greeks

Remember that when we deal with sequences, we often have to find a formula for

the nth term of a sequence. It was quite easy for geometric and arithmetic sequences.

Any geometric sequence {un} can be written as unþ1 ¼ r � un, n2ℕ, where r is the
common ratio. For example if u1 ¼ 1, r ¼ 2, then any term of the sequence will be

some power of 2, e.g., uk ¼ 2k�1. If you determine an explicit formula for the nth

term of a sequence, then each series can be written in a compact form using sigma

notation,
P

(summation) a1 þ a2 þ a3 þ . . .þ an ¼
Pn
k¼1

ak. Summation means that

for the sequence, the kth term described by ak, we add all terms between k ¼ 1 and

k ¼ n.
Sigma notation benefits us a great deal. For example, when we want to find the

sum of all numbers between 8 and 503 that divided by 5 leave a remainder of 3, then

the nth term of the series is an ¼ 5nþ 3. Substituting the values of the last term,

503, and the first term, 8, we will evaluate the number of the upper and lower index

of summation as 100 and 1, respectively, and write the series as
P100
n¼1

5nþ 3ð Þ ¼
8þ 13þ 18þ 23þ . . .þ 503:Moreover, using properties of summation and some

known summation formulas, we can evaluate many previously unknown sums

easily.

The Basic Properties of Sigma Notation

1.
Pn
k¼1

a � bk ¼ a �Pn
k¼1

bk (a constant can be put before the summation)

2.
Pn
m
ak �

Pn
m
bk ¼

Pn
m

ak � bkð Þ

3.
Pn
1

�
bk � m

� ¼Pn
1

bk � n � m (because the number m appears n times)

4.
Pn
k¼1

ak ¼
Pnþ1

k¼2

ak�1 ¼
Pnþm

k¼mþ1

ak�m

The last property shifts the summation index and is often helpful in finding sums

using other known sums that can be extracted and for simplification of terms. In the

following example, ak ¼ 1
k.
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Example. Evaluate
P100
n¼1

1
n �

P98
n¼2

1
n�1

:

The second sum can be rewritten as
P97
n¼1

1
n, and then using the second and fourth

properties of summation, we can simplify the given expression as follows:

X100
n¼1

1

n
�
X98
n¼2

1

n� 1

¼
X100
n¼1

1

n
�
X97
n¼1

1

n

¼
X97
n¼1

1

n
þ 1

98
þ 1

99
þ 1

100
�
X97
n¼1

1

n

¼ 1

98
þ 1

99
þ 1

100

Note that property 4 can be very useful in finding infinite sums as well. However,

we do not have to worry about upper index of the summation; it will remain as1:

Example.
P1
n¼1

1
n � 1

nþ2

� 	
¼ P1

n¼3

1
n þ 1þ 1

2
� P1

n¼3

1
n ¼ 3

2
:

Here are some useful summation formulas:

Xn
k¼1

k ¼ n nþ 1ð Þ
2

ð1:29Þ

Xn
k¼1

k2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
6

ð1:30Þ

Xn
k¼1

k3 ¼
Xn
k¼1

k

 !2

¼ n2 nþ 1ð Þ2
4

ð1:31Þ

The sum of all numbers between 8 and 503 that gives remainder 3 when divided by

5 is evaluated as
P100
n¼1

5nþ 3ð Þ ¼ 5
P100
n¼1

nþ 3 � 100 ¼ 5 � 100�101
2

þ 300 ¼ 25, 550:

Alternatively, the same sum can be obtained using the formula for the sum of the

first 100 terms of an arithmetic progression with the first term 8 and common

difference d ¼ 5, S100 ¼ 8þ503ð Þ
2

� 100 ¼ 25, 550:
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Example.
P100
1

n2 þ 5ð Þ ¼P100
1

n2 þ 100 � 5 ¼ 500þP100
1

n2 ¼ 500þ 100�101� 2�100þ1ð Þ
6

¼ 338, 850:

Problem 38 Evaluate the sum,
Pn
k¼1

4k3 � 6k2 þ 3
� �

.

Solution. Applying the properties of the summation and Eqs. 1.29–1.31, we have

Xn
k¼1

4k3 � 6k2 þ 3
� �¼ 4

Xn
k¼1

k3 � 6
Xn
k¼1

k2 þ 3n

¼ n2 nþ 1ð Þ2 � n nþ 1ð Þ 2nþ 1ð Þ þ 3n

¼ n4 � 2n2 þ 2n:

Moreover, for a sequence like 2, 9, 28, 65, 126, . . . we can recognize the pattern

and find the formula for the nth term as n3 þ 1ð Þ, then use sigma notation and the

well-known summation formulas to evaluate the exact partial sum of the first

k terms, Sk ¼
Pk
1

n3 þ 1ð Þ ¼ k kþ1ð Þ
2

� 	2
þ k ¼ k k3þ2k2þkþ4ð Þ

4
.

Let us see how knowledge of sigma notation and the formulas can help us with

the Problem 39.

Problem 39 Evaluate the sum, S¼ 2þ 6þ 12þ 20þ 30þ 42þ . . .þ 2550.

Solution. First, we have a finite sum. Notice that each term is a product of

consecutive natural numbers such as n nþ 1ð Þ. For example, 2 ¼ 1 � 1þ 1ð Þ, 6 ¼
2 � 2þ 1ð Þ, 12 ¼ 3 � 3þ 1ð Þ, 30 ¼ 5 � 5þ 1ð Þ, . . . , 2550 ¼ 50 � 50þ 1ð Þ: S ¼ P50

n¼1

n nþ 1ð Þ ¼ P50
n¼1

n2 þ nð Þ ¼ P50
n¼1

n2 þ P50
n¼1

n ¼ 50�51� 2�50þ1ð Þ
6

þ 50�51
2

¼ 44, 200: You

could also recognize in this sum a double sum of triangular numbers: 1, 3, 6, 10,

15, 21, 28, etc.

Answer. S¼ 44,200.

Remark. We could evaluate the sum of the first n terms of the series above as

follows:
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Sn ¼
Xn
k¼1

k2 þ k
� �

¼
Xn
k¼1

k2 þ
Xn
k¼1

k

¼ n � nþ 1ð Þ � 2nþ 1ð Þ
6

þ n � nþ 1ð Þ
2

¼ n nþ 1ð Þ
6

2nþ 1þ 3ð Þ

¼ n nþ 1ð Þ nþ 2ð Þ
3

We can see that this partial sum can be found exactly for any n. For n ¼ 50, we

could verify our answer above, S ¼ 44, 200. However, this series is divergent and

the sum will increase without bound as n increases. It is unlikely that you would

ever see any contest problem like Problem 38 because its solution is straightfor-

ward. Usually you will need at least to recognize a pattern in series such as the one

in Problem 39 and then decide what approach to use and how to evaluate the sum.

Sigma notation can help when you are faced with similar problems.

A standard method of proving Eqs. 1.29–1.31 is by mathematical induction. It is

important to mention that ancient Babylonians (2000 BC) and ancient Greeks (1000

BC) knew these formulas but derived them from a geometric point of view.

Equation 1.29 is the sum of the first n natural numbers and can be reformulated

as in Lemma 1.5.

Lemma 1.5 The sum of all natural numbers from 1 to N equals

1þ 2þ 3þ 4þ 5þ 6þ . . .þ N ¼ N Nþ1ð Þ
2

.

This statement can be proven using Gauss’s approach, using the formula for

the sum of the nth term of an arithmetic progression, or geometrically as it was

done by ancient Greeks. Let us briefly describe all four proofs.

Proof 1. (Carl Friedrich Gauss’s approach—see also Section 1.2)

1þ 2 þ . . .þ N � 1ð Þ þ N ¼ S

þ
N þ N � 1ð Þ þ . . .þ 2 þ 1 ¼ S

. . .

N þ 1ð Þ � N ¼ 2S

S ¼ 1þ 2þ . . .þ N ¼ N N þ 1ð Þ
2
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Proof 2. Consider the left side of the formula again. 1þ 2þ 3þ . . .þ N is the

sum of the first N terms of an arithmetic progression where both the first term and

the common difference equals 1. Using Eq. 1.8 for the sum of an arithmetic series,

we obtain SN ¼ 2�1þ N�1ð Þ
2

� N ¼ Nþ1ð ÞN
2

:

Proof 3. (Using mathematical induction) The statement is obviously true for

N ¼ 1. Assume that it is true for N ¼ k, i.e., 1þ 2þ 3þ . . .þ k ¼ kþ1ð Þk
2

. Let us

demonstrate that this statement is also true for N ¼ k þ 1 and that

1þ 2þ 3þ . . .þ k þ k þ 1 ¼ kþ2ð Þ kþ1ð Þ
2

. Consider the left side of the formula.

Extracting the sum of the first k terms and working only with the left side,

1þ 2þ 3þ . . .þ kð Þ þ k þ 1¼ k þ 1ð Þk
2

þ k þ 1

¼ k þ 1ð Þk þ 2 k þ 1ð Þ
2

¼ k þ 1ð Þ k þ 2ð Þ
2

:

The proof is complete.

Proof 4. (Approach known to ancient Greeks) Consider Figure 1.11. Such a

construction can be reproduced using billiard balls. Imagine a right triangle with

the legs of length 6 made by the white balls. Make a similar right triangle out of red

balls and assuming that such a creation keeps its shape, we can stick two triangles

together as shown in Figure 1.15. It is clear that two triangles together forms a

rectangle with one (vertical) side of 6 and the other (horizontal) side of 7. The entire

rectangle of the billiard balls now has 6∙7¼ 4 2 balls. If we look closely at this

construction, we can see that starting from the very left corner (1 white ball) and by

6
Sum of Integers

from 1 to N
is N (N+1)/2

N+1

5

4

3

2

1

N

N

1

N = 6 case shown

2 3 4 5 6

Figure 1.11 The sum of N integers [15]
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moving up to 2 balls, 3 balls,. . ., 6 balls, we can this way add all the balls

1þ 2þ 3þ 4þ 5þ 6 inside the white triangle. On the other hand, the same answer

can be obtained by dividing 42 by 2.

If instead of 6 we have N rows, then the answer for the sum of all natural

numbers between 1 and N is
N Nþ1ð Þ

2
. Additionally, it is known that ancient Greeks

also geometrically proved a modification of Eq. 1.29 as stated in Lemma 1.6.

Lemma 1.6 The sum of odd consecutive numbers from 1 to 2N � 1ð Þ isN � N.

Using sigma notation this statement can be written as

1þ 3þ 5þ 7þ . . .þ 2N � 1 ¼
XN
n¼1

2n� 1ð Þ ¼ N2: ð1:32Þ

Using Figure 1.12, you may quickly see a geometric proof of Lemma 1.8, but first

consider an auxiliary statement in Lemma 1.7. This result was known to

Pythagoras.

Lemma 1.7 A square, n2 and the corresponding odd number (2nþ 1) make

the next higher square, nþ 1ð Þ2, i.e., N2 þ 2N þ 1ð Þ ¼ N2 þ 2N þ 1 ¼
N þ 1ð Þ2.

Definition. A square number is a perfect square or a product of two the

same natural numbers.

N 1 2 3 4 5

Square Number
Figure 1.12 Square

numbers [15]

1.5 Summation Formulas Known to Ancient Babylonians and Greeks 51



Lemma 1.8 Each square number can be written as a sum of two consecutive

triangular numbers.

For example, 4 ¼ 1þ 3, 9 ¼ 3þ 6, 16 ¼ 6þ 10, etc.. It is easy to see that, if we

have a number of balls filling up a square (say 16 balls, as in the Figure 1.12), the

next higher square, the square of 5 balls, can be formed by adding rows of balls

around two sides of the original square as shown. Starting from the very left corner

and by going up, this process of forming successive squares can lead us to the

following correct statements:

12 þ 1þ 1þ 1ð Þ ¼ 12 þ 2 � 1þ 1 ¼ 1þ 1ð Þ2 ¼ 4 ¼ 22

22 þ 2þ 2þ 1ð Þ ¼ 22 þ 2 � 2þ 1 ¼ 2þ 1ð Þ2 ¼ 9 ¼ 32

32 þ 3þ 3þ 1ð Þ ¼ 32 þ 2 � 3þ 1 ¼ 3þ 1ð Þ2 ¼ 16 ¼ 42

42 þ 4þ 4þ 1ð Þ ¼ 42 þ 2 � 4þ 1 ¼ 4þ 1ð Þ2 ¼ 25 ¼ 52

In general, each row can be written as N2 þ N þ N þ 1 ¼ N2þ
2N þ 1ð Þ ¼ N2 þ 2N þ 1 ¼ N þ 1ð Þ2. However, if we add the very left and very

right sides of the equations, we get 1þ 3þ 5þ 7þ . . .þ 2N � 1þ 2N þ 1 ¼
N þ 1ð Þ2. The successive numbers added to 1 are 3, 5, 7, ...., (Figure 1.13) that is

to say, the successive odd numbers. The method of construction shows that the

sum of any number of consecutive terms of the series of the odd numbers 1, 3,

5, 7 ....(starting from 1) is a square, and in fact 1þ 3þ 5þ . . .þ 2n� 1ð Þ ¼ n2,
while the addition of the next odd number 2nþ 1ð Þ makes the next higher square,

nþ 1ð Þ2, e.g.

n

N

N

Sum of Odd integers

from 1 to (2N-1)

is N x N

2n-1
Sum

1
1

2 3
3

4 5
5

6 7
7 9 11 13

1 4 9 16 25 36 49

Figure 1.13 Sum of odd numbers [15]
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1þ 3¼ 4 ¼ 22

1þ 3þ 5¼ 9 ¼ 32

1þ 3þ 5þ 7¼ 16 ¼ 42

1þ 3þ 5þ 7þ 9¼ 25 ¼ 52

. . .

1þ 3þ 5þ 7þ 9þ . . .þ 2n� 1ð Þ ¼ n2:

An algebraic proof of this formula can be obtained in several ways, similar to the

proofs of Eq. 1.29. For example, using sigma notation,

1þ 3þ 5þ . . .þ 2n� 1 ¼
Xn
k¼1

2k � 1ð Þ ¼ 2 � n nþ 1ð Þ
2

� n ¼ n2:

Let us solve Problem 40.

Problem 40 Evaluate the sum 1þ 3þ 6þ 10þ 15þ . . .þ 5050.

Solution. It would be great to find the formula for the nth term of the series. If you

did every exercise in this book, then you might notice that each term of this series is

precisely ½ times the corresponding term of the series solved in Problem

39 (2þ 6þ 12þ 20þ 30þ . . .). Hence, you can assume that an ¼ n nþ 1ð Þ
2

and

then apply the summation formulas. However, we can solve this problem indepen-

dently from the known solution of Problem 39. Let me ask you the following

questions: “Did you notice that the sum of any two consecutive terms is a perfect

square?” Thus

a1 ¼ 1 ¼ 12

a1 þ a2 ¼ 1þ 3 ¼ 4 ¼ 22

a2 þ a3 ¼ 3þ 6 ¼ 9 ¼ 32

a3 þ a4 ¼ 6þ 10 ¼ 16 ¼ 42

a4 þ a5 ¼ 10þ 15 ¼ 25 ¼ 52

. . . :

We can state the following hypotheses:

1. The sum of two consecutive terms of the given series is a perfect square and

an�1 þ an ¼ n2.
2. Each term with index n can be composed of the sum of the first natural numbers

from 1 to n, i.e., an ¼ 1þ 2þ 3þ . . .þ n i.e.
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a1 ¼ 1

a2 ¼ 3 ¼ 1þ 2 ¼ a1 þ 2

a3 ¼ 6 ¼ 1þ 2þ 3 ¼ a2 þ 3

a4 ¼ 10 ¼ 1þ 2þ 3þ 4 ¼ a3 þ 4

a5 ¼ 15 ¼ 1þ 2þ 3þ 4þ 5 ¼ a4 þ 5:

It is time to state another hypothesis:

3. The nth term can be written as the sum of previous term and index n,
an ¼ an�1 þ n. We can check if both our hypotheses are correct by solving the

system,

an�1 þ an ¼ n2

an ¼ an�1 þ n

(
) 2an ¼ n2 þ n ) an ¼ n nþ 1ð Þ

2
ð1:33Þ

It is easy to check that Eq. 1.33 is indeed the formula for the nth term of the given

series. (Please check it yourself). We can also find how many terms there are by

using the last term of the series.

I do not know if you noticed that 5050 is the number obtained by young Gauss

when he added 100 natural numbers. This observation (5050¼ 100 � 101/2)
could help us to find the formula for the nth term as well, an ¼ n nþ 1ð Þ

2
¼ 5050

¼ 100 � 101
2

) n ¼ 100: The sum of n terms given by Eq. 1.33 can be found

using the formulas of summation:

1þ 3þ 6þ 10þ . . .þ n nþ 1ð Þ
2

¼
Xn
i¼1

i2 þ i

2
¼ 1

2

Xn
i¼1

i2 þ
Xn
i¼1

i

 !
¼

¼ 1

2

n nþ 1ð Þ 2nþ 1ð Þ
6

þ n nþ 1ð Þ
2


 �
¼ 1

2
� n nþ 1ð Þ

2

2nþ 1þ 3

3


 �

1þ 3þ 6þ 10þ . . .þ n nþ 1ð Þ
2

¼ n nþ 1ð Þ nþ 2ð Þ
6

ð1:34Þ

Obviously, a sum of natural numbers is a natural number. Although Eq 1.34

looks like a fraction, it is an integer, because the product of three natural

numbers within the numerator is always divisible by 6. Moreover, Eq. 1.33 is

the formula for the nthtriangular number and as we mentioned in the previous

section, the sum of n consecutive triangular numbers is the nth tetrahedral

number given by Eq. 1.34. Finally, substituting 100 for n, we can find the sum

of 100 such numbers, 1þ 3þ 6þ 10þ . . .þ 5050 ¼ 100�101�102
6

¼ 171, 700:
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Answer. 171,700.

Ancient Greeks also geometrically proved Lemma 1.9 by forming a square

number out of two consecutive triangular numbers (Figure 1.14).

Lemma 1.9 The sum of two consecutive triangular numbers is a square

number, i.e., T n� 1ð Þ þ T nð Þ ¼ n2.

The ancient Greeks proved everything visually, but this formula can be easily

derived analytically as well. By adding numbers in each triangle by the rows, it is

obvious that T 1ð Þ ¼ 1, T 2ð Þ ¼ 1þ 2 ¼ 3, T 3ð Þ ¼ 1þ 2þ 3 ¼ 6, T 4ð Þ ¼
1þ 2þ 3þ 4 ¼ 10,. . .. Since each sum can be evaluated analytically, we have

T nð Þ ¼ 1þ 2þ 3þ . . .þ n� 1ð Þ þ n ¼ n nþ1ð Þ
2

and T n� 1ð Þ ¼ 1þ 2þ 3þ . . .þ
n� 1ð Þ ¼ n�1ð Þn

2
. Therefore, T n� 1ð Þ þ T nð Þ ¼ n�1ð Þn

2
þ n nþ1ð Þ

2
¼ nþ1þn�1ð Þn

2
¼ n2:

Lemma 1.10 An infinite series of the numbers that are reciprocals of trian-

gular numbers is convergent and its sum is 2.

Proof. Consider S1 ¼ 1
1
þ 1

3
þ 1

6
þ 1

10
þ 1

15
þ . . .þ 1

T nð Þ þ . . . and rewrite it using

sigma notation substituting formula for T(n) i.e.,

T(n-1)

T(n)

T(n-1) + T(n) = N x N

Sum of two successive
Triangular numbers is
a square number (N x N)

Figure 1.14 Sum of two

consecutive triangular

numbers [15]
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Sn ¼
Xn
n¼1

1

T nð Þ ¼
Xn
n¼1

2

n nþ 1ð Þ ¼ 2�
Xn
n¼1

1

n nþ 1ð Þ

¼ 2 �
Xn
n¼1

1

n
� 1

nþ 1


 �
¼ 2� 1� 1

2
þ 1

2
� 1

3
þ 1

3
� 1

4
þ . . .� 1

nþ 1


 �

¼ 2� 2

nþ 1

S1 ¼ lim
n!1 Sn ¼ 2:

Remark. Other properties of reciprocals of the triangular or tetrahedral numbers

will be exposed later in the second chapter.

Problem 41 Evaluate the sum of the four consecutive triangular numbers,

starting from the nth term.

Solution.

Tn þ Tnþ1 þ Tnþ2 þ Tnþ3 ¼ Tn þ Tnþ1ð Þ þ Tnþ2 þ Tnþ3ð Þ
¼ nþ 1ð Þ2 þ nþ 3ð Þ3 ¼ 2n2 þ 8nþ 10:

Answer. Tn þ Tnþ1 þ Tnþ2 þ Tnþ3 ¼ 2n2 þ 8nþ 10:

Using the previous results, obtained in Problem 40 for the sum of triangular

numbers, we can prove Eq. 1.30 here restated as Lemma 1.11.

Lemma 1.11 12 þ 22 þ 32 þ 42 þ . . .þ n2 ¼ n nþ1ð Þ 2nþ1ð Þ
6

:

Proof. It is known that this formula was derived by Archimedes (287–212 BC)

while he tried to solve some geometric and mechanic problems. Each square

number is a sum of two consecutive triangular numbers e.g.,

12 ¼ 1

22 ¼ 1þ 3

32 ¼ 3þ 6

42 ¼ 6þ 10

52 ¼ 10þ 15

:::::

n2 ¼ T n� 1ð Þ þ T nð Þ ¼ n� 1ð Þn
2

þ n nþ 1ð Þ
2

:
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Adding the left and right sides, we will obtain the sum of first n squares on the left

and double the sum of the first n� 1ð Þ triangular numbers plus the nthtriangular

number that is not paired with any other number,
Pn
k¼1

k2 ¼ 2 � Pn�1

k¼1

T kð Þ þ T nð Þ.
Replacing the sum of n� 1ð Þ triangular numbers by Eq. 1.34 derived in Problem

40, we finally obtain the required sum,

Xn
k¼1

k2 ¼ 2 � n� 1ð Þn nþ 1ð Þ
6

þ n nþ 1ð Þ
2

¼ n nþ 1ð Þ 2 n� 1ð Þ þ 3ð Þ
6

¼ n nþ 1ð Þ 2nþ 1ð Þ
6

:

The proof is complete.

Let us now prove that the sum of the first n cubes of naturals numbers can be

evaluated as 13 þ 23 þ 33 þ . . .þ n3 ¼ 1þ 2þ 3þ . . .þ nð Þ2. Hopefully, you

recognized in it the third summation, Eq. 1.31, which was known to the ancient

Babylonians.

Consider, 36 cubes of side 1 and arrange them in six layers as shown in

Figure 1.15. In order to see the idea clearly, we will draw cubes in different

colors: 27 pink cubes (33 ¼ 27), 8 yellows cubes (23 ¼ 8), and one blue cube (top).

Let us prove the sum

13 þ 23 þ 33 ¼ 1þ 2þ 3ð Þ2 ¼ 36: ð1:35Þ

First, rearrange our construction so that all cubes are in one layer with a square top.

Assume that Figure 1.16 represents the top of the box and that we, starting from the

Figure 1.15 The sum

of cubes

1.5 Summation Formulas Known to Ancient Babylonians and Greeks 57



right lower corner, first, place the blue cube, then as Babylonians did, we will

attach to it a corner piece, made out of three yellow cubes to form a square of side

2 and then attach to it another corner piece of five yellow cubes, finishing a square

of side three. Next we will start using pink cubes, putting in corners of 7, 9 and

11 cubes.

On the other hand, if we take Figure 1.15 apart layer by a layer, starting from the

top, we can count all the cubes. First, we remove the top blue cube. Next, remove

the second layer (4 cubes¼ 1þ 3), then the third layer which will also have four

cubes, totaling 8 cubes, 23 ¼ 8 ¼ 2 � 1þ 3ð Þ ¼ 3þ 5. Finally, we remove the

fourth layer of nine unit cubes. There are three layers of 9 cubes each so that the

sum can be seen as 1þ 3þ 5þ 33 unit cubes where 33 ¼ 27 ¼ 3 1þ 3þ 5ð Þ ¼ 7

þ9þ 11: For example, the fourth layer of pink cubes will look like Figure 1.17.

(We changed the color of the cubes in order to better see the pattern 1þ 3þ 5¼ 9).

Finally, we removed all unit cubes and rearranged them into a rectangular

box with a square top (Figure 1.16) with area 1þ 2þ 3ð Þ 1þ 2þ 3ð Þ ¼ 36: Indeed,
the volumes in Figures 1.15 and 1.16 are the same so the geometric proof of the

Eq. 1.35 is complete.

Figure 1.16 Top of the box

Figure 1.17 The 4th layer

of “pink” cubes
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We can also prove Eq. 1.35 algebraically,

13 ¼ 1

23 ¼ 2 1þ 1þ 2ð Þ ¼ 2 � 1þ 2 1þ 2ð Þ
33 ¼ 3 1þ 1þ 2þ 2þ 3ð Þ ¼ 3 � 1þ 3 1þ 2ð Þ þ 3 2þ 3ð Þ

. . .

13 þ 23 þ 33 ¼ 1 � 1þ 2þ 3ð Þ þ 2 � 1þ 2þ 3ð Þ þ 3 � 1þ 2þ 3ð Þ
¼ 1þ 2þ 3ð Þ � 1þ 2þ 3ð Þ ¼ 1þ 2þ 3ð Þ2:

If we expand our idea for the sum of n cubes, we obtain

1¼ 13

2 1þ 3ð Þ ¼ 23

3 1þ 3þ 5ð Þ ¼ 33

4 1þ 3þ 5þ 7ð Þ ¼ 43

5 1þ 3þ 5þ 7þ 9ð Þ ¼ 53

. . .

n 1þ 3þ 5þ . . .þ 2n� 1ð Þ ¼ n3:

Therefore, the sum of all n cubes can be written as

Xn
i¼1

i3 ¼ 13 þ 23 þ 33 þ . . .þ n3

¼
Xn
i¼1

iþ 2 �
Xn
i¼1

iþ 3 �
Xn
i¼1

iþ . . .þ n �
Xn
i¼1

i

¼
Xn
i¼1

i

 !2

:

ð1:36Þ

Remember, that while doing the geometric proof we noticed an interesting pattern,

13 ¼ 1

23 ¼ 8 ¼ 3þ 5

33 ¼ 27 ¼ 7þ 9þ 11

43 ¼ 64 ¼ 13þ 15þ 17þ 19

53 ¼ 125 ¼ 21þ 23þ 25þ 27þ 29:

ð1:37Þ

This observation is written as Lemma 1.12.
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Lemma 1.12 A cube of n can be written as the sum of precisely

n consecutive odd numbers.

Let us prove it by solving the following problem.

Problem 42 Prove that a cube of a natural number n can be written as a sum
of precisely n odd consecutive numbers.

Proof.

1. Consider our finding given by Eq. 1.37 above. If a cube of any natural number

k is represented by a group of k consecutive odd numbers, then it is one number

in the first group, two odd numbers in the second group, three odd numbers in the

3rd group, etc. How many odd numbers are before the kth group? 1þ 2þ 3þ
4þ . . .þ k � 1 ¼ k k�1ð Þ

2
odd numbers. If we add the kth consecutive odd number,

we obtain
k k�1ð Þ

2
þ k ¼ k kþ1ð Þ

2
, which represents the total number of the consec-

utive odd numbers before and including group k.
2. In order to evaluate the sum of the k consecutive odd numbers in group k, say

S(k), we can subtract the sum of
k kþ1ð Þ

2
odd numbers and the sum of

k k�1ð Þ
2

odd

numbers:

S kð Þ ¼
Xk kþ1ð Þ

2

n¼1

2n� 1ð Þ �
Xk k�1ð Þ

2

n¼1

2n� 1ð Þ ¼ k2 k þ 1ð Þ2
4

� k2 k � 1ð Þ2
4

¼ k2

4
� k þ 1ð Þ2 � k � 1ð Þ2
� 	

¼ k3:

Obviously, an nth odd number can be written as an ¼ 2n� 1. Therefore, a

cube of a natural number k can be written as the sum of k odd consecutive numbers.

The proof is complete.

Moreover, by adding all consecutive cubes from 1 to n, we can state

Lemma 1.13.

Lemma 1.13 A sum of all consecutive cubes between 1 and n equals the sum

of all consecutive odd numbers between 1 and
n nþ1ð Þ

2
:

This allows us to prove Eq. 1.31 again,
Pn
k¼1

k3 ¼ Pn nþ1ð Þ
2

k¼1

2k � 1ð Þ ¼
n nþ1ð Þ

2

� 	2
¼ n2 nþ1ð Þ2

4
.
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Problem 43 Find the formula for the first and last odd number in the kth

group of consecutive odd numbers representing k3. Give an example for

representation of 73 as a sum of seven consecutive odd numbers.

Solution. There are precisely
k k�1ð Þ

2
consecutive odd numbers before the first number

in the kth group. Then the first odd number in the kth group is 2n� 1, n ¼ k kþ1ð Þ
2

þ 1

and a1 kð Þ ¼ 2� k k�1ð Þ
2

þ 1
� 	

� 1 ¼ k k � 1ð Þ þ 1 ¼ k2 � k þ 1 . The last, kth, odd

number in the kth group corresponds to the indexn ¼ k kþ1ð Þ
2

and it can be evaluated as

ak kð Þ ¼ 2 � k kþ1ð Þ
2

� 	
� 1 ¼¼ k2 þ k � 1 .

The number 73 ¼ 343 can be written by a sum of seven odd consecutive

numbers, starting with a1 7ð Þ ¼ 7 � 7� 1ð Þ þ 1 ¼ 43 and ending in a7 7ð Þ ¼ 7 � 6
þ2 � 7� 1 ¼ 55: Indeed, 73 ¼ 43þ 45þ 47þ 49þ 51þ 53þ 55 ¼ 343:

Answer. k3 ¼ k2 � k � 1þ . . .þ k2 þ k � 1; 73 ¼ 343 ¼ 43þ 45þ 47þ 49þ
51þ 53þ 55:

Problem 44 Evaluate S ¼ 12 þ 32 þ 52 þ . . .þ 2n� 1ð Þ2.

Solution. This sum can be seen as the difference of the sum of the squares of

all natural numbers between 1 and (2n) and the sum of the squares of all even

numbers from 1 to (2n). Then use the fact that a square of any even number is

divisible by 4,

S¼ f12 þ 22 þ 32 þ 42 þ � � � þ ð2nÞ2g � f22 þ 42 þ 62 þ 82 þ � � � þ ð2nÞ2g
¼ ð12 þ 22 þ 32 þ 42 þ � � � þ ð2nÞ2Þ � 4 � ð12 þ 22 þ 32 þ 42 þ � � � þ n2Þ

Each sum now can be evaluated using the same Eq. 1.30 for the sum of first natural

squares with a different upper summation index. Finally, we have

S¼
X2n
k¼1

k2
� �� 4 �

Xn
k¼1

k2
� � ¼ 2n 2nþ 1ð Þ 4nþ 1ð Þ

6
� 4 � n nþ 1ð Þ 2nþ 1ð Þ

6

¼ n 2n� 1ð Þ 2nþ 1ð Þ
3

¼ 4n3 � n

3
:

Answer. S ¼ n 2n� 1ð Þ 2nþ 1ð Þ
3

¼ 4n3 � n

3
:
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Remark. While an infinite series of the squares of natural numbers is divergent,

the series consisting of reciprocals of the squares is convergent. The proof of this

fact, called the Basel Problem, was first given by Euler in 1735 and it is not trivial.

We will discuss it later, in Chapter 3. The solution is
P1
n¼1

1
n2 ¼ 1

12
þ

1
22
þ 1

32
þ . . .þ 1

n2 þ . . .þ ¼ π2

6
.

Problem 45 Prove that the sum of the first n triangular numbers is the nth

tetrahedral number.

Proof. Consider the sum of the first triangular numbers,

T 1ð Þ þ T 2ð Þ þ . . .þ T nð Þ ¼
Xn
1

n nþ 1ð Þ
2

¼ 1

2
�
Xn
1

n2 þ
Xn
1

n

 !

¼ n nþ 1ð Þ 2nþ 1ð Þ
12

þ n nþ 1ð Þ
4

¼ n nþ 1ð Þ
12

� 2nþ 1þ 3ð Þ

¼ n nþ 1ð Þ nþ 2ð Þ
6

¼ Tr nð Þ:

Problem 46 Evaluate the nth partial sum for the series,

3þ 13þ 30þ 54þ 85þ 123þ . . ..

Solution. I hope you recognized these numbers, they are the partial sums of an

arithmetic progression with common difference d¼ 7. Then each term of the given

series can be written as an ¼ 7n�1ð Þ�n
2

. Hence, the requested sum can be evaluated as

Sn ¼
Xn
k¼1

7k � 1ð Þk
2

¼ 1

2
� 7

Xn
k¼1

k2 �
Xn
k¼1

k

 !

¼ 1

2
� 7 � n nþ 1ð Þ 2nþ 1ð Þ

6
� n nþ 1ð Þ

2


 �

¼ n nþ 1ð Þ 7nþ 2ð Þ
6

We can check this formula by adding the first four terms of the series,

S4 ¼ 3þ 13þ 30þ 54 ¼ 100

S4 ¼ 4 � 5 7 � 4þ 2ð Þ
6

¼ 100:
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Answer. Sn ¼ n nþ1ð Þ 7nþ2ð Þ
6

:

Although the ancient Greeks and Babylonians knew how to add integers and

proved their formulas using geometry, there were limitations to their techniques.

For example, they did not know how to represent the fourth power of a number

because we all live in a three dimensional space. Additionally, there are infinitely

many examples of sequences and series that involve fractional expressions or

combination of exponential and trigonometric functions that of course was

unknown in ancient times. In Chapter 2 you will learn different methods of finding

exact sums and will prove many formulas using other creative ideas.
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Chapter 2

Further Study of Sequences and Series

As you would see earlier in Chapter 1, some problems would ask you to add the first

ten terms or even evaluate the sum of the first k terms of a sequence or maybe

investigate whether the limit of such sum exists. Expressions such as

1þ 4þ 7þ 10þ 13þ . . . ð2:1Þ
1=2 þ 1=4 þ 1=8 þ 1=16 þ 1=32 þ . . . ð2:2Þ

1þ 4þ 9þ 16þ 25þ 36þ . . . ð2:3Þ

are called series and in all three cases can be evaluated exactly for the sum of any

finite number of terms. Since Eq. 2.1 represents an arithmetic series with first term

1 and common difference 3, we can use the formula for the sum of the first n terms

that is derived in the earlier section. We can write the sum as

Sn ¼ 1þ 4þ 7þ 10þ . . . ¼ 2a1 þ n� 1ð Þd
2

� n ¼ 2 � 1þ n� 1ð Þ3
2

� n

¼ 3n� 1ð Þn
2

:
ð2:4Þ

Since Eq. 2.2 represents a geometric series with the first term 1/2 and common ratio

1/2, then the formula for the sum of the first n terms is known. We have

Sn ¼ 1

2
þ 1

4
þ 1

8
þ 1

16
þ . . . ¼ b1 1� rnð Þ

1� r
¼

1
2
1� 1

2

� �n� �
1� 1

2

¼ 1� 1

2

� �n

: ð2:5Þ

The sum of the last series of Eq. 2.3 can be evaluated exactly as well. We prove this

formula in Chapter 1 and prove it in a different way in the following subsection,
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Sn ¼ 12 þ 22 þ 32 þ . . .þ n2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
6

: ð2:6Þ

What do these series of Eqs. 2.1–2.3 have in common? Their partial sums can be

evaluated exactly for any number of terms n. So we could add the first 25, the

first 100 or even the first 2011 terms and get an exact answer for the sum using

Eqs. 2.1–2.3 by replacing n by 25, 100, or 2011, respectively. However, if the

number of terms, n, were to become infinitely large, then we would see some

differences. For example, if we increase n then the partial sums of Eqs. 2.4 and 2.6

would increase without limit. The result is different for the sum of Eq. 2.5; it will

approach its limit of one since the second term will approach zero. This behavior is

typical for any infinite geometric series with common ratio less than one as we

established earlier.

We say that the series of Eqs. 2.1 and 2.3 diverge and the series of Eq. 2.2

converges. Serious study of convergence and divergence is a subject of mathemat-

ical analysis. For now we simply determine whether or not the series are divergent

or convergent and why. Many challenging math contest problems are dedicated to

finding an exact sum of the first n terms of a series. The determination of the partial

and infinite sums is the topic of the first section of this chapter.

2.1 Methods of Finding Partial and Infinite Sums

Let us derive again Eq. 2.6 for the sum of squares of the first n natural numbers and

Eq. 1.31 for the sum of the cubes of n natural numbers.

Problem 47 Prove that
Pn
k¼1

k2 ¼ n nþ1ð Þ 2nþ1ð Þ
6

Proof. We need to prove that the following relationship is true:

N ¼ 12 þ 22 þ 32 þ 42 þ . . .þ n� 2ð Þ2 þ n� 1ð Þ2 þ n2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
6

:

Arranging sums in ascending and descending order does not help. We need to find a

different approach. If you have read Chapter 1 of the book then you probably have

an idea of how to start. Let us consider the difference of two consecutive cubes,

n3 � n� 1ð Þ3 ¼ 3n2 � 3nþ 1 .
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13 � 03 ¼ 3 � 12 � 3 � 1þ 1 ¼ 1

23 � 13 ¼ 3 � 22 � 3 � 2þ 1

33 � 23 ¼ 3 � 32 � 3 � 3þ 1

. . .

n� 2ð Þ3 � n� 3ð Þ3 ¼ 3 � n� 2ð Þ2 � 3 � n� 2ð Þ þ 1

n� 1ð Þ3 � n� 2ð Þ3 ¼ 3 � n� 1ð Þ2 � 3 n� 1ð Þ þ 1

n3 � n� 1ð Þ3 ¼ 3n2 � 3nþ 1

Adding the left and the right sides, we obtain

n3 ¼ 3 12 þ 22 þ 32 þ . . .þ n2
� �� 3 1þ 2þ 3þ . . .þ nð Þ þ 1 � n. This can be

written using sigma notation as n3 ¼ 3
Pn
k¼1

k2 � 3
Pn
k¼1

k þ n. Solving this for
Pn
k¼1

k2

and assuming that we know the formula for the sum of the first n natural numbers we

obtain

Xn
k¼1

k2 ¼ 2n3 � 2nþ 3n nþ 1ð Þ
6

¼ n 2n2 þ 3nþ 1ð Þ
6Xn

k¼1

k2 ¼ n 2nþ 1ð Þ nþ 1ð Þ
6

:

The statement is proven.

Problem 48 Prove that
Pn
k¼1

k3 ¼ n nþ1ð Þ
2

� �2

Solution. Try to use a similar approach so consider the difference of the fourth

powers of two consecutive integersn4 � n� 1ð Þ4 ¼ 4n3 � 6n2 þ 4n� 1:Write this

out for the first few terms and then for the values as we reach n,

14 � 04 ¼ 4 � 13 � 6 � 12 þ 4 � 1� 1

24 � 14 ¼ 4 � 23 � 6 � 22 þ 4 � 2� 1

34 � 24 ¼ 4 � 33 � 6 � 32 þ 4 � 3� 1

� � �
n� 2ð Þ4 � n� 3ð Þ4 ¼ 4 n� 2ð Þ3 � 6 n� 2ð Þ2 þ 4 � n� 2ð Þ � 1

n� 1ð Þ4 � n� 2ð Þ4 ¼ 4 n� 1ð Þ3 � 6 n� 1ð Þ2 þ 4 � n� 1ð Þ � 1

n4 � n� 1ð Þ4 ¼ 4n3 � 6n2 þ 4 � n� 1:
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Next, we add the left and the right sides together as we did in the previous problem

using sigma notation and solve the equation for the unknown sum,

n4 ¼ 4
Xn
k¼1

k3 � 6
Xn
k¼1

k2 þ 4 �
Xn
k¼1

k � n

Xn
k¼1

k3 ¼ n4 þ n nþ 1ð Þ 2nþ 1ð Þ þ n� 2n nþ 1ð Þ
4Xn

k¼1

k3 ¼ n n3 þ 1ð Þ þ n nþ 1ð Þ 2n� 1ð Þ
4

¼ n nþ 1ð Þ n2 � nþ 1þ 2n� 1ð Þ
4

Xn
k¼1

k3 ¼ n nþ 1ð Þ n2 þ nð Þ
4

¼ n nþ 1ð Þ
2

� �2

¼
Xn
k¼1

k

 !2

:

This is a very interesting relationship because we established again that the sum of

the first n cubes equals the square of the sum of the first n natural numbers. For

example, 13 þ 23 þ 33 þ 43 ¼ 1þ 2þ 3þ 4ð Þ2 ¼ 100:

Remark. Earlier we proved the same formula using the geometric approaches of

ancient Babylonians and Greeks to demonstrate that the sum of the first n cubes

equals the sum of the first m ¼ n nþ1ð Þ
2

odd consecutive numbers.

Problem 49 Find the sum, 1þ 11þ 111þ 1111þ . . .þ 11 . . . :111, where
the last number consists of n repetitions of the digit 1. Evaluate the sum for

n ¼ 9:

Solution. We solve this problem in three different ways so you can compare the

different methods.

Method 1. At first glance, we notice that 1, 11, 111, 1111, . . .. is neither an

arithmetic nor a geometric sequence. Hence, we have to rewrite the sum in another

form. For example,

1¼ 1

11¼ 1þ 10

111¼ 1þ 10þ 100

1111¼ 1þ 10þ 100þ 1000

111:::11¼ 1þ 10þ 102 þ 103 þ 104 þ . . .þ 10n�2 þ 10n�1
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Each number on the left containing digit 1 repeated n times can be written as a sum

of the first n terms of a geometric sequence with the first term equals 1 and a

common ratio 10. Thus,

1¼ S1 ¼ 1

11¼ S2 ¼ 1þ 10

111¼ S3 ¼ 1þ 10þ 100

� � �
111:::11¼ Sn ¼ 1 � 10n � 1ð Þ

10� 1
¼ 10n � 1

9

Adding over the left and right sides, 1þ 11þ 111þ . . .þ 111 . . . 11 ¼ S1 þ S2
þ . . .þ Sn and using the formula for the sum of n terms of a geometric sequence

and properties of
P

- notation we have

S ¼
Xn
k¼1

10k � 1

9
¼
Xn
k¼1

10k

9
� 1

9

Xn
k¼1

1 ¼ 1

9

Xn
k¼1

10k � n

 !
ð2:7Þ

Let us consider the first term of difference of Eq. 2.7,
Pn
k¼1

10k ¼
10þ 102 þ 103 þ . . .þ 10n. The expression on the right is again a geometric

sequence with b1 ¼ 10 and r ¼ 10 and

Xn
k¼1

10k ¼ 10 � 10n � 1ð Þ
9

¼ 10nþ1 � 10

9
ð2:8Þ

Substituting Eq. 2.8 into Eq. 2.7 we obtain a formula for S, S ¼ 10nþ1�10�9n
81

.

This formula can be used in order to find a sum like

1þ 11þ 111þ . . .þ111 . . . :11 for any specific number n. Thus, when n ¼ 9,

S ¼ 1þ 11þ 111þ . . .þ 111111111 ¼ 1010�10�9�9
81

¼ 123, 456, 789.

Method 2. Denote the total sum by S as S ¼ 1þ 11þ 111þ 1111þ
11111þ . . .þ 11 . . . 1. Multiplying S by 10, we obtain 10S ¼ 10þ 110þ
1110þ 11110þ 111110þ . . .. If we subtract the first sum from the second, we

obtain (It may help to rewrite S as S¼ 1þ (10þ 1)þ (110þ 1)þ (1110þ 1)þ . . .).

Then 9S ¼ 111:::1
zfflfflffl}|fflfflffl{n times

0� n � 1 which leads us to the answer, S ¼ 111:::1
zfflfflffl}|fflfflffl{n times

0� n � 1
9

.

Method 3. We can notice that 9 ¼ 10� 1, 99 ¼ 100� 1, 999 ¼ 1000� 1, etc.

If we multiply and divide the given sum by 9 we can easily evaluate it using a

formula for geometric series.
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S¼ 1

9
10� 1þ 100� 1þ 1000� 1þ 10000� 1þ . . .þ 100:::0� 1ð Þ

¼ 10þ 102 þ . . .þ 10n � n
� �

9

S¼ 1

9

10 10n � 1ð Þ
9

� n

	 


Our series is divergent because S increases without bound as n increases.

As we mentioned above, evaluating an exact sum for a finite series or a partial

sum for an infinite series can be a challenging task, and this is why many such

problems appear in different contests. Each problem is unique but we are going to

share with you some ideas of finding such sums; you may find them helpful and

applicable to other or similar problems.

Problem 50 Find the sum: 1
1�2 þ 1

2�3 þ 1
3�4 þ . . .þ 1

1998�1999 þ 1
1999�2000

Solution. Sometimes it is a good idea to rewrite a sum in a different but equivalent

form by noticing something that the terms have in common, some pattern. One

thing you might notice is that the denominator of each fraction is a product of two

consecutive natural numbers. How can we obtain a product of two such numbers

within a denominator? What operation can give us a product? Answer: When we

put together (add or subtract) two fractions with different denominators, that have

no common factors, the least common denominator is going to be a product of these

numbers. In general,

1

c
þ 1

d
¼ d þ c

c � d
1

c
� 1

d
¼ d � c

c � d

Looking at the second formula above, we can find the way of solving the problem.

If c and d differ by 1, i.e., d � c ¼ 1, then
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1

c
� 1

d
¼ 1

c � d
1

1
� 1

2
¼ 1

1 � 2
1

2
� 1

3
¼ 1

2 � 3
1

3
� 1

4
¼ 1

3 � 4
. . .

1

1999
� 1

2000
¼ 1

1999 � 2000:

Using these, we replace each fraction on the right by the difference on the left

obtaining

1

1 � 2þ
1

2 � 3þ
1

3 � 4þ . . .þ 1

1998 � 1999þ
1

1999 � 2000 ¼

1� 1

2
þ 1

2
� 1

3
þ 1

3
� 1

4
þ . . .þ 1

1998
� 1

1999
þ 1

1999
� 1

2000

In this sum all middle terms cancel each other except the first term, 1, and the last

term, � 1
2000

. This gives us S1999 ¼ 1� 1
2000

¼ 1999
2000

. Evaluating this sum when

n¼ 1999 (a big number), we see that S1999 ¼ 1999
2000

is almost 1. On the other hand,

S4 ¼ 1
1�2 þ 1

2�3 þ 1
3�4 þ 1

4�5 ¼ 1� 1
5
¼ 4

5
¼ 0:8. Four is not a “big” number, hence 0.8 is

not as close to 1. Using the same technique, we can find the sum to infinity of the

series:

S ¼ 1
1�2 þ 1

2�3 þ . . .þ 1
n nþ1ð Þ þ . . . so Sn ¼ 1� 1

nþ1
¼ n

nþ1
and also have that

lim
n!1 Sn ¼ lim

n!1
n

nþ1
¼ 1:

Remark. In order to be considered for possible convergence, the series must first

pass the necessary condition for the limit of its nth term, that is, does lim
n!1 un ¼ 0. If

we try to look at the nth term of this sum, 1
n nþ1ð Þ, we can see that lim

n!1
1

n nþ1ð Þ ¼ 0. We

also find that the limit of the partial sums exists, lim
n!1 Sn ¼ S where S is a finite

number 1. However, in general, satisfying the necessary condition is not sufficient.

Convergence or divergence of series is established with the use of sufficient

convergence theorems. We list some of these rules in Chapter 3.

Why didn’t we use a calculator approach? A calculator can be used to find a sum

like 1
1�2 þ 1

2�3 þ 1
3�4, i.e., sum

�
seq 1= x xþ 1ð Þð Þ, x, 1, 3ð Þ ¼ 0:75 This is an exact

answer. A calculator can evaluate this as 1
1�2 þ 1

2�3 þ . . .þ 1
100�101 ¼ 0:990094, i.e.,

sum
�
seq 1=x= xþ 1ð Þ, x, 1, 100ð Þ ¼ 0:990094: Even this: 1

1�2 þ ::::: þ 1
500�501 ¼

0:99800. But if we have more than 100 terms in summation, for example,

x ¼ 1999, such as our original problem, TI83/84 graphing calculators cannot be
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used. We might have some idea that this number gets closer and closer to 1. But

how close? What if we need to find the exact answer or figure out the value of Sn,

the sum of the first n terms for any n? Remember that since Sn ¼ 1� 1
nþ1

¼ n
nþ1

, we

evaluated its limit analytically as lim
n!1 Sn ¼ 1.

In the preceding problem numbers within each denominator differed by 1. But

the idea of replacing each fraction by a difference is so elegant, we wonder, “What

happens if two numbers in each fraction differ by the same number but not by 1?

Can we use the same technique here?”

Problem 51 Evaluate 1
1�5 þ 1

5�9 þ 1
9�13 þ . . .þ 1

197�201.

Solution. Look at the sequence of the first numbers of each denominator:

1, 5, 9, . . ., 197. They are terms of an arithmetic sequence with a1 ¼ 1 and d ¼ 4.

Let us find the number of the term that is 197.

an ¼ a1 þ n� 1ð Þd
197¼ 1þ n� 1ð Þ4

n¼ 50

This means that we have to add 50 fractions together. Look at the differences:

1� 1

5
¼ 5� 1

1 � 5 ¼ 4

1 � 5 ¼ 4 � 1

1 � 5
1

5
� 1

9
¼ 9� 5

5 � 9 ¼ 4

5 � 9 ¼ 4 � 1

5 � 9
. . .

1

197
� 1

201
¼ 4

197 � 201 ¼ 4 � 1

197 � 201

Now the given sum can be written in the form:

S50 ¼ 1

4
1� 1

5
þ 1

5
� 1

9
þ 1

9
� 1

13
þ ::::þ 1

193
� 1

197
þ 1

197
� 1

201

� �

S50 ¼ 1

4
1� 1

201

� �
¼ 50

201
:

Notice that the nth term of the series can be written as 1
4n�3ð Þ 4nþ1ð Þ. We can evaluate

the partial sum (the sum of the first n terms) as Sn ¼ 1
4

1� 1
4nþ1

� �
¼ n

4nþ1
. If

n ! 1, Sn ! 1
4
. Therefore, the series is convergent.

Answer. 50
201
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Now we can make a trivial but very useful conclusion. For any real c and d such
that c 6¼ d

1

c � d ¼ 1

d � c
� 1

c
� 1

d

	 

ð2:9Þ

Problem 52 Numbers a1, a2, . . . , an, anþ1 are terms of an arithmetic

sequence. Prove that 1
a1�a2 þ 1

a2�a3 þ . . .þ 1
an�anþ1

¼ n
a1�anþ1

Proof. a1, a2, . . . , an, anþ1 are terms of an arithmetic sequence, then

a2 � a1 ¼ a3 � a2 ¼ . . . ¼ anþ1 � an ¼ d, where d is a common difference of the

sequence. Using (Eq. 2.9) we can state the following:

1

a1a2
¼ 1

a1
� 1

a2

� �
� 1
d

1

a2a3
¼ 1

a2
� 1

a3

� �
� 1
d

� � �
1

ananþ1

¼ 1

an
� 1

anþ1

� �
� 1
d

Replacing each term on the left of the given expression by formulas above and

factoring out 1
�
d
we obtain

S¼ 1

d

1

a1
� 1

a2
þ 1

a2
� 1

a3
þ . . .þ 1

an
� 1

anþ1

� 
¼ 1

d
� anþ1 � a1ð Þ

a1 � anþ1

ð2:10Þ

But anþ1 ¼ a1 þ nd, then

anþ1 � a1 ¼ nd ð2:11Þ

Replacing Eq. 2.11 into Eq. 2.10 we have the required expression for S,

S ¼ nd
d a1�anþ1ð Þ ¼ n

a1�anþ1
.

The proof is complete.

Problem 53 Prove that 1
12
þ 1

22
þ 1

32
þ . . .þ 1

n2 < 2.
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Proof. Denote the given sum by S ¼ 1
12
þ 1

22
þ 1

32
þ . . .þ 1

n2. In addition, consider

another series, made of one that we have already seen and evaluated:

Σ ¼ 1þ 1

1 � 2þ
1

2 � 3þ
1

3 � 4þ . . .þ 1

n� 1ð Þn
� �

Each term of this auxiliary series, starting from the second term, is greater than

the corresponding term of the given series, such that

1

n2
<

1

n� 1ð Þn ¼ 1

n� 1
� 1

n
, n � 2, n2ℕ

Hence, the sum of all terms of the given series is less than the sum of the

auxiliary series:

S < Σ ¼ 1þ 1� 1

n
¼ 2� 1

n
, n2ℕ:

Therefore, we can state that S < 2� 1
n < 2, n2ℕ: The statement is proven.

An interesting approach of rewriting a fraction as a difference of two other

fractions can be applied to many other math problems. For example, we can use this

approach in calculus when evaluating integrals like this:

ð
du

u2 � 1
or any integral of

the form:

ð
du

u2 � m2
, where m is any integer. Let us do the following problem.

Problem 54 Evaluate the integral,

ð
du

u2 � 1
.

Solution. Consider the rational expression under a symbol of an integral. Because

the quantities, u� 1ð Þ and uþ 1ð Þ differ by 2, we can use the same technique

(Eq. 2.9) of rewriting this as a difference of two fractions multiplied by (1/2):

1

u2 � 1
¼ 1

u� 1ð Þ uþ 1ð Þ ¼
1

u� 1
� 1

uþ 1

� �
� 1
2

and ð
du

u2 � 1
¼ 1

2
�
ð

du

u� 1
�
ð

du

uþ 1

� �

¼ 1

2
ln u� 1j j � ln uþ 1j jð Þ þ C ¼ 1

2
ln

u� 1

uþ 1

����
����þ C
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Answer. 1
2
ln u�1

uþ1

�� ��þ C:

Problem 55 Prove that 12

1�3 þ 22

3�5 þ . . .þ n2

2n�1ð Þ 2nþ1ð Þ ¼ n nþ1ð Þ
2 2nþ1ð Þ.

Proof. Would it be nice to have the sum of the first n squares or the sum of

n fractions with those denominators but unit in each numerator? Yes. We would

evaluate such sums without any troubles. These little observations can help us to

prove the statement. Denote the unknown sum by S ¼ 12

1�3 þ 22

3�5 þ . . .þ n2

2n�1ð Þ 2nþ1ð Þ
and then rewrite it using sigma notation and by applying the difference of squares

formula to the nth term,
Pn
n¼1

n2

4n2�1
¼ S. Let us multiply both sides by 4 and put

4 inside the summation:

4 �
Xn
n¼1

n2

4n2 � 1
¼ 4S

Xn
n¼1

4n2

4n2 � 1
¼ 4S

Would it be nice to add just n units instead? We do not have it but the following

operation will make it possible

Xn
n¼1

4n2

4n2 � 1
�
Xn
n¼1

1

4n2 � 1
¼ 4S�

Xn
n¼1

1

4n2 � 1Xn
n¼1

4n2 � 1

4n2 � 1
¼ 4S�

Xn
n¼1

1

2n� 1ð Þ 2nþ 1ð Þ
n ¼ 4S�

Xn
n¼1

1

2n� 1ð Þ 2nþ 1ð Þ

The sum on the right hand side looks familiar to you because denominator of each

term consists of a product of two consecutive odd numbers that differ by 2.

Xn
n¼1

1

2n� 1ð Þ 2nþ 1ð Þ ¼
1

1 � 3þ
1

3 � 5þ . . .þ 1

2n� 1ð Þ 2nþ 1ð Þ

¼ 1

2

1

1
� 1

3
þ 1

3
� . . .� 1

2nþ 1

� �
¼ 2nþ 1� 1

2 2nþ 1ð Þ
¼ n

2nþ 1
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Finally, we haven ¼ 4S� n
2nþ1

. Solving this equation for S, we obtain the requested

quantity:

4S ¼ nþ n

2nþ 1

S ¼ 2n2 þ 2n

4 2nþ 1ð Þ ¼
n nþ 1ð Þ
2 2nþ 1ð Þ

The proof is complete.

Problem 56 demonstrates another approach for finding sums.

Problem 56 Find the sum S ¼ 1
1�3�5 þ 1

3�5�7 þ 1
5�7�9 þ . . ..

Solution. Notice that the nth term of the series can be represented as

un ¼ 1
2n�1ð Þ 2nþ1ð Þ 2nþ3ð Þ.

Let us rewrite it as follows:

un ¼ A

2n� 1
þ B

2nþ 1
þ C

2nþ 3
¼ 1

2n� 1ð Þ 2nþ 1ð Þ 2nþ 3ð Þ ð2:12Þ

where A, B, and C are some constants to be determined.

If we put expressions on the left side of Eq. 2.12 over the common denominator,

and equate both sides, we can find these constants:

A 4n2 þ 8nþ 3ð Þ þ B 4n2 þ 4n� 3ð Þ þ C 4n2 � 1ð Þ ¼ 1

4n2 Aþ Bþ Cð Þ þ 4n 2Aþ Bð Þ þ 3A� 3B� Cð Þ ¼ 1

Since n 6¼ 0 we have to solve the system:

Aþ Bþ C ¼ 0

2Aþ B ¼ 0

3A� 3B� C ¼ 1

8><
>: , A ¼ C ¼ 1=8, B ¼ �1

4
ð2:13Þ

Using Eq. 2.13 the given sum can be written as

1

8
1þ 1=3þ 1=5þ 1=7þ . . .ð Þ � 1

4
1=3þ 1=5þ 1=7þ 1=9þ . . .ð Þ

þ 1

8
1=5þ 1=7þ 1=9þ . . .ð Þ

¼ 1

8
1þ 1=3ð Þ � 1

4
� 1
3
� 1

4
1=5þ 1=7þ . . .ð Þ þ 1

4
1=5þ 1=7þ . . .ð Þ

¼ 1

12
� 0:0833

ð2:14Þ
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Answer. 1/12.

Remark. The required sum can be evaluated using properties of sigma notation as

8S¼
X1
n¼1

1

2n� 1
� 2
X1
n¼1

1

2nþ 1
þ
X1
n¼1

1

2nþ 3

¼
X1
n¼3

1

2n� 1
� 2
X1
n¼3

1

2n� 1
þ
X1
n¼3

1

2n� 1

 !
þ 1þ 1

3
� 2 � 1

3
¼ 2

3

S¼ 1

12
:

Additionally, notice that 1/12 in Eq. 2.14 is the sum of the infinite series.

If the number of terms, k, is some counting number we can evaluate the sum exactly

as Sk ¼ 1
1�3�5 þ 1

3�5�7 þ 1
5�7�9 þ . . . 1

2k�1ð Þ 2kþ1ð Þ 2kþ3ð Þ ¼ 1
12
þ 1

8
1

2kþ3
� 1

2kþ1

� �
¼ 1

12
þ

1
2 2kþ1ð Þ 2kþ3ð Þ ! 1

12
as k ! 1. We say that the series is convergent to 1/12.

k ! 1. However, for small k and sums up to, for example 1
11�13�15 (k ¼ 6 and we

have to add only six terms), we should use the exact formula for the partial sum

above, that yields 1
12
þ 1

2�13�15 ¼ 201
2340

� 1
12
þ 0:002564 � :0859

Problem 57 Find the sum Sn ¼ 1
1�2�3 þ 1

2�3�4 þ . . .þ 1
n nþ1ð Þ nþ2ð Þ.

Solution. Let us rewrite the kth term as

1

k k þ 1ð Þ k þ 2ð Þ ¼ 1

k þ 1
� 1
k
� 1

k þ 2
¼ 1

k þ 1
� 1
2

1

k
� 1

k þ 2

	 

¼ 1

2

1

k k þ 1ð Þ �
1

k þ 1ð Þ k þ 2ð Þ
	 


Therefore, the partial sum is

Sn ¼ 1

2

1

1 � 2�
1

2 � 3þ
1

2 � 3�
1

3 � 4þ
1

3 � 4�
1

4 � 5þ . . .þ 1

n nþ 1ð Þ �
1

nþ 1ð Þ nþ 2ð Þ
	 


¼ 1

2

1

2
� 1

nþ 1ð Þ nþ 2ð Þ
	 


¼ n nþ 3ð Þ
4 nþ 1ð Þ nþ 2ð Þ

Notice that lim
n!1 Sn ¼ 1

4
. The series is convergent.

Answer. Sn ¼ n nþ3ð Þ
4 nþ1ð Þ nþ2ð Þ

Here is another example of how these ideas can be applied in Calculus when

taking integrals:
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Problem 58 Evaluate

ð
dx

x xþ 1ð Þ xþ 2ð Þ for all positive x.

Solution. Noticing that 2
xð Þ xþ1ð Þ xþ2ð Þ ¼ 1

x � 2
xþ1

þ 1
xþ2

we can evaluate the integral asð
dx

x xþ 1ð Þ xþ 2ð Þ ¼
1
2

ln x xþ 2ð Þ½ � � ln xþ 1ð Þ2
n o

þ C ¼ 1
2
ln

x xþ2ð Þ
xþ1ð Þ2 þ C.

Answer. ln

ffiffiffiffiffiffiffiffiffiffi
x xþ2ð Þ

p
xþ1

þ C

Problem 59 Evaluate 1
2
þ 3

22
þ 5

23
þ . . .þ 2n�1

2n
.

Solution. Denote Sn ¼ 1
2
þ 3

22
þ 5

23
þ . . .þ 2n�1

2n
. Multiplying this by two and

regrouping terms, we obtain 2 � Sn ¼ 1þ 3
21
þ 5

22
þ . . .þ 2n�1

2n�1 . Within this sum, we

recognize a geometric series and the original sum minus the last term, The first term

is 1 and the common ratio is ½.

1þ 2

2
þ 1

2

� �
þ 2

22
þ 3

22

� �
þ 2

23
þ 5

23

� �
þ . . .þ 2

2n�1
þ 2n� 3

2n�1

� �

2Sn ¼ 1þ
1� 1

2n�1

1� 1

2

þ Sn � 2n� 1

2n

Solving this for Sn, Sn ¼ 3� 2nþ3
2n

. This series is convergent because if n increases

the second term will approach zero and the limit of partial sums will approach

3, i.e., lim
n!1 Sn ¼ 3.

Answer. Sn ¼ 3� 2nþ3
2n

.

Problem 60 Evaluate the sum: S ¼ 1

1þ ffiffi
2

p þ 1ffiffi
2

p þ ffiffi
3

p þ 1ffiffi
3

p þ ffiffi
4

p þ . . . 1ffiffiffiffiffiffiffi
1977

p þ ffiffiffiffiffiffiffi
1978

p

þ . . .þ 1ffiffiffiffiffiffiffi
2016

p þ ffiffiffiffiffiffiffi
2017

p .

Solution. This problem was given at the Volgograd District Math Olympiad, with

the only difference being that the last term ended in 1ffiffiffiffiffiffiffi
1977

p þ ffiffiffiffiffiffiffi
1978

p , because the current

year was 1978. Despite the different last term, the method of solving this problem is

the same: we rationalize the denominator of each fraction:

78 2 Further Study of Sequences and Series



1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p � ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ ffiffiffi
n

p� � � ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p � ffiffiffi
n

p� � ¼ ffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

S can be written as

S ¼ ffiffiffi
2

p � 1þ ffiffiffi
3

p � ffiffiffi
2

p þ ffiffiffi
4

p � ffiffiffi
3

p þ . . .þ ffiffiffiffiffiffiffiffiffiffi
2017

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2016 ¼p ffiffiffiffiffiffiffiffiffiffi

2017
p � 1:Next,

we can easily add the first n terms of the series and find Sn:

Sn ¼ 1

1þ ffiffiffi
2

p þ 1ffiffiffi
2

p þ ffiffiffi
3

p þ 1ffiffiffi
3

p þ ffiffiffi
4

p þ . . .þ 1ffiffiffi
n

p þ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1

This partial sum can be evaluated precisely for any natural n. The series is divergent
because this sum will increase without bound.

Answer.
ffiffiffiffiffiffiffiffiffiffi
2017

p � 1.

Next, using similar idea, let us solve the following problem.

Problem 61 Positive numbers a1, a2, . . ., an form an arithmetic progression.

Prove the following: Sn ¼ 1ffiffiffiffi
a1

p þ ffiffiffiffi
a2

p þ 1ffiffiffiffi
a2

p þ ffiffiffiffi
a3

p þ . . .þ 1ffiffiffiffiffiffiffi
an�1

p þ ffiffiffiffi
an

p ¼ n�1ffiffiffiffi
a1

p þ ffiffiffiffi
an

p :

Proof. Since this looks similar to the sum we just evaluated in the previous

problem, let us try the same idea: we rationalize each denominator,

Sn ¼
ffiffiffiffiffi
a2

p � ffiffiffiffiffi
a1

p
a2 � a1

þ
ffiffiffiffiffi
a3

p � ffiffiffiffiffi
a2

p
a3 � a2

þ . . .þ
ffiffiffiffiffi
an

p � ffiffiffiffiffiffiffiffiffi
an�1

p
an � an�1

For any arithmetic progression the differences in these denominators are the

differences between consecutive terms of the arithmetic sequence and must be

the same. We denote it by d. Next, after substitution and eliminating opposite terms,

this expression will be written as

Sn ¼
ffiffiffiffiffi
a2

p � ffiffiffiffiffi
a1

p
d

þ
ffiffiffiffiffi
a3

p � ffiffiffiffiffi
a2

p
d

þ . . .þ
ffiffiffiffiffi
an

p � ffiffiffiffiffiffiffiffiffi
an�1

p
d

¼
ffiffiffiffiffi
an

p � ffiffiffiffiffi
a1

p
d

Since the original problem does not have any information about common difference

of the progression, then we can find d from the formula that connects the first and

the nth term of any arithmetic progression:

an ¼ a1 þ n� 1ð Þd
d ¼ an � a1

n� 1
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Therefore, Sn ¼
ffiffiffiffi
an

p � ffiffiffiffi
a1

p
d ¼ n�1ð Þ ffiffiffiffi

an
p � ffiffiffiffi

a1
pð Þ

an�a1
¼ n�1ffiffiffiffi

an
p þ ffiffiffiffi

a1
p

The proof is complete.

Problem 62 Find the sum Sn ¼ 1 � 1!þ 2 � 2!þ 3 � 3!þ . . .þ n � n!

Solution. The following is true for the nth term of the series

n � n! ¼ nþ 1ð Þ!� n! ¼ n! nþ 1ð Þ � n! ¼ n!n

The given sum can be written as

Sn ¼ 2!� 1!þ 3!� 2!þ 4!� 3!þ . . .þ n!� n� 1ð Þ!þ nþ 1ð Þ!� n!

¼ nþ 1ð Þ!� 1:

The series is divergent since the limit of the partial sums does not exist.

Answer. nþ 1ð Þ!� 1.

Problem 63 Evaluate the sum: 1þ 2 � 2þ 3 � 22 þ 4 � 23 þ . . .þ 100 � 299.
Find a general formula for the sum of the first N terms of series

SN ¼ 1þ 2 � 2þ 3 � 4þ 4 � 8þ 5 � 16þ . . .þ N � 2N�1.

Solution. Method 1.

Denote the required sum as S and multiply it by 2,

2S ¼ 2þ 2 � 22 þ 3 � 23 þ 4 � 24 þ . . .þ 99 � 299 þ 100 � 2100. Next, we subtract

S from 2S,

S¼ 100 � 2100 � 1þ 2þ 22 þ 23 þ . . .þ 299
� �

¼ 100 � 2100 � 2100 � 1
� �

¼ 99 � 2100 þ 1

Clearly, a general formula is SN ¼ N � 1ð Þ � 2N þ 1:

Method 2.
We can rewrite this series as follows:
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1þ 2 � 2þ 3 � 22 þ . . .þ N � 2N�1 ¼ 1þ 2þ 22 þ . . .þ 2N�1
� �
þ 2þ 22 þ . . .þ 2N�1
� �þ 22 þ 23 þ . . .þ 2N�1

� �
þ 23 þ 24 þ . . .þ 2N�1
� �þ . . .þ 2N�1

¼ 2N � 1
� �þ 2 2N�1 � 1

� �þ 22 2N�2 � 1
� �

þ 23 2N�3 � 1
� �þ . . .þ 2N�1 2� 1ð Þ

¼ N � 2N � 1þ 2þ 22 þ . . .þ 2N�1
� �

¼ N � 2N � 2N � 1
� �

S¼ N � 1ð Þ2N þ 1:

Therefore, we obtain
XN
N¼1

N � 2N�1 ¼ 1þ 2N N � 1ð Þ:
Method 3. (Using a derivative).

Consider a polynomial P xð Þ ¼ xþ x2 þ x3 þ . . .þ xN and its first derivative

P0 xð Þ ¼1þ 2xþ 3x2 þ . . .þ N � xN�1: We can evaluate the sum of all terms of

the polynomial as the sum of the N terms of geometric series,

P xð Þ ¼ x xN�1ð Þ
x�1

¼ xNþ1�x
x�1

. The derivative of this sum will be

P0 xð Þ ¼ xNþ1 � xð Þ0 � x� 1ð Þ � xNþ1 � xð Þ x� 1ð Þ0
x� 1ð Þ2 ¼

¼ N � xNþ1 � N þ 1ð ÞxN þ 1

x� 1ð Þ2

If we replace x ¼ 2, we obtain that the given sum is

P0 x ¼ 2ð Þ ¼ N � 2Nþ1 � N þ 1ð Þ2N þ 1

S¼ 1þ 2N � N � 1ð Þ:

Answer. SN ¼ 1þ 2N N � 1ð Þ:

Problem 64 Evaluate S ¼ 1 � 22 þ 2 � 32 þ 3 � 42 þ . . .þ n nþ 1ð Þ2:

Solution. Notice that

2 � 32 þ 32 ¼ 33, 3 � 42 þ 42 ¼ 43, . . . , n nþ 1ð Þ2 þ nþ 1ð Þ2 ¼ nþ 1ð Þ3. Hence,

an ¼ nþ 1ð Þ3 � nþ 1ð Þ2: We can evaluate the series as follows:
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1 � 22 þ 2 � 32 þ 3 � 42 þ . . .þ n nþ 1ð Þ2
þ

22 þ 32 þ 42 þ . . .þ nþ 1ð Þ2
¼ 23 þ 33 þ 43 þ . . .þ nþ 1ð Þ3

The sum above can be rewritten as

Sþ
Xnþ1

n¼2

n2 ¼
Xnþ1

n¼2

n3

Sþ nþ 1ð Þ nþ 2ð Þ 2 nþ 1ð Þ þ 1ð Þ
6

� 1 ¼ nþ 1ð Þ2 nþ 2ð Þ2
4

� 1

S ¼ nþ 1ð Þ nþ 2ð Þ
2

2nþ 3

3
� nþ 1ð Þ nþ 2ð Þ

2

� �

¼ n nþ 1ð Þ nþ 2ð Þ 3nþ 5ð Þ
12

For example, we can check this formula as S4 ¼ 1 � 22 þ 2 � 32þ
3 � 42 þ 4 � 52 ¼ 170 ¼ 4�5�6� 4�3þ5ð Þ

12
¼ 170:

Answer. S ¼ n nþ1ð Þ nþ2ð Þ 3nþ5ð Þ
12

:

Problem 65 Evaluate the sum: S ¼ 1
2! þ 2

3! þ 3
4! þ . . .þ 2015

2016!.

Solution. Let us find the formula for the nth term. We can see that an ¼ n
nþ1ð Þ!.

Notice that n
nþ1ð Þ! þ 1

nþ1ð Þ! ¼ nþ1
nþ1ð Þ! ¼ 1

n!. Hence an þ 1
nþ1ð Þ! ¼ 1

n!. Since an�1 ¼ n�1
n! ,

then an�1 þ 1
n! ¼ n�1

n! þ 1
n! ¼ n

n! and an�1 þ 1
n! ¼ 1

n�1ð Þ!, which can be continued until

we have the last term 1
2! þ 1

2! ¼ 2
2! ¼ 1. Therefore, if we add 1

2016! to the given sum and

start adding the terms by pairing them from right to left, we obtain

Sþ 1

2016!
¼ 1

S ¼ 1� 1

2016!

In general, we can evaluate the partial sum for any number of terms n,

Sn ¼ 1� 1
nþ1ð Þ!.

It is clear that the series is convergent because the limit of the partial sum equals 1.

Answer. S ¼ 1� 1
2016!.
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Problem 66 Prove that

S ¼ 1 � 2 � 3þ 2 � 3 � 4þ 3 � 4 � 5þ . . .þ n nþ 1ð Þ nþ 2ð Þ ¼ n nþ1ð Þ nþ2ð Þ nþ3ð Þ
4

.

Proof.

Method 1. Consider the nth term of the series and rewrite it as

an ¼ n nþ 1ð Þ nþ 2ð Þ ¼ n3 þ 3n2 þ 2n. Hence using sigma notation

we can rewrite this sum asPn
n¼1

n nþ 1ð Þ nþ 2ð Þ ¼ Pn
n¼1

n3 þ 3 � Pn
n¼1

n2 þ 2 � Pn
n¼1

n. If we substitute

Eqs. 1.29–1.31, the right hand side is rewritten as

S¼ nþ 1ð Þ2n2
4

þ 3n nþ 1ð Þ 2nþ 1ð Þ
6

þ 2n nþ 1ð Þ
2

¼ n nþ 1ð Þ n2 þ 5nþ 6ð Þ
4

¼ n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
4

:

Method 2. On the other hand, the nth term and the corresponding partial sum can be

evaluated as

an ¼ nþ 1ð Þ nþ 2ð Þn½ � ¼ nþ 1ð Þ � n2 þ 2nð Þ ¼ nþ 1ð Þ nþ 1ð Þ2 � 1
� �

¼ nþ 1ð Þ3 � nþ 1ð Þ:

S¼ nþ1ð Þ nþ2ð Þ
2

� �2
� nþ 1ð Þ nþ 2ð Þ

2
¼ nþ 1ð Þ nþ 2ð Þ nþ 1ð Þ nþ 2ð Þ � 2ð Þ

4

¼ n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
4

:

Which allows us to evaluate the requested sum as a difference between

the sum of cubes and the sum of all natural numbers from 1 to nþ 1ð Þ.
The proof is complete.

Problem 67 Prove that for any natural n � 2, n2ℕ, the sum 1
nþ1

þ 1
nþ2

þ
1

nþ3
þ . . .þ 1

2n is greater than ½ but less than 1.
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Proof. Consider the chain of true inequalities,

1

2n
<

1

nþ 1
<

1

n
1

2n
<

1

nþ 2
<

1

n
1

2n
<

1

nþ 3
<

1

n
. . .

1

2n
� 1

2n
<

1

n

Adding all these inequalities, we obtain n
2n ¼ 1

2
< 1

nþ1
þ 1

nþ2
þ . . .þ 1

2n <
n
n ¼ 1:

The proof is complete.

Problem 68 Prove the following statements:

a
� 1

1
¼ 1

2
þ 1

6
þ 1

12
þ 1

20
þ 1

30
þ . . .

b
� 1

2
¼ 1

3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
þ . . .

c
� 1

3
¼ 1

4
þ 1

20
þ 1

60
þ 1

140
þ 1

280
þ . . .

Proof.

a) The partial and infinite sums for the first infinite series can be rewritten and

evaluated as:

Sn ¼ 1

1 � 2þ
1

2 � 3þ
1

3 � 4þ
1

4 � 5þ
1

5 � 6þ . . .þ 1

n nþ 1ð Þ ¼ 1� 1

nþ 1

S¼
X1
n¼1

1

n nþ 1ð Þ ¼ lim
n!1 Sn ¼ 1:

b) Consider the second sum: 1
3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
þ . . .

Method 1. Would it be nice to recognize a similar pattern here? Can we rewrite

each term as a difference of two other terms? Let us rewrite this sum by factoring

out two from each fraction:
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2
1

6
þ 1

24
þ 1

60
þ 1

120
þ 1

210
þ . . .

� �

¼ 2 � 1

1 � 2 � 3þ
1

2 � 3 � 4þ
1

3 � 4 � 5þ
1

4 � 5 � 6þ
1

5 � 6 � 7þ . . .þ
� �

¼ 2
X1
n¼1

1

n nþ 1ð Þ nþ 2ð Þ

This formula must look familiar to you (Prob. 57). The sum above can be found as

Sn ¼
Xn
k¼1

1

k k þ 1ð Þ �
1

k þ 1ð Þ k þ 2ð Þ
� �

¼ 1

1 � 2�
1

2 � 3þ
1

2 � 3�
1

3 � 4þ
1

3 � 4�
1

4 � 5þ . . .� 1

nþ 1ð Þ nþ 2ð Þ
¼ 1

2
� 1

nþ 1ð Þ nþ 2ð Þ:

Therefore, the sum of infinite series is ½.

Method 2. One could also notice the following:

1

3
¼ 1

2
� 1

6

1

12
¼ 1

6
� 1

12

1

30
¼ 1

12
� 1

20

1

60
¼ 1

20
� 1

30

1

105
¼ 1

30
� 1

42
. . .

It looks like if we add the left and right sides of the relationships, we can evaluate

the corresponding sums of the first two, first three, first four and first five terms of

the series as follows:
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S2 ¼ 1

3
þ 1

12
¼ 1

2
� 1

12
¼ 1

2
� 1

3 � 4
S3 ¼ 1

3
þ 1

12
þ 1

30
¼ 1

2
� 1

20
¼ 1

2
� 1

4 � 5
S4 ¼ 1

3
þ 1

12
þ 1

30
þ 1

60
¼ 1

2
� 1

30
¼ 1

2
� 1

5 � 6
S5 ¼ 1

3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
¼ 1

2
� 1

42
¼ 1

2
� 1

6 � 7
By induction, the formula for the sum of the first n term is

Sn ¼ 1

2
� 1

nþ 1ð Þ � nþ 2ð Þ ð2:15Þ

Using Eq. 2.15 and subtracting the sum of the first n terms and the sum of the first

n� 1ð Þ terms we obtain the formula for the nth term:

an ¼ Sn � Sn�1 ¼ 1

nþ 1

1

n
� 1

nþ 2

� �
¼ 2

n nþ 1ð Þ nþ 2ð Þ ð2:16Þ

By replacing n by 1, 2, 3, 4, and 5, we obtain correct values of the terms. For

example,

a3 ¼ 2

3 � 4 � 5 ¼ 1

30

a5 ¼ 2

5 � 6 � 7 ¼ 1

105

Now we can predict any term of the series, a6 ¼ 1
168

, a7 ¼ 1
252

, a8 ¼ 1
360

, . . . :

Therefore, Eq. 2.15 is correct and then the infinite series sum is ½.

The proof is complete.

The second method of proof can help us to introduce the so-called Leibniz

triangle.

The Leibniz harmonic triangle is a triangular arrangement of fractions in which

each row starts with the reciprocal of the row number and every entry of the triangle

is equal to the sum of the two fractions below it. For example, 1
42
¼ 1

56
þ 1

168
or

1
4
¼ 1

5
þ 1

20
, etc.. In order to see a connection between Leibniz and Pascal’s triangles,

we place them together as in Figure 2.2. Instead of showing the fractions as in

Figure 2.1, we record only the denominators of the fractions in the Leibniz triangle.

Note that the first row for both triangles corresponds to i ¼ 0.

Whereas each entry in Pascal’s triangle is the sum of the two entries in the above

row, each entry in the Leibniz triangle is the sum of the two entries in the row below

it. Denote by P(i, j), L(i, j), z(i, j) the entries of Pascal, Leibniz, and modified

Leibniz triangles, respectively. For example, in the 5th row of Pascal triangle, the
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entry P 5; 2ð Þ ¼ 10 is the sum of 4 and 6 in the 4th row. On the other hand, in the 5th

row of the Leibniz triangle the corresponding entry L 5; 2ð Þ ¼ 1=60 is the sum of

1/105 and 1/140 in the 6th row. Just as Pascal’s triangle can be computed by using

binomial coefficients, so can Leibniz’s triangle. The connection between the entries
of three triangles is summarized by Eq. 2.17.

Lði, jÞ ¼ 1

zði, jÞ
zði, jÞ ¼ 1

zðiþ1, jÞ þ 1
zðiþ1, jþ1Þ

� ��1

Pði, jÞ ¼ Pði� 1, j� 1Þ þ Pði� 1, jÞ
Pði, jÞ ¼ Cj

i ¼
i!

j!ði� jÞ!
zði, jÞ ¼ ðiþ 1Þ � Pði, jÞ i ¼ 0, 1, 2, . . .

ð2:17Þ

Because any Leibniz triangle entry L n� 1, k � 1ð Þ is the sum of two entires,

L n, k � 1ð Þ and L(n, k), the following is true:

1

n � Ck�1
n�1

¼ 1

nþ 1ð ÞCk�1
n

þ 1

nþ 1ð ÞCk
n

L n� 1, k � 1ð Þ ¼ L n, k � 1ð Þ þ L n; kð Þ
ð2:18Þ

Please prove it yourself by using Eq. 2.17 for binomial coefficients and by adding

fractions.

Consider P 6; 2ð Þ ¼ 15 in Pascal’s triangle, P 6; 2ð Þ ¼ 6!
6�2ð Þ!2! ¼ 15.

Corresponding to it Leibniz number is L 6; 2ð Þ ¼ 1
6þ1ð ÞP 6;2ð Þ ¼ 1

7�15 ¼ 1
105

(Please use

Figure 2.2 to see that z 6; 2ð Þ ¼ 105).

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

2
1
3

1
4

1
5

1
6

1
7

1
8

1
6

1
12

1
20

1
30

1
42

1
56

1
30

1
60

1
12

1
20

1
30

1
56

1
42

1
60

1
105

1
168

1
105

1
280

1
140

1
280

1
168

… … …

Figure 2.1 Leibniz triangle
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Moreover, each diagonal of Leibniz triangle does not only relate to the

corresponding Pascal’s triangle diagonals but also relates to a certain modification

of the figurate numbers. Consider a sequence of the numbers in the second diagonal,

just z numbers presented by the left diagram in Figure 2.2: 2, 6, 12, 20, 42, 56, . . .
Each term of this sequence is 2 times the corresponding triangular number 1, 3,

6, 10, 15, 21, 28, . . . and can be written as bn ¼ 2Tn ¼ 2 � n nþ1ð Þ
2

. Hence, an nth entry

of the second Leibniz diagonal is its reciprocal, an ¼ 1
bn
¼ 1

n nþ1ð Þ.
Consider a sequence of the numbers in the third diagonal, just z numbers

presented by the left diagram in Figure 2.2. Each term of this sequence, 3, 12,

30, 60, 105, 168, . . ., is 3 times the corresponding tethrahedron numbers and can be

written as bn ¼ 3THn ¼ 3 � n nþ1ð Þ nþ2ð Þ
6

¼ n nþ1ð Þ nþ2ð Þ
2

. Hence, the corresponding nth

term of the third diagonal of Leibniz triangle (Figure 2.1) is its reciprocal

(Eq. 2.16), an ¼ 1
bb
¼ 2

n nþ1ð Þ nþ2ð Þ. Therefore, we can also state that the infinite series

of the reciprocals of tetrahedral numbers is convergent and its sum is 3/2,X1
n¼1

6

n nþ 1ð Þ nþ 2ð Þ ¼
3

2
: The proof is complete.

Further, the first Leibniz diagonal consists of reciprocals of natural numbers,

z¼ 1, 2, 3, 4, 5, 6,. . . The second diagonal consists of 1/(2x triangular numbers),

z ¼ 2 � 1, 2 � 3, 2 � 6, 2 � 10, 2 � 15, 2 � 21, . . . (Here 1,3,6,10,15,21, . . . are

triangular numbers). The third diagonal consists of 1/(3x tetrahedral numbers)

and so on.

Method 3. Consider again the sum 1
3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
þ . . .

We can see that this infinite series represent the sum of all fractions in the third

diagonal of Leibniz triangle. Hence, each fraction can be replaced by the difference

of two others using Eq. 2.18,

L n, k � 1ð Þ ¼ L n� 1, k � 1ð Þ � L n; kð Þ ð2:19Þ

For example, z 3; 1ð Þ ¼ 12, P 3; 1ð Þ ¼ 3, L 3; 1ð Þ ¼ 1
12
¼ 1

3þ1ð ÞP 3;1ð Þ ¼ 1
3�4

1 1
1 1

1 1
1 1

11

1 1

11
1

2

2

2

3 3

3 3
6

4 4
44

1212
5

5 510 106

7
8 56 168 168 56 8280 280

42 105 140 105 42 7
7 7

6

6

6

6

520 30

30606030

20

20 1515
21 213535

Figure 2.2 Modified Liebnitz (left) and Pascal (right) triangles
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For some terms of the series b) we obtain the following:

1

3
¼ 1

2
� 1

6

a1 ¼ L 2; 0ð Þ ¼ L 1; 0ð Þ � L 2; 1ð Þ
1

12
¼ 1

6
� 1

12

a2 ¼ L 3; 1ð Þ ¼ L 2; 1ð Þ � L 3; 2ð Þ
1

30
¼ 1

12
� 1

20

a3 ¼ L 4; 2ð Þ ¼ L 3; 2ð Þ � L 4; 3ð Þ
1

60
¼ 1

20
� 1

30

a4 ¼ L 5; 3ð Þ ¼ L 4; 3ð Þ � L 5; 4ð Þ
. . .

ð2:20Þ

Additionally, for this chain of equations, by induction, we can find the formula of

the nth term of this series, an ¼ L nþ 1, n� 1ð Þ ¼ L n, n� 1ð Þ � L nþ 1, nð Þ . We

can see that if we add the left and right sides of Eq. 2.20, then on the left we have the

given series and on the right, all the terms except the first one and the last one are

cancelled and that the partial sum is

Sn ¼ 1

2
� L nþ 1, nð Þ ¼ 1

2
� 1

nþ 2ð ÞCn
nþ1

¼ 1

2
� 1

nþ 2ð Þ nþ 1ð Þ:

S1 ¼ 1

2
:

This matches with our other formula found earlier and proves the statement.

c) Let us now prove that 1
3
¼ 1

4
þ 1

20
þ 1

60
þ 1

140
þ 1

280
þ . . ..

Method 1. Denote the sum by S ¼ 1
4
þ 1

20
þ 1

60
þ 1

140
þ . . ., and multiply and divide

the right side by 6,

S ¼ 6 � 1

4 � 6þ
1

20 � 6þ
1

60 � 6þ
1

140 � 6þ . . .

� �
S ¼ 6

1

1 � 2 � 3 � 4þ
1

2 � 3 � 4 � 5þ
1

3 � 4 � 5 � 6þ . . .

� �
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Hence the given sum is six times the sum inside the parentheses. We have seen

such a series earlier in this chapter. It can be evaluated as

S ¼ 6 �
X1
n¼1

1

n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ. In order to evaluate an infinite sum of this

series, we rewrite the nth term in a different form and firstly, we multiply two

inner and two outer factors of the denominator, 6 � 1
n2þ3nð Þ� n2þ3nþ2ð Þ

� �
.

We obtained a familiar structure: two quantities in the denominator differ by

two, and we can rewrite the fraction again and again decompose it into two new

fractions as follows:

an ¼ 6

2
� 1

n nþ 3ð Þ �
1

nþ 1ð Þ nþ 2ð Þ
� �

¼ 3

3
� 1

n
� 1

nþ 3

� �
� 3

1

nþ 1
� 1

nþ 2

� �

¼ 1

n
� 1

nþ 3
� 3

nþ 1
þ 3

nþ 2
:

This nth term can be rewritten in a little different form so we can calculate the partial

sum of the series easily:

an ¼ 1

n
� 1

nþ 1

� �
þ 1

nþ 2
� 1

nþ 3

� �
� 2 � 1

nþ 1
� 1

nþ 2

� �
X1
n¼1

an ¼
X1
n¼1

1

n
� 1

nþ 1

� �
þ 1

nþ 2
� 1

nþ 3

� �
� 2 � 1

nþ 1
� 1

nþ 2

� �� �

Now, the sum of each quantity can be evaluated separately and the final answer will

be the sum of these three answers:

Xn
n¼1

1

n
� 1

nþ 1

� �
¼ 1� 1

nþ 1Xn
n¼1

1

nþ 2
� 1

nþ 3

� �
¼ 1

3
� 1

nþ 3

�2
Xn
n¼1

1

nþ 1
� 1

nþ 2

� �
¼ �2

2
þ 2

nþ 2

Sn ¼ 1

3
� 1

nþ 1
� 1

nþ 3
þ 2

nþ 2

Obviously, as n goes to infinity, the partial sum will go to 1/3. Therefore,

S1 ¼ 1
3
¼ 1

4
þ 1

20
þ 1

60
þ 1

140
þ 1

280
þ . . ..
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Method 2. Please notice that the series is the sum of all fractions in the fourth

diagonal of Leibniz triangle. Looking at that diagonal of the Leibniz triangle in

Figure 2.2, and using Eq. 2.19 we have the following chain of the true relationships:

a1 ¼ 1

4
¼ 1

3
� 1

12
, a1 ¼ L 3; 0ð Þ ¼ L 2; 0ð Þ � L 3; 1ð Þ

a2 ¼ 1

20
¼ 1

12
� 1

30
, a2 ¼ L 4; 1ð Þ ¼ L 3; 1ð Þ � L 4; 2ð Þ

a3 ¼ 1

60
¼ 1

30
� 1

60
, a3 ¼ L 5; 2ð Þ ¼ L 4; 2ð Þ � L 5; 3ð Þ

a4 ¼ 1

140
¼ 1

60
� 1

105
, a4 ¼ L 6; 3ð Þ ¼ L 5; 3ð Þ � L 6; 4ð Þ

a5 ¼ 1

280
¼ 1

105
� 1

168
, a5 ¼ L 7; 4ð Þ ¼ L 6; 4ð Þ � L 7; 5ð Þ

. . .

From these relationships, by induction, we can recognize the formula for nth term of

the series and evaluate its nth partial sum,

an ¼ L nþ 2, n� 1ð Þ ¼ L nþ 1, n� 1ð Þ � L nþ 2, nð Þ

Sn ¼
Xn
i¼1

ai ¼ 1

3
� L nþ 2, nð Þ ð2:21Þ

It follows from Eq. 2.21 that the nth partial sum of the series is 1/3 minus the Leibniz

entry L nþ 2, nð Þ. Additionally, we can evaluate the nth term of the series by using

Eq. 2.17 for L(i, j),

L nþ 1, n� 1ð Þ ¼ 1

nþ 2ð ÞCn�1
nþ1

¼ 1

nþ 2ð Þ nþ 1ð Þ!
n� 1ð Þ! � 2!

¼ 2

nþ 2ð Þ nþ 1ð Þn
L nþ 2, nð Þ ¼ 1

nþ 3ð ÞCn
nþ2

¼ 1

nþ 3ð Þ nþ 2ð Þ!
nð Þ! � 2!

¼ 2

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ

ð2:22Þ

Subtracting the left and right sides, we obtain
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an ¼ 2

nþ 2ð Þ nþ 1ð Þn�
2

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ

¼ 2 � 1

nþ 2ð Þ nþ 1ð Þn�
1

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ
� �

an

¼ 2

nþ 2ð Þ nþ 1ð Þ �
1

n
� 1

nþ 3

� �

an ¼ 6

n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ

Making substitutions of the Leibniz entry L nþ 2, nð Þ from Eq. 2.22 into Eq. 2.21,

we have

Sn ¼ 1

3
� 2

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ ð2:23Þ

If n increases without bound, then the partial sum above will get closer and closer to

1/3. Therefore, the sum in part (c) is 1/3. The statement is proven.

Consider again Figure 2.2. Start counting the rows from the top i ¼ 1. Take the

numbers of the nth row and add them. For example, for the 4th row, we have

5þ 20þ 30þ 20þ 5 ¼ 80 ¼ 5 � 24. The following statement is true.

Lemma 2.1 The sum of the numbers in the nth row of a triangle made of the

denominators of Leibniz triangle equals n � 2n�1.

Proof. The sum of all numbers in the nth row is the sum of the z-numbers and

hence, it can be written using a definition of a z number asXn�1

k¼0

n � Ck
n�1

¼ n
Xn�1

k¼0

Ck
n�1

¼ n � 2n�1:

2.2 Trigonometric Series

The following problems are very different from anything above. They are trigono-

metric series. In order to evaluate trigonometric series we need to know trigono-

metric identities and de Moivre’s Formula. Some formulas are given by,
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sin x cos y ¼ 1

2
sin xþ yð Þ þ sin x� yð Þð Þ

sin x sin y ¼ 1

2
� cos x� yð Þ � cos xþ yð Þð Þ

cos x� cos y ¼ 2 sin
xþ y

2
sin

y� x

2

ð2:24Þ

de Moivre’s Formula (Abraham de Moivre, French mathematician, 1667-

1754)

cos nxþ i sin nx ¼ cos xþ i sin xð Þn: ð2:25Þ

We do not give a proof for the first three formulas because students study them in

high school. de Moivre’s Formula is not in the regular high school curriculum so we

need to discuss it a little more. Let us see how easily it can be derived under

assumption that the Euler’s relationship below is true.

Euler’s Formula

eix ¼ cos xþ i sin x ð2:26Þ

Let us raise the left and the right side of Eq. 2.26 to the second power, then the

third, fourth, and so on and apply Eq. 2.25 again each time. We obtain the following

chain of the correct equations:

eixð Þ2 ¼ cos xþ i sin xð Þ2
ei2x ¼ cos 2xþ i sin 2x

eixð Þ3 ¼ cos xþ i sin xð Þ3
ei3x ¼ cos 3xþ i sin 3x

eixð Þ4 ¼ cos xþ i sin xð Þ4
ei4x ¼ cos 4xþ i sin 4x

. . .

einx ¼ cos nxþ i sin nx

Problem 69 Evaluate Sn ¼ cos πn þ cos 2π
n þ cos 3π

n þ . . .þ cos
n�1ð Þπ
n
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Solution. Let us multiply the given sum by sin π
2n. Using the first formula of

trigonometric identities of Eq. 2.24 and the fact that sine is an odd function

ð sin �yð Þ ¼ � sin yð Þ), we obtain,

2Sn sin
π

2n
¼ 2 sin

π

2n
cos

π

n
þ 2 sin

π

2n
cos

2π

n
þ . . .þ 2 sin

π

2n
cos

n� 2ð Þπ
n

þ

2 sin
π

2n
cos

n� 1ð Þπ
n

¼ sin
3π

2n
� sin

π

2n
þ sin

5π

2n
� sin

3π

2n
þ

. . .þ sin
2n� 3ð Þπ

2n
� sin

2n� 5ð Þπ
2n

þ sin
2n� 1ð Þπ

2n
� sin

2n� 3ð Þπ
2n

:

After simplification and canceling opposite terms we obtain

2Sn sin
π
2n ¼ � sin π

2n þ sin
2n�1ð Þπ
2n ¼ � sin π

2n þ sin π � π
2n

� � ¼ 0. Considering the

expression above we notice that the second factor on the left hand side is never

zero for any natural n, therefore the given sum must be zero.

Answer. Sn ¼ 0.

Problem 70 Prove that

Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx ¼ sin nx
2
� sin nþ1ð Þx

2

sin x
2
:

Proof. This proof will involve only knowledge at a high school curriculum level,

and trigonometric identities. Multiplying the sum by 2 sin(x/2) we obtain:

2 sin
x

2
sin xþ sin 2xþ sin 3xþ . . .þ sin nxð Þ

¼ 2 sin
x

2
sin xþ 2 sin

x

2
sin 2xþ 2 sin

x

2
sin 3xþ . . .þ 2 sin

x

2
sin nx

¼ cos
x

2
� x

� �
� cos

x

2
þ x

� �
þ cos

x

2
� 2x

� �
� cos

x

2
þ 2x

� �
þ cos

x

2
� 3x

� �
� cos

x

2
þ 3x

� �
þ . . .þ cos

x

2
� nx

� �
� cos

x

2
þ nx

� �
Since cosine is an even function, then cos �yð Þ ¼ cos yð Þ and all terms in the

middle of the last formula will be eliminated as

cos x
2

� �� cos 3x
2

� �þ cos 3x
2

� �� cos 5x
2

� �þ cos 5x
2

� �þ . . .� cos
x 2nþ1ð Þ

2

� �
. Now

we obtain that Sn � 2 sin x
2
¼ cos x

2
� cos

2nþ1ð Þx
2

: Apply the difference of cosines

formula (3rd formula of Eq. 2.24):
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Sn � 2 sin x
2
¼ 2 sin

1

2
þ 2nþ 1

2

� �
x

2
� sin

�1

2
þ 2nþ 1

2

� �
x

2

¼ 2 sin
nþ 1ð Þx

2
� sin nx

2

Dividing the last row by 2sin(x/2) we prove the formula:

Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx

¼
sin

nx

2
� sin nþ 1ð Þx

2

sin
x

2

You will have a chance to prove this formula a second way in a homework problem

using de Moivre’s Formula. You can use the next problem as an example.

Problem 71 Evaluate A ¼
cos

π

4
2

þ
cos

2π

4
22

þ . . .þ
cos

πn

4
2n

:

Solution. Denote

B ¼ sin π
4

2
þ sin 2π

4

22
þ . . .þ sin πn

4

2n
ð2:27Þ

Assuming that B is imaginary part of a complex number Aþ iB, we multiply

Eq. 2.27 by i and add the corresponding A:

Aþ iB¼ 1

2
cos

π

4
þ isin

π

4

� �
þ 1

22
cos

2π

4
þ isin

2π

4

� �
þ . . .þ 1

2n
cos

πn

4
þ isin

πn

4

� �

Applying de Moivre’s Formula (Eq. 2.25) to the previous expression, we have

Aþ iB ¼ 1

2
cos

π

4
þ i sin

π

4

� �
þ 1

22
cos

π

4
þ i sin

π

4

� �2
þ . . .þ 1

2n
cos

π

4
þ i sin

π

4

� �n
ð2:28Þ

We can notice that Eq. 2.28 is a geometric series with both, first term and the ratio

equal to 1
2
� cos π

4
þ i sin π

4

� �
.

Therefore, using the sum of geometric series, Eq. 2.28 can be rewritten in a

compact form as follows:
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Aþ iB ¼ 1

2
cos

π

4
þ i sin

π

4

� � 1� 1
2n

cos π
4
þ i sin π

4

� �n� �
1� 1

2
cos π

4
þ i sin π

4

� �� � ð2:29Þ

Applying de Moivre’s Formula (Eq. 2.25) to Eq. 2.29 again and using the fact that

cos π
4
¼ sin π

4
¼ 1ffiffi

2
p we have,

Aþ iB ¼ 1

2
ffiffiffi
2

p 1þ ið Þ � 1� 1
2n

cos π
4
þ i sin π

4

� �n� �
1� 1

2
ffiffi
2

p � i
2
ffiffi
2

p
� � ð2:30Þ

Rationalizing the denominator and extracting the real part of A+ iB in Eq. 2.30, we

obtain

A ¼
ffiffiffi
2

p � 1
� �

2n � cos πn
4

� �þ ffiffiffi
2

p
sin πn

4

2n 5� 2
ffiffiffi
2

p� � :

Answer. A ¼
ffiffiffi
2

p � 1
� �

2n � cos πn
4

� �þ ffiffiffi
2

p
sin πn

4

2n 5� 2
ffiffiffi
2

p� �

2.3 Using Mathematical Induction for Sequences
and Series

The principle of mathematical induction is very helpful in proving many statements

about positive integers. According to this principle, a mathematical statement

involving the variable n can be shown to be true for any positive integer n by

proving the following two statements:

• The statement is true for n ¼ 1

• If the statement is true for any positive integer k, then it is also true forn ¼ k þ 1.

Let us show how mathematical induction can help us to prove and solve some

problems involving sequences and series.

Problem 72 Use mathematical induction to prove that 1þ 3þ 5þ . . .þ
2n� 1ð Þ ¼ n2 is true for any positive number n.
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Proof. Step 1. Replacing n by 1 in the above equality gives 2 � 1ð Þ � 1 ¼ 1 which

is true, so n¼ 1 satisfies the equation.

Step 2. Assume that the equality is true at n ¼ k. And let us show that it will be

true at n ¼ k þ 1. If 1þ 3þ 5þ . . .þ 2k � 1ð Þ ¼ k2 is true, then let us show that

for n ¼ k þ 1 the left side of the equality equals k þ 1ð Þ2:

1þ 3þ 5þ � � � þ ð2k � 1Þ þ
�
2ðk þ 1Þ � 1

�
:

Start with the left hand side, and notice that (because of our assumption) it is equal

to k2, plus an additional term.

1þ 3þ 5þ . . .þ 2k � 1ð Þ þ 2 k þ 1ð Þ � 1ð Þ ¼ k2 þ 2k þ 1 ¼ k þ 1ð Þ2.
The final equality proves that the equation is true for n ¼ k þ 1, given that it is

true for n ¼ k. By the principle of mathematical induction, we have proven the

statement.

Problem 73 Prove that:
Xn
k¼1

k3 ¼
Xn
k¼1

k

 !2

.

Proof. Step 1. Replacing n by 1 in the above equality gives

13 ¼ 12 which is true, so n¼ 1 satisfies the equation.

Step 2. Assume that the equality is true at n¼ k and let us show that it will be true

at n¼ k þ1:

If 13 þ 23 þ 33 þ . . .þ k3 ¼ 1þ 2þ 3þ . . .þ kð Þ2 ¼ k2 kþ1ð Þ2
4

is true, then let us

show that for n¼ kþ 1 the left side of the given equality equals

1þ 2þ 3þ . . .þ k þ 1ð Þ2 ¼ kþ1ð Þ2 kþ2ð Þ2
4

.

We can state that 13 þ 23 þ 33 þ . . .þ k3 þ k þ 1ð Þ3 ¼ 1þ 2þ 3þ . . .þ kð Þ2
þ k þ 1ð Þ3. Replacing the right hand side, putting fractions over the common

denominator and factoring, we obtain the required formula:

k2 k þ 1ð Þ2
4

þ k þ 1ð Þ3 ¼ k2 k þ 1ð Þ2 þ 4 k þ 1ð Þ3
4

¼ k þ 1ð Þ2 k2 þ 4k þ 4
� �
4

¼ k þ 1ð Þ2 k þ 2ð Þ2
4

The final equality proves that the equation is true for n ¼ k þ 1, assuming that it is

true for n ¼ k. Using the principle of mathematical induction, we have completed

our proof.
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In Prob. 74, we use mathematical induction for recurrent sequences.

Problem 74 Given a sequence {xn} such that

x0 ¼ 2, x1 ¼ 3
2
, xnþ1 ¼ 3

2
xn � 1

2
xn�1. a) Find the exact formula for xn.

b) Evaluate lim
n!1 xn, if the limit exists. c) Is series S1 ¼

X1
k¼0

xk convergent

or divergent?

Solution.

a) Using the given recursive formula we can calculate a few terms of the sequence:

x0 ¼ 2 ¼ 1þ 20

x1 ¼ 3

2
¼ 1þ 1

2
¼ 1þ 2�1

x2 ¼ 3

2
� 3
2
� 1

2
� 2 ¼ 1þ 1

4
¼ 1þ 2�2

x3 ¼ 3

2
� 5
4
� 1

2
� 3
2
¼ 9

8
¼ 1þ 1

8
¼ 1þ 2�3

x4 ¼ 3

2
� 9
8
� 1

2
� 5
4
¼ 17

16
¼ 1þ 2�4

Notice that every nth term of the sequence is obtained as a sum of 1 and 2 raised

to a negative power that is equal to the number of the term. We can assume that

xn ¼ 1þ 2�n ð2:31Þ

Using mathematical induction let us prove that Eq. 2.31 is the exact formula for

the nth term of the sequence. Denote by A(m) our statement for n ¼ m.

Step 1. A(1) is true because x1 ¼ 3
2
¼ 1þ 2�1

Step 2. Assume that A(k) andA k � 1ð Þ are true (i.e., Eq. 2.31 holds for n ¼ k and

for n ¼ k � 1), i.e., xk ¼ 1þ 2�k and xk�1 ¼ 1þ 1
2k�1.

Step 3. Let us prove that A k þ 1ð Þ is also true. That is, we need to show that

xkþ1 ¼ 1þ 2� kþ1ð Þ ¼ 1þ 2�k�1. Indeed, xkþ1 ¼ 3
2
xk � 1

2
xk�1 by the condition of

the problem, then
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xkþ1 ¼ 3

2
� 1þ 1

2k

� �
� 1

2
� 1þ 1

2k�1

� �

¼ 1

2
� 3 � 2k þ 3� 2k � 2
� �

2k

¼ 1

2
� 2 � 2k þ 1
� �

2k

¼ 1

2
� 2þ 1

2k

� �

¼ 1þ 1

2kþ1

¼ 1þ 2� kþ1ð Þ

We proved that Eq. 2.31 is the exact formula for the nth term of the sequence.

The proof is complete.

b) Now, knowing the nth term of the sequence explicitly, xn ¼ 1þ 2�n, let us find

the limit of {xn}, lim
n!1 xn ¼ lim

n!1 1þ 1
2n

� � ¼ 1.

c) The series is divergent because, as we established above, the limit of the nth term
as n goes to infinity is not zero. Therefore, the series does not pass the Necessary
Condition (See Chapter 3 for clarification). We can also evaluate the partial sum

for the series exactly as Sn ¼ 2þ 1þ 1
21
þ 1þ 1

22
þ 1þ 1

23
þ . . .þ 1þ 1

2n
. You

can see that this is the sum of 2þ n � 1ð Þ and the first n terms of geometric series

with b1 ¼ 1
2
, r ¼ 1

2
. Thus, Sn ¼ 2þ nþ

1
2
1� 1

2ð Þnð Þ
1�1

2

¼ 2þ nþ 1� 1
2

� �n
so

Sn ¼ 3þ n� 1
2

� �n
:

We can see that this partial sum depends on n and increases without bound as

n increases.

Answer. a) Xn¼ 1þ 2�n; b) Sn ¼ 3þ n� 1
2

� �n
: c) The series is divergent.

In the homework chapter, you will be asked to find the formula for the nth term
using the knowledge of recursion.

Problem 75 Given a sequence anf g, an ¼ n 3nþ 1ð Þ, n2ℕ: Prove that its

nth partial sum can be evaluated by formula Sn ¼ n nþ 1ð Þ2:

Proof. We prove this by induction. It is easy to see that the formula is true for

n ¼ 1. Indeed, S1 ¼ 1 � 1þ 1ð Þ2 ¼ a1 ¼ 4: If we evaluate the sums of two, three,

four of even five terms of the sequence, we see that the formula works. However, it

does not prove the statement. Assume that this formula is correct for n ¼ k, i.e., the

sum of the first k terms of the given sequence equals Sk ¼ k � k þ 1ð Þ2: Let us

demonstrate that it will be also true for n ¼ k þ 1, i.e., Skþ1 ¼ k þ 1ð Þ � k þ 2ð Þ2:
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We know that the sum of k þ 1ð Þ terms of the sequence equals the sum of its first

k terms plus the (kþ 1)st term, Skþ1 ¼ Sk þ akþ1. Substituting here the kth sum and

the value of the k þ 1ð Þst term of the sequence we obtain

Skþ1 ¼ k k þ 1ð Þ2 þ k þ 1ð Þ 3 � k þ 1ð Þ þ 1ð Þ
¼ k k þ 1ð Þ2 þ k þ 1ð Þ 3k þ 4ð Þ
¼ k þ 1ð Þ k k þ 1ð Þ þ 3k þ 4ð Þ
¼ k þ 1ð Þ k þ 2ð Þ2:

Therefore, the formula is correct for n ¼ k þ 1, hence it is true any natural n. The
statement is proven.

Problem 76 Prove that any term of the sequence an ¼ 4 � 6n þ 5n� 4 is

divisible by 25.

Proof. We can substitute n ¼ 1 and obtain that a1 ¼ 25. Yes, it is divisible by 25.

Assume that the statement is true for n ¼ k and that ak ¼ 4 � 6k þ 5k � 4 is

divisible by 25, then it can be written as 4 � 6k þ 5k � 4 ¼
25m ) 4 � 6k ¼ 25mþ 4� 5k. Let us prove that the next term, k þ 1, akþ1 ¼ 4

�6kþ1 þ 5 k þ 1ð Þ � 4 is also is also divisible by 25. Next, because the kth term is

divisible by 25, we extract the kth term of the sequence in the expression of the

k þ 1ð Þ term,

akþ1 ¼ 6 � 4 � 6k þ 5k þ 1 ¼ 6 � 4 � 6k þ 5k � 4
� �� 25k þ 25:

Each term of the sum is a multiple of 25, then the total sum or ðk þ 1Þst term is

divisible by 25. You could do this proof a little bit differently by replacing the kth

term by 25 � m:

akþ1 ¼ 6 � 4 � 6k þ 5k � 4þ 5

¼ 6 25mþ 4� 5kð Þ þ 5k þ 1

¼ 150m� 25k þ 25

¼ 25 � 6m� k þ 1ð Þ

It is clear that it is divisible by 25. The statement is proven.

Problem 77 Given a Fibonacci sequence anf g : a1 ¼ a2 ¼ 1, an ¼ an�1 þ
an�2, n > 2: Prove that the terms of the sequence satisfy the equation:

a2nþ1 � an � anþ2 ¼ �1ð Þn, 8n2ℕ:
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Proof. We prove this by induction.

1. Notice that the equality is true for n ¼ 1 because

a22 � a1 � a3 ¼ 1� 1 � 2 ¼ �1ð Þ1:
2. Assume that the statement is true for n ¼ k, a2kþ1 � ak � akþ2 ¼ �1ð Þk. From this

it follows that a2kþ1 ¼ �1ð Þk þ ak � akþ2

3. Let us demonstrate that it is also true for n ¼ k þ 1, i.e.,

a2kþ2 � akþ1 � akþ3 ¼ �1ð Þkþ1:

Let us substitute the expression for the k þ 3ð Þ th term of Fibonacci sequence,

a2kþ2 � akþ1 � akþ1 þ akþ2ð Þ ¼ a2kþ2 � akþ1� akþ2 � a2kþ1 . Substituting in this

formula the value of the term in the box, we obtain

a2kþ2 � akþ1 � akþ3 ¼ a2kþ2 � akþ1 � akþ2 � �1ð Þk � ak � akþ2

¼ a2kþ2 � akþ2 ak þ akþ1ð Þ þ �1ð Þkþ1

¼ a2kþ2 � akþ2 � akþ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ �1ð Þkþ1:

The proof is complete.

2.4 Problems on the Properties of Arithmetic
and Geometric Sequences

If three numbers form an arithmetic sequence, the middle term is called the

arithmetic mean of the other two. Thus,

a3 � a2 ¼ a2 � a1

2a2 ¼ a1 þ a3

a2 ¼ a1 þ a3
2

By analogy the arithmetic mean of two numbers is half of their sum. Therefore,
aþbð Þ
2

is the arithmetic mean of numbers a and b, or the average of two numbers.

Similarly the average or mean value of three numbers a, b, and c is aþbþc
3

. In

general, the mean value of n positive numbers, a1, a2, a3, :::::an is a1þa2þ...þan
n ,

that is the average of the sum. Besides the arithmetic mean defined above there is

another form of mean value that is defined by the formula: b ¼ ffiffiffiffiffi
ac

p
. Value b is

called a geometric mean of numbers a and c. Recalling a geometric progression

with positive terms b1, b2, ::::::, bn�1, bn, bnþ1:::: and common ratio r such that
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bn
bn�1

¼ bnþ1

bn
, bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn�1bnþ1

p
or bn

2 ¼ bn�1 � bnþ1. Every term of a geometric

progression is a geometric mean of the preceding and consequent terms.

Now consider the following problems.

Problem 78 Peter lives near a bus stop A. The bus stops A, B, C, and D are

on the same street. Peter walks for exercise every weekend. He starts at A

with a speed of 5 km per hour and goes to D. Reaching D he turns back and

goes to B. Walking this rout (A-D-B) requires 5 h. At B Peter takes a bus and

goes home. It is known that he can cover the distance between A and C in 3 h.

The distances between A and B, B and C, C and D form a geometric sequence

in the given order. Find the distance between B and C.

Solution. Usually it is a good idea to draw a picture of the problem. A, B, C, and D

are on the same street (Figure 2.3). It means that we can draw them as points on the

same line, A and D will be the end points of the segment and B and C between them

in the order A-B-C-D.

Because our unknown is the distance between B and C it seems obvious to

introduce 3 variables x, y, and z as distances between A and B, B and C, and C and D

respectively. Using the condition of the problem and distance ¼ speed � time we

write, xþ yþ zþ zþ y ¼ 5 � 5 ¼ 25 and xþ y ¼ 3 � 5 ¼ 15.

Now we are going to write the last equation of the system. Because x, y, and z are

consecutive terms of a geometric sequence, then y2 ¼ xz, and we can complete a

system:

xþ 2yþ 2z ¼ 25

xþ y ¼ 15

y2 ¼ xz

8<
:

yþ 2z ¼ 10

x ¼ 15� y
y2 ¼ xz

8<
:

z ¼ 10� y

2
x ¼ 15� y

y2 ¼ 15� yð Þ 10� yð Þ
2

8>>><
>>>:

zyx

A DB C

Figure 2.3 Problem 78
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Subtracting the second equation from the first of the first system, we can eliminate

variable x in the second system. Then we express z and x in terms of y and put them
into the third equation of the last system. Let us solve the last equation for y.
Multiplying both sides by 2, we have

2y2 ¼ 150� 25yþ y2

y2 þ 25y� 150 ¼ 0

y1 ¼ 5, y2 ¼ �30

Because y is a distance, it has to be a positive, so we choose y ¼ 5.

Answer. The distance between B and C is 5 km.

Problem 79 The four numbers a, b, c, and z are given. It is known that the

first three numbers form an arithmetic sequence, and the last three numbers

form a geometric sequence. A sum of the outer terms is 4 and the sum of the

inner terms is 2. Find the numbers.

Solution. Let us write the numbers in a row: a b c z. If variables a, b and c are terms

of an arithmetic sequence, then

b ¼ aþ c

2
ð2:32Þ

On the other hand,

þ aþ z ¼ 4

bþ c ¼ 2

�
aþ bþ cþ z ¼ 6

ð2:33Þ

Replacing aþ cð Þ by 2b from Eq. 2.32 into Eq. 2.33, we have

3bþ z ¼ 6 ð2:34Þ

Our purpose now is to eliminate some variables. It would be nice to obtain a

system of two equations in just two variables. (for example, z and b). Let us use the
second part of the condition. If b, c, and z form a geometric sequence, then c is a

geometric mean of b and z or

c2 ¼ b � z ð2:35Þ
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Expressing c as 2� bð Þ from system (Eq. 2.33) and substituting into (Eq. 2.35)

we derive

2� bð Þ2 ¼ b � z ð2:36Þ

Let us combine Eqs. 2.34 and 2.36 as

2� bð Þ2 ¼ b 6� 3bð Þ
4� 4bþ b2 ¼ 6b� 3b2

2b2 � 5bþ 2 ¼ 0

b1,2 ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 � 4 � 2 � 2

p

2 � 2 ¼ 5� 3

4

b1 ¼ 2 b2 ¼ 0:5

Two different values of b will give us two sets of a, b, c, and z.
1. b¼ 2

z¼ 6� 3b¼ 0

a¼ 3b� 2¼ 4

c¼ 2� b¼ 0

2. b¼ 0.5

z¼ 4.5

a¼� 0.5

c¼ 1.5

Answer. a; b; c; zð Þ ¼ 4, 2, 0, 0ð Þ, �0:5, 0:5, 1:5, 4:5ð Þf g

Problem 80 The sequence a1, a2, a3, . . . satisfies a1 ¼ 19; a9 ¼ 99, and for

any n � 3; an is the arithmetic mean of the first n� 1ð Þ terms. Find a2.

Solution. Let us write down the formula for the nth and ðn� 1Þst terms of the

sequence:

an ¼ a1 þ a2 þ . . .þ an�2 þ an�1

n� 1
ð2:37Þ

an�1 ¼ a1 þ a2 þ . . .þ an�2

n� 2
ð2:38Þ

Using Eq. 2.38 we can find that

a1 þ a2 þ . . .þ an�2 ¼ n� 2ð Þan�1 ð2:39Þ
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Plugging Eq. 2.39 into Eq. 2.37 we obtain an � n� 1ð Þ ¼ an�1 � n� 2ð Þ
þan�1 ¼ an�1 � n� 1ð Þ. Therefore,

an ¼ an�1 for anyn � 3 ð2:40Þ

1. Since a9 ¼ 99 we can rewrite Eq. 2.40 as a3 ¼ a4 ¼ . . . ¼ a9 ¼ 99

2. Now we can evaluate a2, a3 ¼ a1þa2
2

) 99 ¼ 19þa2
2

, a2 ¼ 2 � 99� 19 ¼ 179.

Answer. 179

Problem 81 (MGU Entrance exam 2008). Integers x, y, z are members of a

geometric progression but numbers 7x� 3, y2, 5z� 6 are members of an

arithmetic progression. Find x, y and z.

Solution. From the condition of the problem and with the use of geometric and

arithmetic means, we have the following two equations,

y2 ¼ xz

y2 ¼ 7x� 3þ 5z� 6

2

from which

zx ¼ 7xþ 5z� 9

2

2zx ¼ 7xþ 5z� 9

x 2z� 7ð Þ ¼ 5z� 9

x ¼ 5z� 9

2z� 7

Multiplying both sides of the last equation by 2 we obtain 2x ¼ 2�5z�2�9
2z�7

. Extracting

the largest integer from the numerator of the last fraction we obtain

2x ¼ 5 2z�7ð Þþ17

2z�7
¼ 5þ 17

2z�7
. Since 17 is prime, then in order for 2x to be an integer,

2z� 7ð Þ can take only the following values: �1;�17.

Consider the following cases:

a) If 2z� 7¼ 1, then z¼ 4, x¼ 11, y ¼ ffiffiffiffiffi
xz

p ¼ ffiffiffiffiffi
44

p
, not a solution

b) If 2z� 7¼�1, then z¼ 3, x¼�6, xz< 0, not a solution

c) 2z� 7¼ 17, then z ¼12, x¼ 3, y¼ 6 or y¼�6

d) 2z� 7¼�17, z¼�5, x¼ 2, zx< 0, not a solution
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Answer. (x,y,z)¼ {(3,6,12),(3,�6,12)}.

Problem 82 (Lidsky). Prove that there exists an infinite convergent geo-

metric series 1, r, r2, . . ., rn, . . . each member of which divided by the sum of

all terms following it, equals given number k. For what value of k does the

problem have a solution?

Solution. By the condition of the problem rj j < 1 and we have

rn ¼ k rnþ1 þ rnþ2 þ . . .ð Þ ¼ krnþ1 � 1
1�r. From this expression 1� r ¼ kr or solving

for r, r ¼ 1= k þ 1ð Þ. Since rj j < 1, then

1

k þ 1

����
���� < 1

k > 0 or k < �2

Answer. k2 �1, � 2ð Þ [ 0;1ð Þ.

Problem 83 (AIME 2000). A sequence of numbers x1, x2,...., x100 has the
property that, for every integer k between 1 and 100, inclusive, the number x k

is k less than the sum of the other 99 numbers. Given that x50 ¼ m
n ; where

m and n are relatively prime positive integers, find mþ nð Þ.

Solution. Because by the condition of the problem, xk þ k ¼ x1 þ x2 þ . . .þ xk�1

þxkþ1 þ . . .þ x100, then

x1 þ 1 ¼ x2 þ x3 þ . . .þ x100

x2 þ 2 ¼ x1 þ x3 þ . . .þ x100

. . .

x50 þ 50 ¼ x1 þ x2 þ . . .þ x49 þ x51 þ . . .þ x100

x51 þ 51 ¼ x1 þ x2 þ . . .þ x50 þ x52 þ . . .þ x100

. . .

x99 þ 99 ¼ x1 þ x2 þ . . .þ x98 þ x100

x100 þ 100 ¼ x1 þ x2 þ . . .þ x99

ð2:41Þ

Let us add xk to both sides of each equation, where k is the number of the

equation:

2xk þ k ¼
X100
i¼1

xi, k ¼ 1, 2, . . . , 100: ð2:42Þ
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Now the right side of each equation will be the same,
X100
i¼1

xi. For example, for the

50th equation we have

2x50 þ 50 ¼
X100
i¼1

xi ð2:43Þ

Method 1. (Using properties of sigma notation)

Adding the left and right sides of Eq. 2.42 for k ¼ 1,2, ..., 100 and after

simplification, we obtain that 2
X100
i¼1

xi þ
X100
i¼1

i ¼ 100
X100
i¼1

xi, which can be simplified

as follows: 100�101
2

¼ 98
X100
i¼1

xi

On the other hand, replacing the sum here by the left side of Eq. 2.43 for the

50th equation, we obtain 98 2x50 þ 50ð Þ ¼ 100�101
2

. After simplification and replace-

ment the 50th term by the formula given in the condition of the problem yields

50 � 101 ¼ 98 2 � m
n
þ 50

� �
Solving for m/n we obtain that

m

n
¼ 75

98

Therefore, mþ n ¼ 75þ 98 ¼ 173.

Method 2. (Using properties of an arithmetic sequence)

Subtracting the left and the right sides of two consecutive equations of Eq. 2.41 and

then dividing both sides by 2 we obtain that xk � xk�1 ¼ �0:5, where k¼ 2,

3, . . ..100. This means that the sequence {xk} is an arithmetic progression with the

common difference d ¼ �0:5. Now the 50th term of the sequence can be written as

x50 ¼ x1 þ 49 � d
x50 ¼ x1 � 0:5 � 49 ð2:44Þ

Using Eq. 1.8 for the sum of an arithmetic sequence, we rewrite Eq. 2.42 for

k ¼ 1 as follows:

2x1 þ 1 ¼ 2x1 þ 99d

2
� 100;

2x1 þ 1 ¼ 2x1 þ 99 � �0:5ð Þð Þ50;
x1 ¼ 1238

49
:
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Substituting the value into Eq. 2.44 we obtain x50 ¼ 75
98
¼ m

n or

mþ n ¼ 75þ 98 ¼ 173.

Answer. m=n ¼ 75=98 and m + n¼ 173.

Let us compare geometric and arithmetic means of two positive numbers a and

b. What is greater aþb
2

or
ffiffiffiffiffi
ab

p
? Because both, a and b are positive, we can raise

both sides to the second power:
aþbð Þ2
4

^ ab. The symbol ^will mean “compare”

for us. If an arithmetic mean is greater than a geometric mean, then
ðaþbÞ2

4
� ab > 0,

Thus, aþ bð Þ2 � 4ab ¼ a2 þ 2abþ b2 � 4ab ¼ a2 � 2abþ b2 ¼ a� bð Þ2 ^ 0.

Because a� bð Þ2 � 0, then we conclude that the arithmetic mean of two positive

numbers is always greater their geometric mean, and is equal to their geometric

mean if and only if a ¼ b,

aþ b

2
�

ffiffiffiffiffi
ab

p

aþ b � 2
ffiffiffiffiffi
ab

p
:

Let us solve the following problem:

Problem 84 For how many ordered pairs (x, y) of integers is it true that the
arithmetic mean of x and y is exactly 2 more that the geometric mean of

x and y?

Solution.
xþ y

2
¼ 2þ ffiffiffiffiffi

xy
p

xþ y ¼ 4þ 2
ffiffiffiffiffi
xy

p

xþ y� 4ð Þ2 ¼ 4xy

x2 þ y2 þ 2xy� 8 xþ yð Þ þ 16 ¼ 4xy

x2 � 2xyþ y2 ¼ 8 xþ y� 2ð Þ
x� yð Þ2 ¼ 8 xþ y� 2ð Þ
x� yð Þ x� yð Þ ¼ 2 � 2 � 2 � xþ y� 2ð Þ

Because x and y are integers from last equation above, we can write only three

possible systems:

1.
x� y ¼ 8

x� y ¼ xþ y� 2

�
x ¼ 9

y ¼ 1

	
2.

x� y ¼ 4

x� y ¼ xþ y� 2ð Þ � 2
�

x ¼ 4

y ¼ 0
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3.
x� y ¼ 2

x� y ¼ 4 xþ y� 2ð Þ
�

x ¼ 9

4
¼ 2:25

y ¼ 0:25

"

4.
x� y ¼ 1

x� y ¼ 8 xþ y� 2ð Þ
�
Systems (3) & (4) do not give us integers. So we have two possible ordered pairs:

Answer. (9, 1) and (4, 0).

2.5 Miscellaneous Problems on Sequences and Series

Problem 85 (Kaganov) Prove that a1 þ a2 þ . . .þ amð Þ2 � m a21 þ . . .
� þ

am
2Þ for any real numbers ai

Solution. Let us prove it by mathematical induction.

1. m ¼ 1. The statement is true for m ¼ 1.

2. Assume this statement is true for a1 þ a2 þ . . .þ am�1ð Þ2 � m� 1ð Þ
a21 þ . . .þ am�1

2
� �

. Denote the left side by α and the right side by β, α � β:
3. Consider that

a1 þ a2 þ . . .þ amð Þ2 ¼ αþ am
2 þ 2am � a1 þ a2 þ . . .þ amð Þ;

m a1
2 þ . . .þ am�1

2 þ am
2ð Þ ¼ m� 1ð Þ a1

2 þ . . .þ am�1
2ð Þ

þa1
2 þ . . .þ am�1

2 þ mam
2

Since a1 þ a2 þ . . .þ am�1ð Þ2 � m� 1ð Þ a21 þ . . .þ am�1
2

� �
is true, then

a1 þ a2 þ . . .þ am�1 þ amð Þ2

¼ αþ am
2 þ 2am a1 þ . . .þ am�1ð Þ � β þ

Xm�1

i¼1

�
ai

2 þ am
2
�þ am

2;

From which it follows that

α� a1
2�2a1 �amþam

2ð Þþ a2
2�2a2 �amþam

2ð Þþ . . .þ am�1
2�2am�1 �amþam

2ð Þ
þβ;α� βþ a1�amð Þ2þ a2�amð Þ2þ . . .þ am�1�amð Þ2:

The proof is complete.
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The following problem will demonstrate how the knowledge of sequences helps

us to do calculus problems.

Problem 86 Evaluate lim
x!1

xnþ1�1
xn�1

:

Solution. This limit cannot be found directly, because when x¼ 1 the denominator

becomes 0. Using formulas for geometric series and applying them for the numer-

ator and denominator:

1þ xþ x2 þ . . .þ xn ¼ xnþ1 � 1

x� 1

1þ xþ x2 þ . . .þ xn�1 ¼ xn � 1

x� 1

We remove discontinuity and evaluate the limit.

lim
x!1

1þ xþ x2 þ . . .þ xn

1þ xþ x2 þ . . .þ xn�1
¼ nþ 1ð Þ � 1

n � 1 ¼ nþ 1

n
,8n2N:

Answer. lim
x!1

xnþ1�1
xn�1

¼ nþ1
n :

Problem 87 (Rivkin) Given

1þ aþ a2 þ . . .þ an ¼ 1þ að Þ 1þ a2ð Þ 1þ a4ð Þ � � � 1þ a2
k

� �
.

Find relationship between n and k.

Solution. The left side of the formula can be rewritten as anþ1�1
a�1

. Multiplying the

both sides by a� 1ð Þ 6¼ 0 and because a 6¼ 1, the given relation can be rewritten as

anþ1 � 1 ¼ a� 1ð Þ 1þ að Þ 1þ a2ð Þ . . . 1þ a2
n� �
. Next, using a difference of

squares formula applied several (k) times, the right side can be simplified as

a2 � 1ð Þ 1þ a2ð Þ � � � 1þ a2
k

� �
¼ a4 � 1ð Þ . . . 1þ a2

k
� �

¼ a2
kþ1 � 1: Therefore,

anþ1 ¼ a2
kþ1

. Because by the condition of the problem a 6¼ 0, � 1, then the neces-

sary relationship between n and k is nþ 1 ¼ 2kþ1:

Answer. n ¼ 2kþ1 � 1:
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Problem 88 Given a function g nð Þ ¼ f nþ1ð Þ
2� f 0ð Þþf 1ð Þþf 2ð Þþ...þf nð Þð Þ, where

f xð Þ ¼ x
2x
. Evaluate A mð Þ ¼ g mþ1ð Þ

g mð Þ and B mð Þ ¼ g mþ 1ð Þ � g mð Þ.

Solution. Let us evaluate several values of function,

f xð Þ : f 0ð Þ ¼ 0, f 1ð Þ ¼ 1

21
, f 2ð Þ ¼ 2

22
, f 3ð Þ ¼ 3

23
, . . . ,

f nð Þ ¼ n

2n
, f nþ 1ð Þ ¼ nþ 1

2nþ1
:

Substituting this into formula for g(n) we obtain the following

g nð Þ ¼
nþ1
2nþ1

2� 1
21
þ 2

22
þ 3

23
þ 4

24
þ . . .þ n�1

2n�1 þ n
2n

� � : ð2:45Þ

Next, we simplify the sum inside parentheses, by denoting it

Sn ¼ 1
21
þ 2

22
þ 3

23
þ 4

24
þ . . .þ n�1

2n�1 þ n
2n
. Multiplying both sides of the equality by

2 we get 2 � Sn ¼ 1þ 2
21
þ 3

22
þ 4

23
þ 5

24
þ . . .þ n�1

2n�2 þ n
2n�1. Subtracting the left and

the right sides of two equations and canceling the same terms, we have

Sn ¼ 1� n

2n
þ 1

2
�

1� 1
2

� �n�1
� �

1� 1

2

� �

¼ 2� n

2n
� 1

2n

ð2:46Þ

Substituting Eq. 2.46 into Eq. 2.45, we have

Finally,

g mþ 1ð Þ
g mð Þ ¼ mþ 2ð Þ2

mþ 1ð Þ mþ 3ð Þ
g mþ 1ð Þ � g mð Þ ¼ mþ 2

2 mþ 3ð Þ �
mþ 1

2 mþ 2ð Þ ¼
1

2 mþ 2ð Þ mþ 3ð Þ:
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Answer. A mð Þ ¼ mþ2ð Þ2
mþ1ð Þ mþ3ð Þ ; B mð Þ ¼ 1

2 mþ2ð Þ mþ3ð Þ.

Problem 89 Find all value of r such that all partial sums of the series
1
2
þ r cos xþ r2 cos 2xþ r3 cos 4xþ r4 cos 8xþ . . . are nonnegative for all

real x.

Solution. Consider the second partial sum, S2 ¼ 1
2
þ r cos x � 0 ) rj j � 1

2
.

Denote

ψ yð Þ ¼ r cos yþ r2 cos 2y )
ψ 2yð Þ ¼ r cos 2yþ r2 cos 4y )
ψ 4yð Þ ¼ r cos 4yþ r2 cos 8y

ψ 8yð Þ ¼ r cos 8yþ r2 cos 16y

ψ 16yð Þ ¼ r cos 16yþ r2 cos 32y

We can see that the given series can be rewritten as

1

2
þ r cos xþ r2 cos 2x
� �þ r2 r cos 4xþ r2 cos 8x

� �
þr4 r cos 16xþ r2 cos 32xð Þ þ . . .

¼ 1

2
þ ψ xð Þ þ r2ψ 4xð Þ þ r4ψ 8xð Þ þ . . .

ð2:47Þ

Let us investigate the behavior of ψ(y). Taking the first derivative of it, we obtain

that

dψ

dy
¼ �r sin y� 4r2 sin y cos y

¼ �r sin y 1þ 4r cos yð Þ ¼ 0

dψ

dy
¼ 0 , y ¼ πn or cos y ¼ � 1

4r

Case 1. y ¼ πn ) ψ yð Þ ¼ ψ πnð Þ ¼ r cos πnþ r22πn ¼ �1ð Þnr þ r2 � �1
4
.

Case 2. ψ yð Þ ¼ �1
4
þ r2 1

8r2 � 1
� � � �3

8
.

Hence we can state that ψ yð Þ � �3
8
8y2ℝ: Series (Eq. 2.47) are bounded as

follows:
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S2nþ1 ¼ 1

2
þ ψ xð Þ þ r2ψ 4xð Þ þ r4ψ 8xð Þ þ . . .þ r2 n�1ð Þψ 4n�1x

� �
� 1

2
� 3

8
1þ r2 þ r4 þ . . .þ r2 n�1ð Þ
� �

� 1

2
� 3

8
1þ 1

4
þ 1

4

� �2

þ . . .þ 1

4

� �n�1
 !

¼ 1

2
� 3

8

1� 1
4

� �n�1

1� 1

4

0
B@

1
CA ¼ 1

2 � 4n ¼
1

22nþ1

Let us find the next partial sum, S2nþ2 ¼ S2nþ1 þ r2nþ1 � cos 22nx
� � � S2nþ1

� 1
22nþ1 � 0: Finally, we can conclude that if rj j � 1

2
, then all partial sums of the

series of Eq. 2.47 are nonnegative.

Problem 90 Given a sequence S1 ¼
ffiffiffi
2

p
, Snþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Sn

p
, prove that this

sequence has a limit. Evaluate it.

Proof. Assume that the sequence has a limit S, then S ¼ ffiffiffiffiffiffiffiffiffiffiffi
Sþ 2

p ) S2 ¼ Sþ 2

) S ¼ �1 or S ¼ 2

Answer. 2.

The following problems will make connection between sequences, number theory

and geometry.

Problem 91 A side of a square is a. The midpoints of its sides are joined to

form an inscribed square. This process is continued as shown in the diagram.

Find the sum of the perimeters of the squares if the process is continued

without end.

Solution. From the diagram (Figure 2.4), we can see that the sides of the black

squares form a geometric progression with the first term of a and common ratio ½:

a, a
2
, a
4
, a
8
, . . . ,a

2n�1. All red squares, in turn, form a geometric progression with the

same common ratio but the first term a
ffiffi
2

p
2

(half of the diagonal of the original

square): a
ffiffi
2

p
2
, a
ffiffi
2

p
4
, a
ffiffi
2

p
8
, . . .. Because the perimeter of a square with side b is 4b, we

obtain the following expression for the sum of the perimeters of black and red

squares:
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P ¼ 4 aþ a
ffiffiffi
2

p

2
þ a=2þ a

ffiffiffi
2

p

4
þ a=4þ a

ffiffiffi
2

p

8
þ a=8þ . . .þ a

2n�1
þ a

ffiffiffi
2

p

2n�1
þ . . .

� �
¼ 4a 1þ 1=2þ 1=4þ ::::ð Þ þ 4a �

ffiffiffi
2

p

2
1þ 1=2þ 1=4þ . . .ð Þ

¼ 4a 2þ ffiffiffi
2

p� �
1� 1

2n

� �
¼ 4a 2þ ffiffiffi

2
p� �

Answer. P ¼ 4a 2þ ffiffiffi
2

p� �
Problem 92 Given a sequence a0 ¼ 2, a1 ¼ 5, an ¼ 5an�1 � 4an�2 for n

� 2: Show that an � anþ2 � a2nþ1 is a perfect square for every n � 0:

Proof. The characteristic polynomial for this recurrent sequence is r2 � 5r þ 4

¼ r � 1ð Þ r � 4ð Þ; then the general term of the sequence is an ¼ A � 4n þ B � 1n:
Using the values of the first two terms, the nth term can be written as an ¼ 4n þ 1:
Evaluate

an � anþ2 � a2nþ1 ¼ 4n þ 1ð Þ 4nþ2 þ 1
� �� 4nþ1 þ 1

� �2
¼ 4n � 9 ¼ 3 � 2nð Þ2 ¼ k2:

The proof is complete.

Problem 93 Prove that there is no infinite arithmetic progression of only

prime numbers.

Figure 2.4 Sketch for

Prob. 91
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Proof. Consider an arithmetic progression with the first term a 6¼ 1 and common

difference d. Then the nth term of this progression can be written as an ¼ aþ
n� 1ð Þd: Clearly, if n ¼ aþ 1 ) an ¼ aþ a � d ¼ a d þ 1ð Þ. Thus, the first and

aþ 1ð Þ st term , aaþ1, of such arithmetic progression are not relatively primes, and

this fact does not depend on the value of the common difference. Moreover, in such

infinite progression all terms sitting in the positions of n ¼ aþ 1, 2aþ 1, 3aþ 1,

4aþ 1, . . . will be multiples of the first term, a.
For example, in the progression 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, . . . there are

infinitely many members divisible by 3, we underlined some of them . All of them

are in the positions 4, 7, 10, . . . 3k þ 1ð Þ, . . .. Because our proof was based on an

assumption that the first term of a progression is not unit, a reasonable question is

what if the first term of an infinite progression equals 1? Can such progression

consist of only primes?

The answer is also “no” and the proof of this fact is very similar to the proof

above. We just for any given progression start our arguments from the second term.

Thus, infinite arithmetic progression anf g : 1, 1þ d, 1þ 2d, 1þ 3d, . . . contains
progression bnf g : 1þ d, 1þ 2d, 1þ 3d, . . . the first term of which equals the

second term of the first progression, and then again prove that there are infinitely

many terms divisible by 1þ dð Þ.
Remark. Any infinite arithmetic progression with natural members will have

infinitely many multiples of the first, second, third, or any other term and the

location of such multiples will depend only on the value of the selected term of a

progression. Suppose a number b2ℕ is a term of an infinite arithmetic progression,

then there are infinitely numbers of terms divisible by b in the relative location

n ¼ bþ 1, 2bþ 1, 3bþ 1, . . .. Thus if b is the kth term of the given progression,

then all terms divisible by it will have positions of k, k þ b, k þ 2b, k þ 3b, . . ..
For example, since 11 is the third term of the given infinite progression,

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, . . ., the terms divisible

by 11 will appear at the positions 3, 3þ 11 ¼ 14, 3þ 2 � 11 ¼ 25, 3þ 3 � 11 ¼ 36

, . . . , 3þ m� 1ð Þ � 11, . . . , wherem represent the mth consecutive multiple of 11.

You can see it yourself, 11 is the first multiple of 11, the second is 55, which is 14th

term of the given progression, then the third consecutive multiple of 11 in the

progression will correspond to the index n ¼ 25 and will be evaluated as

3þ 25� 1ð Þ � 4 ¼ 99, etc.

We just proved that there is no infinite arithmetic progression that consists of

only primes. Is this statement also true for a finite arithmetic progression? The

shortest sequence of primes must contain three terms. We can see that the first three

terms of the infinite progression discussed above, {3, 7, and 11} are in arithmetic

progression given by formula an ¼ 4n� 1, n ¼ 1, 2, 3:
Are there arithmetic progressions with precisely 5, 10 or N prime numbers? The

answer is yes, such progressions exist but it is hard to find them.

The previous problem probably gives you some ideas of how to look for such

progressions. First, we must select only even numbers as common difference, d.
Otherwise, even and odd terms would alternate, which would never be a finite
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arithmetic progression with only prime terms. Obviously, the first term must be an

odd prime. The following theorem formulated and proven by Cantor will help to get

us started.

Cantor’s Theorem. If N terms of an arithmetic progression are odd primes,

then the difference of the progression is divisible by every prime less than N.

The rigorous proof of the existence of an arithmetic sequence with exactly

N prime terms was given in 2004 by B. Green and T. Tao. However, their proof

does not propose any algorithm of finding such progressions or makes the job of

finding it any easy. It is worth to mention that the last longest arithmetic progression

of 26 prime numbers was discovered only in 2010.

Here we try to find an arithmetic progression of ten prime terms by solving the

following problem.

Problem 94 Propose a finite arithmetic progression formed by ten prime

numbers.

Solution. Regarding Cantor’s Theorem, the common difference of such progres-

sion must be divisible by 2, 3, 5, and 7 (all prime numbers less than n¼ 10). The

minimal common difference satisfying this conditions is d ¼ 2 � 3 � 5 � 7 ¼ 210:
Next, we need to find the starting prime, the first term of the progression. It cannot

be 11, because 11þ 210 ¼ 221 ¼ 13 � 17 is not prime.

Can it be 13? The answer is no because 210 divided by 11 leaves a remainder of

1, 210 ¼ 11 � 19þ 1. Then the remainder of a term when divided by 11 will

increase by one each time as n increases. For example, if the starting prime is

13 which give a remainder of 2 divided by 11, then the nth term has the following

form,

an ¼ 13þ 210 � n� 1ð Þ ¼ 11þ 2þ 11 � 19 � n� 1ð Þ þ n� 1

¼ 11k þ nþ 1 ¼ 11m

We can see that if n ¼ 10, then the tenth term will be 1903 that divisible by 11 and

not prime.

If a starting prime divided by 11 will leave a different remainder, for example,

3,4,5, etc. then a multiple of 11 will be obtained faster each time. Try yourself to

select the first term as next prime, 17. Because 17 ¼ 11þ 6, then the 5th term of the

proposed progression will be a multiple of 11. . .
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an ¼ 17þ 210 � n� 1ð Þ ¼ 11þ 11 � 19 � n� 1ð Þ þ 6þ n� 1ð Þ, a5 ¼ 858

¼ 11 � 78:

Therefore, the first term must be odd and leave a remainder of one when divided by

11. Let us try a1 ¼ 22mþ 1: Consecutive candidates are 23, 67, 89, 199, . . . If we
try with the first term 23, 67 and 89, we obtain that such progression would have a

composite number for the sixth, fourth and second term , respectively. If we set the

first term equals 199, then we obtain an arithmetic progression of ten prime

numbers, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, and 2089.

Answer. an ¼ 199þ n� 1ð Þ210 ¼ 210n� 11, 1 � n � 10:

Let us find out other properties of finite arithmetic progressions in integers by

solving the following problems.

Problem 95 Is there any arithmetic progression of 50 terms such that any

two selected terms are relatively primes? If such progression exists, find it.

Solution. Let us consider an arithmetic progression with the first term of a1 ¼ 1

þ49! and common difference d ¼ 49! Its nth term can be written as

an ¼ 1þ 49!þ n� 1ð Þ49! ¼ 1þ n � 49!, 1 � n � 50:
We can see that any term of the progression is not divisible by any natural

number from 1 to 50 because when divided by any such number it gives a remainder

of 1. Next, the difference between its kth and mth terms will be

ak � am ¼ k � mð Þ � 49!, which means that the difference of any two terms is not

divisible by any prime greater than 49. For example, a7 � a4 ¼ 3 � 49! ¼ 3 � 1 � 2
�3 � 4 � . . . � 49:This proves that any two selected terms of the arithmetic progression

are relatively prime, because the only common factor they have is one.

Problem 96 Is there an arithmetic progression formed of positive integers

such that no term of the progression can be represented as a sum or difference

of two primes? If such progression exists, then give an example.

Solution. Consider several arithmetic progressions with the corresponding nth

terms n2Nð Þ:
a. 6, 10, 14, 18, . . . , 4nþ 2, . . .
b. 11, 19, 27, 35, . . . , 8n þ 3, . . .
c. 47, 89, 131, 173, . . . , 42nþ 5, . . .
d. 37, 67, 97, 127, . . . , 30nþ 7, . . .

The proression of "a" is represented by only even numbers, and clearly many its

terms can be written as the sum or difference of two primes, for example,
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10¼ 3þ 7, 14¼ 17� 3. Any even number is either the sum or difference of two

even or two odd numbers; in general prime numbers are odd. One can prove that

there exist infinitely many even numbers that can be written both as sums and as

difference of two primes. Hence, we further consider only sequences of odd

numbers.

Additionally, let us eliminate a sequence of odd numbers b) because its terms

19¼ 2þ 17 and 27¼ 29� 2. If such arithmetic progression exists, then its terms

must be odd numbers. Next, if some of its terms can be represented by a sum or

difference of two primes, then one of the primes must be even (2).

Consider progression “c” and assume that one of its terms can be written as sum

of two primes:

42nþ 5 ¼ p1 þ p2

42nþ 5 ¼ 2þ p2

42nþ 3 ¼ p2

p2 ¼ 3 � 14nþ 1ð Þ:

We can see that p2 is not prime.

Assume that some term of the progression above can be written as a difference of

two primes, i.e., 42nþ 5 ¼ p1 � p2. Because each term of the progression is odd,

then the second prime must be 2.

42nþ 5 ¼ p1 � 2

42nþ 7 ¼ p1

p1 ¼ 7 � 6nþ 1ð Þ

Therefore, no terms of an arithmetic progression an ¼ 42nþ 5 can be

represented as sum or difference of two primes. A similar conclusion can be

made for progression “d”. We leave it for you as a homework (exercise 89).

Problem 97 Find all right triangles with integer sides forming consecutive

terms of an arithmetic progression.

Solution. Assume that such triangle exists and that its sides are a¼ a, b¼ a + d,
c¼ aþ 2d. then they must satisfy Pythagorean Theorem:

a2 þ aþ dð Þ2 ¼ aþ 2dð Þ2
a2 þ a2 þ 2ad þ d2 ¼ a2 þ 4ad þ 4d2

a2 ¼ 3d2 þ 2ad

a� dð Þ2 ¼ 2dð Þ2
a� d ¼ 2d

a ¼ 3d, b ¼ 4d, c ¼ 5d, d2ℕ:
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Therefore, there are infinitely many such right triangles. For example, the sides

of the following right triangles form an arithmetic progression and are Pythagorean

triples: (3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20). . .

Answer. a; b; cð Þ ¼ 3d, 4d, 5dð Þ, d2ℕ:

Problem 98 It is known that the numbers x xþ 1ð Þ, y yþ 1ð Þ, z zþ 1ð Þ are in
increasing arithmetic progression. Find integer numbers x, y and z.

Solution. Assume that such numbers exist and that

x ¼ x
y ¼ axþ b
z ¼ cxþ d

8<
: , where integer coefficients a, b, c, d are to be determined.

Because x xþ 1ð Þ, y yþ 1ð Þ, z zþ 1ð Þ form an arithmetic progression, then

y yþ 1ð Þ � x xþ 1ð Þ ¼ z zþ 1ð Þ � y yþ 1ð Þ. Substituting here the expressions from

the system above, we obtain the following chain of true equalities:

axþ bð Þ axþ bþ 1ð Þ � x xþ 1ð Þ ¼ cxþ dð Þ cxþ d þ 1ð Þ � axþ bð Þ axþ bþ 1ð Þ
2 a2x2 þ 2abxþ b2
� �þ 2axþ 3b� x2 � x ¼ c2x2 þ 2cdxþ d2 þ cxþ d

By equating the constant terms, the coefficients of linear and quadratic terms,

respectively, we obtain the system of three equations in four undetermined integer

parameters:

2b bþ 1ð Þ ¼ d d þ 1ð Þ
2aþ 4ab� 1 ¼ 2cd þ c
2a2 � 1 ¼ c2

8<
:

Consider the last equation of the system, 1þ c2 ¼ 2a2. In order to have any

solutions in integers, we know that parameter c must be an odd number, then

c ¼ 2nþ 1. Substituting this back into the equation we have

1þ 2nþ 1ð Þ2 ¼ 2a2

1þ 4a2 þ 4aþ 1 ¼ 2a2

2n2 þ 2nþ 1 ¼ a2

2n2 þ 2n ¼ a2 � 1

2n nþ 1ð Þ ¼ a� 1ð Þ aþ 1ð Þ

The right hand side is represented by the product of two numbers that differ by

2, hence they either both odd or both even. Because the left side is even then

a� 1ð Þ and aþ 1ð Þ must be even, for example, a� 1 ¼ 2m, aþ 1 ¼ 2mþ 2.

Substituting this into the discussed equation, we obtain
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2n nþ 1ð Þ ¼ 2m 2mþ 2ð Þ
n nþ 1ð Þ ¼ 2m mþ 1ð Þ:

The last equation has solution only if its variables satisfy the system

n ¼ mþ 1

nþ 1 ¼ 2m

�
) mþ 2 ¼ 2m ) a ¼ 2mþ 1 ¼ 2 � 2þ 1 ¼ 5:

Knowing a, we can evaluate the corresponding positive c, 1þ c2 ¼ 2 � 52 ¼ 50

) c2 ¼ 49, c ¼ 7: Similarly to the solution of the underlined equation above, we

can find positive solution to the first equation of the system.

d d þ 1ð Þ ¼ 2b bþ 1ð Þ
d ¼ bþ 1

2b ¼ d þ 1

�
) b ¼ 2, d ¼ 3:

Note that we found all four parameters using only solutions of the first and the

last equations. This is very typical when solving equations in integers. The second

equation can be used for checking. Thus, 1þ 2 � 7 � 3þ 7 ¼ 4 � 5 � 2þ 2 � 5 ¼ 50.

Finally, we found that if x ¼ x, y ¼ 5xþ 2, z ¼ 7xþ 3, then x xþ 1ð Þ ¼ x2 þ x,

y yþ 1ð Þ ¼ 25x2 þ 25xþ 6, z zþ 1ð Þ ¼ 49x2 þ 49xþ 12 are in the increasing

arithmetic progression with common difference 24x2 þ 24xþ 6:

Answer. x ¼ x, y ¼ 5xþ 2, z ¼ 7xþ 3, x2ℕ:

Problem 99 A sequence is defined by an ¼ 1
nþn2 , n � 1: Given am þ amþ1

þ . . .þ an�1 ¼ 1
17
, m < n; evaluate n� m:

Solution. Factoring the denominator of the nth term, we notice that it can be

written as an ¼ 1
nþn2 ¼ 1

n nþ1ð Þ ¼ 1
n � 1

nþ1
. Replacing each term on the left of the

given condition, we have 1
m � 1

mþ1
þ 1

mþ1
� 1

mþ2
þ . . .þ 1

n � 1
nþ1

¼ 1
17
. After cancel-

ation of the opposite terms we obtain

1

m
� 1

n
¼ n� m

mn
¼ 1

17
17 n� mð Þ ¼ mn

The last equation must be solved in integers and can be written as 17m ¼ n 17� mð Þ:
Because from the condition of the problem 17� m < 17; and 17 is prime, we know

that n must be a multiple of 17. Let n ¼ 17k. After substitution we have
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17m ¼ 17k 17� mð Þ
m ¼ k 17� mð Þ:

This equation has integer solutions if and only if the second factor on the right hand

side equals one, i.e.

17� m ¼ 1

m ¼ 16, k ¼ 17, n ¼ 16 � 17:
n� m ¼ 16 � 17� 16 ¼ 162 ¼ 256:

Answer. n� m ¼ 256:

Problem 100 Given a sequence

u1 ¼ 2, u2 ¼ 8, . . . , un ¼ 4un�1 � un�2, n ¼ 3, 4, 5, . . ., Prove that

u2n � unþ1 � un�1 ¼ 4:

Proof. We can evaluate some terms of the recurrence as

u3 ¼ 4u2 � u1 ¼ 4 � 8� 2 ¼ 30, u4 ¼ 4u3 � u2 ¼ 4 � 30� 8 ¼ 112. It is clear

that u24 � u3u2 ¼ 302 � 112 � 8 ¼ 4: Because ab ¼ ba, un � 4un�1 ¼ un�1 � 4un.
Using the recurrent relationship for the left and right hand sides, we obtain the

following chain of true equations:

un � un þ un�2ð Þ ¼ un�1 unþ1 þ un�1ð Þ
u2n � unþ1un�1 ¼ u2n�1 � unun�2 ¼ u2n�2 � un�1un�3 ¼ . . .

¼ u22 � u3u1 ¼ 82 � 30 � 2 ¼ 4:

The proof is complete.
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Chapter 3

Series Convergence Theorems
and Applications

Usually convergence of series is taught in mathematical analysis. If we can find a

partial sum for a given numerical series, then we take the limit of this sum to infinity

and can easily decide on the series convergence. If series is functional, for example,

power series or trigonometric series, then finding their partial sum would also

benefit further investigation, but the question is not whether or not it converges

but for which value of x it converges. In the previous two chapters we discuss

several methods of finding partial and infinite sums of series. In this chapter, we

look at series from a different angle and you will learn new methods of finding finite

or infinite sums for a given numerical or functional series. As you would learn in the

previous chapters, finding a formula for a partial sum is usually a challenging task

and sometimes it is simply impossible.

Let us consider the following infinite series:

a
�
1þ 2þ 3þ . . .þ nþ . . .

b
� 1
2
þ 1

6
þ 1

12
þ . . .þ 1

n nþ 1ð Þ þ . . .

c
�
1þ 1

2
þ 1

3
þ . . .þ 1

n
þ . . .

d
�
1� 1

2
þ 1

3
� 1

4
þ . . .þ �1ð Þnþ1 � 1

n
þ . . .

We can evaluate the nth partial sum for the first two series and make a conclusion

that the first series diverges and the second one converges to 1 (Problem 50). It is

hard to find nth partial sum for the last two series; but in this chapter, you will learn

that series c) is called a harmonic series and that it diverges and that series d) is

called a Leibniz alternating series and it converges to ln2. While it is almost obvious

for the first series to diverge even without calculating its partial sum, because each

term of the series is increasing without bound as n is increasing, so as partial sums,

the convergent and divergent behavior of the second and third series, respectively,
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cannot be explained only by the behavior of their nth term. Thus, for both the second

and third series, the nth term will decrease as n increases, but only the second series
converges.

It looks that in order to converge, it is necessary but not sufficient that the limit of

the nth term of an infinite series would approach zero. Thus, series b) converges to

1 and series d) converges to ln2. On one hand, in order to find the infinite sum for b)

we do not need any additional knowledge, just the ability to evaluate the nth partial
sum. On the other hand, for the last series, the infinite sum can be found using power

series. This is why in this chapter you not only review and learn the necessary and

sufficient convergence theorems for numerical series but additionally you are

introduced convergence of functional series, such as power series and trigonometric

series.

Other methods of finding infinite sums for numerical series are taught, such as

method of power series, method of integration, and differentiation and Abel’s

method. Additionally, we demonstrate how convergence (divergence) of some

numerical series can be established using Maclaurin or Taylor expansions of

some known functions and vice versa.

You will learn that an infinite sum of conditionally convergent alternating series

depends on the order of terms, while the sum of absolutely convergent series does

not depend on how we group and add its terms. Application of power series to

solving differential equations, finding integrals or for approximation is also

discussed. You will understand why this or that series are better for estimation of

a given irrational number and that series convergence can be fast and slow. This is

why, for example, the famous alternating series 1� 1/3þ 1/5� 1/7þ . . . converges
to π

4
but is never used for approximation of π. Moreover, this chapter introduces you

to generating functions and how generating functions can be used to find the nth

term of a sequence given by recursion. Hence this chapter will be useful for students

studying calculus and their teachers.

Since many contest problems require knowledge of the topics mentioned above,

especially when you have to decide whether a series will have a limit to infinity, we

summarize important facts from mathematical analysis that will help you to handle

some challenging problems.

3.1 Numerical Series

Consider the series
P1
n¼1

un ¼ u1 þ u2 þ u3 þ . . . with its numerical terms and the

associated sequence of partial sums {Sn}. Expressions of the type

unþ1 þ unþ2 þ . . . ¼ P1
k¼nþ1

uk, representing numerical series are called the nth

remainder of the series
P1
k¼1

uk and are denoted by rn ¼
P1
k¼1

unþk or rn ¼
P1

n¼kþ1

un.
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For any convergent series, S ¼ P1
k¼1

uk ¼
Pn
k¼1

uk þ
P1

k¼nþ1

uk ¼ Sn þ rn. Here Sn is the

nth partial sum of the series. In order series
P1
k¼1

uk to be convergent, it is necessary

and sufficient that any its remainder rn be convergent. Obviously, if numerical

series
P1
k¼1

uk converges, the limit of partial sums exists, i.e., lim
n!1 Sn ¼ S, then

lim
n!1 rn ¼ 0. Thus, removing any finite number of terms does not influence the

series convergence.

We say that the series
P1
n¼1

un is convergent if and only if, a sequence {Sn} is

convergent. The total sum of the series is the limit of the sequence {Sn}, which we

denote by limSn
n!1

¼ P1
n¼1

un. Hence, the series convergence is related to the conver-

gence of a sequence. Many make mistakes by confusing the convergence of a

sequence of partial sums with the convergence of the sequence of numbers. There

are some steps you need to take:

1. For a series to be convergent, first, it must pass a necessary condition. The limit

of the nth term must go to zero as n goes to infinity. Otherwise, the series

diverges.

2. If the limit of the nth term is zero so the necessary condition is fulfilled, then the

series might converge, but not necessarily, and further investigation is important.

3.1.1 Necessary and Sufficient Convergence Conditions

Theorem 3.1 (Necessary condition for convergence of numerical series) If

the series
P1
k¼1

uk converges, then the limit of its common term at infinity

equals zero, i.e., lim
k!1

uk ¼ 0:

The following statement is also true.

Corollary 3.1 If series
P1
n¼1

un is convergent, then lim
n!1 un ¼ 0. If lim

n!1 un 6¼ 0

or if this limit is undefined, then the series cannot converge, and it diverges.
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Example. Consider the following series:
P1
n¼1

5n2�3n
4�2n2 . By checking that

lim
n!1 un ¼ 5n2�3n

4�2n2 ¼ �5
2
6¼ 0, we can be sure that the series is divergent.

However, even if the necessary condition is fulfilled, it is not sufficient for us to

know that the series is convergent. We must further investigate using one of a

number of different theorems and principles.

Example. The well-known harmonic series 1þ 1
2
þ 1

3
þ 1

4
þ . . .þ 1

n þ . . . is diver-

gent, even though it passes the necessary condition: lim
n!1 un ¼ lim

n!1
1
n ¼ 0:

3.1.2 Nonnegative Numerical Series

The series
P1
k¼1

ak, ak � 0 8k 2 ℕ, are called nonnegative numerical series. For

nonnegative series, the following properties are valid:

• Exchanging the terms, removal or adding of the finite number of terms of the

series does not influence its convergence or divergence;

• If series
P1
k¼1

ak and
P1
k¼1

bk converge and their sums equal Sa and Sb respectively,

then the series
P1
k¼1

ak þ bkð Þ also converges and
P1
k¼1

ak þ bkð Þ ¼ Sa þ Sb.

• Series
P1
k¼1

ak þ bkð Þ is called the sum of the series
P1
k¼1

ak and
P1
k¼1

bk;

• If series
P1
k¼1

ak converges and its sum equals S, then
P1
k¼1

α � ak also converges andP1
k¼1

α � ak ¼ α � S. Series α
P1
k¼1

ak is called the product of series
P1
k¼1

ak by a real

number α;

• If series
P1
k¼1

ak converges, then any series obtained by grouping of its terms

without changing their order also converges and has the same sum as the original

series.

Let us apply these rules by considering the following problem now.

Problem 101 Is the series
P1
n¼1

2nþ5n

10n
convergent or divergent? Find its sum

if exists.
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Solution. Because the nth term of the series can be written as an ¼ 1
5n
þ 1

2n
, then

the given series is the sum of two convergent infinite geometric series that is

convergent. The sum can be found as
1
5

1�1
5ð Þ þ

1
2

1�1
2ð Þ ¼

1
4
þ 1 ¼ 5

4
.

Answer.
P1
n¼1

2nþ5n

10n
¼ 5

4
.

The following theorem was stated and proved by Cauchy (Baron Augustine-

Louis Cauchy, 1789–1857, French mathematician) and this theorem allows us to

establish whether a series converges or diverges.

Theorem 3.2 (Cauchy Necessary and Sufficient Series Convergence

Theorem) In order the series
P1
n¼1

un to be convergent, it is necessary and

sufficient that for any positive ε > 0, there exists a number N ¼ N(ε) such
that for any 8n > N, 8p 2  the following inequality is valid:

unþ1 þ unþ2 þ . . .þ unþp

�� �� < ε. This last sum of the terms of the series is

called the segment of length p.

Consider the harmonic series: 1þ 1
2
þ 1

3
þ 1

4
þ . . .þ 1

n þ . . . ¼ P1
n¼1

1
n. Each term,

c, is the harmonic mean of its neighbors, a and b because c ¼ 2ab
aþb. You can see that

c ¼ 1=
3
is between a¼½ and b¼¼ and the following is true 1

3
¼ 2 � 1

2
� 1
4

1
2
þ 1

4

:

Let us prove that the series is divergent. Consider a segment of length p, such
that n ¼ p

unþ1 þ unþ2 þ . . .þ unþp

�� ��¼ 1

nþ 1
þ 1

nþ 2
þ 1

nþ 3
þ . . .þ 1

nþ p� 1
þ 1

nþ p

¼ 1

nþ 1
þ 1

nþ 2
þ 1

nþ 3
þ . . .þ 1

nþ n� 1
þ 1

nþ n

It is obvious that 1
nþk >

1
nþn , k ¼ 1, 2, 3, . . . n� 1. Therefore,

1
nþ1

þ 1
nþ2

þ 1
nþ3

þ . . .þ 1
nþn�1

þ 1
nþn >

1
nþn þ 1

nþn þ 1
nþn þ . . .þ 1

nþn ¼ n � 1
2n ¼ 1

2
so

unþ1 þ unþ2 þ . . .þ unþp

�� �� > 1
2
. Hence for ε ¼ 1

2
, the segment of length p¼ n

is appeared to be bigger than ε. Therefore, harmonic series is divergent. Later

we prove divergence of harmonic series using comparison theorems.

Let us solve the following problem.

Problem 102 Is the series
P1
n¼1

2nþn2

n�2n convergent or divergent?
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Solution. Let us rewrite the nth term of the series as the sum of two other terms as

an ¼ 1
n þ n

2n
. Now the given series is

P1
n¼1

2nþn2

n�2n ¼ P1
n¼1

1
n þ

P1
n¼1

n
2n
. Even the second

series is convergent (see Problem 31 solved earlier) the first series (harmonic) is

divergent, therefore the entire given series will diverge.

3.1.2.1 Comparison Theorems. Criteria of Series Convergence

Comparison tests are something that comes naturally. Based on my own

experience, some students are able to compare the terms of the given series with

the other series, convergence or divergence of which they know. For example,

1
n2 <

1
n n�1ð Þ , 8n 2 ℕ, n > 1: Given 1þ P1

n¼2

1
n n�1ð Þ ¼ S, then students make a con-

clusion that
P1
n¼1

1
n2 < S: Similar ideas we have already used in solving Problem 67.

In the following theorems we use two series:
P1
n¼1

un and
P1
n¼1

vn.

Theorem 3.3 (Comparison Criterion) Let N be some integer N � 1:

If 0 � un � vn for all n � N and
P1
n¼1

vn converges, then
P1
n¼1

un converges.

If 0 � vn � un for all n � N and
P1
n¼1

vn diverges, then
P1
n¼1

un diverges.

Theorem 3.4 (Quotient Comparison Theorem) Let N be some integerN � 1:

If for the two series
P1
n¼1

un and
P1
n¼1

vn, where un, vn > 0 the inequality k �
un
vn
� Kholds8k > 0,K > 0, then both series behave the sameway: Either both

are convergent or both are divergent.

Corollary 3.2 (Limit Comparison Corollary) If lim
n!1

un
vn
¼ A; where A 6¼ 0 or

A 6¼ 1, then both series behave the same way: either both convergent or both

divergent.
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In order to investigate whether or not series converge or diverge we use the

following standard series with known behavior:

– Geometric series:
P1
k¼1

ark�1, a 6¼ 0ð Þ, converges if rj j < 1 and diverges if rj j � 1;

– Dirichlet generalized harmonic series:
P1
k¼1

1
kp, converges for p > 1 and diverges if

p � 1:

The generalized series, called Dirichlet series, named later after Peter Gustav

Dirichlet (German mathematician, 1805–1859), got a lot of interest hundreds years

ago. Thus, Jakob Bernoulli (Swiss mathematician, 1654–1705) and many other

mathematicians of that time including his own brother, Johann Bernoulli

(1667–1748) knew that the series at p ¼ 2 must converge, so that the infinite sumP1
n¼1

1
n2 ¼ 1þ 1

4
þ 1

9
þ 1

16
þ . . . must have a limit. Leonhart Euler (Swiss mathemati-

cian, 1707–1786) who was a student of Johann Bernoulli, became immediately

famous when he solved this problem, 40 years after it was stated and found that the

sum of this infinite series is π2

6
. Much of Euler’s genius lay in his ability to apply

new and creative approaches to existing problems. This was how he solved what

became known as the Basel Problem. The problem challenged mathematicians to

determine the exact value of the infinite series above. The question was originally

proposed by mathematician Pietro Mengoli in 1644.

The development of infinite series was a topic of much interest in the seven-

teenth and eighteenth centuries. Neither Leibniz nor Jakob Bernoulli was able to

determine the sum of this series, although the Bernoulli brothers were able to

determine that the upper bound of the summation was 2. Jacob did this by compar-

ing the series 1þ 1
4
þ 1

9
þ 1

16
þ . . . with a second series with a slightly different

denominator. This second series, 1þ 1
1�2 þ 1

2�3 þ 1
3�4 þ . . . can be rewritten as:

1þ P1
n¼2

1
n n�1ð Þ, a telescoping series, which Bernoulli knew to be convergent, with

the sum equal to 2. (Please show it yourself or look at the solution of Problem 50.)

Noticing that, after the first term, every term in the first series is less than every term

in the second series, Jakob Bernoulli concluded that the top series must converge

and its sum is less than 2.

Although the upper bound of the series was determined, Jakob Bernoulli still

could not find the sum and in 1689 he brought the unsolved problem to the attention

of the larger mathematical community. Forty five years later, in 1734, Euler

determined that
P1
n¼1

1
n2 ¼ π2

6
using a typically creative approach and his solution to

this problem made the 28 year old mathematician famous (see Dunham [16]). By

analogy, Euler also evaluated exact sums of an infinite Dirichlet series at p ¼ 4 and

p ¼ 6 and found the following:
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X1
n¼1

1

n4
¼ 1þ 1

24
þ 1

34
þ � � � ¼ π4

90
,

X1
n¼1

1

n6
¼ 1þ 1

26
þ 1

36
þ � � � ¼ π6

945
:

Finding exact sums of convergent infinite series is a challenging problem in many

cases. For example, it is established that Dirichlet series,
P1
n¼1

1
np, is convergent for

p > 1, however, there is no much success in finding infinite sums for odd values of

p. There is an obvious question: Can we find such infinite sums? Leonard Euler

attempted to find such sums but finally simply said, “The problem is very complex,”

which discouraged many mathematicians. Moreover, even now such sums are not

found.

Some methods of finding exact infinite sums for even powers of p will be

explained and demonstrated in Section 3.3. Let us see how the Comparison

Criterion, (Theorem 3.3) can be applied for a familiar harmonic series,

1þ 1

2
þ 1

3
þ 1

4
þ . . .þ 1

n
þ . . . ¼

X1
n¼1

1

n
: ð3:1Þ

The limit of the nth term is zero, so the series passes the Necessary Condition

(Theorem 3.1). However, the series is divergent. Let us prove that the limit of the

partial sums does not exist. First, we combine some terms together and then we try

to find the lower boundary for each group inside parentheses.

1þ 1

2

� �
þ 1

3
þ 1

4

� �
þ 1

5
þ 1

6
þ 1

7
þ 1

8

� �
þ 1

9
þ 1

10
þ 1

11
þ 1

12
þ 1

13
þ 1

14
þ 1

15
þ 1

16

� �
þ . . .

1

3
þ 1

4
>

1

4
þ 1

4
¼ 1

2

1

5
þ 1

6
þ 1

7
þ 1

8
> 4 � 1

8
¼ 1

2

1

9
þ 1

10
þ 1

11
þ 1

12
þ 1

13
þ 1

14
þ 1

15
þ 1

16
> 8 � 1

16
¼ 1

2
, etc:

Therefore, the sums inside each parentheses are greater than 1
2
.
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Next, consider the infinite series,

X1
n¼1

vk ¼ 1þ 1

2
þ 1

4
þ 1

4
þ 1

8
þ 1

8
þ 1

8
þ 1

8

þ 1

16
þ 1

16
þ 1

16
þ 1

16
þ 1

16
þ 1

16
þ 1

16
þ 1

16
þ . . .

ð3:2Þ

If we group the terms of this series in the same pattern as we used above, each group

after the first term will be equal to½. Therefore, we can state that the sum of Eq. 3.1

is greater than the sum of Eq. 3.2. For (3.2) we can record the following partial

sums:

n¼ 2k : S2 ¼ 1þ 1

2

S22 ¼ S4 ¼ 1þ 2 � 1
2

S23 ¼ S8 ¼ 1þ 3 � 1
2

. . .

S2k ¼ Sn ¼ 1þ k � 1
2

When k ! 1, limS2k ¼ 1, the series of Eq. 3.2 is divergent, so by Theorem 3.3,

the series of Eq. 3.1 is divergent.

3.1.2.2 Sufficient Convergence Theorems

In order series
P1
k¼1

uk with nonnegative terms to converge, it is necessary and

sufficient that the sequence of the partial sums {Sn} for this series be bounded.

There are several series convergence theorems, the most important are D’Alembert

Sufficient Convergence Theorem (Jean D’Alembert, French mathematician,

1717–1783) and the Cauchy Sufficient Convergence Test.

Theorem 3.5 (D’Alembert Sufficient Convergence Theorem) Let the seriesP1
n¼1

un, where un > 0 be given, and if starting from some nth term of the series,

the inequality unþ1

un
� M < 1 holds, then the series is convergent. If

unþ1

un
� M > 1, then the series is divergent.
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Corollary 3.3 (D’Alembert Sufficient Ratio Test) Let for series
P1
k¼1

uk

uk > 0ð Þ there exists the limit lim
k!1

ukþ1

uk
¼ L.

If lim
n!1

unþ1

un
¼ L < 1, then

P1
n¼1

un is convergent

If lim
n!1

unþ1

un
¼ L > 1, then

P1
n¼1

un is divergent

If lim
n!1

unþ1

un
¼ 1, then it is inconclusive and additional investigation of the

series would be needed.

Theorem 3.6 (Cauchy Convergence Sufficient Root Test) If for the seriesP1
k¼1

uk (uk > 0) there exists lim
k!1

ffiffiffiffiffi
ukk

p ¼ L, then:

If L < 1; then the series is convergent.

If L > 1; then it is divergent.

It is inconclusive if L ¼ 1. (Additional investigation of the series will be

needed.)

From the existence of the limit lim
k!1

ukþ1

uk
, it follows that there also exists the limit

lim
k!1

ffiffiffiffiffi
ukk

p
.

Remark. The converse statement is not always true because the Cauchy Root Test

is “stronger” than the D’Alembert Ratio Test.

For infinite series where the antiderivative of the terms can be found, it is useful

to apply the Cauchy Integral Convergence Test.

Theorem 3.7 (Cauchy Integral Convergence Test)

If the terms of
P1
k¼1

uk satisfy the inequality u1 > u2 > u3 > . . . > un > . . . and

have type uk ¼ f kð Þ where f(x) is nonnegative integrable function that

is monotonically decreasing on the interval 1;þ1½ Þ, then series
P1
k¼1

uk

and improper integral
Ð1
1

f xð Þdx converge or diverge simultaneously.

In the case of convergence, the following inequality holds:Ð1
1

f xð Þdx � P1
n¼1

un �
Ð1
1

f xð Þdxþ u1.
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Note. Remember that if
Ð1
1

f xð Þdx¼ lim
n!1

Ðn
1

f xð Þdx exists, then an improper integral

is convergent and if the limit at n ! 1 does not exist, then the integral is divergent.

If the Cauchy Integral Convergence Test is applicable, then it allows us to find

for convergent series the lower and upper boundary for the infinite sum. Let us see

an application of Theorem 3.7 by solving Problem 103.

Problem 103 For the following series: 1
3
þ 1

8
þ 1

15
þ 1

24
þ 1

35
þ . . .. Find the nth

term of the series. Investigate whether or not the given infinite series is

convergent or divergent. When you are making your statement, provide the

corresponding theorem that you used.

Solution. Notice that each denominator is a product of two natural numbers that

differ by two. Thus, the sum can be written as
P1
n¼1

1
n2þ2n : The necessary condition is

satisfied, because lim
n!1

1
n2þ2n ¼ 0. Applying the Cauchy Integral Test we can find

that f xð Þ ¼ 1
x xþ2ð Þ ¼ 1

2
1
x � 1

xþ2

� �
and that

Ð1
1

f xð Þdx ¼ ln3
2
: Therefore, the given

infinite series is convergent and their sum is bounded, ln3
2
� P1

n¼1

1
n2þ2n � ln3

2
þ 1

3
:

Since the numbers within each denominator differ by two, we can evaluate this sum

exactly as
P1
n¼1

1
n2þ2n ¼ 1

2

P1
n¼1

1
n �

P1
n¼1

1
nþ2

� �
so

Sn ¼ 1

2
1þ 1

2
þ 1

3
þ 1

4
þ . . .þ 1

n
� 1

3
� 1

4
� . . .� 1

n
� 1

nþ 1
� 1

nþ 2

� �
Sn ¼ 1

2
1þ 1

2
� 1

nþ 1
� 1

nþ 2

� �
and lim

n!1 Sn ¼ 3
4
: The series converges. Moreover, its sum is precisely between the

lower and upper bounds given by Theorem 3.7.

ln 3

2
� 3

4
� ln 3

2
þ 1

3
:

Answer. The series converges to ¾.

Here are some problems for practice. You need to decide which theorem to use.
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Problem 104 Given
P1
n¼1

un ¼ 3
2
þ 1

1
þ 5

4
þ 9

7
þ 13

10
þ 17

13
þ . . ..

a) Find the nth term of the series.

b) Investigate whether or not the given infinite series is convergent or

divergent. When you are making your statement, provide the

corresponding theorem that you used.

Solution. Ignoring the first term, we notice that the numerator’ numbers differ by

4 and the denominator’s numbers differ by 3. This series will have the following nth

term: un ¼ 4n�7
3n�5

. Note that the first term is also described by this formula.

a) The necessary condition does not hold, because lim
n!1

4n�7
3n�5

¼ 4
3
6¼ 0.

b) Therefore, the series diverges.

Problem 105 cos 1
3
þ cos 1

6
þ cos 1

9
þ cos 1

12
þ cos 1

15
þ ::::

a) Find the nth term of the series.

b) Investigate whether or not the given infinite series is convergent or

divergent. When you are making your statement, provide the

corresponding theorem that you used.

Solution. This series can be written as cos 1
3
þ cos 1

6
þ cos 1

9
þ cos 1

12
þ

cos 1
15
þ :::: ¼ P1

n¼1

un ¼
P1
n¼1

cos 1
3n.

a. The necessary condition does not hold, because

lim
n!1 cos 1

3n ¼ cos lim
n!1

1
3n

� �
¼ cos 0 ¼ 1 6¼ 0.

b. Therefore, the series diverges.

Problem 106 Investigate whether the series
P1
n¼1

2n�1ffiffi
2

pð Þn is convergent or

divergent.
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Solution. Consider the D’Alembert Sufficient Ratio Test (Corollary 3.3)

lim
n!1

unþ1

un
¼ lim

n!1
2 nþ 1ð Þ � 1ð Þffiffiffi

2
p	 �nþ1

�
ffiffiffi
2

p	 �n
2n� 1ð Þ ¼ lim

n!1
2nþ 1ffiffiffi

2
p	 � � 1

2n� 1ð Þ

( )
¼ 1ffiffiffi

2
p

Since 1ffiffi
2

p < 1, then
P1
n¼1

2n�1ffiffi
2

pð Þn converges.

Problem 107 Investigate whether the series is convergent or divergentP1
n¼1

n
3n�1

	 �2n
.

Solution. Let us use Cauchy Convergence Sufficient Root Test (Theorem 3.6) by

evaluating lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

3n�1

	 �2nn

q
¼ lim

n!1
n

3n�1

	 �2 ¼ 1
9
< 1. The series is convergent.

Problem 108 For the series
P1
n¼3

1
n2�4

. a) Investigate whether or not it is

convergent or divergent. b) If it is convergent then evaluate the partial sum

and its limit when n increases without bound.

Solution.
a. Let us use the Cauchy Integral Convergence Test (Theorem 3.7) to demonstrate

that the series is convergent. First, remember from our earlier work that

1
x2�4

¼ 1
x�2ð Þ xþ2ð Þ ¼ 1

4
1

x�2
� 1

xþ2

� �
so that,

Ð1
3

dx
x2�4

¼ 1
4

Ð1
3

dx
x�2

� Ð1
3

dx
xþ2


 �
¼ ln5

4
.

Since the limit exists, the integral is convergent and the series is convergent

and its infinite sum is bounded as ln 5
4
� P1

n¼3

1
n2�4

� ln 5
4
þ 1

5
:

b. Now let us look at the sum,

X1
n¼3

1

n2 � 4
¼ 1

4

X1
n¼3

1

n� 2
�
X1
n¼3

1

nþ 2

 !
X1
n¼3

1

n� 2
¼ 1þ 1

2
þ 1

3
þ 1

4
þ 1

5
þ . . .þ 1

n� 2
þ . . .

X1
n¼3

� 1

nþ 2
¼ �1

5
� 1

6
� 1

7
� . . .� 1

n� 2
� 1

n� 1
� 1

n
� 1

nþ 1
� 1

nþ 2
� ::::
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Therefore, with many of the terms cancelling, we are left with

Sn ¼ 1

4
1þ 1

2
þ 1

3
þ 1

4
� 1

n� 1
� 1

n
� 1

nþ 1
� 1

nþ 2


 �
lim
n!1 Sn ¼ 1

4
1þ 1

2
þ 1

3
þ 1

4

� �
¼ 25

48
:

It is true that

ln 5

4
� 25

48
� ln 5

4
þ 1

5

0:4022359 � 0:520833 � 0:602359

Answer. 25/48.

Remark. In order to prove that the series
P1
n¼3

1
n2�4

is convergent, we can compare it

with convergent series
P1
n¼3

1
n2. Considering Corollary 3.2, we obtain that

lim
n!1

an
bn
¼ lim

n!1
n2

n2�4
¼ 1. Therefore, the series behaves the same, i.e., converge.

Problem 109 Investigate whether or not the series
P1
n¼1

un ¼
P1
n¼1

1
n2þ2

is

convergent or divergent.

Solution. Consider an auxiliary series
P1
n¼1

vn ¼ P1
n¼1

1
n2. We can see that

0 < un ¼ 1
n2þ2

< 1
n2 ¼ vn. Since

P1
n¼1

1
n2 converges then

P1
n¼1

1
n2þ2

converges:We have

used the Comparison Criterion (Theorem 3.3) to prove convergence.

In order to investigate convergence of numerical series, we usually have to

evaluate limits at infinity, so often the well-known conditions of equivalence of

infinitesimals will be used:

sin
1

n

� �
� 1

n
, tan

1

n

� �
� 1

n
, ln 1þ 1

n

� �
� 1

n
; ð3:3Þ

arcsin
1

n
� 1

n
, arctan

1

n
� 1

n
, e

1
n � 1 � 1

n
: ð3:4Þ
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The following formula is also very important to know:

Stirling’s Formula : n ! �
ffiffiffiffiffiffiffiffi
2πn

p
� n

e

� �n
ð3:5Þ

Additionally, we use the following limits:

lim
n!1

ln n

np
¼ 0 ðp > 0Þ, lim

n!1 1þ 1

n
Þn ¼ e, lim

n!1
ffiffiffi
nn

p ¼ 1:

�
ð3:6Þ

Problem 110 Is arcsin1þ arcsin 1
2
þ arcsin 1

3
þ . . .þ arcsin 1

n þ . . . conver-

gent or divergent?

Solution. Let
P1
n¼1

un ¼
P1
n¼1

arcsin 1
n ,
P1
n¼1

vn ¼
P1
n¼1

1
n. By Corollary 3.2 and using the

first formula of Eq. 3.4, we have that lim
n!1

un
vn
¼ 1. Therefore, both series behave the

same, and hence it is divergent as harmonic series.

Problem 111 Using the Cauchy Integral Convergence Test prove that the

series
P1
n¼1

1
n2þ1

is convergent.

Proof. Common term of this series is un ¼ 1
n2þ1

¼ f nð Þ. Replacing n by x, we

obtain function f xð Þ ¼ 1
x2þ1

. This function satisfies the condition of the Cauchy Inte-

gral Convergence Test (Theorem 3.7) because it is positive and monotonically

decreasing as x increasing. Evaluate the improper integral,

ðþ1

1

dx

x2 þ 1
¼ arctan x

þ1
1

���� ¼ lim
x!þ1 arctan x� arctan 1 ¼ π

2
� π

4
¼ π

4
:

Since it converges, the series also converges. Additionally, we could obtain the

lower and upper boundary for the infinite sum, π
4
� P1

n¼1

1
n2þ1

� π
4
þ 1

2
, and to obtain its

approximation as 0:785398 � P1
n¼1

1
n2þ1

� 1:2854.
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Remark. Convergence of this series can be proven with the use of Comparison

Criterion (Theorem 3.3) and by comparing this series with Dirichlet series
P1
n¼1

1
n2,

that is convergent at p¼ 2> 1. Since un ¼ 1
n2þ1

< vn ¼ 1
n2, then the given series is

convergent. Further, using the Comparison Criterion, we also can obtainP1
n¼1

1
n2þ1

<
P1
n¼1

1
n2 ¼ π2

6
� 1:6449.

Obviously, the Cauchy Integral Convergence Test gives us a better upper bound

approximation for the infinite sum.

Problem 112 Is the series
P1
n¼1

nn

2n�n ! convergent or divergent?

Solution. In order to apply the D’Alembert Sufficient Ratio Test, we find that the

common term of the series is un ¼ nn

2n�n !. Replacing n by nþ 1ð Þ we obtain

unþ1 ¼ nþ1ð Þnþ1

2nþ1� nþ1ð Þ !. Next, we find: unþ1

un
¼ nþ1ð Þnþ1�2n�n !

2nþ1� nþ1ð Þ !�nn ¼
nþ1ð Þn
2�nn ¼ 1

2
� 1þ 1

n

	 �n
. Using

the second formula of Eq. 3.6, we obtain lim
n!1

unþ1

un
¼ 1

2
lim
n!1 1þ 1

n

	 �n ¼ e
2
. However,

e > 2, then e
2
> 1, so by the D’Alembert Sufficient Ratio Test the series diverges.

3.1.2.3 Gauss and Dirichlet Convergence Theorems

Next, we discuss what can be done if both D’Alembert Ratio and Cauchy Conver-

gence Sufficient Root Test are inconclusive and the Cauchy Integral test cannot be

applied. How can we determine if a given series converges or diverges? Suppose

that the limit as n approaches infinity of the ratio of the nþ 1ð Þst to the nth terms

equals one. Then the ratio test is inconclusive. In these cases Gauss proposed a ratio

test of preceding to following consecutive terms.

Theorem 3.8 (Gauss’s Convergence Theorem). Consider series

a1 þ a2 þ . . .þ an þ anþ1 þ . . . ,
an
anþ1

¼ λþ μ

n
þ vn
n2
;

where λ, μ are constants and vnj j � M

(bounded value).

The series
P1
n¼1

an is convergent if λ > 1 or λ ¼ 1, μ > 1:

The series
P1
n¼1

an is divergent if λ < 1 or λ ¼ 1, μ � 1:
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Gauss’s Convergence Theorem is very useful if other tests do not allow us to

make a conclusion regarding series convergence. Let us demonstrate its application

by solving the following problem.

Problem 113 The series
P1
n¼1

an is defined by an ¼ 1�3�5�7�...� 2n�1ð Þ
2�4�6�8�...�2n

� �2
: Is it

convergent?

Solution. First, we try applying the ratio test (Corollary 3.3):

lim
n!1

anþ1

an
¼ lim

n!1
2nþ 1

2nþ 2

� �2

¼ lim
n!1

4n2 þ 4nþ 1

4n2 þ 8nþ 4
¼ 1: The limit is one, so the

ratio test is inconclusive. Let us consider the reciprocal of this ratio and apply

Gauss principle,
an
anþ1

¼ 4n2 þ 8nþ 4

4n2 þ 4nþ 1
¼ 1þ 2

n þ 1
n2

1þ 1
n þ 1

4n2
¼ 1þ 1

n
þ vn
n2
. We can see that

λ ¼ 1, μ ¼ 1 � 1. Therefore, the series diverges.

If an > 0 then it is often useful to use a different form of Gauss’s Convergence

Theorem (Corollary 3.4).

Corollary 3.4 (Gauss) If an > 0 and there exists a number ε > 0, such that

anþ1

an
¼ 1þ μ

n
þ O

1

n1þε

� �
, n ! 1; ð3:7Þ

then the series
P1
n¼1

an converges if μ < �1 and it diverges if μ � �1:

Gauss’s Convergence Theorem considers the case where lim
n!1

anþ1

an
¼ 1

(D’Alembert’s ratio test is inconclusive) and compares a sequence {an} with the

sequence n�μf g: Basically, this test compares the given series with a geometric

progression. μ ¼ 1ð Þ.

Corollary 3.5 (Dirichlet) Ifan > 0 and there exist two numbers p and C > 0,

such that

an � C

np
, n ! 1; ð3:8Þ

then
P1
n¼1

an converges if p > 1, and diverges if p � 1:
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We apply this property when we can compare series with Dirichlet series
P1
n¼1

1
np :

The question is when and how we use one of these two tests. The answer depends on

which of two comparisons, Eq. 3.7 or Eq. 3.8 is easier to obtain.

Let us practice by solving the following problems.

Problem 114 Is the series
P1
n¼1

sin
π
nð Þ

np convergent or divergent?

Solution. Using the first formula of Eq. 3.3 for a sine function with

sin π
nÞ � π

n ) an � π
npþ1 , n ! 1:

	
Then using Eq. 3.8, we can state that the series

will converge if p > 0 pþ 1 > 1ð Þ and diverge if p � 0 pþ 1 � 1ð Þ:

Problem 115 Is the series
P1
n¼1

n!en

nnþp convergent or divergent?

Solution. Let us apply Corollary 3.4 for the ratio of two consecutive terms:

anþ1

an
¼ nþ 1ð Þ!enþ1nnþp

nþ 1ð Þnþpþ1n!en

¼ e
nnþp

nþ 1ð Þnþp ¼ e
1

1þ 1
n

 !nþp

¼ e 1þ 1
n

	 �� nþpð Þ � 1þ 1

n

1

2
� p

� �
þ O

1

n2

� �
, n ! 1:

Above we used a binomial distribution. Since μ ¼ 1
2
� p, then if p > 3

2
then the

given series is convergent and if p � 3
2
by Gauss’s Convergence Theorem.

In particular, necessary representation can be obtained by using Eq. 3.6

and applying Taylor’s formula, which we practice in Section 3.2.2.

3.1.3 Alternating Series

In this Section, the following important topics will be discussed:

• Alternating Series. Leibniz Convergence Theorem

• Absolutely and conditionally convergent series

• Abel’s and Dirichlet’s Convergence Theorems

• The error of estimation of an infinite sum by a finite sum
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The alternating series is a series in which all terms alternate by sign,P1
k¼1

�1ð Þk�1ak ¼ a1 � a2 þ a3 � a4 þ . . .þ �1ð Þk�1ak þ . . ., where ak are num-

bers of the same sign. For example, 1� 1
2
þ 1

3
� 1

4
þ . . .þ �1ð Þnþ1

n þ . . . is an alter-

nating Leibniz series.

3.1.3.1 Leibniz Criteria for Alternating Series

Theorem 3.9 (Leibniz Theorem) Let all terms of the alternating seriesP1
k¼1

ð�1Þk�1ak, where ak � 0 satisfy the conditions:

1) ak � akþ1 8k 2 ℕ;

2) lim
k!1

ak ¼ 0,

then the series
P1
k¼1

�1ð Þk�1ak converges and its sum S is less than or equal

to the first term, i.e., S � a1.

Series, satisfying the condition of Theorem 3.9 are called Leibniz series. Leibniz

was a German mathematician (1646–1716), together with Issac Newton, he is often

called a founder of mathematical analysis.

The remainder rn ¼ �1ð Þn anþ1 � anþ2 þ . . .ð Þ of the Leibniz series satisfies the
inequality jrnj � anþ1. Therefore, if we approximate the sum of convergent alter-

nating series by a partial sum, then the value of the error will not exceed the

absolute value of the first dropped term, anþ1j j and will have its sign.

If all terms of an alternating series

X1
n¼1

�1ð Þn � an ¼ a1 � a2 þ . . .þ �1ð Þn � an þ . . . an > 0ð Þ ð3:9Þ

1. Are monotonically decreasing by absolute value, anþ1 < an n ¼ 1, 2, 3, . . .ð Þ
2. Approach zero, i.e., lim

n!1 an ¼ 0, the series of Eq. 3.9 is convergent, its sum S is

positive and does not exceed the first term of the series, 0 < S < a1.

Alternatively, if the alternating series starts from a negative term,

�a1 þ a2 � a3 þ . . . an > 0ð Þ, and for this series the conditions 1) and 2) of the

Leibniz Theorem are valid, then this series is convergent, its sum S is negative and it
satisfies the inequality, �a1 < S < 0.
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Let us solve the following problem.

Problem 116 Investigate whether or not the following series is convergent

or divergent
P1
n¼1

�1ð Þnþ1 � 1þ 1
n

	 �n
.

Solution. This series is alternating. The value of the common term is

an ¼ 1þ 1
n

	 �n
. Let us find the limit of the nth term to infinity (see Eq. 3.6):

lim
n!1 an ¼ lim

n!1 1þ 1
n

	 �n ¼ e. Because the limit of the common term does not

approach zero, then the series diverges (the necessary condition is not fulfilled).

3.1.3.2 Absolutely and Conditionally Convergent Alternating Series

Convergent alternating series can be either absolutely or conditionally convergent.

Definition. The series
P1
k¼1

ak is absolutely convergent, if the series with

nonnegative terms
P1
k¼1

akj j is convergent. If the series absolutely convergent,

then it is convergent.

The converse statement, in general, is not true. Absolutely convergent series

have the following properties:

• if the series
P1
k¼1

ak is absolutely convergent and
P1
k¼1

ak ¼ S,
P1
k¼1

akj j ¼ Σ, then

Sj j � Σ;

• if the series
P1
k¼1

ak and
P1
k¼1

bk are absolutely convergent, then for any α and β, the

series
P1
k¼1

αak þ βbkð Þ is absolutely convergent;

• if the series
P1
k¼1

ak is absolutely convergent, the series made from the same terms

taken in a different order is also absolutely convergent and its sum equals the

sum of the original series.
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Example 3. Consider the following alternating series:

1� 1

2
þ 1

22
� 1

23
þ . . . ð3:10Þ

Let make a series from this one by interchanging neighboring members of the

series:

�1

2
þ 1� 1

23
þ 1

22
� . . . ð3:11Þ

Because the series made of the absolute values of the original series,P1
n¼0

1
2n
¼ 1þ 1

2
þ 1

22
þ 1

23
þ � � � ¼ 1

1�1
2

¼ 2 converges as a geometric series, then the

original series of Eq. 3.10 is absolutely convergent and its sum equals

S ¼ 1

1� �1
2ð Þ ¼

2
3
: Hence, the series of Eq. 3.11 obtained by interchanging terms of

Eq. 3.10 will converge as well to the same sum, 2/3.

• If the series
P1
k¼1

ak and
P1
k¼1

bk absolutely convergent, the series made from all

possible paired product akbm of terms of these series, in any order, is also

absolutely convergent.

The last statement can be reformulated as follows:

Theorem 3.10 Let series
P1
k¼1

ak and
P1
k¼1

bk be absolutely convergent and

converge to the sums, Sa and Sb, respectively. Then a new series
P1
k¼1

ak �
P1
k¼1

bk

containing all possible pair products akbm is also absolutely convergent and

its sum equals S ¼ Sa � Sb:

This theorem is a very important theorem and it means that absolute convergent

series can be multiplied term by term. Because in an absolute convergent series any

terms can be added and combined in any way, then we can rewrite the product of

two series as

X1
k¼1

ak�
X1
k¼1

bk ¼ a1 � b1 þ a1b2 þ a2b1ð Þ þ a1b3 þ a2b2 þ a3b1ð Þ þ . . .

þ a1bn þ a2bn�1 þ . . .þ anb1ð Þ þ . . .

¼ S ¼ Sa � Sb:

ð3:12Þ

As it follows from other properties of alternating series that only absolute conver-

gent series have all properties of finite sums.
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Problem 117 Given
P1
n¼1

an ¼
P1
n¼1

1
3n�1 ,

P1
n¼1

bn ¼
P1
n¼1

�1ð Þn�1

3n�1 . Find the product

of two series. It is convergent or divergent?

Solution. Because both series are absolutely convergent, then the product of two

series will be also absolutely convergent and Theorem 3.10 can be applied.

We multiply the series using Eq. 3.12. Here a1 ¼ 1, a2 ¼ 1
3
, . . . , an�1 ¼ 1

3n�2 are

terms of the first series and b1 ¼ 1, b2 ¼ �1
3
, . . . , bn�1 ¼ �1ð Þn�2

3n�2 : Let us find

several products needed for Eq. 3.12:

a1b ¼ 1

a1b2 þ a2b1 ¼ 1 � �1

3

� �
þ 1

3
� 1 ¼ 0

a1b3 þ a2b2 þ a3b1 ¼ 1 � 1
32

þ 1

3
� �1

3

� �
þ 1

32
� 1 ¼ 1

32

a1b4 þ a2b3 þ a3b2 þ a4b1 ¼ 1 � 1

33

� �
þ 1

3
� 1
32

þ 1

32
� �1

3

� �
þ 1

33
� 1 ¼ 0

Next, we calculate

ða1bn þ a2bn�1 þ � � � þ an�1b2 þ anb1Þ

¼ 1 � ð�1Þn�1 1

3n�1
þ 1

3
� ð�1Þn�2 1

3n�2
þ � � � þ 1

3n�2
� �1

3

� �
þ 1

3n�1
� 1

¼ ð�1Þn�1

3n�1
þ ð�1Þn�2

3n�1
þ � � � � 1

3n�1
þ 1

3n�1

¼
( 0, if n ¼ 2k

1

3n�1
, if n ¼ 2k � 1

k 2 :

X1
k¼1

ak�
X1
k¼1

bk ¼¼ 1þ 0þ 1

32
þ 0þ . . .þ 1

3n�1
þ 0

¼ 1þ 1

32
þ 1

34
þ 1

36
þ . . .þ 1

32m�2
þ . . . ¼

X1
m¼1

1

32m�2
:

¼ 1

1� 1

9

¼ 9

8
:
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On the other hand, Sa ¼
P1
k¼1

ak ¼ 1þ 1
3
þ 1

9
þ . . . ¼ 1

1�1
3

¼ 3
2
, Sb ¼ 1

1þ1
3

¼ 3
4

so

Sa � Sb ¼ 3
2
� 3
4
¼ 9

8
:

Answer. 9/8.

Problem 118 Prove that the series
P1
n¼1

sin n
n3 is absolutely convergent.

Proof. Consider the series:

X1
n¼1

sin nj j
n3

¼ sin 1j j
13

þ sin 2j j
23

þ . . .þ sin nj j
n3

þ . . . ð3:13Þ

Since |sin n|� 1, then each term of Eq. 3.13 does not exceed the corresponding term

of the following series

X1
n¼1

1

n3
¼ 1

13
þ 1

23
þ . . .þ 1

n3
þ . . . ð3:14Þ

The series of Eq. 3.14 is a Dirichlet series of type
X1
n¼1

1

np
, where p¼ 3. Since p> 1,

the series of Eq. 3.14 is convergent. By Theorem 3.3, series of Eq. 3.13 is also

convergent. Then, by the absolute convergence theorem, the given alternating

series is absolutely convergent.

Definition. Series
P1
k¼1

ak is called conditionally convergent, if series
P1
k¼1

ak

converges, but the series
P1
k¼1

akj j diverges.

Example. The series
P1
n¼1

�1ð Þnþ1

n ¼ 1� 1
2
þ 1

3
� . . .þ �1ð Þnþ1 � 1n þ . . . is called

Leibniz and is convergent by the Leibniz Theorem. On the other hand, its

corresponding absolute value series,
P1
n¼1

1
n ¼ 1þ 1

2
þ 1

3
þ . . .þ 1

n þ . . . is divergent

(harmonic series). Therefore, the Leibniz series is conditionally convergent series.
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Example. The series
P1
n¼1

�1ð Þnþ1

np p > 0ð Þ is an alternating series. If p > 0 it satisfies

the Leibniz Theorem, i.e.

1) 1
nþ1ð Þp <

1
np n ¼ 1, 2, 3, . . .ð Þ

2) lim
n!1

1
np ¼ 0

and, hence, it is convergent. If we replace all its terms by their absolute values, we

obtain the Dirichlet series,

X1
n¼1

1

np
; ð3:15Þ

which is convergent for p > 1 and divergent for p � 1. Therefore, the series

of Eq. 3.15 is absolutely convergent for p > 1 and conditionally convergent for

0 < p � 1.

For the series
P1
k¼1

ak denote by aþ1 , a
þ
2 , . . ., a

þ
k ,. . . and a�1 , a

�
2 , . . ., a

�
k , . . .

respectively, its nonnegative and negative terms taken in the same order, in which

they are in the series
P1
k¼1

ak. Consider the series
P1
k¼1

aþ
k
and

P1
k¼1

a�
k
. If the series

P1
k¼1

ak

conditionally converges, then both series
P1
k¼1

aþ
k
and

P1
k¼1

a�
k
are divergent.

Example. Consider a familiar Leibniz series,
P1
n¼1

�1ð Þnþ1

n ¼ 1� 1
2
þ 1

3
� . . .þ

�1ð Þnþ1 � 1n þ . . .. For this conditionally convergent series, we have
P1
k¼1

aþ
k
¼ 1þ

1
3
þ 1

5
þ 1

7
þ . . .þ 1

2n�1
þ . . . and

P1
k¼1

a�
k
¼ �1

2
� 1

4
� 1

6
� . . .� 1

2n � . . ., which are

both divergent.

Earlier we have learned that interchanging the order of the terms of an absolutely

convergent alternating series does not change the series sum. This fact is not true for

a conditionally convergent series and the sum of the series will depend on the order

of its terms!

Example. Consider conditionally convergent Leibniz series again and denote its

sum by S,

S ¼ 1� 1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
þ . . .þ �1ð Þn�11

n
þ . . . ð3:16Þ

Next, let us change the order of the terms in the infinite sum, in such a way that a

positive term will follow by two negative terms:
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1� 1

2
� 1

4

� �
þ 1

3
� 1

6
� 1

8

� �
þ 1

5
� 1

10
� 1

12

� �
þ . . .

This can be further regrouped as

1� 1

2

� �
� 1

4
þ 1

3
� 1

6

� �
� 1

8
þ 1

5
� 1

10

� �
� 1

12
þ . . . ð3:17Þ

and evaluated as

1

2
� 1

4
þ 1

6
� 1

8
þ 1

10
� 1

12
þ . . .

¼ 1

2
� 1� 1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
þ . . .

� �
¼ 1

2
� S:

We can see that after interchanging the order of terms in the series of Eq. 3.16, we

obtained the series of Eq. 3.17, the sum of which decreased by half!

Can we increase the sum of infinite series of Eq. 3.16 by rearranging its term

differently? The answer is “Yes.” For example, we can rearrange the terms of

Eq. 3.16 in such a way that two positive terms will follow one negative and so on

and this series will have a larger sum, 3S
2
, than the original series of Eq. 3.16, i.e.,

1þ 1
3
� 1

2

	 �þ 1
5
þ 1

7
� 1

4

	 �þ 1
9
þ 1

11
� 1

6

	 �þ . . . ¼ 3
2
S:

Let us prove that the sum on the left is 3/2 of the Leibniz sum (Eq. 3.16). The

left-hand side can be rewritten as

1� 1

2
þ 1

3
� 1

4
þ 1

2
þ 1

4
� 1

2

� � �
þ 1

5
� 1

6
þ 1

7
� 1

8
þ 1

6
þ 1

8
� 1

4

� � �
þ 1

9
� 1

10
þ 1

11
� 1

12
þ 1

10
þ 1

12
� 1

6

� � �
þ . . .

Next, we separately add all the terms inside all parentheses and all the terms inside

all braces and obtain:

1� 1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
þ 1

7
� 1

8
þ 1

9
� 1

10
þ . . .

� �
þ 1

4
þ 1

6
� 1

8
þ 1

10
� 1

12
þ . . .

� 
Denoting the Leibniz infinite sum inside parentheses by S, let us express the sum

inside braces in terms of S:

3.1 Numerical Series 147



Sþ 1

2

1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
þ . . .

� �
¼ Sþ 1

2
1� 1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
þ . . .

� �
¼ Sþ 1

2
S ¼ 3

2
� S:

This completes the proof.

The German mathematician Bernhard Riemann (1826–1866) proved that the

sum of conditionally convergent series depends on the order of the terms and that by

rearranging terms of a conditionally convergent series, the sum of the new series

can become equal to any a priory given number. Changing the order of the terms

can change the sum. Moreover, some rearrangements will lead to a divergent

alternating series.

The following statement is valid.

Theorem 3.11 (Riemann) If the series
P1
k¼1

ak is conditionally convergent,

then for any real number S, its terms can be rearranged in such a way that the

sum of the obtained series will be S.

3.1.3.3 Convergence of Series Formed by the Product of Terms

If the nth term of a series can be represented as a product of the common terms of

two other series, i.e.,
P1
k¼1

akbk then the following statements are true:

Theorem 3.12 (Dirichlet Theorem) Let for series
P1
k¼1

akbk the following be

true:

1. The sequence {ak} is monotonic and lim
k!1

ak ¼ 0

2. The sequence of the sums {Bn}, Bn ¼ b1 þ b2 þ . . .þ bn, is bounded, i.e.,

∃M > 0 8n 2 N Bnj j ¼ Pn
k¼1

bk

���� ���� � M

� �
,

then the series
P1
k¼1

akbk converges.

Let us see how Theorem 3.12 can be used by solving the next problem.
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Problem 119 Investigate convergence of the series:
P1
n¼1

sin n� sin n2
n .

Solution. Let an ¼ 1
n , bn ¼ sin n � sin n2: It is clear that the first sequence {an} is

monotonically decreasing and approaching zero. Applying formula of the product

of two sines to the common term of the second sequence, we obtain

sin k � sin k2 ¼ 1
2

cos k2 � k
	 �� cos k2 þ k

	 �	 �
; then

Bn ¼
Xn
k¼1

sin k � sin k2 ¼ 1

2

Xn
k¼1

cos k2 � k
	 �� cos k2 þ k

	 � !

¼ 1

2
cos 0� cos 2þ cos 2� cos 6þ . . .þ cos n2 � n

	 �� cos n2 þ n
	 �	 �

¼ 1

2
1� cos n2 þ n

	 �	 �
:

Because Bnj j ¼ 1
2
1� cos n2 þ nð Þð Þ�� �� � 1 8n 2 N, then the series

P1
n¼1

sin n� sin n2
n is

convergent.

Theorem 3.13 (Abel’s Theorem) For series
P1
k¼1

akbk, let the following be

true:

1. The sequence {ak} is bounded and monotonic,

2. The series
P1
k¼1

bk converges.

Then the series
P1
k¼1

akbk converges.

Using Abel’s Theorem, let us solve the following problem.

Problem 120 Investigate convergence of the series
P1
n¼1

3þ2 cos π
2nð Þffiffiffiffiffiffiffiffiffiffiffi

n11þ10
6
p .

Solution. Note that sequence an ¼ 3þ 2 cos π
2n

� �
is bounded and monotonic and

the series
P1
n¼1

bn ¼
P1
n¼1

1ffiffiffiffiffiffiffiffiffiffiffi
n11þ10

6
p <

P1
n¼1

1

n
11
6

converges. Hence, by Abel’s Theorem the

given series is convergent.
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In order to solve next problem, we need to recall the inequality between an

arithmetic and geometric means.

Problem 121 Given
P1
n¼1

a2n and
P1
n¼1

b2n are convergent series. Prove that the

series,
P1
n¼1

anbn is absolutely convergent.

Proof. Obviously,
P1
n¼1

a2nþb2nð Þ
2

is convergent. Using the inequality between arith-

metic and geometric mean, anbnj j � a2nþb2n
2

8n 2 N, we can see that an absolute

value of each term of the series
P1
n¼1

janbnj does not exceed the corresponding term ofP1
n¼1

a2nþb2nð Þ
2

. Therefore, by the Comparison Criterion (Theorem 3.3), the seriesP1
n¼1

anbn is absolutely convergent.

3.1.3.4 An Error of Estimation of an Infinite Sum by a Partial Sum

The following corollary from Leibniz’s Theorem (Theorem 3.9) allows us to

estimate an infinite sum of alternating series by the sum of its first several terms.

Corollary 3.6 If the sum of the Leibniz series, S, is replaced by the sum of

the first n terms (Sn) of the series, then absolute error jrnj does not exceed the

absolute value of the first of the dropped terms: rnj j � anþ1j j.

The sign of the error (rn) coincides with the sign of the first dropped term. Here

rn ¼ S� Sn.
Let us apply this corollary by solving the problems below.

Problem 122 How many terms of the series
P1
n¼1

�1ð Þnþ1 � 1
n3 ¼

1� 1
23
þ 1

33
� 1

43
þ . . .þ �1ð Þn

n3 þ . . . are needed in order to estimate the sum

of the series with accuracy of 0.001?

Solution. This is an alternating series satisfying the Leibniz Theorem. Moreover,

the corresponding positive series is convergent as Dirichlet series with p ¼ 3, i.e.,
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1 > 1
23
> 1

33
> 1

43
> . . . ; lim

n!1
1
n3 ¼ 0. Hence, the given series is absolutely conver-

gent. In order to calculate the sum of this series with the specified accuracy, it is

necessary to find such a term, the absolute value of which is less than 0.001, i.e.,
1
n3 < 0:001 or n3 > 1000, or n> 10. Hence, we need to add 10 the first terms of the

series. Since a11 ¼ 1
113

< 0:001, we obtain the following error estimate:

r10j j � a11 < 0:001.

Answer. We need to add the first ten terms of the series.

Problem 123 Find an error of estimation the sum of series
P1
n¼1

�1ð Þnþ1

n ¼ 1

�1
2
þ 1

3
� . . .þ �1ð Þnþ1 � 1n þ . . . by the sum of its first three terms.

Solution. The Leibniz series is conditionally convergent because

anþ1j j < anj j, lim
n!1 an ¼ 0. We have that

S3 ¼ 1� 1
2
þ 1

3
¼ 5

6
. The error of such estimation must satisfy errorj j � �1

4

�� ��
¼ 1

4
¼ 0:25 and the sign of the error is negative so as its fourth term a4 ¼ �1

4

(the first term of the series that was dropped).

Finally, let us summarize the most important convergence theorems for numer-

ical series in Table 3.1.

3.2 Functional Series

The series X1
n¼1

un xð Þ ¼ u1 xð Þ þ u2 xð Þ þ . . .þ un xð Þ þ . . . ð3:18Þ

is called functional series if all its terms are functions of independent variable x. At
each fixed value of x ¼ x0 the functional series of Eq. 3.18 becomes numerical

series

Table 3.1 Numerical series

convergence criteria
Necessary Condition

Positive numerical series Alternating numerical series

Comparison Theorems Leibniz Theorem

D’Alembert Ratio Test Absolute Convergence Theorem

Cauchy Root Test Riemann Theorem

Cauchy Integral Test Dirichlet Theorem

Gauss or Dirichlet Test Abel’s Theorem
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X1
n¼1

un x0ð Þ ¼ u1 x0ð Þ þ u2 x0ð Þ þ . . .þ un x0ð Þ þ . . . ð3:19Þ

The question usually is not whether the series converges but for which value

of x it converges. If series of Eq. 3.19 converge, then x0 is the convergence

point of the series of Eq. 3.18. The set of all convergence points x of

functional series of Eq. 3.18 is called the convergence interval and the function

S xð Þ ¼ lim
n!1 Sn xð Þ ¼ lim

n!1
Pn
k¼1

uk xð Þ is called the sum of the given series. The

function rn xð Þ ¼ S xð Þ � Sn xð Þ is called the remainder of the series of Eq. 3.19.

If the series of Eq. 3.19 diverges, then the value x0 is called the point of

divergence of the series.

There are two types of functional series:

1. Power series represented by
P1
n¼0

anx
n, where each term is a multiple of x.

2. Trigonometric series that can be represented by a0 þ
P1
n¼1

an sin nxþ bn cos nxð Þ,
where each term is a constant multiple of sine and cosine.

In the simplest cases, to determine the region of convergence of the series of

Eq. 3.19, the known criteria of convergence of numerical series, assuming that x is
fixed can be applied. While power series are known to be well-behaved, trigono-

metric series behave unpredictably most of the time. Please recall Problem 70 of

Chapter 2. By proving the relationship, we actually find the nth partial sum of the

series, that is,

Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx ¼ sin nx
2
� sin nþ1ð Þx

2

sin x
2
:

Assume now that we have the corresponding infinite sum
P1
n¼1

sin nx. Does the

following limit exist?

lim
n!1 Sn xð Þ ¼ lim

n!1
sin nx

2
� sin nþ1ð Þx

2

sin x
2
:

Applying the formula for the product of two sines, which also can be found in the

solution of Problem 70, we can rewrite the right hand side as

lim
n!1 SnðxÞ ¼ lim

n!1
cos x

2
� cos

ð2nþ1Þx
2

sin x
2

¼ cot
x

2
� 1

sin x
2

� lim
n!1 cos

2nþ 1

2
� x

� �
The infinite series diverges. Below we focus only on power series.
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3.2.1 Power Series

In this section, we discuss the following important topics:

• Definition of power series, Abel’s theorem

• Convergence of a power series

• Properties of convergent power series

Definition. Series of type, a0 þ a1 x� x0ð Þ þ . . .þ ak x� x0ð Þk þ . . . ¼P1
k¼0

ak x� x0ð Þk, are called power series of x� x0ð Þ. Here ak, x0 – are given

real numbers, x – independent variable. Numbers ak are called coefficients of
power series.

At x0 ¼ 0 we have power series in x: a0 þ a1xþ . . .þ akx
k þ . . . ¼ P1

k¼0

akx
k.

Because the replacement of x� x0 ¼ ξ for series
P1
k¼0

ak x� x0ð Þk can reduce it to the

series
P1
k¼0

akξ
k, then without loss of generality we can consider only the seriesP1

k¼0

akx
k. The power series

P1
k¼0

akx
k is always convergent at point x ¼ 0; at x 6¼ 0

the power series can either converge or diverge.

Theorem 3.14 (Abel’s Theorem) If power series
P1
k¼0

akx
k converges at point

x0 6¼ 0, then it is absolutely convergent on the interval � x0j j < x < x0j j. If at
point x1 6¼ 0, the power series

P1
k¼0

akx
k diverges, then it diverges at all points x,

such that xj j > x1j j.

Proof. Abel, Niels Henrik, Norwegian mathematician, 1802–1829.

Part 1. Assume that the series
P1
k¼0

akx
k converges at point x0 ¼ β 6¼ 0, i.e.,P1

k¼0

akβ
k ¼ a0 þ a1β þ a2β

2 þ . . .þ anβ
n þ . . . converges, then by Theorem 3.1,

limanβ
n

n!1
¼ 0; and there exists a number M, such that anβ

nj j < M, n ¼ 0, 1, 2, . . .

because the sequence is bounded. Consider now the following series

3.2 Functional Series 153



a0j j þ a1xj j þ a2x
2

�� ��þ a3x
3

�� ��þ . . .þ anx
nj j þ . . .

Clearly, if xj j < β, then for the nth term of the series the following is true

anx
nj j < anβ

nj j � x

β

���� ����n < M � x

β

���� ����n, x

β

���� ���� < 1:

Then all the terms of the series of the absolute values of the power series are also

similarly bounded and we have the following true inequlities:

a0j j < M

a1xj j < M
x

β

���� ����
a2x

2
�� �� < M x

β

��� ���2
. . .

anx
nj j < M x

β

��� ���n
. . .

Adding the left and right sides of the inequalities, we obtainP1
n¼0

janxnj < M 1þ jxβ j þ jxβ j2 þ � � � þ jxβ jn þ . . .Þ ¼ M
1�jxβj,

�
which converges by The-

orem 3.2 because the expression inside parentheses is decreasing infinite geometric

series with the known sum. Hence,
P1
k¼0

akx
k will absolutely converge.

Part 2. Assume that the numerical series
P1
k¼0

akβ
k ¼ a0 þ a1β þ a2β

2 þ . . .þ anβ
n

þ . . . diverges at x ¼ β 6¼ 0, but the power series
P1
k¼0

akx
k converges for xj j > β.

Convergence of the power series would lead to the convergence of the numerical

series, which is a contradiction. The proof is complete.

It follows from Abel’s Theorem that if the power series
P1
k¼0

akx
k diverges at least

at one point x 6¼ 0, then there always exists a number R > 0, such that the power

series converges absolutely for all x 2 �R;Rð Þ and diverges for all

x 2 �1;�Rð Þ [ R;þ1ð Þ.
The number R � 0 is called the radius of convergence of the power seriesP1

k¼0

akx
k, if the power series converges at each point of the interval �R;Rð Þ and

diverges for xj j > R. The interval �R;Rð Þ is called the convergence interval. At the
end of the interval, x ¼ �R, the series

P1
k¼0

akx
k can be as convergent as divergent. If

the series converges at least at one point x1 ¼ R or x2 ¼ �R, then these points along
(together) with the convergence interval form convergence range.
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If the series
P1
k¼0

akx
k converges only at one pointx ¼ 0, thenR ¼ 0; if it converges

for all x 2 ℝ, then R ¼ 1. Let for the coefficients of the series
P1
k¼0

akx
k, the limit

lim
k!1

ffiffiffiffiffiffiffi
akj jk

p 6¼ 0 exists, then the convergence radius can be found by the Cauchy-

Hadamard formula: R ¼ 1

lim
k!1

ffiffiffiffiffi
akj jk

p . By analogy, if the limit, lim
k!1

akþ1

ak

��� ��� ¼ L, exists,

then R ¼ 1
L ¼ lim

k!1
ak
akþ1

��� ��� is the radius of convergence.
For the power series of a general type

P1
k¼0

ak x� x0ð Þk there exists R 2 ℝ, R � 0,

such that this series converges absolutely for x� x0j j < R and diverges for

x� x0j j > R. Here the numberR � 0 is called the convergence radius, and the inter-

val x0 � R; x0 þ Rð Þ is the convergence interval of the power series.
Power Series

P1
k¼0

akx
k have the following properties:

• if the radius of convergence of a power series is different from zero, then its sum

is continuous on the interval of convergence �R;Rð Þ;
• operation of term by term differentiation and integration on any interval x0; x½ 	


 �R;Rð Þ of power series does not change its radius of convergence;
• if the radius of convergence of a power series is different from zero, then the

power series can be differentiated term by term on the interval of convergence;

• power series can be integrated term by term on any interval [x0; x] contained in

the interval of convergence.

• If limits of integration α, β belong to the convergence interval of the power

series, then definite integral of the series with these limits equal the sum of

integrals of the terms of this series. The interval of convergence is the same.

Let S xð Þ ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n þ . . . be power series with interval of

convergence �R,Rð Þ. The derivative series ϕ xð Þ ¼ a1 þ 2a2xþ 3a3x
2 þ . . .þ nan

xn�1 þ . . . converges on the same interval xj j < R and its sum ϕ xð Þ ¼ S0 xð Þ ¼ dS xð Þ
dx :

A simplest power series is a geometric series, 1þ xþ x2 þ . . .þ xn þ . . .. It is
convergent at jxj < 1. Hence, for the given series the radius of convergence is R¼ 1,

and the convergence interval is (�1, 1). The sum of this series is S xð Þ ¼ 1
1�x. For

function S xð Þ ¼ 1
1�x we have the following expansion,

1
1�x ¼ 1þ xþ x2 þ . . .þ xn þ . . . xj j < 1ð Þ. Differentiating both sides of it, we

obtain 1

1�xð Þ2 ¼ 1þ 2xþ 3x2 þ 4x3 þ . . . xj j < 1ð Þ:

Problem 124 Find the radius and convergence interval of the power seriesP1
n¼1

xn

n !.
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Solution. Applying the formula for the convergence radius, lim
n!1

an
anþ1

��� ��� ¼
lim
n!1

1
n ! :

1
nþ1ð Þ !

��� ��� ¼ lim
n!1 nþ 1ð Þ ¼ 1. R¼1, it means that the series is convergent

for all x, in (�1, þ1). Further, notice that from it follows from the series

convergence that lim
n!1

xn

n ! ¼ 0 for all real x.

Problem 125 Find convergence interval of power series:
P1
n¼1

nn

n ! x
n.

Solution. We find the radius of convergence using the D’Alembert Ratio Test,

R ¼ lim
n!1

nn� nþ1ð Þ !
n !� nþ1ð Þnþ1 ¼ lim

n!1
nþ1

1þ1
nð Þn� nþ1ð Þ ¼

1
e. Therefore, this series is convergent on

the interval �1
e < x < 1

e : Let us investigate convergence at the ends of the interval:

1. At the left end, x ¼ �1
e, the series

P1
n¼1

nn

n ! � �1
e

	 �n
becomes an alternating series.

The absolute value of its common term equals nn

n !�en and using Stirling’s Formula

(Eq. 3.5), n ! � ffiffiffiffiffiffiffiffi
2πn

p � n
e

	 �n
, it is equivalent at n!1 to nnffiffiffiffiffiffi

2π n
p � n

eð Þn�en ¼
1ffiffiffiffiffiffi
2π n

p ! 0.

By the Leibniz Theorem, this series is convergent at the left end of the conver-

gence interval.

2. Let us check for convergence of this series at the other end. At x ¼ 1
e this series

becomes
P1
n¼1

nn

n !�en; using Stirling’s formula and the Comparison Criterion (The-

orem 3.3), we have an ¼ nn

n !�en � nnffiffiffiffiffiffi
2π n

p � n
eð Þn�en ¼

1ffiffiffiffi
2π

p �n1=2 ¼ 1ffiffiffiffi
2π

p � 1
n1=2

. Since this is a

Dirichlet type series with p ¼ 1
2
, then the given series is divergent at x ¼ 1

e.

Therefore, the interval �1
e;

1
e

� �
is the maximal convergence interval for the

given series.

Remark. We can find the interval of absolute convergence of a functional series

by directly applying either the D’Alembert Ratio Test or the Cauchy Root Test.

Consider the series,
P1
n¼1

junðxÞj ¼ ju1ðxÞj þ ju2ðxÞj þ . . .. Let lim
n!1

unþ1 xð Þ
un xð Þ
��� ��� ¼ L xð Þ or

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffijunðxÞjn
p ¼ LðxÞ. By solving the inequality L xð Þ < 1 or L xð Þ > 1, we can find

the convergence or divergence interval for the series, respectively.

Problem 126 Find convergence radius of the series
P1
n¼1

x�4ð Þn
n�3n .

156 3 Series Convergence Theorems and Applications



Solution. For the series
P1
n¼1

x�4ð Þn
n�3n we evaluate lim

n!1
x�4ð Þnþ1n�3n

nþ1ð Þ�3nþ1 x�4ð Þn
��� ��� ¼

lim
n!1

x�4ð Þn
3 nþ1ð Þ
��� ��� ¼ x�4j j

3
< 1: Solving the inequality x� 4j j < 3, we find the conver-

gence interval as 1 < x < 7: Next, we check the series’ behavior at the ends of the

interval. At x ¼ 1 the series becomes
P1
n¼1

�1ð Þn
n Leibniz series and it is conditionally

convergent. At x ¼ 7 the series becomes
P1
n¼1

1
n i.e., the harmonic series and is

divergent.

Answer. The series is convergent for all x 2 1; 7½ Þ.

3.2.2 Taylor and Maclaurin Series

In this section, you will learn or review the following topics:

• Expansion of functions in power series

• Expansion of elementary functions in Maclaurin series

• Applications of power series

Many functions can be written as infinite power series using the expansion of

Taylor or Maclaurin. The Taylor series represents a function as an infinite sum

calculated from the values of its derivatives at a point. The Taylor series was

introduced by the British mathematician Brook Taylor in 1715. A Taylor series

that is based at x ¼ 0 is called a Maclaurin series, named for the Scottish mathe-

matician Colin Maclaurin. In order to approximate a function one can use a finite

number of terms of the series.

Let the function f(x) have derivatives of any order in the neighborhood of a. Then

the series, f að Þ þ f 0 að Þ x� að Þ þ f 0 að Þ
2! x� að Þ2 þ . . .þ f kð Þ að Þ

k! x� að Þk þ . . . is called

the Taylor series of the function f(x) atx ¼ a. The convergence radius R of the seriesP1
k¼0

f kð Þ að Þ
k! x� að Þk can be either zero, or different from zero; moreover, in the latter

case the sum S(x) of Taylor Series can be different from f(x). It is important to

determine when in the formula, f(x)�P1
k¼0

f kð Þ að Þ
k! x� að Þk an equal sign is allowed, i.e.,

when the Taylor series converges to a function f(x). IfS xð Þ ¼ f xð Þ on a� R; aþ Rð Þ,
then we say that function f(x) can be expanded in a Taylor series in the neighborhood

of a. Partial sums of Taylor series, Sn xð Þ ¼ f að Þ þ f 0 að Þ x� að Þþ f
00
að Þ

2! x� að Þ þ . . .

þ f nð Þ að Þ
n! x� að Þn are Taylor’s polynomials of f(x) at a.
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Theorem 3.15 (Taylor) If a function f(x) has in the neighborhood

x0 � R; x0 þ Rð Þ of point x0 derivatives of any order and

8x 2 x0 � R; x0 þ Rð Þ the condition f kð Þ xð Þ�� �� � M k!
Rn, k ¼ 0, 1, 2, . . . is

valid, then on x0 � R; x0 þ Rð Þ function f(x) can be expanded uniquely:

f xð Þ ¼ f x0ð Þ þ f 0 x0ð Þ x� x0ð Þ þ . . .þ f kð Þ x0ð Þ
k! x� x0ð Þk þ . . ..

A function that can be differentiated infinitely many times is called C1 differ-

entiable function.

Corollary 3.7 In order C1 differentiable function f(x) in the neighborhood

x0 can be represented by Taylor series, it is necessary and sufficient that

the remainder of the expansion would approach zero, lim
n!1Rn xð Þ ¼ 0

8x 2 x0 � R; x0 þ Rð Þ.

Corollary 3.8 If for any x 2 x0 � R; x0 þ Rð Þ all derivatives of f(x) are

bounded by the same constant M, the Taylor series
P1
k¼0

f kð Þ x0ð Þ
k! x� x0ð Þk

converges to this function f(x) on the interval x� x0j j < R.

At x0 ¼ 0, Taylor’s formula has type, f xð Þ ¼ f 0ð Þ þ f 0 0ð Þxþ f 0 0ð Þ
2! x2 þ . . .þ

f kð Þ 0ð Þ
k! xk þ . . . and is called a Maclaurin series.

Basic Maclaurin series expansions:

1

1� x
¼ 1þ xþ x2 þ . . .þ xn þ . . . xj j < 1ð Þ ð3:20Þ

ex ¼ 1þ x

1!
þ x2

2!
þ . . .þ xk

k!
þ . . . ¼

X1
k¼0

xk

k!
, x 2 ℝ; ð3:21Þ

coshx ¼ 1þ x2

2!
þ x4

4!
þ � � � þ x2k

ð2kÞ !þ � � � ¼
X1
k¼0

x2k

ð2kÞ !, x 2  ð3:22Þ

sinhx ¼ xþ x3

3!
þ x5

5!
þ . . .þ x2kþ1

2k þ 1ð Þ !þ . . . ¼
X1
k¼0

x2kþ1

2k þ 1ð Þ !, x 2 ℝ; ð3:23Þ

sin x ¼ x� x3

3!
þ . . .þ �1ð Þn x2kþ1

2k þ 1ð Þ !þ . . . ¼
X1
k¼0

�1ð Þk x2kþ1

2k þ 1ð Þ !, x 2 ℝ

ð3:24Þ
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cos x ¼ 1� x2

2!
þ x4

4!
� . . .þ �1ð Þk x2k

2kð Þ !þ . . . ¼
X1
k¼0

�1ð Þk x2k

2kð Þ ! ð3:25Þ

lnð1þ xÞ ¼ x� x2

2
þ x3

3
� x4

4
þ � � � ¼

X1
k¼0

ð�1Þk xkþ1

k þ 1
, � 1 < x � 1 ð3:26Þ

1þ xð Þm ¼ 1þ mxþ m m� 1ð Þ
2!

x2 þ . . .þ m m� 1ð Þ . . . m� k þ 1ð Þ
k!

xk þ . . .

¼ 1þ
X1
k¼1

m m� 1ð Þ m� 2ð Þ . . . m� k þ 1ð Þ
k!

xk, xj j < 1:

ð3:27Þ

Note that power expansions for hyperbolic cosine of Eqs. 3.22–3.23 (cosh(x) and
sinh(x)) are obtained using an exponential power series (Eq. 3.21) applied to the

equations, coshx ¼ ex þ e�x

2
and sinhx ¼ ex � e�x

2
. Using Eqs. 3.20–3.27, many

other power series can be derived.

Series
P1
n¼1

m m�1ð Þ m�2ð Þ... m�nþ1ð Þ
n! xn are binomial because at m ¼ n 2 ℕ all its

coefficients starting from the ðnþ 1Þth term become zero and power series becomes

Newton’s binomial distribution, 1þ xð Þn ¼ 1þ nxþ n n�1ð Þ
2! x2 þ . . .þ xn ¼Pn

k¼0

Ck
nx

k.

Proof. Consider the function f xð Þ ¼ 1þ xð Þm and find its several derivatives:

f 0 xð Þ ¼ m 1þ xð Þm�1

f
00
xð Þ ¼ m m� 1ð Þ 1þ xð Þm�2

. . .

f nð Þ xð Þ ¼ m m� 1ð Þ m� 2ð Þ . . . m� nþ 1ð Þ 1þ xð Þm�n

at x ¼ 0

f 0ð Þ ¼ 1

f 0 0ð Þ ¼ m

f
00
0ð Þ ¼ m m� 1ð Þ
. . .

1þ xð Þm ¼ 1þ mxþ m m� 1ð Þ
1 � 2 x2 þ . . .þ xn ¼

Xm
k¼0

Ck
mx

k, xj j < 1:

Let us demonstrate how by using binomial distribution of Eq. 3.27, we can derive

other infinite series. For example, substituting x by �x into Eq. 3.27, we obtain
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1
1þx ¼ 1� �xð Þð Þ�1 ¼ 1� xþ x2 � x3 þ . . .þ �1ð Þnxn þ . . . xj j < 1, m ¼ �1:

For m ¼ �1
2
Eq. 3.27 takes the form,

1ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ¼ 1� 1

2
x� 1

2
� �3

2

� �
� 1
2!
x2 � 1

2
� �3

2

� �
� �5

2

� �
� 1
3!
x3 þ . . .

¼ 1� 1

2
xþ 3

8
x2 � 5

16
x3 þ 35

128
x4 þ � � � þ ð�1Þnð2n� 1Þ!!

ð2nÞ!! xn þ . . .

1ffiffiffiffiffiffiffiffiffiffiffi
1� x

p ¼ 1þ 1

2
xþ 1

2
� 3
4
� x2 þ 1

2
� 3
4
� 5
6
� x3 þ . . .

þ 1 � 3 � 5 � 7 � � � � � ð2n� 1Þ
2 � 4 � 6 � 8 � � � � � ð2nÞ � xn þ . . . , jxj < 1:

where the !! notation is defined by

2mð Þ!!¼ 2 � 4 � 6 � . . . � 2m
2m� 1ð Þ!!¼ 1 � 3 � 5 � . . . � 2m� 1ð Þ:

For m ¼ 1
2
we can obtain power expansion for two other similar functions,

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ¼ 1� �xð Þð Þ12 ¼ 1þ 1

2
� x� 1 � 1

2 � 4 � x
2 þ 1 � 1 � 3

2 � 4 � 6 � x
3 þ . . .

þ �1ð Þn 2n� 1ð Þ!!
2nþ 2ð Þ!! � x

nþ1 þ . . .

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p ¼ 1� xð Þ12 ¼ 1� 1

2
� x� 1 � 1

2 � 4 � x
2 � 1 � 1 � 3

2 � 4 � 6 � x
3 � . . .

� 2n� 1ð Þ!!
2nþ 2ð Þ!! � x

nþ1 � . . . , xj j < 1

The Taylor and Maclaurin series are used in calculating approximate values of

functions, integrals, solution of differential equations and for finding sums of

infinite numerical series.

3.2.2.1 Finding the Power Expansion of Functions

Let us solve some of the problems.

Problem 127 Find the Maclaurin series for f xð Þ ¼ e1�4x3 .
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Solution. The given function can be factored as f xð Þ ¼ e � e�4x3 . The second factor

can be expanded in to power series using Eq. 3.21 by substituting x ! �4x3:

e1�4x3 ¼ e � 1� 4x3 þ �4x3ð Þ2
2!

þ . . .þ �4x3ð Þn
n!

þ . . .

 !

¼ e� 4ex3 þ 42 � ex6
2!

þ . . .þ �1ð Þn4nex3n
n!

þ . . .

Answer. f xð Þ ¼ e1�4x3 ¼ P1
k¼0

�1ð Þk4ex3k
k! :

Problem 128 Find the Taylor expansion as powers of x for f xð Þ ¼ ln 3þ xð Þ.

Solution. ln 3þ xð Þ ¼ ln 3 � 1þ x
3

	 �	 � ¼ ln3þ ln 1þ x
3

	 �
, y ¼ x

3
.

Next, using Eq. 3.26, we obtain:

lnð1þ yÞ ¼ y� y2

2
þ y3

3
� y4

4
þ � � � ¼

X1
k¼0

ð�1Þk ykþ1

k þ 1
, y 2 ð�1, 1	,

ln 3þ xð Þ ¼ ln 3þ x

3
� x2

2 � 32 þ
x3

3 � 33 �
x4

4 � 34 þ . . . ¼ ln3þ
X1
k¼0

�1ð Þk xkþ1

k þ 1ð Þ3kþ1

Answer. ln 3þ xð Þ ¼ ln3þP1
k¼0

�1ð Þk xkþ1

kþ1ð Þ3kþ1.

Problem 129 Find the Maclaurin series in x for f xð Þ ¼ 1
5�x.

Solution. We use Eq. 3.20,

1

1� y
¼ 1þ yþ y2 þ � � � þ yn þ . . .

f ðxÞ ¼ 1

5� x
¼ 1

5
� 1

1� x

5

;

f ðxÞ ¼ 1

5
1þ x

5
þ x

5

� �2
þ . . .

� �
¼ 1

5
þ x

52
þ . . .

xn

5nþ1
þ . . . ,

so jx
5
j < 1 or x 2 ð�5, 5Þ:
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The next problem is an example of how fraction decomposition, learned earlier

in this book, can help us with finding Maclaurin series for a rational function.

Problem 130 Find the Maclaurin series for g xð Þ ¼ 1
x2�3xþ4

.

Solution. Let us factor a quadratic binomial and then rewrite the function as a

difference of two fractions:

1

x� 4ð Þ xþ 1ð Þ ¼
1

5

1

x� 4
� 1

xþ 1

� �
¼ � 1

5 � 4 �
1

4� x

4

� �� 1

5
1þ xð Þ�1

¼ � 1

20
� 1

1� x

4

� �
0B@

1CA� 1

5
� 1

1þ x

� �

We used the fact that two quantities inside the denominator (factors) differ by 5. For

each fraction we use own power expansions:

1

1� x

4

¼ 1þ x

4
þ x

4

� �2
þ . . .þ x

4

� �n
þ . . . ,

x

4

��� ��� < 1

1

1þ x
¼ 1� xþ x2 � x3 þ . . .þ �1ð Þnxn þ . . . , xj j < 1

The given function is a linear combination of two distributions, hence we obtain

g xð Þ ¼ � 1

20
� 1

5
þ � 1

80
þ 1

5

� �
xþ . . .þ �1ð Þnþ1

5
� 1

20
� 1

4

� �n
 !

xn þ . . .

Answer. g xð Þ ¼
X1
n¼0

�1ð Þnþ1

5
� 1

20
� 1

4

� �n
 !

xn.

Problem 131 Find the Maclaurin series of function f xð Þ ¼ arcsinx.

Solution. For the expansion of 1ffiffiffiffiffiffiffiffi
1�x2

p in a Maclaurin series, we use Eq. 3.27,

replacing in this formula x by �x2 and using m ¼ �1
2
. We obtain

1ffiffiffiffiffiffiffiffi
1�x2

p ¼ 1þ 1
2
x2 þ 1�3

2�4 x
4 þ . . .þ 1�3�5�...� 2n�1ð Þ

2�4�6�...�2n x2n þ . . .
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This series is convergent for |x|< 1. Integrating this series, we find,
Ðx
0

dxffiffiffiffiffiffiffiffi
1�x2

p ¼
Ðx
0

1þ 1
2
x2 þ 1�3

2�4 x
4 þ . . .

	 �
dx ¼ xþ 1

2
� x3
3
þ 1�3

2�4 � x
5

5
þ . . .þ 1�3�5�...� 2n�1ð Þ

2�4�6�...�2n � x2nþ1

2nþ1
þ . . ..

Because
Ðx
0

dxffiffiffiffiffiffiffiffi
1�x2

p ¼ arcsin x, then arcsin x ¼ xþ 1
6
� x3 þ . . .þ 2n�1ð Þ!!

2nð Þ!! � x2nþ1

2nþ1
þ . . .

This series is convergent for xj j < 1.

Problem 132 Prove that ln nþ1
n

	 � ¼ 2 1
2nþ1

þ 1

3 2nþ1ð Þ3 þ 1

5 2nþ1ð Þ5 þ . . .
� �

.

Proof. Let us rewrite the logarithmic function as follows:

ln
nþ 1

n

� �
¼ ln

1þ 1
2nþ1

1� 1
2nþ1

¼ ln 1þ 1

2nþ 1

� �
� ln 1� 1

2nþ 1

� �
:

Applying Eq. 3.26 using x ! 1
2nþ1

and x ! � 1
2nþ1

respectively:

ln 1þ 1

2nþ 1

� �
¼ 1

2nþ 1
� 1

2 2nþ 1ð Þ2 þ
1

3 2nþ 1ð Þ3 � . . .

ln 1� 1

2nþ 1

� �
¼ � 1

2nþ 1
� 1

2 2nþ 1ð Þ2 �
1

3 2nþ 1ð Þ3 � . . .

and subtracting two expansions, we obtain the requested formula.

3.2.2.2 Method of Undetermined Coefficients

Problem 133 Find the Maclaurin series of f xð Þ ¼ x � cot x.

Solution. Assume that f xð Þ ¼ x cot x ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n þ . . ., where
the coefficients are to be determined. By definition of a cotangent, we can state that

cot x ¼ cos x
sin x ) cos x ¼ cot x � sin x. Multiplying both sides of the second relation-

ship by x, we have x � cos x ¼ x cot xð Þ � sin x. Then we can multiply the power

expansion of cos x by x on the left and undetermined series and series for sin x:
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x 1� x2

2!
þ x4

4!
� x6

6!
þ . . .þ �1ð Þn � x2n

2nð Þ!þ . . .

� �
¼ x� x3

3!
þ x5

5!
� . . . �1ð Þn�1 � x2n�1

2n� 1ð Þ! :
� �

� a0 þ a1xþ a2x
2 þ . . .þ anx

n þ . . .ð Þ

Equating the coefficients of the same powers of x on both sides, we obtain

a0 ¼ 1

a1 ¼ 0

a2 � a0
6
¼ �1

2
) a2 ¼ �1

3

a3 ¼ 0

1

24
¼ a0

120
� a2

6
þ a4

a4 ¼ � 1

45

Therefore,

x cot x ¼ 1� 1

3
x2 � 1

45
x4 þ . . . ð3:28Þ

On the other hand, it can be shown (See for example, “Mathematical Analysis” by

Vinogradova, Olehnik, and Sadovnichii [14], page 330) that the same function on

the left has the following representation:

x cot x ¼ 1þ 2 �
X1
m¼1

x2

x2 � π2m2
, x 6¼ πk, k ¼ 0, 1, 2, . . . ð3:29Þ

If xj j < 1, let us manipulate the mth term of the series of Eq. 3.29,

x2

x2 � π2m2
¼

x2

π2m2

x2

π2m2 � 1
¼ �

x2

π2m2

1� x2

π2m2

 !
¼ �

X1
n¼1

x2

π2m2

� �n

ð3:30Þ

It is easy to see why Eq. 3.30 is true. Consider a derivative,

y
1�y

� �0
¼ 1

1�yð Þ2 ¼ 1� yð Þ�2 ¼ 1þ 2yþ . . .. By integrating both sides, we have

y
1�y ¼ yþ y2 þ y3 þ . . .. Substituting y ¼ x2

π2m2, we get Eq. 3.30. If we substitute

the mth term given by Eq. 3.30 into Eq. 3.29 we obtain the power series for the

requested function,
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x cot x ¼ 1� 2 �
X1
m¼1

X1
n¼1

x2

π2m2

� �n

¼ 1� 2 �
X1
n¼1

x2

π2

� �n

�
X1
m¼1

1

m2

� �n

: ð3:31Þ

The right hand sides of Eqs. 3.29 and 3.31 are the power expansions of the same

function. By equating coefficients for x2 and x4, respectively, we can obtain two

very famous formulas:

Let n ¼ 1, �1
3
x2 ¼ � 2

π2
P1
m¼1

1
m2

� �
� x2 ) P1

m¼1

1
m2 ¼ π2

6

Let n ¼ 2, � 1
45
x4 ¼ � 2x4

π4
P1
m¼1

1
m4

� �
) P1

m¼1

1
m4 ¼ π4

90

Both formulas were first proven by Euler. The first formula is called the Basel

Problem. Its solution is demonstrated in Section 3.3.

3.2.2.3 Using Complex Numbers

Problem 134 demonstrates how complex numbers help in the evaluation of the

Maclaurin Series of some functions.

Problem 134 Find the Maclaurin series of f xð Þ ¼ ex sin x.

Solution. Using the Euler formula sin x ¼ eix�e�ix

2i we can rewrite our function as

f xð Þ ¼ ex eix�e�ix

2i

� �
¼ e 1þið Þx�e 1�ið Þx

2i and its nthderivative as

f nð Þ xð Þ ¼ 1þ ið Þne 1þið Þx � 1� ið Þne 1�ið Þx

2i
¼

¼ ex 1þ ið Þneix � 1� ið Þne�ixð Þ
2i

Using De Moivre’s Formula, we can simplify it as

ð1þ iÞn ¼ ð ffiffiffi
2

p Þn cos
π

4
� nþ isin

π

4
� n

� �
¼ ð ffiffiffi

2
p Þneiπ4n

ð1� iÞn ¼ ð ffiffiffi
2

p Þn cos
7π

4
� nþ isin

7π

4
� n

� �
¼ ð ffiffiffi

2
p Þn cos

�π

4
� nþ isin

�π

4
� n

� �
¼ ð ffiffiffi

2
p Þne�i� π

4
n:

3.2 Functional Series 165



Substituting these into formula for the nthderivative, we get

f nð Þ xð Þ ¼
ex

ffiffiffi
2

p	 �n
ei
π
4
neix � ffiffiffi

2
p	 �n

e�i
π
4
ne�ix

� �
2i

¼ ex � ffiffiffi
2

p	 �n
2i

� e
π
4
nþxð Þi � e�

π
4
nþxð Þi� �

¼ ffiffiffi
2

p	 �n
ex sin xþ π

4
n

� �
:

At zero it has value f nð Þ 0ð Þ ¼ ffiffiffi
2

p	 �n
sin πn

4
. The Maclaurin series is

f xð Þ ¼ ex sin x ¼ P1
n¼0

ffiffi
2

pð Þn sin πn
4

n! � xn.

3.3 Methods of Finding Sums for Infinite Series

Finding an infinite sum for convergent series is not always easy. However, in this

section you will learn several methods that are worthwhile to mention.

3.3.1 Using Method of Partial Sums

Problem 135 Evaluate the sum, Sn ¼ xþ 4x3 þ 7x5 þ 10x7 þ . . .þ
3n� 2ð Þx2n�1

Solution. Multiply the sum by x2, i.e.,

Sn � x2 ¼ x3 þ 4x5 þ 7x7 þ . . .þ 3n� 2ð Þx2nþ1 and subtract this product to get

Sn � Snx
2 ¼ 1� x2ð ÞSn ¼ xþ 3x3 þ 3x5 þ 3x7 þ . . .þ 3x2n�1� 3n� 2ð Þx2nþ1 or

Sn 1� x2ð Þ ¼ x� 3n� 2ð Þx2nþ1 þ 3 � x
3 1�x2 n�1ð Þð Þ

1�x2 . Dividing both sides by 1� x2ð Þ,
we obtain Sn ¼ x� 3n�2ð Þx2nþ1

1�x2ð Þ þ 3x3 1�x2 n�1ð Þð Þ
1�x2ð Þ2 . It is clear that convergence (divergence)

of a functional series depends on the value of the independent variable x, i.e.,

lim
n!1

unþ1

un
¼ x2 � lim

n!1
3nþ1
3n�2

¼ x2 < 1 ) xj j < 1: If �1 < x < 1, then the

corresponding infinite series converges to lim
n!1 Sn ¼ x

1�x2ð Þ þ 3x3

1�x2ð Þ2 : If x ¼ 1, then

the given series becomes an arithmetic series with the first term 1 and the common

difference of 3, i.e., Sn ¼ 1þ 4þ 7þ . . .þ 3n� 2 ¼ 1þ3n�2
2

� n ¼ n 3n�1ð Þ
2

,

Hence the corresponding infinite series is divergent. A similar result can be

obtained for x ¼ �1.
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Answer. Sn ¼ x� 3n�2ð Þx2nþ1

1�x2ð Þ þ 3x3 1�x2 n�1ð Þð Þ
1�x2ð Þ2 .

Problem 136 Evaluate the infinite sum
P1
n¼1

2n�1ffiffi
2

pð Þn.

Solution. In Problem 106 we establish that this series converges. Let us evaluate

the partial sum of the series. First, we write several terms of the series:

Sn ¼ 1ffiffiffi
2

p þ 3ffiffiffi
2

p	 �2 þ 5ffiffiffi
2

p	 �3 þ 7ffiffiffi
2

p	 �4 þ . . .þ 2n� 3ffiffiffi
2

p	 �n�1
þ 2n� 1ffiffiffi

2
p	 �n

Next, we multiply this sum by
ffiffiffi
2

p
,

ffiffiffi
2

p
Sn ¼ 1þ 3ffiffiffi

2
p þ 5ffiffiffi

2
p	 �2 þ 7ffiffiffi

2
p	 �3 þ 9ffiffiffi

2
p	 �4 þ . . .þ 2n� 3ffiffiffi

2
p	 �n�2

þ 2n� 1ffiffiffi
2

p	 �n�1
:

Now we rewrite it in a different form by extracting 2 within each numerator:

ffiffiffi
2

p
Sn ¼ 1þ 2þ 1ffiffiffi

2
p þ 2þ 3ffiffiffi

2
p	 �2 þ 2þ 5ffiffiffi

2
p	 �3 þ 2þ 7ffiffiffi

2
p	 �4 þ . . .þ 2þ 2n� 5ffiffiffi

2
p	 �n�2

þ 2þ 2n� 3ffiffiffi
2

p	 �n�1

Break this into two series, add the last term to the second series, then subtract it

outside the braces to keep things in balance.

ffiffiffi
2

p
Sn ¼ 1þ 2ffiffiffi

2
p þ 2ffiffiffi

2
p	 �2 þ . . .þ 2ffiffiffi

2
p	 �n�2

þ 2ffiffiffi
2

p	 �n�1

 !

þ 1ffiffiffi
2

p þ 3ffiffiffi
2

p	 �2 þ 5ffiffiffi
2

p	 �3 þ . . .þ 2n� 1ffiffiffi
2

p	 �n
( )

� 2n� 1ffiffiffi
2

p	 �n
Notice that the expression inside parentheses is n� 1ð Þ terms of the geometric

series with the first term 2ffiffi
2

p and common ratio 1ffiffi
2

p . The expression inside the braces is

the unknown partial sum, Sn. Collecting like terms and factoring Sn on the left hand
side, and after evaluating the sum of the geometric series on the right, we obtain the

following:
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ð ffiffiffi
2

p � 1ÞSn ¼ 1þ

ffiffiffi
2

p
1� 1ffiffiffiffiffiffiffiffiffi

2n�1
p

� �
1� 1ffiffiffi

2
p

� 2n� 1

ð ffiffiffi
2

p Þn

ð ffiffiffi
2

p � 1ÞSn ¼ 1þ
2 1� 1ffiffiffiffiffiffiffiffiffi

2n�1
p

� �
ffiffiffi
2

p � 1
� 2n� 1

ð ffiffiffi
2

p Þn

ð ffiffiffi
2

p � 1ÞSn ¼ 1þ 2ð1þ ffiffiffi
2

p Þ 1� 1

ð ffiffiffi
2

p Þn�1

 !
� 2n� 1

ð ffiffiffi
2

p Þn

Dividing the last equation by
ffiffiffi
2

p � 1
	 �

, solving it for the partial sum and simpli-

fying, we have

Sn ¼
1þ 2

ffiffiffi
2

p þ 1
	 �

1� 1ffiffiffiffiffiffiffiffiffi
2n�1

p
� �

� 2n� 1ffiffiffiffiffi
2n

pffiffiffi
2

p � 1

¼ 7þ 5
ffiffiffi
2

p � 2
ffiffiffi
2

p þ 1
	 �2ffiffiffiffiffiffiffiffiffi

2n�1
p � 2n� 1ð Þ ffiffiffi

2
p þ 1
	 �ffiffiffiffiffi
2n

p

Finally, the partial sum is given by Sn ¼ 7þ 5
ffiffiffi
2

p � 2
ffiffi
2

p þ1ð Þ2ffiffiffiffiffiffiffi
2n�1

p � 2n�1ð Þ ffiffi
2

p þ1ð Þffiffiffiffi
2n

p and

limSn
n!1

¼ 7þ 5
ffiffiffi
2

p
:

It is easy to see that this formula is correct. Let n ¼ 2, then from the given series

we obtain S2 ¼ 1ffiffi
2

p þ 3
2
¼ 3þ ffiffi

2
p
2

: Next, if we substitute n ¼ 2 into the formula, we

have

S2 ¼
7þ 5

ffiffiffi
2

p	 � � 2� 2
ffiffiffi
2

p
3þ 2

ffiffiffi
2

p	 �� 3
ffiffiffi
2

p � 3

2

¼ 14þ 10
ffiffiffi
2

p � 6
ffiffiffi
2

p � 8� 3
ffiffiffi
2

p � 3

2
¼

ffiffiffi
2

p þ 3

2
:

Answer. lim
n!1 Sn ¼ 7þ 5

ffiffiffi
2

p
.

3.3.2 Using Power Series of Elementary Functions

Knowledge of the Taylor or Maclaurin series of common functions helps us to find

sums of convergent series.
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Example. Consider the sum
P1
n¼0

2n

n! ¼ 1þ 2
1! þ 22

2! þ 23

3! þ 24

4! þ . . .þ 2n

n! þ . . ..

By D’Alembert (Corollary 3.3), this series is convergent. If we compare this

series to the Maclaurin series for y ¼ ex (Eq. 3.21), it is clear that the given series is
that one for x¼ 2. Therefore, its sum is e2.

Let us see the following problem.

Problem 137 Find the sum of an infinite series 1� 1002

2! þ 1004

4! � 1006

6! þ . . .þ
�1ð Þn�1002n

2nð Þ! þ . . ..

Solution. This series coincides with the series for y ¼ cos x at x¼ 100 (Eq. 3.28).

Hence, the sum equals cos(100).

Answer. cos(100).

Let us consider the following problem.

Problem 138 Evaluate the sum of an infinite series

1
2

	 �3 � 1
2

	 �5 � 1
3! þ 1

2

	 �7 � 1
5! � 1

2

	 �9 � 1
7! þ . . .þ �1ð Þn�1

22nþ1� 2n�1ð Þ! þ . . ..

Solution. We can factor out 1
2

	 �2
and obtain the quantity inside parentheses that

looks familiar:

1

2

� �2

� 1� 1

2

� �3

� 1
3!
þ 1

2

� �5

� 1
5!
� 1

2

� �7

� 1
7!
þ � � � þ ð�1Þn�1

22n�1 � ð2n� 1Þ!þ . . .

 !
:

We can see that the expression inside parenthesis is the infinite series for y¼ sin x at

x¼½ (Eq. 3.13). Therefore, the given sum is
sin 0:5ð Þ

4
.

Answer.
sin ð0:5Þ

4
:

The next problem is also interesting.

Problem 139 Find 1þ 1
2
� 1
3
þ 1

2
� 3
4
� 1
5
þ 1�3�5�1

2�4�6�7 þ . . .þ 2n�1ð Þ!!
2nð Þ!! � 1

2nþ1
þ . . ..
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Solution. In Problem 131 we established that for all jxj < 1 that

xþ P1
n¼1

2n�1ð Þ!!
2nð Þ!! � x2nþ1

2nþ1
¼ arcsinx. By comparing two formulas, we find that they are

equal at x¼ 1. Hence 1þ P1
n¼1

2n�1ð Þ!!
2nð Þ!! � 1

2nþ1
¼ arcsin1 ¼ π

2
:

Answer. π
2
:

There are famous series with the known sums:

X1
n¼1

ð�1Þnþ1

n
¼ ln2 ðLeibniz seriesÞ ð3:32Þ

X1
n¼1

1

n2
¼ π2

6
ðDirichlet seriesÞ ð3:33Þ

X1
n¼1

1

n4
¼ π4

90
ð3:34Þ

X1
n¼1

1

n nþ mð Þ ¼
1

m
�
X1
k¼1

1

k
ð3:35Þ

Let us solve the problems using these series and their sums.

Problem 140 Find the sum of an infinite series 1
4
þ 1

36
þ 1

144
þ

1
400

þ 1
900

þ 1
1764

þ . . ..

Solution. The series can be rewritten as

1

1 � 2
� �2

þ 1

2 � 3
� �2

þ 1

3 � 4
� �2

þ 1

4 � 5
� �2

þ . . .þ ¼
X1
n¼1

1

n2 � nþ 1ð Þ2

¼
X1
n¼1

1

n
� 1

nþ 1

� �2

¼
X1
n¼1

1

n2
� 2 �

X1
n¼1

1

n nþ 1ð Þ þ
X1
n¼1

1

nþ 1ð Þ2

The first series is Dirichlet series (Eq. 3.33); it converges to π2

6
. The second series of

Eq. 3.35 converges to 2, and the last series can be written as
P1
n¼1

1

nþ1ð Þ2 ¼

1
22
þ 1

32
þ 1

42
þ . . . ¼ P1

n¼1

1
n2 � 1: Here we again extracted the series of Eq. 3.33.

Finally,
P1
n¼1

1

n2� nþ1ð Þ2 ¼ 2 � P1
n¼1

1
n2 � 2 � P1

n¼1

1
n nþ1ð Þ � 1 ¼ 2 � π2

6
� 2� 1 ¼ π2

3
� 3:
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Answer. π2

3
� 3:

Problem 141 Prove that
P1
n¼1

1
n2 ¼ π2

6
.

Proof. This problem is also known as Basel Problem. We summarize the ideas of

Euler’s proof. Euler knew that any polynomial having n zeros, x1, x2, . . . xn can be

factored as P xð Þ ¼ 0 , 1� x
x1

� �
1� x

x2

� �
1� x

x3

� �
� . . . � 1�xxn

� �
¼ 0. Next, Euler

considered the function f xð Þ ¼ sin x
x , x 6¼ 0, lim

x!0

sin x
x ¼ 1: On one hand, because

sin x ¼ 0 , x ¼ πn, n ¼ 0, � 1, � 2, . . ., then sin x
x ¼ 0 , x ¼ πn, n ¼ �1, � 2,

�3, . . . he represented as a function with infinitely many zeros:

sin x

x
¼ 1� x

π

� �
1þ x

π

� �
1� x

2π

� �
1þ x

2π

� �
. . . 1� x

πn

� �
1þ x

πn

� �
. . .

Applying the difference of squares formula for each pair of factors, this was

rewritten as infinite product:

sin x

x
¼ 1� x2

π2

� �
1� x2

4π2

� �
1� x2

9π2

� �
::::

On the other hand, for the same function we can find infinite Maclaurin series by

dividing Eq. 3.24 by x:

sin x

x
¼ 1� x2

3!
þ x4

5!
� x6

7!
þ . . . ¼

X1
k¼0

�1ð Þkx2k
2k þ 1ð Þ!

The right hand sides of two polynomial representations of the same function must

be equal, then the coefficients at each power of xmust be also equated. The constant

term in both polynomials is 1.

Let us equate the coefficients of x2:

x2 � � 1

6

� �
¼ x2 � 1

π2
� 1

4π2
� 1

9π2
� . . .

� �
1þ 1

4
þ 1

9
þ . . . ¼ π2

6

This proves the first infinite sum: 1þ 1
22
þ 1

32
þ . . . ¼ P1

n¼1

1
n2 ¼ π2

6
:
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Remark. I noticed that sometimes students do not understand right away how the

coefficients of x2 in the polynomial written as an infinite product and the

corresponding Maclaurin series were equated.

For example, a finite product can be expanded as follows:

Aþ Bð Þ Cþ Dð Þ Eþ Fð Þ ¼ A � C � Eþ A � C � Fþ A � C � Eþ A � D � Fþ B � C � E
þB � C � Fþ B � D � Eþ B � D � F:

We had three parentheses and each term of the expansion on the right hand side,

e.g., A � C � E equals the product of the terms taken from each parentheses but only

one term from each parenthesis is present in each such a product.

If we multiply only three factors on the Euler’s infinite product, we obtain:

1� x2

π2

� �
1� x2

4π2

� �
1� x2

9π2

� �
¼ 1 � 1 � 1þ 1 � 1 � � x2

9π2

� �
þ 1 � � x2

4π2

� �
� 1

þ1 � � x2

4π2

� �
� � x2

9π2

� �
þ � x2

π2

� �
� 1 � 1þ � x2

π2

� �
� 1 � � x2

9π2

� �
þ � x2

π2

� �
� x2

4π2

� �
� 1þ � x2

π2

� �
� x2

4π2

� �
� x2

9π2

� �
:

From this formula, one can see that the constant term is 1, and that the coefficient of

x2 is � 1
π2 � 1

4π2 � 1
9π2 : For the infinite product considered in the Basel Problem, this

coefficient will be represented by the corresponding infinite series of similar type.

Problem 142 Evaluate
P1
n¼2

�1ð Þn
n2þn�2

:

Solution. The absolute value of the common term of the series can be represented

as 1
n2þn�2

¼ 1
n�1ð Þ nþ2ð Þ ¼ 1

3
� 1
n�1

� 1
3
� 1
nþ2

(because two quantities inside the denom-

inator differ by 3).

Using sigma notation’s properties and shifting index of the summation,
P1
n¼2

�1ð Þn
n�1

¼ P1
n¼1

�1ð Þnþ1

n (Leibniz)

�
X1
n¼2

�1ð Þn
nþ 2

¼
X1
n¼2

�1ð Þnþ1

nþ 2
¼
X1
n¼1

�1ð Þnþ1

n
� 1þ 1

2
� 1

3
:
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Finally, using Eq. 3.32, we obtain the answer,

X1
n¼2

�1ð Þn
n2 þ n� 2

¼ 1

3

X1
n¼1

�1ð Þnþ1

n
þ 1

3

X1
n¼2

�1ð Þnþ1

nþ 2

¼ 1

3

X1
n¼1

�1ð Þnþ1

n
þ 1

3

X1
n¼1

�1ð Þnþ1

n
� 1þ 1

2
� 1

3

 !

¼ 2

3

X1
n¼1

�1ð Þnþ1

n
� 5

18
¼ 2

3
ln2� 5

18
:

Answer. 2
3
ln 2� 5

18
:

Problem 143 Evaluate the sum of infinite series
P1
n¼1

1
n 2nþ1ð Þ :

Solution. Rewriting this series in an equivalent form by multiplying it and divid-

ing by 2, we obtain two quantities within the denominator that differ by two, and

hence the series can be evaluated as the difference of two series:

X1
n¼1

2

2nð Þ 2nþ 1ð Þ ¼ 2 �
X1
n¼1

1

2n
�
X1
n¼1

1

2nþ 1

 !

¼ 2
1

2
þ 1

4
þ 1

6
þ . . .

� �
� 1

3
þ 1

5
þ 1

7
þ . . .

� � �
¼ �2 ln2� 1ð Þ:

Answer.
P1
n¼1

1
n 2nþ1ð Þ ¼ �2 ln2� 1ð Þ:

3.3.3 Method of Differentiation and Integration of Series

By differentiating and integrating well-known Maclaurin series Eqs. 3.20–3.27,

new power series can be obtained and used for finding sums of convergent infinite

numerical series. In this section we use the following rules of differentiation:
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exð Þ0 ¼ ex,
d

dx
euð Þ ¼ eu

du

dx

xnð Þ0 ¼ nxn�1,
d

dx
unð Þ ¼ nun�1 du

dx

ln xð Þð Þ0 ¼ 1

x
,

d

dx
lnuð Þ ¼ 1

u

du

dx

u � vð Þ0 ¼ u0vþ uv0 derivative of a productð Þ
u

v

� �0
¼ u0v� uv0

v2
derivative of a quotientð Þ

By applying Maclaurin’s formula and sigma notation, some well-known func-

tions can be written as infinite series.

ln
1

1� x
¼
X1
n¼1

xn

n
, xj j < 1 ð3:36Þ

1� xm

1� x
¼ 1þ xþ x2 þ x3 þ . . .þ xm�1 ð3:37Þ

How can we prove Eq. 3.36? Equation 3.20 for an infinite geometric series after

integration of both sides will give us Eq. 3.36 by expansion of a natural logarithm.

Also we applied properties of logarithms to the left hand side:

ðx
0

dx

1� x
¼ �ln 1� xð Þ ¼ ln 1� xð Þ�1 ¼ ln

1

1� x
, 0 < x < 1ð Þ

From these formulas new ones can be obtained. For example, if we take a derivative

of both sides of Eq. 3.37, we obtain 1�xm

1�x

	 �0 ¼ 1þ 2xþ 3x2 þ . . .þ m� 1ð Þxm�2 so

�mxm�1 1� xð Þ � 1� xmð Þ �1ð Þ
1� xð Þ2 ¼ 1þ 2xþ 3x2 þ 4x3 þ . . .þ m� 1ð Þxm�2:

Finally, we obtain the formula for finding a partial sum such as

1þ 2xþ 3x2 þ 4x3 þ . . .þ m� 1ð Þxm�2 ¼ xm m� 1ð Þ � mxm�1 þ 1

1� xð Þ2 ð3:38Þ

Let us see how Eq. 3.28 can be applied to the Problem 144.

Problem 144 Find the sum: 1þ 2xþ 3x2 þ 4x3 þ . . .þ nþ 1ð Þxn ¼Pn
k¼0

k þ 1ð Þxk.
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Solution. We consider two different ways of solving this problem. Method 1 is

based on no knowledge of differentiation. In Method 2 we present the use of

Eq. 3.28 obtained earlier.

Method 1. The given sum is a power series. You can notice that each term is neither

an arithmetic nor geometric sequence term.

Let us denote Sn ¼ 1þ 2xþ 3x2 þ 4x3 þ . . .þ nþ 1ð Þxn. Multiplying both

sides of it by x we obtain, xSn ¼ xþ 2x2 þ 3x3 þ 4x4 þ . . .þ nxn þ nþ 1ð Þxnþ1.

Subtracting second expression from the first, Sn � xSn ¼ 1þ xþ x2þ
x3 þ . . .þ xn � nþ 1ð Þxnþ1. The first part of this formula can be evaluated

as the sum of a geometric sequence with b1 ¼ 1, r ¼ x: Thus,

1� xð ÞSn ¼ 1� 1�xnþ1ð Þ
1�x � nþ 1ð Þxnþ1, if x 6¼ 1 and then Sn ¼ 1�xnþ1

1�xð Þ2 � nþ1ð Þxnþ1

1�x .

If x ¼ 1, then Sn ¼ 1þ 2þ 3þ 4þ . . .þ nþ 1ð Þ ¼ nþ1ð Þ nþ2ð Þ
2

.

We of course notice that this is an arithmetic series.

Method 2. If we compare Eq. 3.28 and the given problem, we can see that they are

equal if m ¼ nþ 2. Therefore, Sn ¼ 1þ 2xþ 3x2 þ 4x3 þ . . .þ nþ 1ð Þxn
¼ xnþ2 nþ1ð Þ� nþ2ð Þxnþ1þ1

1�xð Þ2 , which is identical to what we found using Method 1, if you

put fractions over the common denominator and simplify the expression.

Can we find the value of the corresponding infinite sum?
P1
n¼0

nþ 1ð Þxn ¼ limSn
n!1

¼ 1

1�xð Þ2 : Because xj j < 1 ) xnþ1 ! 0, nþ 1ð Þxnþ1 ! 0 as n ! 1: A similar

problem is offered to you in the homework section.

Answer. If x 6¼ 1, Sn ¼ 1�xnþ1

1�xð Þ2 � nþ1ð Þxnþ1

1�x , if x ¼ 1, Sn ¼ nþ1ð Þ nþ2ð Þ
2

Knowledge of power series allows us to find sums of convergent infinite

numerical series.

Problem 145 Evaluate the infinite sum: 1
2�32 þ 1

3�33 þ 1
4�34 þ . . .þ 1

n�3n þ . . ..

Solution. The given series can be rewritten as S ¼ 1
2
� 1

3

	 �2 þ 1
3
� 1

3

	 �3þ
1
4
� 1

3

	 �4 þ . . .þ 1
n � 1

3

	 �n þ . . . ¼ P1
k¼2

1
3ð Þk
k . Then if we replace x ¼ 1

3
in the series of

Eq. 3.26 for the expansion of ln 1� xð Þ, then the obtained expression above will be

that sum minus its first term, ln 1
1�1

3

¼ 1
3
þ S so S ¼ ln3

2
� 1

3
.

Answer. ln3
2
� 1

3
.

Problem 146 Find the sum of series S ¼ 1� 1
3
þ 1

5
� 1

7
þ 1

9
� . . ..
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Solution. First, we replace in the Maclaurin series for 1
1�x (Eq. 3.20) x ! �z2,

1
1þz2 ¼ 1� z2 þ z4 � . . .þ �1ð Þnz2n þ . . .. Multiplying both sides by dz and inte-

grating, we obtain

ðx
0

dz

1þ z2
¼
ðx
0

dz�
ðx
0

z2dzþ
ðx
0

z4dz� � � � þ ð�1Þn
ðx
0

z2ndzþ . . .

arctanx ¼ x� x3

3
þ x5

5
� � � � þ ð�1Þn x2nþ1

2nþ 1
þ . . . , jxj < 1:

If x ¼ 1 then arctan1 ¼ π=4: Therefore, 1� 1
3
þ 1

5
� 1

7
þ 1

9
� . . . ¼ π

4
:

Answer. π
4
:

Problem 147 Find the sum of the series 1þ x4

4! þ x8

8! þ x12

12! þ . . .þ x4k

4kð Þ! þ . . ..

Solution. The radius of convergence for this series is 1. Moreover, because this

series is convergent at x ¼ �1 and at x ¼ 1 it is convergent on the closed interval

[�1, 1]. Let S(x) be the sum of this series and let us find several successive

derivatives of this function:

S0 xð Þ ¼ x3

3!
þ x7

7!
þ . . .þ x4k�1

4k � 1ð Þ!þ . . .

S
00
xð Þ ¼ x2

2!
þ x6

6!
þ . . .þ x4k�2

4k � 2ð Þ!þ . . .

S
000
xð Þ ¼ x

1
þ x5

5!
þ . . .þ x4k�3

4k � 3ð Þ!þ . . .

S 4ð Þ xð Þ ¼ 1þ x4

4!
þ . . .þ x4k�4

4k � 4ð Þ!þ . . .

It is not hard to see that the fourth derivative of the function equals the function

itself. Hence, the unknown sum satisfies the following differential equation with the

corresponding initial conditions,

d4S xð Þ
dx4

¼ S xð Þ,

S 0ð Þ ¼ 1, S0 0ð Þ ¼ S
00
0ð Þ ¼ S

000
0ð Þ ¼ 0:

The solution to this differential equation is the sum, S xð Þ ¼ 1
4
ex þ 1

4
e�x

þ1
2
cos x ¼ coshxþ cos x

2
:

Answer. S xð Þ ¼ P1
k¼0

x4k

4kð Þ! ¼
coshxþ cos x

2
:
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3.3.4 Abel’s Method

Abel’s Theorem 3.14 can be reformulated as follows: Let the powers series
P1
k¼0

akx
k

converge on the interval x 2 �1, 1ð Þ and S(x) be its sum. Moreover, if this series

also converges at x ¼ 1, then the sum S(x) is continuous as x goes to 1 from the left.

Abel’s Method. If
P1
n¼1

an converges, then its sum can be found as

S ¼ lim
x!1�

P1
n¼1

anx
n:

In order to use Abel’s method, we need to make sure that the given numerical

infinite series converges and then to consider the corresponding power series and

find their limit as x ! 1� ( find the limit of the sum when x goes to 1 from the left).

The key condition for using Abel’s method for finding sums of numerical series

is convergence of numerical series, S ¼ P1
n¼1

an, otherwise the method cannot

be applied. Indeed, consider alternating series 1� 1þ 1� 1þ 1� 1þ . . . ¼P1
n¼1

�1ð Þn that obviously diverges and hence the limit of the sequence of the partial

sums does not exist. On the other hand, consider the power series
P1
n¼0

�1ð Þnxn ¼ 1

�xþ x2 � x3 þ . . . that converges at xj j < 1 to the sum S xð Þ ¼ 1
1þx : At

x ¼ 1, S 1ð Þ ¼ 1
2
:

Example. Consider the following known power series for a logarithmic function:

f xð Þ ¼ P1
n¼1

�1ð Þnþ1xn

n ¼ ln 1þ xð Þ. Because the numerical series
P1
n¼1

�1ð Þnþ1

n converges

by the Leibniz Theorem (Theorem 3.9), then the sum of this numerical series can be

found as
P1
n¼1

�1ð Þnþ1

n ¼ lim
x¼!1�

f xð Þ ¼ lim
x¼!1�

ln 1þ xð Þ ¼ ln 2:

Example. Let us consider another well-known function

g xð Þ ¼ arctanx ¼ P1
n¼0

�1ð Þnx2nþ1

2nþ1
. We know that the numerical series

P1
n¼0

�1ð Þn
2nþ1

con-

verges by Leibniz.

How can we find this infinite sum? Using Abel’s Method we have

lim
x!1�

g xð Þ ¼ lim
x!1�

arctanx ¼ π
4
¼ P1

n¼1

�1ð Þn
2nþ1

:

Finally, if we know power series for a function and know that the corresponding

numerical series converges, then the sum of the numerical infinite series can be
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found easily. However, sometimes evaluation of a limit can be challenging task. Let

us practice in Abel’s method by solving the following problems.

Problem 148 Find the sum 1� 1
2
þ 1�3

2�4 � 1�3�5
2�4�6 þ . . . �1ð Þn 2n�1ð Þ!!

2nð Þ!! þ . . .

Solution. If xj j < 1, then the series is convergent. Consider the power series,

1þ x2ð Þ�1
2 ¼ 1þ P1

n¼1

�1ð Þn 2n�1ð Þ!!
2nð Þ!! x2n. By Abel’s method the sum of the given alter-

nating numerical infinite series can be found by the limit of the power series above

as x ! 1� from the left so that 1� 1
2
þ 1�3

2�4 � 1�3�5
2�4�6 þ . . . ¼ lim

x!1�
1þ x2ð Þ

�1
2

¼ 1ffiffiffiffiffiffi
1þ1

p ¼ 1ffiffi
2

p .

Answer. 1ffiffi
2

p :

Problem 149 Evaluate
P1
n¼0

�1ð Þn
3nþ1

.

Solution. This series converges by the Leibniz Theorem (Theorem 3.9). Consider

the power series:P1
n¼0

�1ð Þnx3nþ1

3nþ1
with convergence interval xj j < 1: By Abel’s method, the following

must be true

X1
n¼0

�1ð Þn
3nþ 1

¼ lim
x!1�

X1
n¼0

�1ð Þnx3nþ1

3nþ 1
¼
X1
n¼0

ðx
0

�1ð Þnt3ndt
0@ 1A ¼

ðx
0

dt

1þ t3

In order to find this limit, we need take an improper integral. If we factor

1þ t3 ¼ 1þ tð Þ 1� tþ t2ð Þ, we can further simplify the fraction under the integral

as follows: 1
1þt3 ¼ A

1þt þ BtþC
1�tþt2, where A, B, and C to be determined and can be

obtained from the system,

Aþ C ¼ 1

�Aþ Bþ C ¼ 0

Aþ B ¼ 0

8><>: ) A ¼ 1

3
, B ¼ �1

3
, C ¼ 2

3
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Next, substituting the values of A, B, and C into the improper integral, we have

1

3

ðx
0

dt

tþ 1
� 1

3

ðx
0

tdt

1� tþ t2
þ 2

3

ðx
0

dt

t2 � tþ 1

¼ 1

3

ðx
0

dt

tþ 1
� 1

6

ðx
0

2t� 1ð Þdt
1� tþ t2

þ 1

6

ðx
0

dt

t2 � tþ 1
þ2

3

ðx
0

dt

t2 � tþ 1

¼ 1

3

ðx
0

dt

tþ 1
� 1

6

ðx
0

2t� 1ð Þdt
1� tþ t2

þ 5

6

ðx
0

dt

t2 � tþ 1

The first antiderivative is ln 1þ tð Þ, the second integral, we rewrite as the sum of

two integrals, one of which is easily taken by substitution, u ¼ 1� tþ t2, du ¼
2t� 1ð Þdt and the second one can be combined with the third integral, that after

completing the square can be rewritten as
Ðx
0

dt

t�1
2ð Þ2þ ffiffi

3
p
2

	 �2, the antiderivative of which
can be recognized as the arctangent function. Finally, we obtain the following:

ðx
0

dt

1þ t3
¼ 1

3
ln xþ 1ð Þ � 1

6
ln x2 � xþ 1
	 �þ 1ffiffiffi

3
p arctan

2x� 1ffiffiffi
3

p þ π

6
ffiffiffi
3

p

¼ 1

6
ln

xþ 1ð Þ2
x2 � xþ 1

þ 1ffiffiffi
3

p arctan
2x� 1ffiffiffi

3
p þ π

6
ffiffiffi
3

p lim
x!1�

ðx
0

dt

1þ t3

¼ 1

6
ln22 þ π

6
ffiffiffi
3

p þ 1ffiffiffi
3

p arctan
1ffiffiffi
3

p

¼ 1

3
ln 2þ π

3
ffiffiffi
3

p ¼ 1

3
ln 2þ πffiffiffi

3
p

� �

Hence,
P1
n¼0

�1ð Þn
3nþ1

¼ 1
3
ln2þ π

3
ffiffi
3

p :

Answer.
P1
n¼0

�1ð Þn
3nþ1

¼ 1
3
ln 2þ π

3
ffiffi
3

p :

3.4 Using Series for Approximation

In this section we show how infinite series can be used for approximation of

irrational numbers, for finding approximate value of a function at a given point,

for approximation of definite integrals and for solving differential equations.
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3.4.1 An Approximation of an Irrational Number

Infinite series are very useful for approximation. For example, just fifty years ago,

before great calculators were invented, if one wanted to know an irrational number

such as e, π, ln 2, etc up to 9 decimal points, he or she would use infinite series

representation of known functions and get the number with the required accuracy

following the rules of approximation.

Assume that a number is the sum infinite numeric series,

A ¼ a1 þ a2 þ a3 þ . . .þ an þ . . ., where a1, a2, . . ., an are “good” numbers, for

example, rational numbers. Let us approximate number A by only n terms of the

infinite series, A � An ¼ a1 þ a2 þ a3 þ . . .þ an. The error of such estimation

αn ¼ anþ1 þ anþ2 þ . . . ;. If n ! 1 ) αn ! 0; and An approximates A at any

given accuracy.

If series is alternating with monotonically decreasing by absolute value terms

(Leibniz type series), then as we have learned, the remainder of the approximation

by the first n terms of the series, has the sign of the first dropped term anþ1ð Þ and by
absolute value it is less than anþ1j j, αnj j < anþ1j j (Theorem 3.9). Although

alternating series have these properties, not all of them are suitable for an approx-

imation of a given number A. For example, consider two well-known convergent

infinite alternating series, 1� 1
2
þ 1

3
� 1

4
þ 1

5
� . . . ¼ ln2 or 1� 1

3
þ 1

5
� 1

7
þ

1
9
� . . . ¼ π

4
:

However, both series converge very slowly and in order to use them for

evaluating ln2 or π
4
, we would have to take too many terms of the expansion. Let

us approximate ln 2 by only the first five terms, ln2 � 1� 1
2
þ 1

3
�

1
4
þ 1

5
¼ 47

60
¼ 0:7833:::3::. On the other hand, TI 84 calculator gives us

ln2 ¼ 0:69314718. We can try to use the first nine terms of the expansion as

ln2 ¼ 1� 1

2
þ 1

3
� 1

4
þ 1

5
� 1

6
þ 1

7
� 1

8
þ 1

9

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0:74563

� 1

10
þ . . .. Our approximation

becomes a little closer to the actual number with an error α9j j � 0:1 ¼ � 1
10

�� ��:
Is there any better method to approximate ln2? The answer is “Yes.” Using

results of Problem 132, let us rewrite the difference of two logarithms as infinite

series:

ln
nþ 1

n
¼ ln nþ 1ð Þ � ln n

¼ 2

2nþ 1
1þ 1

3
� 1

2nþ 1ð Þ2 þ
1

5
� 1

2nþ 1ð Þ4 þ . . .

 !

If n ¼ 1, we obtain on the left hand-side ln2 and its approximation on the right hand

side, ln2 ¼ 2
3

1þ 1
3
� 1
9
þ 1

5
� 1
92
þ 1

7
� 1
93
þ 1

9
� 1
94
þ 1

11
� 1
95
þ . . .

� �
. Let us approximate

ln2 by the first four terms, ln2 � 2
3

1þ 1
3�9 þ 1

5�92 þ 1
7�93

� �
¼ 0:6928734731. This
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approximation gives us correct the first two digits after the decimal point, which is

certainly an improvement.

Next, let us find the error of such approximation.

error¼ α4 ¼ 2

3

1

9
� 1
94

þ 1

11
� 1
95

þ 1

13
� 1
96

þ . . .

� �
<

2

3

1

95
þ 1

96
þ 1

97
þ . . .

� �

¼ 2

3
� 1
95

1

1� 1

9

0B@
1CA ¼ 1

78732
� 1

10000
¼ 10�4:

The infinite series inside parentheses is compared with an infinite geometric

progression with the same first term as the series and the common ratio of 1/9.

Using terms of the infinite series 1� 1
3
þ 1

5
� . . . to approximate π is also not

efficient. Other faster convergent series are usually used.

Further, in order to find an approximate value of a function f(x) at the point x0
with a given accuracy proceed as follows: The function f(x) is written as a powers

series of ðx� x1Þ on the convergence interval containing this point x0. The point x1
is the point at which the values of the function and its derivatives are calculated

accurately. The variable x is given a value x0. In the obtained series
P1
k¼0

ak x0 � x1ð Þk

we keep only the terms that guarantee the given accuracy of calculations. The

minimal number n0 of such terms is determined either from the corresponding

estimate of the remainder Rn(x0) of the Taylor formula or from the remainder, rn(x0)
of the Taylor series since in the case of convergence of the power series of f(x), the
remainders are equal.

3.4.2 An Approximation of Integrals

Many indefinite integrals that are not expressed in terms of elementary functions

can be calculated using series.

Problem 150 Evaluate with accuracy α ¼ 0:00001 the integral
Ð0:1
0

sin x
x dx.

Solution. Using Eq. 3.24 we obtain that sin x ¼ x� x3

3! þ . . .þ �1ð Þn
x2kþ1

2kþ1ð Þ ! þ . . . ¼ P1
k¼0

�1ð Þk x2kþ1

2kþ1ð Þ !. Now
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sin x

x
¼ 1� x2

3!
þ . . .þ �1ð Þn x2k

2k þ 1ð Þ !þ . . . ¼
X1
k¼0

�1ð Þk x2k

2k þ 1ð Þ !, x 2 R

ð0:1
0

sin x

x
dx¼

ð0:1
0

1 � dx�
ð0:1
0

x2

3!
dxþ . . .þ �1ð Þn

ð0:1
0

x2k

2k þ 1ð Þ !dxþ . . .

¼ 0:1� 0:001

3 � 3! þ
0:00001

5 � 5! þ � � � þ ð�1Þk x2kþ1 � ð0:1Þ2kþ1

ð2k þ 1Þð2k þ 1Þ !þ . . .

Because 0:1 > 0:00001, 0:001
3�3! ¼ 0:000055 . . . > 0:00001, 0:00001

5�5! ¼ 0:00001
600

< 0:00001

ð01
0

sin x

x
dx � 0:1� 0:000055 ¼ 0:09994:

Answer. 0.09994.

Problem 151 Evaluate integral
Ð1=4
0

e�x2dx with accuracy of 10�4.

Solution. Using the Maclaurin series, we substitute in Eq. 3.21 �x2 instead of x,

e�x2 ¼ 1� x2

1 ! þ x4

2 ! � . . .þ �1ð Þn x2n

n ! þ . . . �1 < x < þ1ð Þ. This series can

be integrated between any finite limits. Thus,Ð1=4
0

e�x2dx ¼ Ð1=4
0

P1
n¼0

�1ð Þn x2n

n ! dx ¼
P1
n¼0

�1ð Þn
n !

Ð1=4
0

x2ndx¼P1
n¼0

�1ð Þn
n ! � x2nþ1

2nþ1

���1=4
0

� �
¼ P1

n¼0

�1ð Þn
n !� 2nþ1ð Þ�42nþ1.

The resulting series of numbers is an alternating series satisfying the Leibniz

Theorem (Theorem 3.9), so if we take for computing the first few terms of the

series, the error, which in this case will be made, will not surpass the absolute value

of the first discarded term.

Notice that the third term of the series 1
2 !�5�45 ¼ 1

10240
< 10�4. Therefore, in order

to calculate the integral with the required accuracy up10�4, it is enough to take only

two members of the series,
Ð1=4
0

e�x2dx � 1
4
� 1

1 !�3�43 ¼ 1
4
� 1

192
� 0:2448.

Answer. 47
192

� 0:2448:
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3.4.3 Integration of Differential Equations

The power series may also be used for solving differential equations, for example, if

their solution cannot be written in terms of elementary functions.

Problem 152 Solve the equation xy
00 � y ¼ x� 1ð Þ2, y 1ð Þ ¼ 1, y0 1ð Þ ¼ 0:

Solution. Assume that our solution is written as Taylor Series with center at

point x0,

y xð Þ ¼ y x0ð Þ þ y0 x0ð Þ
1!

x� x0ð Þ þ y
00
x0ð Þ
2!

x� x0ð Þ2 þ . . .þ y kð Þ x0ð Þ
k!

x� x0ð Þk þ ::::

The first two coefficients we find from the initial value problem. Then, because

x0 ¼ 1,

y xð Þ ¼ y 1ð Þ þ y0 1ð Þ
1!

x� 1ð Þ þ y
00
1ð Þ

2!
x� 1ð Þ2 . . .þ y 4ð Þ 1ð Þ

4!
x� 1ð Þ4:

y 1ð Þ ¼ 1, y0 1ð Þ ¼ 0

1 � y00
1ð Þ � 1¼ 0 ) y

00
1ð Þ ¼ 1

Differentiating the given differential equation, y
00 þ xy

000 � y0 ¼ 2 x� 1ð Þ. Substitut-
ing in the equation x ¼ 1 and using y 1ð Þ ¼ 1, y0 1ð Þ ¼ 0, y

00
1ð Þ ¼ 1; from the last

equation, we obtain y
00
1ð Þ þ 1 � y000

1ð Þ � y0 1ð Þ ¼ 0 ) y
000
1ð Þ ¼ �1. Differentiating

the previous equation again, replacing x ¼ 1, 2y
000
1ð Þ þ 1 � y 4ð Þ 1ð Þ � y

00
1ð Þ ¼ 2 )

y 4ð Þ 1ð Þ ¼ 5: Therefore, y 1ð Þ ¼ 1, y0 1ð Þ ¼ 0, y
00
1ð Þ ¼ 1, y

000
1ð Þ ¼ �1, y 4ð Þ 1ð Þ ¼ 5.

Finally, we obtain the solution, ey xð Þ ¼ 1þ x�1ð Þ2
2! � x�1ð Þ3

3! þ 5 x�1ð Þ4
4! .

Problem 153 Find the first five terms of series solution of y0 ¼ x2 þ y2,

satisfying the condition y ¼ 1
2
at x ¼ 0.

Solution. Let us write the series solution to this equation as Maclaurin series,

y xð Þ ¼ y 0ð Þ þ y 0 0ð Þ
1 ! xþ y 00 0ð Þ

2 ! x2 þ y 000 0ð Þ
3 ! x3 þ . . .þ y nð Þ 0ð Þ

n ! xn þ . . .. The first three

derivatives are found by differentiating the differential equation,

y00 ¼ 2xþ 2yy0, y000 ¼ 2þ 2 � y0ð Þ2 þ 2yy00, y 4ð Þ ¼ 6y0y00 þ 2yy000. Evaluating

the values of these derivatives at x ¼ 0 and using the initial condition y 0ð Þ ¼ 1
2

and the given DE: y0 ¼ x2 þ y2, we obtain y0 0ð Þ ¼ 0þ 1
2

	 �2 ¼ 1
4
; y00 0ð Þ ¼ 2 � 0þ 2

�1
2
� 1
4
¼ 1

4
; y000 0ð Þ ¼ 2þ 2 � 1

42
þ 2 � 1

2
� 1
4
¼ 19

8
; y 4ð Þ 0ð Þ ¼ 1

4
þ 1

8
þ 19

8
¼ 11

4
. Substituting

these values into the Maclaurin series, we obtain the following approximate

solution: y xð Þ ¼ 1
2
þ 1

4
xþ 1

8
x2 þ 19

48
x3 þ 11

96
x4 þ . . ..
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Let us take only the first five terms of this series and graph it (Figure 3.1).

MAPLE 15 solves this differential equation numerically with much better

precision using more than five terms of the power expansion and plots the solution

curve satisfying the IVP (Figure 3.2).

2

1y

0-1-2 1

x

2

-1

-2

Figure 3.1 Approximate solution, y xð Þ ¼ 1
2
þ 1

4
xþ 1

8
x2 þ 19

48
x3 þ 11

96
x4

Figure 3.2 ODE plot by

MAPLE
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By comparing two graphs, we can see that both solutions looks almost identical,

pass the point (0,1/2) and have the same visually X intercept. Finding the closed

form solution in this case is not possible.

3.5 Generating Functions

Series where the nth term depends on some variable x are called functional series. In
this section we focus on a particular kind of functional series called a power series.

Consider a sum a geometric series again with the first term b1 and common ratio r,

Sn ¼ b1 þ b1r þ b1r
2 þ . . .þ b1r

n ð3:39Þ

If n is a specific number, say n ¼ 2 or n ¼ 7 or even n ¼ 1000, then Sn is a

polynomial of 2, 7, or 1000 terms, respectively. If n is an indefinite number of

terms, the sum of the series can be written in the form

S1 ¼ b1 þ b1r þ b1r
2 þ . . . ð3:40Þ

In the case where the number of terms is indefinitely great (we say “as n approaches
infinity”) the expression on the right of Eq. 3.40 is called an infinite series.

If every coefficient of powers of r is different, and they are denoted by

a0, a1, a2,...., then Eq. 3.40 becomes

S ¼ a0 þ a1r þ a2r
2 þ a3r

3 þ . . . ð3:41Þ

Equation 3.41 is called a power series and the variable r is called the variable of the
series. Also we can call Eq. 3.41 a power series in r, and we say that S is a sum to

infinity. Let us do some analysis of Eq. 3.39 and Eq. 3.41. If an absolute value of r is
greater than 1, then each term of Eq. 3.39 or Eq. 3.41 is greater than the preceding

term and the sum S has no definite limiting value, but increases without bound as the

number of terms increases.

Example. 1, 5, 25, 125, 625, . . . is a geometric sequence with b1 ¼ 1, r ¼ 5 > 1

S3 ¼ 1þ 5þ 25 ¼ 31

S5 ¼ 1þ 5þ 25þ 125þ 625 ¼ 781

S15 ¼
b1 r15 � 1
	 �
r � 1

¼ 515 � 1

4
¼ 7, 629, 394, 531:

If an absolute value of r is less than 1, then the successive terms are smaller and

smaller and as the number of terms n becomes very big, “infinite,” the last term

approaches zero ðnth term is b1r
n�1, jrj < 1, lim

n!1 rn�1 ¼ 0Þ. In this case, the sum
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S from Eq. 3.41 approaches a definite value as n becomes infinitely big and is said to

be “the limit of the sum of the series as n approaches infinity.” As we obtained

earlier for a geometric series if rj j < 1, we have S ¼ b1
1�r ¼ b1 1� rð Þ�1

because if

n ! 1, 1� rð Þ�1 ¼ 1þ r þ r2 þ r3 þ . . ..
In the case when each coefficient is different, the way of finding a sum to infinity

is different in each case and may be nontrivial. In this section, we look at the other

approach to solving recursions using generating functions. Consider an infinite

sequence of numbers:

a0, a1, a2, . . . ð3:42Þ

The corresponding power series is called a generating function for sequence of

Eq. 3.42

GðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ . . . ð3:43Þ

Thus, for the sequence, 1, 1, 1, 1, . . ., the generating function G(x) can be

recognized as an infinite geometric series and can be written as

1þ xþ x2 þ x3 þ . . . ¼ 1

1� x
: ð3:44Þ

For the infinite sequence of the natural numbers 1, 2, 3, 4, 5, . . . a generating

function can be found similarly to the series in Problem 135, i.e.,

G xð Þ ¼ 1þ 2xþ 3x2 þ 4x3 þ . . .þ nþ 1ð Þxn þ . . .. Multiplying both sides by x, x

G xð Þ ¼ xþ 2x2 þ 3x3 þ 4x4 þ . . .þ nxn þ nþ 1ð Þxnþ1 þ . . . and subtracting two

equations, we obtain 1� xð ÞG xð Þ ¼ 1þ xþ x2 þ x3 þ . . .þ ¼ 1
1�x. Solving,

G xð Þ ¼ 1

1� xð Þ2 ð3:45Þ

In order to find generating functions for general sequences, we would need to learn

material that is beyond the scope of this book. However, we show how to use some

generating functions in solving challenging problems on sequences.

Next, let us solve the following problem using generating functions.

Problem 154 A certain sequence of numbers a1, a2, . . ., an satisfies the

condition: a0 ¼ a1 ¼ 1, anþ2 ¼ anþ1 þ an. Find an.
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Solution. Let us generate some of the terms:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ð3:46Þ

Then consider the following infinite functional series in variable x:

F xð Þ ¼ 1þ xþ 2x2 þ 3x3 þ 5x4 þ 8x5 þ . . . ð3:47Þ

Multiplying both sides by xþ x2ð Þ we obtain

xþ x2ð ÞF xð Þ ¼ xþ x2 þ 2x3 þ 3x4 þ 5x5 þ 8x6 þ . . .

x2 þ x3 þ 2x4 þ 3x5 þ 5x6 þ . . .

xþ x2
	 �

F xð Þ ¼ xþ 2x2 þ 3x3 þ 5x4 þ 8x5 þ . . . ð3:48Þ

Subtracting Eq. 3.47 and Eq. 3.48 and solving it for F(x) we have

F xð Þ ¼ 1

1� x� x2
ð3:49Þ

Equation 3.49 is the sum of all terms of Eq. 3.47 or using new terminology, it is the

generating function for sequence of Eq. 3.46.

Finding zeros of the denominator of Eq. 3.49, we obtain zeros of a quadratic

equation,

1� x� x2 ¼ 0

x1 ¼ �1þ ffiffiffi
5

p

2
, x2 ¼ �1� ffiffiffi

5
p

2

ð3:50Þ

Applying Vieta’s Theorem to these roots more relationships can be obtained:

x1 � x2 ¼ �1

x1 þ x2 ¼ �1

x1 � x2 ¼
ffiffiffi
5

p ð3:51Þ

Next, factoring the denominator as 1� x� x2 ¼ � x� x1ð Þ x� x2ð Þ: Using the

relationships from Eq. 3.51, we can see that x� x1 � x� x2ð Þ ¼ � ffiffiffi
5

p
; then we

can rewrite Eq. 3.49 as a difference of two fractional expressions:
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1

1� x� x2
¼ � 1

x� x1ð Þ x� x2ð Þ ¼ � 1ffiffiffi
5

p 1

x� x1
� 1

x� x2

� �
¼ 1ffiffiffi

5
p 1

x� x2
� 1

x� x1

� �
¼ 1ffiffiffi

5
p 1

x1 � x
� 1

x2 � x

� �

¼ 1ffiffiffi
5

p 1

x1 1� x

x1

� �� 1

x2 1� x

x2

� �
0BB@

1CCA
The last expression can be easily seen to be

FðxÞ ¼ 1ffiffiffi
5

p
x1

� 1

1� x
x1

� 1ffiffiffi
5

p
x2

� 1

1� x
x2
:

ð3:52Þ

Equation 3.52 gives us a different representation of the infinite sum F(x). It is now
the difference of two sums, each of which can be expanded as an infinite sum of a

geometric series. Thus, Eq. 3.52 can be rewritten as

F xð Þ ¼ 1ffiffiffi
5

p
x1

� 1þ x

x1
þ x

x1

� �2

þ x

x1

� �3

þ . . .

 !

� 1ffiffiffi
5

p
x2

� 1þ x

x2
þ x

x2

� �2

þ x

x2

� �3

þ . . .

 ! ð3:53Þ

Equations 3.47 and 3.53 represent the same function F(x). Therefore,

equating coefficients of x, x2, x3, . . ., we get the formula for any term of the

Fibonacci sequence! Thus a0 ¼ 1 ¼ 1ffiffi
5

p
x1
� 1ffiffi

5
p

x2
¼ x2�x1ffiffi

5
p

x1x2
¼ � ffiffi

5
pffiffi

5
p �1ð Þ ¼ 1 and

an ¼ 1ffiffi
5

p 1
x1nþ1 � 1

x2nþ1

� �
¼ 1ffiffi

5
p x2

nþ1�x1
nþ1

x1x2ð Þnþ1

� �
. In order to make this formula more con-

venient for further usage, using Eq. 3.51, we put fractions over the common

denominator and replace the product of the roots x1 � x2 by (�1). Finally, we have

an explicit formula for the nth term of the Fibonacci sequence,

an ¼ �1ð Þnþ1ffiffiffi
5

p �1� ffiffiffi
5

p

2

 !nþ1

� �1þ ffiffiffi
5

p

2

 !nþ1
0@ 1A ð3:54Þ

If we factor out �1ð Þnþ1
from each term inside parentheses, Eq. 3.54 becomes

Eq. 1.19. You can see that the formula works for any member of the sequence. For

example, if n ¼ 3, then we find a3 ¼ 3, which can be obtained by the recursive

relationship. On the other hand, substituting n ¼ 3 into Eq. 3.54, we get
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a3 ¼ �1ð Þ4ffiffiffi
5

p �1� ffiffiffi
5

p

2

 !4

� �1þ ffiffiffi
5

p

2

 !4
24 35 ¼ 2 � 2 ffiffiffi

5
p � 12

16 � ffiffiffi
5

p ¼ 48

16
¼ 3:

Maybe this approach is not as elegant as one presented in Chapter 1. Generating

functions have a lot of applications, for example, in combinatorics and computer

science. It never “hurts” to learn different ways of solving a problem.

Let us solve the following problem.

Problem 155 Given a sequence such that anþ1 ¼ 2an þ 3n, a0 ¼ 1, n¼ 0,

1, 2, 3, . . .. Find the nth term of the sequence.

Solution. Evaluating some of the first terms 1, 2, 7, 20, 49, . . . we cannot find the

formula right away, so we use the method of generating functions. Instead of

looking for the sequence, we look for the function. Let us multiply the given

formula by xn and then using sigma notation write down an equivalent relationship,

X1
n¼0

anþ1x
n ¼ 2

X1
n¼0

anx
n þ 3

X1
n¼0

nxn ð3:55Þ

The right side of it can be rewritten with the use of known generating functions.

First, we know that
P1
n¼0

anx
n ¼ a0 þ a1xþ a2x

2 . . . ¼ F xð Þwhich can be used in the
first term. Let us evaluate the second sum on the right side of Eq. 3.55,

X1
n¼0

nxn ¼ xþ 2x2 þ 3x3 þ 4x4 þ . . . ð3:56Þ

Earlier we established that
P1
n¼0

xn ¼ 1þ xþ x2 þ x3 þ x4 þ . . . ¼ 1
1�x. Let us take

the derivative of this formula with respect to x and then denote it by P(x), i.e.,

PðxÞ ¼ P1
n¼0

d
dx ðxnÞ ¼ d

dx ð
P1
n¼0

xnÞ ¼ d
dx

1
1�xÞ ¼ 1

ð1�xÞ2
�

. Then multiplying it by x will

give us generating function for Eq. 3.56, i.e.,P1
n¼0

nxn ¼ xPðxÞ ¼ xþ 2x2 þ 3x3 þ 4x4 þ � � �þ ¼ P1
n¼0

nxn ¼ x
ð1�xÞ2

Next, we consider the left side of Eq. 3.55,

X1
n¼0

anþ1x
n ¼ a1 þ a2xþ a3x

2 þ a4x
3 þ . . . ð3:57Þ
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It is clear that Eq. 3.57 can be seen as F(x) minus the very first term and then divided

by x. Therefore, Eq. 3.55 can be written as F xð Þ�a0
x ¼ 2F xð Þ þ 3x

1�xð Þ2 , a0 ¼ 1. Solving

for F(x) we obtain the formula and decompose it into partial fractions,

F xð Þ ¼ 1� 2xþ 4x2

1� 2xð Þ 1� xð Þ2 ¼
A

1� 2x
þ B

1� x
þ C

1� xð Þ2 ð3:58Þ

Putting the fractions on the right over the common denominator and equating

corresponding coefficients of powers of x,

A 1� xð Þ2 þ B 1� xð Þ 1� 2xð Þ þ C 1� 2xð Þ ¼ 1� 2xþ 4x2

A 1� 2xþ x2ð Þ þ B 1� 3xþ 2x2ð Þ þ C 1� 2xð Þ ¼ 1� 2xþ 4x2

Aþ Bþ C ¼ 1

�2A� 3B� 2C ¼ �2

Aþ 2B ¼ 4

8><>: , A ¼ 4,B ¼ 0,C ¼ �3

Now Eq. 3.58 can be rewritten as

F xð Þ ¼ 4

1� 2x
� 3

1� xð Þ2

¼ 4 � 1þ 2xþ 2xð Þ2 þ 2xð Þ3 þ . . .
� �h i

�3 � 1þ 2xþ 3x2 þ 4x3 þ 5x4 þ . . .½ 	

ð3:59Þ

Combining like terms in Eq. 3.59, we can rewrite it as

F xð Þ ¼ P1
n¼0

4 � 2n � 3 nþ 1ð Þð Þxn. From this, we immediately obtain the formula

for the nth term,

an ¼ 4 � 2n � 3 nþ 1ð Þ ¼ 4 � 2n � 3n� 3: ð3:60Þ

In order to make sure that Eq. 3.60 is correct, we can use it for finding several

members of the sequence:

n ¼ 0, a0 ¼ 4 � 20 � 3 0þ 1ð Þ ¼ 4� 3 ¼ 1

n ¼ 1, a1 ¼ 4 � 21 � 3 1þ 1ð Þ ¼ 4 � 2� 3 � 2 ¼ 2

n ¼ 2, a2 ¼ 4 � 22 � 3 2þ 1ð Þ ¼ 4 � 22 � 3 � 3 ¼ 7, etc:

Answer. an ¼ 4 � 2n � 3 nþ 1ð Þ:
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Chapter 4

Real-Life Applications of Geometric
and Arithmetic Sequences

Over the millenia, legends have developed around mathematical problems involv-

ing series and sequences. Here in this book we try to create an original fable about

two children, Brian and Paul whose parents wanted to reward them for good grades

in mathematics and saw how Paul by asking for 1 cent on day one and asking for

doubling the amount each consecutive day was way ahead of his dull-witted brother

Brian. Soon any parent would realize that there is not enough money on the planet

Earth to supply Paul’s request.

One of the most famous legends about series concerns the long inventor of chess

whose name is lost the ages. According to the legend, an Indian king summoned the

inventor and suggested that he chose the award for the creation of the interesting

and wise game. The king was amazed by the “modest” request from the inventor

who asked to give him for the first cell of the chessboard 1 grain of wheat, for the

second—2 grains, for the third—4 grains, for the fourth—twice as much as in the

previous cell, etc. As a result, the total number of grains per 64 cells of the

chessboard would be number 18,446,744,073,709,551,615 (18 quintillion, 446 qua-

drillion, 744 trillion, 73 billion 709, and 551,000,615). If the king was able to have

that much of wheat, he would have to plant it everywhere on the entire surface of

the Earth including the territories of the seas and oceans, and mountains, and the

desert, from the Arctic to the Antarctic in order obtain a satisfactory harvest, then,

perhaps, he maybe could pay his amazing debt off to the chess inventor in over

5 years.

In our life, we deal with geometric progression in that or this form all the time

without even thinking about it. For example, many of us like shopping and we all

are attracted by the sales price of the items. Assume that the price of a dress of your

dreams is reduced every week by five percent. If today the price is $300, what

would be the price of the dress in 6 months? Obviously the price of the dress in each

week will be multiplied by a factor of 0.95 that is equivalent to 5% reduction.

The following will represent a few consecutive sales prices: 300, 0:95 � 300,
0:95ð Þ2 � 300, 0:95ð Þ3 � 300, . . . . Therefore, the sales price after n reductions will
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be 300(0.95)n, and if after a year the sale continues (52 weeks equals one year), you

can buy the same dress for a just $20.83.

Notice that if we assume that the price of the dress is a continuous function of

time, then it follows an exponential decay function where the discrete terms of the

geometric progression are represented by points on a continuous curve. An expo-

nential decay function with decay rate r and initial value P, can be written as

A tð Þ ¼ P 1� rð Þt ð4:1Þ
Specifically, for radioactive decay, using the geometric progression approach, this

formula can be written as

A tð Þ ¼ P
1

2

� � t
t1=2

: ð4:2Þ

Here t1/2 is the half-life, the period specific for all radioactive substances over which
the mass of the substance decays by half.

For example, for a decaying hypothetical radioactive substance, with t1=2 ¼ 1000

years, the initial amount of 100 kg would become 50 kg in 1000 years, then 25 kg in

the following 1000 years, 12.5 kg in the next 1000 years, etc. All these moments are

discrete points on a continuous curve of the radioactive decay with represent the

terms of infinitely decreasing geometric progression with common ratio ½
(Figure 4.1).

Have you ever thought of how archeologists in the movies, such as Indiana Jones

can predict the age of different artifacts? Do not you know that the age of artifacts in

real life can be established by the amount of the radioactive isotope of Carbon 14,
14
6C

6 ¼ 14C in the artifact found by a scientist? Carbon 14 has a very long half-

lifetime which means that each half- life time of 5730 years or so, the amount of the

isotope is reduced by half.
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Figure 4.1 Radioactive decay
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Equation 4.2 is very useful if the half-life time of an isotope is known. In a

general exponential decay case given by Eq. 4.1, the half-lifetime can be easily

found by setting the left side of the formula to P
2
, then taking a logarithm of both

sides and solving the formula for the corresponding time that will be the half-

lifetime, t1/2,
P
2
¼ P 1� rð Þt ) 1

2
¼ 1� rð Þt.

t ¼ t1=2 ¼
ln 1

2

� �
ln 1� rð Þ ð4:3Þ

In this chapter, you will find some interesting problems on radioactive decay

coming from theoretical part of the International Chemistry Olympiads.

If we again model the price reduction by a continuous decay exponential

function, then the dress will have its own half-life time in the sense of the time

when the price is exactly half of the original price. Thus, substituting 150 into

Eq. 4.1 and solving it for time, we obtain that t1=2 ¼ ln0:5
ln0:95 � 13:51, which indicates

that the dress will be 50% off approximately between 13th and 14th weeks of

continuous reduction process.

On the other hand, the terms of an increasing geometric progression with

common ratio greater than one will produce a curve of an exponential growth and

terms of the progression will be represented by discrete points on the continuous

curve. By analogy, a function of an exponential growth can be modeled as

A tð Þ ¼ P 1þ rð Þt: ð4:4Þ
Here P is the principal or original amount and r is the nominal growth rate.

Additionally, there are many examples of arithmetic progression around us in

a real life. For example, the same Indiana Jones who wants to get a precious

artifact from the deep 10 meters underground hires people to do digging for him.

Assume that he promised to pay a $100 for the first meter and will pay $50 more

for each following consecutive meter of dirt digging. How much would he pay for

digging 10 meters deep underground? In this case we have an arithmetic

sequence of the payments with the first term of $100 and common difference of

$50: $100, $150, $200, $250, $300, $350, $400, $450, $500, $550. The total

payment equals the sum of the terms of this arithmetic progression and it is
100þ550

2
� 10 ¼ $3250:

This chapter is for those who want to see applications of arithmetic and

geometric progressions to real life. There are many applications for sciences,

business, personal finance and even for health, but most people are unaware of

these. We familiarize you with these by giving you five mini-projects and some

related problems associated with the concepts afterwards. However, most of the

problems of this chapter are not contest type problems and if you are not

interested or already understand them, skip this chapter and go to the homework

section.
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4.1 Mini-Project 1: Radioactive Decay and its Applications

Natural radioactivity was discovered by Henry Becquerel and then studied in depth

by French physicists Pierre and Marie Sklodowsca Curie. All three scientists

received Nobel Prizes in physics in 1903. Willard Libby (American physicist)

who worked on the Manhattan Project during World War II, invented the process

of carbon dating in the early 1950 s at the University of Chicago. In 1960, he was

awarded the Nobel Prize in Chemistry for this research. It was found that cosmic

radiation generated neutrons that penetrate into our atmosphere, interact with

nitrogen 14 in the air and produces radioactive isotope Carbon 14.

14
7 Nþ1

0 n !14
6 Cþ1

1 H

14
6 C !β

�
14
7 N

Since carbon C14 is radioactive, it can be detected using a Geiger counter. This

radioactive carbon is mixed with carbon in a normal atmosphere, typically in the

form of carbon dioxide (CO2). Plants absorb carbon dioxide, and it becomes part of

their tissue. Animals eat plants and CO2 becomes a part of their body tissue. When a

plant or animal dies, the arrival of the new CO2 is terminated. In today’s environ-

ment, there is very little radioactive carbon (only 0.0000765%) and its amount is

further reduced after its decay into simpler components. About half of the CO2

splits into simpler components in about 5,730 years. This is called the half-life of

radioactive CO2. After the two "half-life" (11.460 years) only one-fourth of the

original amount of CO2 will remain radioactive and so on.

As we mentioned above, radioactive isotope of Carbon, Carbon 14 dating by far

the most important method of determination of age of artifacts in archeology.

However, due to a very long half-lifetime (about 5730 years) and lower abundance

of this isotope in the artifacts or natural samples, this method requires a very high

sensitivity of measurements. If a sample is gaseous, it can be introduced directly

into Geiger counter to increase sensitivity. Using the number of Geiger counter

clicks as a reference point, scientists are trying to determine the age of the artifact.

Since today’s atmosphere produces about sixteen counter clicks per minute per one

gram of Carbon 14, then Geiger counter has to click eight times per minute if the

artifact is 5,730 years old and four times per minute if the artifact is 11,460 years

of age.

When Carbon 14 decays, it forms Nitrogen 14 and loses one electron. This

reaction is called “beta decay,”

14
6C

6 ! 14
7N

7 þ e�:

Such a reaction, as any monomolecular chemical reaction can be modeled by a

differential equation of the first order, dx
dt ¼ �k � x. Here C is the concentration of

Carbon 14 or in general, concentration of any radioactive substance. The substance

is decaying, proportionally to the current amount of the radioactive substance,
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which means that the rate of change equals minus constant of reaction, k, times the

current concentration. It is not difficult to find the solution to this equation. We can

separate the variables and after integration to obtain the following

x ¼ x0e
�kt ð4:5Þ

Where x0 is an initial concentration of a radioactive substance. If x ¼ x0
2

) t ¼ t1=2
and we can evaluate the constant of the reaction, k,

k ¼ � ln 1
2

t1=2
¼ ln 2

t1=2
: ð4:6Þ

Using base change formula applied to Eq. 4.6, Eq. 4.5 can be easily rewritten

equivalent to the form of Eq. 4.2 with base ½ and half -lifetime as a parameter,

x¼ x0e
�kt ¼ x0 e ln

1
2

� � t
t1=2

¼ x0
1
2

� � t
t1=2 :

Let us solve the following problem. A similar problem was offered at preparation

for International Chemistry Olympiad (IChO 1996) that took place in Moscow,

Russia.

Problem 156 Indiana Jones wants to know the age of artifact that he was

able to dig out. In one of his experiments, 0.011 moles of methane 14CH4 was

introduced into Geiger counter chamber. After 30 minutes the counter was

switched on and the measurements continued for another five minutes to

register 2000 decays. Write the equation describing β decay of carbon

14 nucleolus. Calculate the number of Carbon 14 atoms in the sample and

the molar % of radioactive methane 14CH4 taken to the experiment described.

Solution. Because the time of the experiment is 30 minutes is much less than the

half lifetime of 5730 years, then given 2000 nuclei decayed within 5 minutes may

indicate that approximately 400 ¼ 2000/5 will decay in one minute. Then about

12,000 would decay in 30 minutes. Assuming that� dN
dt ¼ kN ¼ 400min�1 ¼ const,

then the initial number of nuclei, x0, can be approximated by x0 � N ¼ 400min�1

k ,

where the constant of reaction can be found using Eq. 4.6,

k ¼ ln2
t1=2

¼ 0:693
5730�365�24�60 � 2:46 � 10�10min�1

. Thus, x0 � N � 400
2:46�10�10 ¼ 1:66 � 1012.

However, let us find the answer in a more mathematical way. Though the Geiger

counter did not work for the first 30 minutes, the radioactive Carbon 14 continued

decaying. Let us see how we can use the information that when the Geiger counter
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switched on, that only within the last five minutes, the count was recorded as 2000.

Using Eq. 4.5, we can subtract the actual number of nuclei decayed within

30 minutes and 35 minutes, respectively, and to obtain the number of atoms of

Carbon 14 decayed between 30th and 35th minutes and equate it to 2000:

x0e
�30k � x0e

�35k ¼ 2000

x0 ¼ 2000

e�30k � e�35k

Because we know the half-lifetime, we substitute k from Eq. 4.6 and obtain that

x0 ¼ 2000

1
2

� � 30min
5730years � 1

2

� � 35min
5730years

>
2000

1
2

� � 30
3,011,688,000 � 1

2

� � 35
3,011,688,000

¼ 1:67 � 1012:

It is interesting the both methods of calculation for the initial number of atoms of

radioactive Carbon 14 gave practically the same answer.

Answer. x0 ¼ 1:67 � 1012 atoms of Carbon 14.

Remark. In order to find the molar percent of radioactive methane, we use the fact

that one mole contains approximately 6:02 � 1023 atoms of carbon (this is called

Avogadro number). Hence, 0.011 moles of methane will have 6:6 � 1021 atoms of

Carbon. Because x0 ¼ 1:67 � 1012 of radioactive Carbon 14, then 0.0011 moles of

methane contain the following % of radioactive Carbon 14.

1:67 � 1012
6:6 � 1021 � 100% ¼ 253

10000000000
% ¼ 2:53 � 10�8%:

The following problem was offered at the 25th International Chemistry Olympiad,

1993, Italy.

Problem 157 A radioactive isotope of iodine, 131I, is used in nuclear med-

icine for analytical procedures to determine thyroid disorders by scintigraphy.

The decay rate constant, k, of 131I is 9:93� 10�7s�1. The decay equation is
131I ! 131Xeþ e�.

a. Calculate the half-lifetime of 131I expressed in days.

b. Calculate the time necessary (expressed in days) for a sample of 131I to

reduce its activity to 30% of the original value.

Solution.

a. Using Eq. 4.6 we can find the half-lifetime in seconds as

t1=2 ¼ ln2
9:93�10�7s�1 ¼ 698033:41s � 8:079 days:
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b. Using Eq. 4.5, replacing x ¼ 0:3x0 and after canceling the common factors, we

obtain, 0:3 ¼ e�kt, k ¼ 9:93 � 10�7:

After taking natural logarithm of both sides we get

ln 0:3 ¼ �9:93 � 10�7 � t

t ¼
ln
10

3
9:93 � 10�7

� 1212460 � 14 days:

Obviously, it takes longer to decay to 30% (14 days) than to 50 % of the original

amount (8 days)

Answer. 8 days and 14 days.

Despite the fact that dating Carbon 14 sounds true, the process itself is based on

several erroneous assumptions:

1. The amount of C14 in the atmosphere is in a state of equilibrium. This assump-

tion is incorrect. According to estimates, the amount of C14 in the atmosphere

will reach a state of equilibrium (when the rate of production is equal to the

decay rate) during 30,000 years. Hence, the amount of C14 in the atmosphere is

still increasing. This research points to the young age of the earth (probably less

than ten thousand years).

With the depletion of earth’s magnetic field, more and more radiation pene-

trates into our atmosphere. Today, the Geiger counter clicks sixteen per minute

per gram is usually denoted by living matter. The animals and plants that live on

the Earth four thousand years ago, initially to be located far fewer C14. With a

small amount of C14, they will look at a few thousand years older than they

actually are. Several factors can alter the rate of C14. One factor is the eleven-

year sunspot cycle.

2. The decay rate is not changed. (Assume in Eq. 4.5 that k ¼ const:). Many times it

has been shown that this assumption is uncertain. Since the rate of decomposi-

tion may vary, the age of the artifacts obtained by the C14 can be recognized only

with the necessary safety precautions.

3. You can find the original amount of C14. This assumption has been proven

wrong many times. Different parts of a sample often produce different dates. A

variety of live specimens produce quite unlike relations. The age of some items

cannot be estimated by using carbon dating, even if the items contain carbon.

4. Checked samples sometimes were not radioactive (contaminated) that will

change their original condition for thousands of years. This assumption is very

difficult (if not impossible) to prove. The products of radioactive decay could be

lost or gained by the sample. Laboratory tests confirmed a large number of what

may occur.

Some research demonstrates increase of radiocarbon in the atmosphere. It is

contrary to the official data. The graph of the proportion of radiocarbon from

time to time over the last century show that it declined to about the level of 1950

due to industrial emissions of fossil CO2 which is no longer left radiocarbon,
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almost all fell apart. Then there was a sharp increase - then massively conducted

due to nuclear tests. Now it is reduced again.

It is safe to use Carbon 14 for dating only inorganic artifacts because we know

the exact proportion of isotopic CO2 absorbed by plants from the atmosphere.

Geiger counters are no longer used for determining the proportion of radioactive

carbon because mass spectrometers give much better accuracy.

4.2 Mini-Project 2: Patients and Injections

Problem 158 After an ankle surgery, a patient is given an injection of 6 units

of codeine. For each succeeding daily injection she is given 4 units of the

same medication. The patient loses 80% of the medication between injec-

tions. How much of the medication will remain in the patient’s system after

the 3rd injection? How about after the 30th injection? What is the amount of

the medication in the blood stream on the 31st and 35th days if the 30th

injection was the last?

Solution. Let us think of what happens if we are given an injection of 6 units of a

medication and will not get more. Will we have a portion of the medication in our

blood on the second day?

For a specific medication different people have different elimination rates

(say, a) that shows what % of a medication will be gone (eliminated) from our

body. It can be 10%, 20%, 40%, even 90% etc. So some patients can lose 10%, 20%

40%, etc of the medication. But 90%, 80%, 60%,. . . of the medication respectively

will remain in the blood stream on the next day. Let x ¼ 1� a
100

, where a is an

elimination rate in percent.

If we are given 6 mg of a medication on the 1st day and do not receive other

injections we would have 6x mg of the medication on the second day, 6x � x ¼ 6x2

on the third day 6x2 � x ¼ 6x3 on the fourth day and so on. However, if we continue

injections the expression that gives the amount of the medication in a blood stream

on each consecutive day will be some polynomial function in x:
During injections

Day 1 6

Day 2 6xþ4

Day 3 6x2 þ 4xþ 4

Day 4 6x3 þ 4x2 þ 4xþ 4

Day 5 6x4 þ 4x3 þ 4x2 þ 4xþ 4

. . .

Day n (1 � n � 30) 6xn�1 þ 4xn�2 þ 4xn�3 þ . . .þ 4xþ 4

Day 30 6x29 þ 4x28 þ 4x27 þ . . .þ 4xþ 4
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After stopping injections

Day 31 6x30 þ 4x29 þ 4x28 þ . . .þ 4x2 þ 4x

Day 35 6x34 þ 4x33 þ . . .þ 4x5

Day n (n > 30) 6xn�1 þ 4xn�2 þ . . .þ 4xn�30

We notice that the amount of the medication, A(n), on the nth day, 1 � n � 30,

can be simplified as 6xn�1 plus the sum of a geometric sequence with the first term

of 4 and a common ratio of x.

A nð Þ ¼ 6xn�1 þ 4 1� xn�1ð Þ
1� x

, 1 � n � 30 ð4:7Þ

Equation 4.7 gives us the amount of the medication in the blood system on any

particular day n between the first and the last injections. 1 � n � 30ð Þ. The amount

of the medication in a blood stream on the nth day after stopping injections (n> 30)

A nð Þ, n > 30ð Þ again can be written as A nð Þ ¼ 6xn�1 þ 4xn�30 1�x29ð Þ
1�x , n > 30.

Table 4.1 demonstrates the influence of different x values on the amount of the

medication in the system on some particular day between the first and the last

injections. Also we can see that when x � 1 (see columns for x ¼ 0:05, x ¼ 0:1 or
even for x ¼ 0:2 ) the amount of the medication on the 10th and 30th day are

almost the same. This fact can be explained from Eq. 4.7.

If x < 1 and n ! 1, then xn�1 ! 0 and A nð Þ ! 4
1�x and is constant for

specific x. If x ¼ 0.2, A 30ð Þ ¼ 6x29 þ 4 1�x29ð Þ
1�x � 4

1�x ¼ 4
1�0:2 ¼ 5, A 10ð Þ ¼

6x9 þ 4 1�x9ð Þ
1�x ¼ 0:5 ¼ A 30ð Þ.

From this table we can see that for some people with a low elimination rate

(x is bigger) there will be more residual medication in the system than for people

with a higher elimination rate such as a ¼ 80%, for which x ¼ 0:2. From the

solution to this mini-project we learn two things:

• It is a good example of the application of geometric series.

• It illustrates something important about medications; even after we stop taking

them we can still have the medication in our blood stream for many days (see the

Table 4.1 The amount of the medication remaining in a blood stream for different x values on

certain days

Day x ¼ 0.05 x ¼ 0.1 x ¼ 0.2 x ¼ 0.4 x ¼ 0.5 x ¼ 0.6 x ¼ 0.8 x ¼ 0.9

2 4.03 4.6 5.2 6.4 7 7.6 8.8 9.4

3 4.0215 4.46 5.04 6.56 7.5 8.56 11.04 12.46

10 4.02 4.44 5 6.67 8 9.96 18.121 26.83

30 4.02 4.44 5 6.66 8 10 19.978 38.4

31 0.02 0.44 1 2.66 4 6 15.98 34.5

35 E-11 4.4E-5 0.0016 0.068 0.25 0.77 6.54 22.67
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table for days 31 and 35). This explains, for example, why even when a patient

stops taking a drug, the doctor suggests not drinking any alcohol for a few days

afterward.

At first glance, the next problem seems to be completely different from the

patient problem. However, the same approach can be used.

Problem 159 Brian has decided to cut off 20% of the length of his hair today

and will continue to cut off 20% every 2 months thereafter. Knowing that his

hair is presently 30 centimeters long and that it will grow about 8 centimeters

in 2 months time, how long will his hair be after his haircut one year from

now?

Solution. Since Brian cuts 20% of his hair every 2 months, then mathematically it

is like multiplying his recent length by 0.8. Let x ¼ 0.8. Using the fact that his hair

grows 8cm in two months, we obtain:

Now 30

Month 2 x 30þ 8ð Þ ¼ 30xþ 8x

Month 4 x 30xþ 8xþ 8ð Þ ¼ 30x2 þ 8x2 þ 8x

Month 6 30x3 þ 8x3 þ 8x2 þ 8x

Month 8 30x4 þ 8x4 þ 8x3 þ 8x2 þ 8x

Month 10 30x5 þ 8x5 þ 8x4 þ 8x3 þ 8x2 þ 8x

Month 12 30x6 þ 8x6 þ 8x5 þ 8x4 þ 8x3 þ 8x2 þ 8x

The last expression can be written as L 12ð Þ ¼ 30x6 þ 8x 1�x6ð Þ
1�x with x ¼ 0:8 so

L 12ð Þ ¼ 31:5 cm.

Answer. About 31.5 cm.

Remark. This can be used for any period of time. Noticing that the highest power

of x is 1/2 of the number of the month we obtain,

Month 2k:

L 2kð Þ ¼ 30xk þ 8xk þ 8xk�1 þ ::::::þ 8x ¼ 30xk þ 8x 1� xk
� �
1� x

¼ 30 � 0:8k þ 8 � 0:8 1� 0:8k
� �
0:2

Because r ¼ 0:8 and the geometric sequence is decreasing as k increases, then the

second term will get closer and closer to 8x
1�x ¼ 8�0:8

1�0:8 ¼ 32. The first terms depends

on k and decreases very quickly as k increases. For example,
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30 � 0:820 ¼ :346,

30 � 0:830 ¼ :037, 30 � 0:840 ¼ :004:

When k > 40, then the entire expression will approach 32 cm. In the long run,

Brian’s hair length would be 32 cm long.

4.3 Mini-Project 3: Investing Money

Sometimes nothing is more powerful and motivating than an example from real life.

We all want to be wealthy and healthy. We work hard. We invest money. We want

to know how much money we will have in our bank account if we stick with this or

that rate, if our interest is compounded annually or continuously. We try to ask

advice but sometimes do not know that all real life situations like investing money

or planning retirement or buying a house can be reduced to math problems that we

can solve ourselves!

4.3.1 Simple and Compound Interest

The best loan you can imagine is no loan at all or a loan from your grandfather or

grandmother. Usually they would give you money just as a gift or by asking to pay

them back when you can. Most people and businesses are not your grandparents and

usually they lend you money at certain interest rate, which depends on many

factors, including your credit history and market stability, etc.

First, there is a simple interest and compounded interest that you can expect. In

the case of simple interest, each year, your payment back for a loan of $P will be

increased by the same amount, rP, so after t years you will have to pay your

principal (original loan amount) plus the interest times the number of the years,

Pþ t � rP, which represents the simple interest formula,

A ¼ Pþ t � rP ¼ P 1þ trð Þ ð4:8Þ
If your interest is compound interest, then such a situation is more applicable for the

growth of the balance of a bank account. For example, if you put $P on your bank

account with annual percentage rate, r, then the amount of money to expect at

the end of the first year will be Pþ rP ¼ P 1þ rð Þ. This principal will be

increased by the interest rate and at the end of the second year will be

P 1þ rð Þ þ rP 1þ rð Þ ¼ P 1þ rð Þ2:
If nothing changes and you do not take your money then this will be your new

principal and at the end of the third year you would have P 1þ rð Þ2 þ rP 1þ rð Þ2
¼ P 1þ rð Þ3, etc: By induction, after we continue the procedure t times we get
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Eq. 4.4 for compound interest, A ¼ P 1þ rð Þt. Therefore, the amount of money one

can take from his or her bank account form a geometric progression.

P, Pð1þ rÞ,Pð1þ rÞ2, Pð1þ rÞ3, . . . ,Pð1þ rÞn, . . .

However, regarding a personal bank account there is no such thing as the sum of

this sequence, because each year the amount of money will be represented by only

one term of the sequence and not by the sum of the terms.

The formula can be modified with knowledge of how the interest is

compounded. For example, if the annual percentage rate is APR and the interest

is compounded n times per year, then the formula can be rewritten as

A ¼ P 1þ APR

n

� �nt

: ð4:9Þ

This formula will become a continuous interest formula if the number of

compounded periods will increase without limit, n ! 1. So your interest is not

calculated monthly (n ¼ 12), not even daily (n ¼ 365) but continuously, more often

that every second. It is as if the bank cares for you continuously.

Using the second formula of Eq. 3.6 from Chapter 3, we obtain that lim
n!1P

1þ r
n

� �n ¼ Pern: Hence Eq. 4.9 will become

A ¼ P � ert; ð4:10Þ
where r ¼ APR, n ¼ t are the annual percentage rates in decimal notation and

time, respectively.

4.3.2 Saving Money by Periodic Deposits. Future Value
of an Annuity

We have learned how to compute the future value and interest for a fixed sum of

money deposited in an account that pays interest, compounded either periodically

or continuously. But not many people are in a position to deposit a large sum of

money at one time in an account. Most people save or invest money by depositing

small amounts at different times. Consider the following problem:

Problem 160 Suppose $10,000 is deposited in a bank on January 1 of each

year from 2011 through 2016, inclusive, where it earned an annual yield of

5%. What was the value of our account one year after the last deposit?
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Solution. So we were checking our balance on January 1, 2017. Maybe we want to

collect our money. A table can be helpful.

In this Table 4.2, the right column represents the future value of a particular

deposit after accumulating the interest during certain period. Hence, the numbers in

this column are all different, because each equal payment will be compounded for a

different time!

As the table shows, if you put $10,000 in on January 1, 2011 and do no further

deposits, on January 1, 2017 you would have $10, 000 1þ 0:05ð Þ6 ¼ $13, 400 (the

last expression in the first row) which equals the accumulated return over 6 years.

However, because you deposited $10,000 every year since 2011, we have to add all

inputs in the last column. Look closely at this sum,

S¼ $10, 000 1þ 0:05ð Þ6 þ $10, 000 1þ 0:05ð Þ5 þ $10, 000 1þ 0:05ð Þ4
þ $10, 000 1þ 0:05ð Þ3 þ $10, 000 1þ 0:05ð Þ2 þ $10, 000 1þ 0:05ð Þ

If you rewrite it backward, you will notice that we are looking for the sum of

the first 6 terms of a geometric sequence with the first term, b1 ¼
$10, 000 1þ 0:05ð Þ ¼ $10, 500, and the common ratio r ¼ 1þ 0:05 ¼ 1:05

Thus, S6 ¼ $10, 500 1:056�1ð Þ
1:05�1

¼ $71, 420:

Answer. The value of the investment on January 1, 2017 will be equal to $71,420.

Certainly, it is better than $60,000 that one can save in a pillow.

In business, the sum of all payments plus all interest earned is called the amount

of the annuity or future value of the annuity. We consider payment intervals that

coincide with the compounding period of the interest. P is the periodic payments

(for example, annual deposits), j is the interest rate, and n the total number of

payments. Let us create a similar table (Table 4.3).

At the end of the nth year we are accumulating money from each year so we have

to add all inputs in the last column.

Table 4.2 Balance for Problem 155

Current year Deposit

Number of years between

current year and year 2017

Input from current

year to year 2017

2011 10000 6 10, 000 1þ 0:05ð Þ6
2012 10000 5 10, 000 1þ 0:05ð Þ5
2013 10000 4 10, 000 1þ 0:05ð Þ4
2014 10000 3 10, 000 1þ 0:05ð Þ3
2015 10000 2 10, 000 1þ 0:05ð Þ2
2016 10000 1 10, 000 1þ 0:05ð Þ1
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S¼ Pþ P 1þ jð Þ þ P 1þ jð Þ2 þ . . .þ P 1þ jð Þn�2 þ P 1þ jð Þn�1

¼ P 1þ 1þ jð Þ þ . . .þ 1þ jð Þn�1
n o

Because the expression within parentheses is geometric series with the first term

1 and a common difference 1þ jð Þ, we can state that if periodic payments P are

made for n periods at an interest rate j per period, the amount of the annuity will be

given by S ¼ P� 1þjð Þn�1ð Þ
1þjð Þ�1

¼ P � 1þjð Þn�1

j

� �
. This formula can be rewritten in terms of

the annual percentage rate (APR), number of payment periods per year (n), time of

the investment in years (t), and the amount of the periodic payment (P),

S ¼
P � 1þ APR

n

� �nt � 1
� �

APR
n

� � : ð4:11Þ

Equation 4.11 will be especially helpful if one saves P dollars periodically, con-

sistently with a given APR compounded periodically, for example monthly. You

may have seen such a formula in a financial context, but now you know how a

geometric series can be used for its derivation!

Problem 161 Which is better for you: to deposit $10,000 at once, to be held

for 10 years at 6% compounded annually, or to deposit $1,000 in each of the

next 10 years, to be held in an account earning interest at the same rate?

Solution. If you already understand the idea of compounding, it may be obvious

that the first choice would be better, but it is still interesting to see how much better!

If you deposit $10,000 now, to be held for 10 years at 6% annual rate, at the end of

the 10th year you will have 10000 � 1þ 0:06ð Þ10 ¼ 10000 � 1:0610 ’ $17, 908. If

you deposit $1000 each year for 10 years we can use Eq. 4.2 to obtain

1000 � 1:06ð Þ10�1

0:06

� �
’ $13, 181. We notice that in part b) our savings account will

be $4727 less, but it is still better than keeping money at home (in which case you

would have only 10�$1000 ¼ $10,000) and it will be safe, as well. So if you can put

Table 4.3 An ordinary annuity

Current year Deposit

Number of years between

current year and the nth year
Input from

Current year

1 P n� 1 P 1þ jð Þn�1

2 P n� 2 P 1þ jð Þn�2

3 P n� 3 P 1þ jð Þn�3

--------------- ---------------- ------------------------ -----------------

n �1 P 1 P 1þ jð Þ
n P 0 P
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a large amount of money in your savings account it would be best, but if you cannot

afford it, would it be better, to deposit a portion of money monthly or annually?

Problem 162 You have an opportunity to save $1200 each year. The interest

rate is 6%, compounded annually. Which will give you more money after

10 years? a). You deposit $1200 annually for 10 years, or b). You deposit

$100 monthly for 10 years?

Solution. After 10 years you will have $1, 200 � 1:0610�1
0:06

� �
’ $15, 817. If you

deposit money monthly for 10 years you would do 120 deposits during the entire

period. The interest rate in each of the periods would be .06/12 or .005. At the end of

the 10th year using Eq. 3.53 you will have $100 � 1:005120�1
0:005

� �
’ $16, 388.

Answer. Monthly deposits will work better for you. This is again due to the power

of compounding.

Problem 163 To save money for college, Jim deposits most of his summer

job earnings in a savings account at the end of each summer. He deposits

$1,000 in the first year. In each of the next three years, he deposits $500 more

than he did in the preceding year. Assume that he makes each deposit on the

same day of the year, that the annual interest rate is x and remains constant,

and that he makes no withdrawals or other deposits. Find a function in x that
expresses Jim’s total accumulated savings immediately after he makes his last

deposit. Evaluate this expression if the interest rate is 5.8%

Solution. Let us create a table again (Table 4.4).

Actual deposits form an arithmetic progression with the common difference of

$500. The accumulated savings areS xð Þ ¼ 1000 � 1þ xð Þ3 þ 1500 � 1þ xð Þ2 þ 2000

� 1þ xð Þ þ 2500:The total savings when the interest rate is 5.8% is S¼ 500(2�1.0583
þ 3�1.0582 þ 4�1.058 þ 5) � $7,479.33.

Answer. $7,479.33.

Table 4.4 Balance for Problem 163

Current year Deposit

Number of years

between current year

and year of withdrawal

Input to the day

of withdrawal,

annual rate x

Input to the day

of withdrawal,

annual rate 0.058

1st 1000 3 1000(1þx)3 1000(1.058)3

2nd 1500 2 1500(1þx)2 1500(1.058)2

3rd 2000 1 2000(1þx)1 2000(1.058)1

4th 2500 0 2500 2500
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Problem 164 There are three friends with different investment habits. Mary

deposits $500 every month into her savings account at 6% APR compounded

monthly for 5 years. Ann has a summer job as a dancer and has an opportunity

to invest $6000 annually at the same nominal rate of 6% compounded

annually, and Colleen does not trust any banks and keeps all her available

cash in her pillow by placing there each month $500 for five years. Which of

the three friends is better off at the end of the 5th year?

Solution. We will use Eq. 4.11 applied to the of cases of Mary and Ann.

Mary: SM ¼
500 1þ 0:06

12

� �60 � 1
� �

0:06
12

� � ¼ $34, 885:02.

Ann: SA ¼ 6000ðð1þ0:06Þ5�1Þ
0:06 ¼ $33, 822:56:

Colleen will have Sc ¼ 500 � 12 � 5 ¼ $30, 000:

Answer. Mary will save more money.

4.4 Mini-Project 4: Thinking of Buying a House?

When we want to buy a house, many of us feel frustrated for many reasons. First, we

usually do not have enough money to pay off any house right away. Second, we’ve

heard a little bit about down payments from our experienced friends who have

already purchased a house. Third, even if we can imagine all steps of this compli-

cated procedure, it would be nice to know that arithmetic and geometric series can

help us to select a mortgage company, an interest rate, the number of years for

which we will finance, and a monthly payment.

Different financial advices from a mathematical point of view will be given here.

4.4.1 Present Value. Debt Payment Schedules

It is important to introduce now a so-called “present value.” If your debt now is

$5000, then in two years, unless you have to pay the same amount to your nice

grandpa, it will be increased by the law of compounding and will become

5000 � 1þ rð Þ2. If on the other hand, you have to pay someone $A in t years
under annual percentage rate r, then your debt can be recalculated to its present

value, i.e., the amount you owe as off today. For this, we have to solve Eqs. 4.4, 4.9,

or 4.10 for P:
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P ¼ A

1þ rð Þt ¼ A 1þ rð Þ�t ð4:12Þ

This is the present value of the amount A and can be modified depending on the

compounding process as

P ¼ A 1þ APR

n

� ��nt

: ð4:13Þ

P ¼ Ae�rt: ð4:14Þ
Present value is used in business if we, based on the analysis of the cash flow and

the knowledge of the initial investment, can decide whether or not this business is

profitable or not.

Consider the following problem.

Problem 165 An initial investment of $35,000 in a business guarantees the

cash flows summarized by Table 4.5. Assume an interest rate of 5%

compounded annually. Find the net present value of the cash flow. Is the

investment profitable?

In order to decide on the profitability of this business, we find the net present

value by recalculating all cash flow by its present value and then adding them

together.

NPV ¼ $8000ð1þ 0:05Þ�3 þ $10, 000ð1þ 0:05Þ�4 þ $14, 000ð1þ 0:05Þ�6

� $25, 584:74:

Because this number is less than the initial investment of $35,000, we can state that

this business is not profitable. Moreover, it loses money.

Sometimes one needs to pay a debt now but does not have the money and asks

for an opportunity to pay his or her debt either later, in certain number of years

(months) or for example, to pay the debt partially now and then by the schedule

offered by the lender. Despite the fact that many people believe that the following

problem would never correspond to a real life scenario, it is not true. By solving this

problem, you can make important financial decision in your life.

Table 4.5 Cash Flow

for Problem 165
Year Cash Flow

3 $8,000

4 $10,000

6 $14,000
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Problem 166 A debt of $5000 due four years from now and $3500 due

6 years from now is to be repaid by a payment of $2000 now and one an

additional payment in five years from now. If the interest rate is 4.8%

compounded annually, how much is that single payment?

Solution. The easiest way is to recalculate both payment scenarios for their present

value at moment t ¼ 0. However, we recalculate the balance at time t ¼ 5 years. At

which the final unknown payment must be made. When solving such problems, I

always recommend sketching the problem first (Figures 4.2 and 4.3).

The first option will be called the upper schedule and the second scenario is

lower schedule.

Upper schedule: US ¼ $3500 1þ 0:048ð Þ�1 þ $5000 1þ 0:048ð Þ1
Lower Schedule: LS ¼ xþ $2000 1þ 0:048ð Þ5.
The balance obtained from the both schedules must be the same, from which we

can find the final payment, x:

6

4

2

-2

-4

5

t=5
years

$2,000 $x

$5,000

$3,500

0 4 5 6

Figure 4.2 Balance for problem at year five
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x¼ 3500 � 1:048�1 þ 5000 � 1:048� 2000 � 1:0485
¼ $6051:35:

We can see that the upper schedule would make one to pay $8500. By the low

schedule, one would pay $8051.35, which is less by almost $450. Obviously, if we

recalculate either schedule to its present value (Figure 4.3).

PV¼ $3500 1þ 0:048ð Þ�6 þ $5000 1þ 0:048ð Þ�4

¼ $6786:81:

Then this result can lead us to another consideration or a new problem. If one has

the money ($6786.81) then the debt could be paid immediately.

Answer. x ¼ $6051.35.

4.4.2 Present Value of an Annuity. Mortgage Payment

Let us take an example from real life. Say a couple finds a house in neighborhood

that they like. The house is a two-story house. It is 3300 sq. ft., 5 bedrooms,

3 bathrooms, a bar, stained glass windows in the living room, a big balcony, and

their dream- a nice swimming pool. The owner wants $160,000 and wants it

quickly. The couple has some savings in a bank account; their friend gave them

the address and telephone of a good mortgage company that offers a rate of 7.2%.

The couple has a stable income, but it is not very big and they do not yet know what

kind of loan and payment to choose, or if they can even afford a house like this. He

is 42 years old and she is 38. They hear that a 30-year loan would give them lower

2

-2

5

$2,000 $x

$5,000

$3,500

0 4 5 6

Figure 4.3 Balance at present time

4.4 Mini-Project 4: Thinking of Buying a House? 209



payments every month but they would be 72 and 68 respectively after 30 years.

They really do not want to be in debt when they are senior citizens. So before going

to a mortgage company they decide to estimate approximately what would be good

for them.

The first question would be: What is the monthly payment?

How to estimate the size of the periodic payment? Let L be a loan for t years;
m ¼ 12 � t the number of months for repayment starting at the end of first month; r
¼ interest rate per year in decimal notation; j ¼ r=12 monthly interest rate; P ¼
amount of repayment per month (starting at the end of first month), your monthly

payment. The house would be yours as of today if you pay the entire mortgage or

loan, L, now. If you have to make n periodic payments each month for the next

t year (15, 20, or 30 years), then you will pay eventually S ¼ P � t � n dollars, which
equals to your total payment.

Let us assume that $P is our monthly payment. Each periodic payment P can be

recalculated as its present value at moment 0. So if we pay $P per month, then the

total present value of all periodic payments after three months will be P 1þ jð Þ�1

þP 1þ jð Þ�2 þ P 1þ jð Þ�3
and so on, and the present value of your repayments after

m months will be P 1þ jð Þ�1 þ P 1þ jð Þ�2 þ P 1þ jð Þ�3 þ . . .þ P 1þ jð Þ�m
. The

expression above is a geometric series with m terms, the first term equals

P 1þ jð Þ�1
and common ratio is 1þ jð Þ�1

, so the sum of m terms can be found as

P 1þ jð Þ�1 1� 1þ jð Þ�m

1� 1þ jð Þ�1

 !
¼ P

1þ jð Þ �
1� 1þ jð Þ�mð Þ

1� 1
iþj

� � ¼ P 1� 1þ jð Þ�mð Þ
j

We must now equate the present value of all repayments above to the total value of

the loan (mortgage) taken at moment zero, L. Replacing j ¼ APR
n , m ¼ nt, and L by

A, we obtain the formula that is called the present value of an annuity:

L ¼ A ¼
P � 1� 1þ APR

n

� ��nt
� �

APR
n

� � ð4:15Þ

Solving this formula for P, we derive the expression for a periodic payment of $P,
n times a year during t years toward your original loan of $A at the annual

percentage rate APR compounded n times per year:

P ¼ A � APR
n

� �
1� 1þ APR

n

� ��nt ð4:16Þ

For monthly payment, n ¼ 12, and the formula becomes
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P ¼ A �
APR
12

1� 1þ APR
12

� ��12t

 !
:

We will solve several problems related to mortgage, credit card, or car loan

payment.

Problem 167 A couple buys a house for $160,000. They make a $16,000

down payment and agree to amortize the rest of the debt in monthly payments

over the next 20 years. If the interest on the debt is 7.2%, compounded

monthly, what will be the size of the monthly payment?

Solution. What will the couple’s monthly payment be for different rates, down

payments, and repayment periods? To estimate the monthly payment, we use

Eq. 4.16 where L is the actual debt (the price of the house minus a down payment).

Because L ¼ $160, 000� $16, 000 ¼ $144, 000 j ¼ 0:072=12 ¼ 0:006 and n ¼ 12

�20 ¼ 240 then P ¼ $144, 000 � 0:006
1�1:006�240Þ ¼ $1133:78
�

so the couple’s monthly

payments would be approximately $1134.

“I think we could afford it.” The wife said. For the same down payment, can they

afford to pay off the loan in 10 years? Now only m will be changed, m ¼ 120,

P ¼ $144, 000 � 0:006
1�1:006�120� ¼ $1686:84
h

. It is almost $1700; If we think about

additional costs such as the utility bills and insurance, it could be difficult for

them. What if they tried to pay off the loan in 15 years; then m ¼ 180, P ¼ $144,

000 � 0:006
1�1:006�180� ¼ $1310:47
h

that is approximately $1311 per month. This seems

more bearable.

What would happen if they put down 20% or $32,000? Assuming that the annual

percentage rate (an interest on the debt) is the same, 7.2%, let us estimate their

monthly payments for 20 years, 10, and 15 respectively, L ¼ $160, 000� $32, 000

¼ $128, 000:

• Loan for 20 years, n ¼ 240, P ¼ $128, 000 � 0:006
1�1:006�240Þ ¼ $1007:81
�

or about

$1008 per month.

You notice that there is not a big difference between $1,134 and $1008. Maybe it

is not a good idea to put down 20%, they would lose $16,000 from their saving

account, but monthly payments would not be that much less.

• Loan for 10 years, n ¼ 120, P ¼ $128, 000 � 0:006
1�1:006�120Þ ¼ $1499:42 � $1500
�

.

There is a difference of about $200 every month, but it is still a pretty large

monthly payment!

• Loan for 15 years, n ¼ 180, P ¼ $128, 000 � 0:006
1�1:006�180Þ ¼ $1164:85 � $1165
�

.

Again we do not see a big difference between monthly payments for a 10% down

payment versus a 20% down payment. Let us look at the interest rate now. We
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would want to stick with a rate of 7.2% or less if it is possible. Let us try a rate of

6.5% and a down payment of 10% or $16,000. So L ¼ $144, 000 and i ¼ 0:0054:

• Loan for 10 years, (n ¼ 120); P ¼ $144, 000 � 0:0054
1�1:0054�120Þ ¼ $1633:63
�

• Loan for 15 years (n ¼ 180); P ¼ $144, 000 � 0:0054
1�1:0054�180Þ ¼ $1252:81
�

.

• Loan for 20 years (n ¼ 240); P ¼ $144, 000 � 0:0054
1�1:0054�240Þ ¼ $1071:93
�

What happens if a family cannot get a lower rate? Let us estimate howmuch they

would pay monthly with a down payment of $16,000 (10%) and an agreement to

amortize the rest of the debt in monthly payments over the next 20 years (n ¼
240) with an interest rate on the debt of either 8.5% or 9.5%?

• Loan for 20 years, L ¼ $144, 000, j ¼ 8.5%, i ¼ 0.071,

P ¼ $144, 000 � 0:0071
1�1:0071�240Þ ¼ $1251:5
�

.

We can look at other loan lengths:

n ¼ 120 (10 years) P ¼ $1787

n ¼ 180 (15 years) P ¼ $1419

n ¼ 300 (25 years) P ¼ $1162

n ¼ 360 (30 years) P ¼ $1109

• Loan for 20 years, L ¼ $144, 000, j ¼ 9.5%, i ¼ 0.0079; x payments,

P ¼ $144, 000 � 0:0079
1�1:0079�x

� �
:

x ¼ 120, P 120ð Þ ¼ $1861:7
x ¼ 180, P 180ð Þ ¼ $1501:9
x ¼ 240, P 240ð Þ ¼ $1340:4
x ¼ 300, P 300ð Þ ¼ $1256:1
x ¼ 360, P 360ð Þ ¼ $1208:7

Sometimes a home buyer wants to put down just 5%. For the same house this

would result in a loan of $152,000. Let us say the loan is at 8% and estimate

the monthly payment for different lengths of the loan. We use the formula,

P ¼ $152, 000 � 0:0067

1� 1:0067�x

� �
:

x ¼ 120, P 120ð Þ ¼ $1844:5
x ¼ 180, P 180ð Þ ¼ $1452:9
x ¼ 240, P 240ð Þ ¼ $1271:8
x ¼ 360, P 360ð Þ ¼ $1115:7:

Problem 168 A pre-owned 2010 Infinity G 37 is purchased for $3000 down

and monthly payments of $450 for four years. If interest is at 5.2%

compounded monthly, find the corresponding present cash price of the car.
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Solution. First, we use Eq. 4.15 in order to calculate the present value of the loan

L ¼ A ¼
450 � 1� 1þ 0:052

12

� ��12�4� �
0:052
12

� � � $19, 463:67:

Secondly we add a $3000 down payment to the number above in order to obtain

today’s cash price of the Infinity G37: $19,463.67 þ $3000 ¼ $22,463.67.

Answer. $22,463.67

4.5 Mini-Project 5: Loan Amortization

By doing this mini-project you will learn the best and most efficient way to pay off

your debt of any kind, for example, a credit card or car loan. It would also be

interesting to know how soon you will pay off your debt if you make extra payments

every month or annually. Loan amortization will be briefly discussed. Additionally,

we compare different options of paying for a new or used car and whether it is better

for you to pay by credit card or take a loan from the dealership if both charge the

same annual nominal interest rate.

4.5.1 Paying Off an Outstanding Credit Card Debt

Let us demonstrate how knowledge about arithmetic and geometric series helps us

solving very important financial problems. Consider two different mathematically

but similar real life scenarios. You want to buy a car of your dream but do not have

all the money to pay the cash price of the car, so you need to borrow money.

1. Assume that you come to a private company that offers to lend you money (L) at
r% with n payments per year (usually n ¼ 12) and m total payments required

(mwould be the number of years for the loan times n). This might be a dealership

that sells that dream car and they refer you to their financial office.

2. You decided to use your credit card that happens to charge the same nominal rate

as the dealer. This can be rephrased as follows: You have an outstanding debt of

L dollars on your credit card that charges APR of r% compounded monthly and

you need to pay it off in nmonths, each month by an equal amount of L/n dollars
plus an interest on unpaid balance.

Are these two scenarios mathematically equivalent? Are they financially equal

to you? Which scenario is better?

The common thing is that you have an outstanding debt of $L and you need to

pay it off by making precisely n equal periodic payments. However, in case one you
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do not have the freedom to choose your monthly payment, usually it is the number

of dollars that is calculated by the Loan company (for example, by the dealership

office or by a bank).

Regarding the second scenario, one decided to pay off his or her credit card debt

by making equal monthly payments of (L/n) dollars plus the corresponding monthly

interests.

Let us start from the second scenario. Assume that L is the amount borrowed and

(L/n) the periodic payment size, then n L=nð Þ ¼ L is our unpaid balance before the

first payment, n� 1ð Þ L=nð Þ ¼ L� L=n is the unpaid balance before the second

payment , and so on, with the balance before the last payment of (L/n).
Let us estimate the total interest (in dollars), I, charged by a credit card company.

Because r is the rate, then (r/m) is the interest rate per payment period. We must

multiply every unpaid balance by the coefficient (r/m) and then add them all

together to get I ¼ n � L
n

� �
r
m

� �þ n� 1ð Þ � L
n

� �
r
m

� �þ . . .þ 2 � L
n

� �
r
m

� �þ 1 � L
n

� �
r
m

� �
.

Factoring out L
n

� �
r
m

� �
we obtain, I ¼ L

n

� �
r
m

� �
nþ n� 1ð Þ þ n� 2ð Þ þ . . .þ 2þ 1ð Þ.

You notice that the expression within parentheses is the sum of an arithmetic

sequence (a sum of all natural numbers from 1 to n) that equals n nþ1ð Þ
2

. Thus,

I ¼ L

n
� r
m
� n nþ 1ð Þ

2
¼ L � r

m

� �
� nþ 1ð Þ

2
ð4:17Þ

We can use Eq. 4.17 to solve for r and find the true annual percentage rate,

r ¼ 2I � m
L nþ 1ð Þ ð4:18Þ

In this formula j ¼ r
m and the total payment (TP) toward the outstanding principal

after n payments is

TP ¼ Lþ L � j � nþ 1ð Þ
2

: ð4:19Þ

Problem 169 Assume that you found a car in a local dealership and paid

$12,000 for the car by a credit card at APR¼ 12%. Now you want to pay it off

in 4 years (48 months). You decided to pay equal monthly portions of $12, 000
48

¼ $250 plus the interest on the outstanding principal. What will be your total

payment to the credit card company after 48 months? Is your decision to use a

credit card better than the first option you always have? (Scenario 1, sign for

a 4 year contract with the dealership and pay your car loan by equal monthly

payments).

Solution. Based on our Eq. 4.19 after 48 months your total payment to the credit

card will be
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Loanþ Interest ¼ TP ¼ $12, 000þ $12, 000 � 0:01 � 48þ 1

2
¼ $14, 940:

If you sign a 4 year contract with the dealership, then first, we need the actual

amount of money you must pay in order to liquidate your debt in 48 payments. If

you are taking a car loan of $12,000 and agree to pay the loan plus an interest at

APR ¼ 12% by making equal payments over a 4-year period, your payment will be

$316.01. (We used Eq. 4.16 for the present value of the annuity derived in the

previous section to calculate this payment.) In four years, you would have paid 48�
$316.01¼ $15,168.29.

When you decide to pay $250 each month toward your principal plus the

corresponding interest, then each month your total payment will be different and

will eventually decrease as time (in months) increases. Thus, for the first month you

would pay 250þ 0:01 � 12000 ¼ $370, for the second month it would be

250þ 0:01 � 11750 ¼ $367:50, for the 3rd month it would be 250þ 0:01 � 11500
¼ $365, for the 4th month it would be 250þ 0:01 � 11250 ¼ $362:50; for the 5th

month you would have to pay 250þ 0:01 � 11000 ¼ $360, etc.

In general, the total monthly payment to a credit card for a month k, using your

own schedule will include an equal payment of L
n ¼ 12000

48
¼ $250 and the interest

charge on the unpaid balance for the kth month, which will be n� k � 1ð Þð Þ�
L
n

� � � r
m ¼ 49� kð Þ � 12000

48
� 012
12

¼ 49� kð Þ � 2:5. The total kth payment can be calcu-

lated as

yk ¼
L

n
þ n� k � 1ð Þð Þ � L

n

� �
� r
m
, 1 � k � n: ð4:20Þ

Using Eq. 4.20, the total kth payment for n ¼ 48, m ¼ 12, r ¼ 0:12, L ¼ $12, 000

is described by

yk ¼ $250þ $49� $kð Þ � 2:5: ð4:21Þ

If we wish to know after what month, your payment will be less than $316, we

can make the monthly payment given by Eq. 4.21 less than 316 and solve the

inequality for k,

yk ¼ $250þ $49� $kð Þ � 2:5 < $316

$49� $k<
$66

2:5
¼ $22:6

$23� k � $48:

Starting from month 23, our payment will be less than $316. We can create a table

of the total monthly payments given by Eq. 4.21 using Excel together with the

second option of $316 each month (Table 4.6) and graph both cases for comparison

(Figure 4.4). Curve Y1 represents your own schedule when the monthly payment is

calculated by Eq. 4.21 and curve Y2 represent the same monthly payment of $316.
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Both, the table and the graph confirm our analytical result that the 23rd payment to

be less than $316 and that any payment after that will be less than $316.

The total payment of the first method of repayment is $14,940 which is less than

the total payment of $15,168 of the equal monthly payment amount of $316 for a

Table 4.6 Monthly

payments for Problem 169
k Y1 Y2

1 370 316

2 367.5 316

3 365 316

4 362.5 316

5 360 316

6 357.5 316

7 355 316

8 352.5 316

9 350 316

10 347.5 316

11 345 316

12 342.5 316

13 340 316

14 337.5 316

15 335 316

16 332.5 316

17 330 316

18 327.5 316

19 325 316

20 322.5 316

21 320 316

22 317.5 316

23 315 316
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Figure 4.4 Credit card monthly payments schedules for Problem 169
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total savings of $15,168.29 � $14,940 ¼ $228.29 . Therefore, at the same nominal

interest rate and under conditions such as time period, etc., the second scenario

would be better for you and would save you a little money. This is probably why

dealerships do not allow you to pay for new or old car using you credit card and

generally prefer that you sign a financing contract. However, as you probably

understand the second scenario requires more discipline and knowledge of mathe-

matics. It is very easy to forget about your payment, especially if the amount is

changing from one month to the other. Of course, credit cards are not always a

better choice for you—only if you are a very disciplined person and would not miss

any planned payment. What is best is to have control of your finances and under-

stand your options.

4.5.2 Using a Computer to Build an Amortization Table

Suppose that you get a $1500 loan from a bank with the interest rate of 12%

compounded monthly. The $1500 plus interest is to be repaid by equal payments

of R dollars at the end of each month for three months. Usually such a schedule is

initiated by yourself because you need to pay your debts as soon as possible.

Using Eq. 4.16 we find that the monthly payment is $510.0332. We round the

payment to $510.03, which will probably result is a slightly higher final payment.

The bank can consider each payment as consisting of two parts: a. Interest on

the outstanding loan and b. Repayment of part of the loan. This is called

amortizing.

A loan is amortized when a part of each payment is used to pay interest and the

remaining part is used to reduce the outstanding principal. Since each payment

reduces the outstanding principal, the interest portion of a payment decreases as

times goes on. Let us analyze the loan just described. At the end of the first month,

you pay $510.03. The interest on the outstanding principal is 0:01 1500ð Þ ¼ $15.

The balance of the payment, 510:03� 15 ¼ $495:03, is then applied to reduce the

principal, hence, the outstanding principal is now 1500� 495:03 ¼ $1004:97 and

interest is $10.05. At the end of the second month, $499.98 is applied toward the

principal, and the outstanding balance is 1000:94� 499:98 ¼ $504:99, etc. We can

make a table like Table 4.7.

Table 4.7 Credit card debt

Period

Principal outstanding

at beginning of period

Interest

for period

Monthly

payment

Principal prepaid

at the end of period

1 1500 15 510.03 495.03

2 1004.97 10.05 510.03 499.98

3 504.98 5.05 510.04 504.98

Total 30.10 1530.10 1500
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The last row shows that during these three months you paid $30.10 of interest.

The total payment is the sum of all numbers in the monthly payment column, and it

differs from the principal by the interest amount.

Next, assume that instead of $510.03 you decided to pay just $500 each month,

not equal payments of $500 plus corresponding interest, as it was done in Problem

169 about a $12,000 used car purchased by a credit card. Will you still be able to

pay off your debt in three months? Let us make a new amortization table (Table 4.8).

A simple guess would tell us that the answer is “No” because by paying $1500 you

would not pay for any interest that will be your duty afterwards.

In order to pay off your debt in 3 months, not in four months as it is in Table 4.8,

you had to pay more as the last payment. In Table 4.9, you must pay $530.4 ¼
525.15 þ 5.25, and will owe no money after that.

You just learned how to create an amortization schedule for a loan. You can see

that the interest paid depends on our payment amount. Different schedules are

possible when you decide to pay off your credit card, and for each scenario, you can

make similar amortization tables. However, if you have a long-term loan such as a

car loan or a mortgage, using a computer and Excel spreadsheet would be helpful.

Figure 4.5 shows an Excel spreadsheet for the loan amortization described in

Table 4.7.

Using the same type of table as Tables 4.8 and 4.9, we can now solve any

mortgage problem, including one with prepayments. Consider a $150,000 mortgage

at APR ¼ 4.8% compounded monthly for 15 years. We create a spreadsheet and

rearrange the initial data on the left and change the formula for calculating a

monthly payment cell B9 as (Figure 4.6)

Cell B9: Payment¼ $B$2*($B$3/$B$4)/(1�(1þ$B$3/$B$4)^(�1*$B$4*$B

$5))

Table 4.8 Credit card debt (your own schedule)

Period

Principal outstanding

at beginning of period

Interest

for period

Monthly

payment

Principal prepaid

at the end of period

1 1500 15 500 485

2 1015 10.15 500 489.85

3 525.15 5.25 500 494.75

4 30.4 0.3 30.7 30.4

Total 30.7 1530.7 1500

Table 4.9 Credit card debt (your own schedule, only 3 months)

Period

Principal outstanding

at beginning of period

Interest

for period

Monthly

payment

Principal prepaid

at the end of period

1 1500 15 500 485

2 1015 10.15 500 489.85

3 525.15 5.25 530.4 ¼ 525.15 þ 5.25 525.15

Total 30.4 1530.4 1500
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Wewill obtain 181 rows in the Excel spreadsheet; you can view it as a spreadsheet

(Figure 4.6) or as a graph (Figure 4.7) showing the declining balance of the loan.

With the spreadsheet, it is easy to determine that if we make additional payments

of $3000 quarterly (Figure 4.8), we will pay off the mortgage in 80 months

(Figure 4.9) and also will dramatically reduce the amount of interest paid.

Figure 4.5 Credit card debt amortization with Excel

Figure 4.6 Mortgage amortization
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The advantages of using Excel for mortgage amortization are efficiency and

flexibility. Many scenarios can be tested quickly once the spreadsheet is

constructed. Though many useful websites exist, such http://www.dinkytown.

com/java/MortgageLoan.html, the websites that give amortization tables and

graphs usually are restricted to monthly or annual payments. For example, we can

get an idea of how much our payment will be for a 30 year mortgage of $160,000 at

APR ¼ 5.2% and how soon it can be paid off if we pay an additional $400 a month

towards the outstanding principal (Figure 4.10).
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Figure 4.7 Loan amortization in 180 months

Figure 4.8 Mortgage amortization with prepayments
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My favorite website www.dinkytown.com is very practical for getting a first

calculation for your mortgage information and for checking our Excel results.

However, sometimes in real life we do not follow any schedule and might want

to make a payment this year all at once and next year maybe pay some every three

months. Now using Excel you can calculate the effect on your mortgage yourself,

since the spreadsheet can be so easily adjusted.
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Figure 4.9 Loan amortization with prepayments

Figure 4.10 Website loan calculator
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4.5.3 Using a Graphing Calculator for Financial Estimates

It is always nice to know that someone thought about us and created programs that

simplify our life. If you have a TI 83/84 graphing calculator, then let us go to

[APPS] applications, then to [Finance], and then to [TVM Solver] (Time Value

Money). On the calculator screen you will see the following:

N ¼ (TOTAL number of months you pay)

I% ¼ (interest rate)

PV ¼ (the present value of an annuity, mortgage or loan)

PMT ¼ (monthly payments, must be negative because the present value will be

decreased by this amount)

FV ¼ 0 (Future value. Must be 0 someday)

P/Y ¼ 12 (payments per year usually 12)

C/Y ¼ 12 (compounded periods per year and c/y must be the same as p/y)

PMT: END BEGIN

Let us solve the following problem now.

Problem 170 A couple took a loan of $152,000 at a fixed interest rate of 8%,

for 30 years. Property taxes are $3600 for the first year and insurance is $75

per month. What will the monthly payment be for the first year? Ignoring

property tax and insurance, how soon would the mortgage be paid if the

couple makes $1500 monthly payment instead of the scheduled periodic

monthly payment?

Solution. Using the TVM Solver we enter all data and we leave an empty space

after PMT, as in Figure 4.11. Then we put a cursor at PMT and press [ALPHA] then

[ENTER]. That gives a payment of PMT ¼ –1115.32 (Figure 4.12).

Adding 1115.32 þ 75 þ 3600/12 ¼ $1490.32 we obtain the monthly payment

including property tax and insurance. How fast would you pay off the loan of

$152,000 if instead of $1115.32 per month you pay $1500?

Now we change our data. Enter everything except for N, then clear the field for

N, and with the cursor there, press [ALPHA] then [ENTER]. The calculator screen

will look like Figure 4.13.

Regarding Figure 4.13, we found that if we make monthly payments of $1500

we would pay our 30 year mortgage in N ¼ 169:4 months which is approximately

14 years. If you will completely pay off your loan in 30 years but wish to know how

much of the loan will be paid off after 1 year, 5 years, and so on. The BAL

command (balance) gives the answer

APPS½ � Finance½ � Bal½ � ENTER½ �:
Bal(n) is a function whose variable n is the number of payments. After five years

the balance is Bal 5*12ð Þ ¼ Bal 60ð Þ ¼ $116, 241:26 if you are making monthly
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payments of $1500 (you can change PMT back to �1115.32 if you wish to make

only the required payment). The Command
P

Prn 1; 60ð Þ gives the principal paid

off over 5 years ($35,758.74). Option
P

Int 1; 60ð Þ gives the amount of interest paid

over 5 years ($54,241.26). If we graph Bal(12T ) versus T as parametric function we

can observe our remaining balance at any period of time T. We select [MODE]-

parametric.
Figure 4.14 shows how to enter a balance function in parametric mode and

Figure 4.15 helps with the appropriate window setting. Here Tmin ¼ 0: If you used

the Bal(n) function within the TVM solver, you need to restore the values we had

before.

Let us look at the graph of Bal(12T ) versus T. Tracing T (pressing [TRACE]) we

can observe our balance for any particular year. Thus, for T ¼ 0 our remaining

(original mortgage) balance is $152,000 (Figure 4.16). After 10 years your balance

Figure 4.11 Enter the

mortgage ($152,000),

interest rate (APR ¼ 8%),

the number of total

payments over 30 years

(360), and the number of

compounding periods per

year (12)

Figure 4.12 Calculation of

PMT ¼ (we put here a

cursor and press [ALPHA]

then [ENTER]). That gives

a payment of PMT¼ –
1115.32

Figure 4.13 Monthly

payment of $1500

N ¼ (after entering all

information we press

[ALPHA] then [ENTER])

PV ¼ 15200

PMT ¼ �1500

FV ¼ 0

P/Y ¼ 12

C/Y ¼ 12
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is about $63,000 (Figure 4.17), after 13 years it will be $19,178 (Figure 4.18), and

after 15 years less than 0—we would pay off the loan!

By pressing [2nd] and [Graph] we can look at the table that shows the remaining

balance at a particular time (Figures 4.19 and 4.20).

Figure 4.14 Entering

balance function in

parametric mode

Figure 4.15 Window for a

balance function

Figure 4.16 Original

balance (mortgage) (T ¼ 0)

Figure 4.17 $62, 966.26

balance after 10 years
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The calculator or PC are great tools to help when we are making some of these

financial decisions, but sometimes it is more fun to solve a problem analytically.

Math olympiad problems demand the exact answer which can be obtained only

analytically so I encourage you to work in this direction and develop your problem

solving skills.

Figure 4.18 $19,178.74

balance after 13 years

Figure 4.19 Balance table

for T ¼ 1, 2, 3, 4, 5, 6 years

Figure 4.20 Balance table

for T ¼ 7-13 years
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Chapter 5

Homework

1. Find the sum, 1
2�7 þ 1

7�12 þ . . .þ 1
122�127.

Answer. 25/254

2. Find the sum of the first four terms of a geometric sequence such that its first three

terms are simultaneously the 1st, 4th, and the 8th terms of some arithmetic sequence

and their sum is 16 4
9
.

Answer. S4 ¼ 2525
27
¼ 700

27

3. Suppose 60 mg of a medication is taken daily for three days. Then the dose is

reduced to 40 mg on the fourth day and 25 mg on the fifth day. Allowing for

different elimination rates (a%) for different people, let x ¼ 1� a
100

. What is the

expression that gives the amount of medication in the system on the first day,

the second, the fifth day, and so on to the nth day? Assume that a¼ 50% and find the

actual amounts in the system on days 1, 2, 5, and 10.

Solution.

Day 1 60

Day 2 60þ 60x

Day 3 60þ 60xþ 60x2

Day 4 40þ 60xþ 60x2 þ 60x3

Day 5 25þ 40xþ 60x2 þ 60x3 þ 60x4

Day n 25xn�5 þ 40xn�4 þ 60xn�3 þ 60xn�2 þ 60xn�1

Day 10 25x5 þ 40x6 þ 60x7 þ 60x8 þ 60x9

Answer. If x¼ 0.5, then F(1)¼ 60 mg, F(2)¼ 90 mg, F(5)¼ 71/25 mg, F(10)¼
2.23 mg.

Day 1: 60 mg, Day 2: 90 mg, Day 5: 71.25 mg, Day 10: 2.23 mg
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4. Dennis lives near a bus stop A. Bus stops A, B, C, and D are on the same street.

Dennis starts at A with a speed of 3 km per hour and goes to D. Reaching D he turns

back and goes to C. Walking this rout (A-D-C) requires 8 h and 20 min. It is known

that he can cover the distance between B and D in 7 h. The distances between A

and B, C and D and half of the distance between B and C form a geometric sequence

in the given order. Find the distance between A and C.

Hint. See Problem 78.

Answer. 19 km.

5. A coroner arrives at midnight and finds that the victim’s body temperature has

dropped from 98.6 to 68.3 �F. Under these conditions the coroner knows that the

body temperature has dropped 4% every hour. Inspector Horace Pluckett found that

there were very few visitors to the shop that day. Ron D’Bear was there at noon,

Connie Wonka came about 1 p.m., Tiger Papier showed up about 2 p.m., LeRoy

Goldberg arrived at 3 p.m., Allie Gator and Morris McMuffin came in together

around 4 p.m., and Rusty Woods came at closing time, 5 p.m. Who should Horace

arrest?

Answer. He should arrest LeRoy Goldberg.

Solution. Because body temperature drops 4% every hour, the consecutive tem-

peratures are terms of a geometric progression with the common ratio r¼ 0.96 and

the first term b1 ¼ 98:6�F. Using the formula for the nth term of a geometric

sequence we can figure out how many hours it would take for the temperature to

drop from 98.6 to 68.3 �F:

98:6rt ¼ 68:3

0:96t ¼ 68:3

98:6

t¼
ln
68:3

98:6
ln0:96

t¼ 8:99 � 9

This means that the murder happened at 3 p.m., approximately 9 h before 12 p.m.

Therefore, Goldberg must be arrested.

6. Given the sequence {xn} such that x0 ¼ 2, x1 ¼ 3
2
, xnþ1 ¼ 3

2
xn � 1

2
xn�1, find xn.

Hint. Find the exact formula for xn using the approach of Section 1.5.

Solution. Solving a quadratic equation, r2 � 3
2
r þ 1

2
¼ 0 we obtain the roots:

r ¼ 1
2
; r ¼ 1, then xn ¼ A 1

2

� �n þ B: Using that fact that x0 ¼ 2, x1 ¼ 3=2 we obtain

the following system to solve for A and B:
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Aþ B ¼ 2

A � 1
2
þ B ¼ 3

2

8<
: :

A¼ 1, B¼ 1. Therefore, xn ¼ 1
2

� �n þ 1 ¼ 1þ 2�n

7. Is there any increasing geometric sequence such that the first 10 terms are

integers and the remaining terms are not integers?

Hint. Consider the 10th term of the sequence.

Answer. Yes, for example, b1 ¼ 29 r ¼ 3
2
. In general, b1 ¼ a9, r ¼ b

a , a; bð Þ ¼ 1.

If a and b are relatively prime then b11 ¼ a9 � b
a

� �10 ¼ b10

a is not an integer.

8. (MGU Entrance exam Chemistry department 1989) Numbers a1, a2, . . ., an are

consecutive terms of an arithmetic sequence. It is known that a1 þ a5 þ a15 ¼ 3.

Find a5 þ a9

Answer. 2

9. (MGU VMK 1988) Find the sum of the first 20 terms of an arithmetic sequence if

the sum of its third, seventh, fourteenth, and eighteenth terms is 10.

Answer. 50

10. (MGU Biology department 1991) Victor is riding a bicycle. Because he gets

tired, the time that it takes him to cycle every mile of the track is longer than the

time it has taken for the previous mile by the same amount each time (the second

mile took s seconds more than the first, the third mile took s seconds more than the

second, etc.). We know that the time it takes him to cycle the second and the fourth

miles can be added together to get 3 minutes and 20 s. How long will it take for him

to ride the first 5 miles?

Solution. The time intervals for the mile segments form an arithmetic progression

{tn}, so t1 þ t5 ¼ t2 þ t4 ¼ 2t3. Thus, t1 þ t2 þ t3 þ t4 þ t5 ¼ 2 t2 þ t4ð Þ
þ t2þt4

2
¼ 5

2
t2 þ t4ð Þ ¼ 5

2
� 200 sec ¼ 500 sec ¼ 8min20 sec .

Answer. 8 min 20 s

11. A geometric sequence b1, b2, b3,...... has the properties: b2 � b4 ¼ 25 and

b3 þ b5 ¼ 15. Find b 1.

Answer. 5/2

12. (MGU Entrance Exam Geography department 1991)Numbers a1, a2, a3 form an

arithmetic sequence, but their squares in the same order form a geometric sequence.

Find these numbers, if a1 þ a2 þ a3 ¼ 21.
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Answer.

a1 ¼ a2 ¼ a3 ¼ 7

a1 ¼ 7 1� ffiffiffi
2

p� �
, a2 ¼ 7, a3 ¼ 7 1þ ffiffiffi

2
p� �

a1 ¼ 7 1þ ffiffiffi
2

p� �
, a2 ¼ 7, a3 ¼ 7 1� ffiffiffi

2
p� �

13. Find the sum of the first 20 terms of an arithmetic progression, if it is known that

the sum of the third, seventh, fourteenth, and eighteenth terms is 10.

Answer. 50

14. (MGU Entrance exam, pure math, 1993) The sum of the first five terms of a

geometric progression equals its first term multiplied by 5, but the sum of its first

fifteen terms is 100. Find the sum of the first, sixth, and the eleventh terms of the

progression.

Answer. 20

15. (Rivkin) Prove that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:::1|fflffl{zfflffl}

2n

� 22:::2|fflffl{zfflffl}
n

r ¼ 33:::3|fflffl{zfflffl}
n

Hint. See Problem 49.

Proof. Consider the expression under the radical:

11 . . . 1|fflfflffl{zfflfflffl}
2n

� 22:::2|fflffl{zfflffl}
n

¼ 1

9
99 . . . 9|fflfflffl{zfflfflffl}

2n

� 99:::9|fflffl{zfflffl}
n

0
@

1
A ¼

1

9
102n � 1� 2 10n � 1ð Þ� � ¼ 1

9
102n � 2 � 10n þ 1

�� � ¼ 1

9
10n � 1ð Þ2

Taking the square root of this we obtain D ¼ 1

3
10n � 1½ � ¼ 1

3
99:::9|fflffl{zfflffl}
n digits

0
B@

1
CA ¼ 33:::3|fflffl{zfflffl}

n digits

.

16. (MGU 2007 Entrance Exam. 5.1) A farmer got a strategic loan from the bank in

order to expand his production. The loan has to be paid off in two years with no

monthly payment requirements. After the first year the farmer returned to the bank

1/6 of the total debt he owed to the bank at that time, and at the end of the 2nd year

he paid off his debt by giving to the bank some amount that was 20% more than the

original loan. What was the annual percentage rate (APR)?

Solution. Let S be the total amount of the loan and p% is the APR. Then at the end

of the year our farmer owes to the bank S 1þ p
100

� �
and after paying 1/6 of it his debt

the outstanding amount becomes 5
6
S 1þ p

100

� �
. At the end of the 2nd year his debt is

5
6
S 1þ p

100

� �2
. Since the farmer paid off his debt by putting 120% of the original

loan in the bank, we have 5
6
S 1þ p

100

� �2 ¼ Sþ 1
5
S ¼ 6

5
S, so 1þ p/100¼ 6/5, and

p¼ 20%.

Answer. 20%
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17. Integers x, y, z form a geometric progression but 5x� 4ð Þ, y2, and 3zþ 2ð Þ are
members of an arithmetic progression. Find x, y, z.

Hint. See Chapter 1 of the book.

Answer. (x, y, z)¼ {(2,4,8), (2,�4,8)}

18. (2008 MGU Entrance Exam) The product of the first 11 terms of a geometric

progression is 243
ffiffiffi
3

p
:What terms of the progression can be found exactly from this

information and what are they?

Solution. Multiplying all 11 terms we obtain,

b1ð Þ11r55 ¼ b1r
5

� �11 ¼ 243
ffiffiffi
3

p ¼ ffiffiffi
3

p� �11
b6 ¼

ffiffiffi
3

p
:

Answer. b6 ¼
ffiffiffi
3

p
:

19. Peter loaned $10,000 to Paul at a 6% annual rate under the agreement that Paul

would pay the debt plus interest in five years. Paul decided to save money each

month by placing a certain amount in a saving account that pays 3.6% interest rate

compounded monthly in order to pay Peter $10,000 plus interest. How much

monthly should Paul put on his saving account? Would it be better for Paul to

take a loan from a bank instead of getting money from Peter?

Hint. See Chapter 4.

Answer. After 5 years Paul will have to pay back $10, 000 � 1:065 ¼ $13, 382:26.
Using formula for this future value of an annuity but a different annual percentage

rate, APR¼ 3.6% with interest compounded monthly, we obtain his monthly

investment as

R ¼ $13, 382:26 �
0:036
12

� �
1þ 0:036

12

� �60 � 1
� 	 ¼ $203:90:

With total investments of TP ¼ 60 � $203:90 ¼ $12, 233:98: If he had a loan of

$10,000 from a bank at 6% APR and interest compounded monthly, then his

monthly payment would be

$10, 000 �
0:06
12

1� 1þ 0:06
12

� ��60
� 	 ¼ $193:33:

for a total payment of $11,599.80. Therefore, Peter’s loan is not the best.
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20. Evaluate
X100
n¼1

3n2 � 200n

101
.

Solution.

X100
n¼1

3n2 � 200n

101
¼ 3
X100
n¼1

n2

101
� 200

X100
n¼1

n

101

¼ 3 � 100 � 101 � 201
101 � 6 � 200 � 100 � 101

101 � 2 ¼ 50

Answer. 50

21. Prove using mathematical induction that
Xn
n¼1

n2 ¼ n nþ1ð Þ 2nþ1ð Þ
6

.

Hint. See Section 2.3.

22. (Lidsky) Evaluate the sum, Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx

Hint. Use de Moivre’s Formula or see Problem 71.

Solution. Consider S ¼ cos xþ i sin xð Þ þ cos 2xþ i sin 2xð Þ þ cos 3xþ i sin 3xð Þ
þ . . .þ cos nx þ i sin nxð Þ

Using de Moivre’s Formula, cos xþ i sin xð Þn ¼ cos nx þ i sin nx we can eval-

uate S as the sum of a geometric series and obtainS ¼ cos xþi sin xð Þnþ1� cos x þi sin xð Þ
cos xþi sin x�1

then

the sum Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx is the imaginary part of the

expression, or Sn ¼ 2 sin nx
2
sin

nþ1ð Þx
2

.

Answer. Sn ¼ 2 sin nx
2
sin

nþ1ð Þx
2

23. (Lidsky) Find the sum,

Sn ¼ nxþ n� 1ð Þx2 þ n� 2ð Þx3 þ . . .þ 2xn�1 þ xn ð5:1Þ

Solution. The sum can be written as Sn ¼
Xn
k¼1

n� k þ 1ð Þxk: Based on ideas given

in this book, we multiply the original sum by x,

xSn ¼ nx2 þ n� 1ð Þx3 þ n� 2ð Þx4 þ . . .þ 2xn þ xnþ1 ð5:2Þ
Subtracting Eq. 5.1 from Eq. 5.2 we have

x� 1ð ÞSn ¼ n� n� 1ð Þð Þx2 þ . . .þ xn þ xnþ1 � nx

x� 1ð ÞSn ¼ x2 xn � 1ð Þ
x� 1

� nx

Sn ¼ xnþ2 � x2 � nx2 þ nx

x� 1ð Þ2 ¼ xnþ2 � x2 nþ 1ð Þ þ nx

x� 1ð Þ2
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In 24–25, investigate whether or not the given infinite series are convergent or

divergent. When you are making your statement, provide the corresponding theo-

rem that you used.

24.
X1
n¼1

n!ð Þ2
2nð Þ!

Solution. By the sufficient D’Alembert Ratio Test (Corollary 3.4) we have

unþ1

un
¼ nþ 1ð Þ!½ �2 2nð Þ!

2 nþ 1ð Þð Þ! n!ð Þ2 ¼
nþ 1ð Þ2
2nþ 2ð Þ! �

2nð Þ!
n! � n! ¼

nþ 1ð Þ2 2nð Þ!
2nð Þ! 2nþ 1ð Þ 2nþ 2ð Þ

¼ nþ 1ð Þ2
2nþ 1ð Þ 2nþ 2ð Þ !

1

4
< 1

The series is convergent.

25.
X1
n¼1

1

n4
3n

2n

Solution. By the sufficient D’Alembert ratio test we have unþ1

un
¼

3nþ1

nþ1ð Þ4�2nþ1 � 3n

n4�2n ¼ 3
2
� n4

nþ1ð Þ4 ! 3
2
> 1. The series diverges.

26. Evaluate the finite sum, 1
2�5 þ 1

3�6 þ . . .þ 1
50�53.

Hint. See the similar Problem 50.

Solution.

1

2 � 5þ
1

3 � 6þ . . .þ 1

50 � 53¼
1

3

1

2
þ 1

3
þ 1

4
þ 1

5
þ 1

6
þ . . .

1

50
� 1

5
� 1

6
� . . .




� 1

50
� 1

51
� 1

52
� 1

53

�

¼ 1

3

1

2
þ 1

3
þ 1

4
� 1

51
� 1

52
� 1

53


 �

¼ 72, 079

210, 834
� 0:341876:

27. What do you think about the convergence of the series:
X1
n¼1

1

nþ 1ð Þ nþ 4ð Þ? Can
you evaluate its partial sums directly using the problem above?

Hint. For any real c and d such that c 6¼ d 1
c�d ¼ 1

d�c � 1
c � 1

d

� �
(Eq. 2.9)
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Solution.

X1
n¼1

1

nþ 1ð Þ nþ 4ð Þ ¼
1

3

1

2
þ 1

3
þ 1

4
þ 1

5
þ 1

6
þ . . .

1

nþ 1
� 1

5
� 1

6
� . . .




� 1

nþ 1
� 1

nþ 2
� 1

nþ 3
� 1

nþ 4

�

Therefore, the partial sum equals

Sn ¼ 1

3

1

2
þ 1

3
þ 1

4
� 1

nþ 2
� 1

nþ 3
� 1

nþ 4


 �

We can see that its limit exists and can be evaluated as

lim
n!1 Sn ¼ 1

3

1

2
þ 1

3
þ 1

4


 �
¼ 13

36
:

28. Evaluate the following sum Sn ¼ 14 þ 24 þ 34 þ . . .þ n4.

Hint. See Probs. 47 and 48 and consider the differences of the fifth powers of

n and (n� 1): n5 � n� 1ð Þ5 ¼ 5n4 � 10n3 þ 10n2 � 5nþ 1.

Solution.

15 � 05 ¼ 5 � 14 � 10 � 13 þ 10 � 12 � 5 � 1þ 1

25 � 15 ¼ 5 � 24 � 10 � 23 þ 10 � 22 � 5 � 2þ 1

35 � 25 ¼ 5 � 34 � 10 � 33 þ 10 � 32 � 5 � 3þ 1

� � �
n5 � n� 1ð Þ5 ¼ 5n4 � 10n3 þ 10n2 � 5nþ 1

Add the left and right sides and use sigma notation to get

n5 ¼ 5
Xn
n¼1

n4 � 10
Xn
n¼1

n3 þ 10
Xn
n¼1

n2 � 5
Xn
n¼1

nþ n. Solve for 5
Xn
n¼1

n4 and replace

known sums by their equivalent expressions to obtain

5
Xn
n¼1

n4 ¼ n5 þ 10S3n � 10S2n þ 5S1n � n ¼ n n4 � 1ð Þ þ 10S3n � 10S2n þ 5S1n

¼ n nþ 1ð Þ n� 1ð Þ n2 þ 1ð Þ þ 10S3n � 10S2n þ 5S1n:
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Here S1n ¼
Xn
n¼1

n ¼ n nþ1ð Þ
2

, S2n ¼
Xn
n¼1

n2 ¼ n nþ1ð Þ 2nþ1ð Þ
6

, S3n ¼
Xn
n¼1

n3 ¼ n2 nþ1ð Þ2
4

, and

5S4n ¼ n nþ1ð Þ
6

� 6n3 þ 9n2 þ n� 1ð Þ ¼ n nþ1ð Þ 2nþ1ð Þ 3n2þ3n�1ð Þ
6

.

Answer. S4n ¼
n nþ1ð Þ 2nþ1ð Þ 3n2þ3n�1ð Þ

30
.

29. The sequence, {an}, is an arithmetic progression in which

a3 ¼ �13 and a7 ¼ 3. Find for what number of terms the sum of the series will

be smallest. Find this sum.

Hint. Find the first term and common difference then evaluate the sum of the first

n terms and find its minimum.

Solution.

a3 ¼ a1 þ 2d ¼ �13

a7 ¼ a1 þ 6d ¼ 3

d ¼ 4, a1 ¼ �21

Sn ¼ 2a1 þ n� 1ð Þd
2

� n ¼ 2n� 23ð Þn ¼ 2n2 � 23n

Since this parabola opens upward, then its minimum is at its vertex,

n ¼ 23=4 ¼ 5:75. Rounding up we obtain n ¼ 6 and min Snð Þ ¼ �66:

Answer. �66

30. Decide whether
X1
n¼1

n!

nþ 4
converges or diverges.

Hint. See Section 3.1 and check Theorem 3.1.

Answer. Diverges

31. Using mathematical induction prove that
Xn
n¼1

n ¼ n nþ1ð Þ
2

.

32. There are two vessels containing a mixture of water and sand. In the first vessel

there is 1000 kg of the mixture and in the second 1960 kg of the mixture. Water was

added in both vessels. After that the percent content of sand in the first vessel was

reduced k times and in the 2ndltimes. It is known that kl ¼ 9� k. Find the minimum

amount of water that could be added to both vessels together.

Hint. Use the inequality between an arithmetic and geometric means.

Answer. 3480 kg.
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33. Given the series, 1
2
þ 2

22
þ 3

23
þ . . .þ n

2n

a. Evaluate the partial sum

b. Can you evaluate the infinite series sum?

Hint. See Problem 59.

Solution. We follow the same method we used for Problem 59. Denote

Sn ¼ 1
2
þ 2

22
þ 3

23
þ . . .þ n

2n
. Multiplying this by two and regrouping terms we obtain

2Sn ¼ 1þ 2
2
þ 3

22
þ . . .þ n

2n�1. Within this sum we recognize a geometric series and

the original sum minus its last term,

1þ 1

2
þ 1

2

� 
þ 1

22
þ 2

22

� 
þ 1

23
þ 3

23

� 
þ . . .þ 1

2n�1
þ n� 1

2n�1

� 

¼
1 � 1� 1

2n

� 
1� 1

2

þ Sn � n

2n
¼ 2Sn:

Solving for the partial sum, Sn ¼ 2� nþ2
2n

: This series is convergent because if

n increases the second term will approach zero and the limit of partial sums will

approach 2, i.e., lim
n!1 Sn ¼ 2:

Answer. Sn ¼ 2� 2þn
2n
.

34. (MGU VMK June 2009 Entrance Exam) Positive numbers a and b are such that
the numbers a, x, and b form an arithmetic progression and the numbers a, y, b form
a geometric progression. Can the difference x� yð Þ take the following values:

(a) �2009, (b) 0, (c) 2009?

Hint. Use arithmetic and geometric mean properties.

Solution. From the condition of the problem we obtain the following relationships

for x and y:

x ¼ aþ b

2
> 0

y ¼ ffiffiffiffiffi
ab

p
> 0

8<
: ð5:3Þ

Therefore, x� y > 0. Considering different cases we see that

a) x – y¼�2009 is false;

b) x –y¼ 0 can be true if and only if a ¼ b, but if for any arithmetic sequence we

assume that the common difference is nonzero, then (b) is false.

c) x� y ¼ 2009.
aþb
2

� 2009 ¼ ffiffiffiffiffi
ab

p
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From the system of Eq. 5.3 we obtain that

aþ b ¼ 2x

ab ¼ y2

(

and this can be rewritten as

x� y ¼ aþ b

2
�

ffiffiffiffiffi
ab

p
¼ 1

2

ffiffiffi
a

p �
ffiffiffi
b

p� 	2
� 0, if y > 0

x� y ¼ aþ b

2
þ

ffiffiffiffiffi
ab

p
¼ 1

2

ffiffiffi
a

p þ
ffiffiffi
b

p� 	2
> 0, if y < 0

This is another proof that cases (a) and (b) are impossible. On the other hand, case

(c) is possible. Let a> b, then
ffiffiffi
a

p � ffiffiffi
b

p� �2 ¼ 2 � 2009 , ffiffiffi
a

p � ffiffiffi
b

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2009p

or in the equivalent form a ¼ ffiffiffi
b

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 2009p� �2

. This relationship means that for

any number b > 0, there can be found such a number a > 0 that x –y¼ 2009.

35. The following sets of numbers are given

1

1þ 2

1þ 2þ 3

1þ 2þ 3þ 4

. . .

1þ 2þ 3þ . . .þ n

Find the value of n if the sum of all numbers equals 286.

Hint. Notice that each row is the sum of an arithmetic series

Solution.

Method 1. Denote S as the total sum and use the formula for the sum of an

arithmetic series, S ¼ 1þ 1þ2
2

� 2þ 1þ3
2

� 3þ 1þ4
2

� 4þ . . .þ 1þn�1
2

� n� 1ð Þþ
1þn
2

� n. Factoring out ½ and replacing k k þ 1ð Þ by k2 þ k, we have

S¼ 1

2
� 12 þ 1
� �þ 22 þ 2

� �þ 32 þ 3
� �þ . . .þ n2 þ n

� �� �
¼ 1

2

Xn
n¼1

n2 þ
Xn
n¼1

n

( )
¼ 1

2

n nþ 1ð Þ 2nþ 1ð Þ
6

þ n nþ 1ð Þ
2


 �

¼ n nþ 1ð Þ nþ 2ð Þ
6

¼ 286

n nþ 1ð Þ nþ 2ð Þ ¼ 1716 ¼ 11 � 12 � 13, so n ¼ 11.
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Method 2. The sum is the sum of n triangular numbers,

S ¼
Xn
k¼1

Tk ¼
Xn
k¼1

k k þ 1ð Þ
2

¼ 1

2

Xn
k¼1

k2 þ
Xn
k¼1

k

 !
¼ n nþ 1ð Þ nþ 2ð Þ

6
¼ 286:

Therefore n¼ 11.

Answer. n¼ 11

36. Let x2 þ y2 ¼ a2, z2 þ u2 ¼ b2 and prove that �ab 	 xzþ yu 	 ab

Hint. Multiply the left and the right sides of both equations, then use the relation-

ship between the arithmetic and geometric means.

Proof.

x2 þ y2ð Þ z2 þ u2ð Þ ¼ a2b2

x2z2 þ y2u2ð Þ þ x2u2 þ y2z2ð Þ ¼ a2b2

Rewriting the last expression in a different form:

x2z2 þ y2u2 þ 2xuyz
� �þ x2u2 þ y2z2 � 2xyzu

� � ¼ a2b2 ð5:4Þ

Since the expression inside the braces is x2u2 þ y2z2 � 2xyzu ¼ xu� yzð Þ2 � 0, for

Eq. 5.4 to hold the expression inside brackets must be less than or equal to a2b2

x2z2 þ y2u2 þ 2xuyz ¼ xzþ yuð Þ2 	 a2b2. This can be also written as

�ab 	 xzþ yu 	 ab, which completes the proof.

37. (Kaganov) Two progressions, one arithmetic and one geometric, have three

terms each. The first and the third terms of the progressions are equal. For which of

the progressions is the sum of the three terms bigger?

Solution. Consider two progressions:

Arithmetic a1, a1 þ d, a1 þ 2d and denote its sum as Sa
Geometric a1, a1r, a1r

2 and denote its sum as Sg

By the condition a1r
2 ¼ a1 þ 2d we can find d ¼ a1 r2�1ð Þ

2
. Consider the ratio of

the second terms,

a1 þ d

a1r
¼ a1 þ a1 r2�1ð Þ

2

a1r
¼ r2 þ 1

2r
� 1

because r � 1ð Þ2 � 0, r > 0. We have the cases:

1. if r ¼ 1, then Sa ¼ Sg
2. if r 6¼ 1, then Sa > Sg r > 0ð Þ or Sa < Sg r < 0ð Þ.
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38. (Kaganov) Let the sum of the first m terms of an arithmetic progression equal

Sm. Prove that S3m ¼ 3 S2m � Smð Þ.
Hint. Consider the formula for the sums of the first m, 2m, and 3m terms of an

arithmetic series.

Solution.

Sm ¼ 2a1 þ m� 1ð Þd
2

� m

S2m ¼ 2a1 þ 2m� 1ð Þd
2

� 2m

S3m ¼ 2a1 þ 3m� 1ð Þd
2

� 3m

S2m � Sm ¼ 2a1 þ 3m� 1ð Þd
2

� m ¼ S3m
3

39. For a geometric progression bmþn ¼ A, bm�n ¼ B evaluate bm, bn.

Answer. bm ¼ ffiffiffiffiffiffi
AB

p
, bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

A

� m
2n

s
.

40. The sum of consecutive natural numbers from one to some number n is a

three digit number N with all digits the same. How many numbers did we add?

Find N.

Solution. Any three-digit number with the same digits can be written as

N ¼ xxx ¼ 111 � x ¼ 100xþ 10xþ 1 � x. Since N is a result of adding n natural

numbers, then 1þn
2

� n ¼ 111x, x ¼ n nþ1ð Þ
2�3�37 . Because 37 is prime then either n or

nþ 1 is multiple of 37. Therefore, n¼ 36, x¼ 6, and N¼ 666.

Answer. n¼ 36; N¼ 666.

41. Find an arithmetic progression such that the sum of the first four terms is 26 the

sum of the last four terms is 110, and the sum of all terms is 187.

Answer. 2, 5, 8, 11, . . ., 23, 26, 29, 32

42. If x, y, z are terms of a geometric progression, prove that

xþ yþ zð Þ x� yþ zð Þ ¼ x2 þ y2 þ z2

Hint. Use a direct proof with terms: x, y¼ kx, z ¼ k2x.

Solution.

xþ kxþ k2x
� �

x� kxþ k2x
� �

¼ x2 þ kxð Þ2 þ k2x
� �2

¼ x2 þ y2 þ z2
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43. In an arithmetic progression the sum of the first three terms equals 15. If this

sum is divided by the product of the terms the result is 1/7. Find the progression.

Answer. 3, 5, and 7.

44. Prove that if numbers a2, b2, and c2 are terms of an arithmetic progression then
1

bþc ,
1

aþc ,
1

bþa are also terms of an arithmetic progression.

Proof. By the condition c2 � b2 ¼ b2 � a2. Consider the differences:

1

aþ b
� 1

aþ c
¼ c� b

bþ að Þ aþ cð Þ
1

aþ c
� 1

bþ c
¼ b� a

cþ að Þ bþ cð Þ

Equating these differences we obtain

b� a

cþ bð Þ aþ cð Þ ¼
c� b

bþ að Þ aþ cð Þ
b� að Þ bþ að Þ ¼ cþ bð Þ c� bð Þ

c2 � b2 ¼ b2 � a2:

This completes the proof.

45. Prove that the sum of squares of the first n natural numbers cannot be equal to

the square of the sum of these natural numbers.

Hint. Prove it by contradiction

Proof. Assume contradiction
Xn
n¼1

n2 ¼
Xn
n¼1

n

 !2

, n > 1, n2N. Then expanding

these sums we obtain

n nþ 1ð Þ 2nþ 1ð Þ
6

¼ n2 nþ 1ð Þ2
22

2nþ 1

3
¼ n2 þ n

2

3n2 � n� 2¼ 0

n¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24

p

6
¼ 1:

Therefore such a case does not exist.

46. The following sequence is given: 1, 1
2
, 1
4
, 1
8
, . . .. Can some terms of this

sequence form an infinite geometric series with the sum of 1/5 or 1/7?
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Solution. Assume that such a sequence exists b1 ¼ 1
2k
; r ¼ 1

2m
, k,m2ℤ: Then the

sum of the infinite series is S ¼ b1
1�r ¼ 1

2k
� 1� 1

2m

� � ¼ 1
2k�2k�m.

If k > m, then expression 2k � 2k�m is an even number and we do not consider

this case.

If k < m, then 2k � 2k�m is a fraction and again will not be considered.

If k ¼ m, then k � m ¼ 0; then in order to satisfy the condition the expression

2k � 1 must be either 5 or 7.

If 2k � 1 ¼ 5, then 2k ¼ 6 there are no solutions.

If 2k � 1 ¼ 7, then 2k ¼ 8 and k ¼ 3.

Therefore, such an infinite series can be selected from the given sequence and

the terms are

1

8
,
1

64
,
1

512
, . . .

S1 ¼ 1

7
:

Answer. Yes, it can. For example, 1/8, 1/64, 1/512. . . converges to 1/7. No subset

converges to 1/5.

47. Insert inside the number 49 another number 48 to obtain 4489. Next, we insert

the number 48 inside that new number, 4489, obtaining 444,889, and continue

inserting 48 inside that number, etc. Prove that all these numbers are perfect

squares.

Proof.

44:::488:::89 ¼ 9þ 8 � 10þ . . .þ 8 � 10k þ 4 � 10kþ1 þ . . .þ 4 � 102kþ1 ¼

9þ 8 � 10 10k � 1
� �
10� 1

þ 4 � 10
kþ1 10kþ1 � 1
� �
10� 1

¼
81þ 8 � 10kþ1 � 80þ 4 � 102kþ2 � 4 � 10kþ1

9
¼

1þ 4 � 10kþ1 þ 4 � 102kþ2

9
¼ 1þ 2 � 10kþ1

3

� 2

¼ 200:::0þ 1

3

� 2

¼ 66:::672:

48. Find the sum: 7þ 77þ 777þ 7777þ . . .þ 77. . .777, where the last number

consists of n repetitions of digit 7.

Hint. See Problem 49. The number can be written as

7 � 1þ 11þ 111þ 1111þ . . .þ 111:::111ð Þ.
Solution. We can notice that 9¼ 10� 1, 99¼ 100� 1, 999¼ 1000� 1, etc. If we

multiply and divide the given sum by 9 we can easily evaluate it using the formula

for geometric series
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S¼ 7

9
10� 1þ 100� 1þ 1000� 1þ 10000� 1þ . . .þ 100:::0� 1ð Þ

¼ 7 10þ 102 þ . . .þ 10n � n
� �

9

S¼ 7

9

10 10n � 1ð Þ
9

� n

� �
¼ 7

9
11:::1|fflffl{zfflffl}
n digits

0

0
B@

1
CA

49. For the sequence 3þ 8þ 15þ 24þ 35þ . . .

a. Evaluate the sum of the first 200 terms of the series.

b. Find the sum of all members between 25th and 50th.

Hint. Notice that the nth term can be written as a product of two integers that differ

by 2, i.e., n nþ 2ð Þ.
Solution.

Part a.

1 � 3þ 2 � 4þ 3 � 5þ 4 � 6þ 5 � 7þ . . .þ
X200
n¼1

n nþ 2ð Þ ¼
X200
n¼1

n2 þ 2
X200
n¼1

n

¼ 200 � 201 � 401
6

þ 2 � 200 � 201
2

¼ 2, 726, 900:

Part b.

X50
n¼25

n nþ 2ð Þ ¼
X50
n¼1

n2 þ 2
X50
n¼1

n�
X24
n¼1

n2�2
X24
n¼1

n

¼ 50 � 51 � 101
6

þ 2 � 50 � 51
2

� 24 � 25 � 49
6

� 2 � 24 � 25
2

¼ 39, 975:

50. Find the formula for the nth term of the sequence given recursively by

anþ1 ¼ 2an þ 1, a0 ¼ 0, n � 0.

Hint.Write down some of the members and recognize the pattern and then prove it

using mathematical induction or by using a generating function (longer way).

Answer. For the sequences 0, 1, 3, 7, 15, 31, . . ., an ¼ 2n � 1, a0 ¼ 0, n � 0.

51. Find the formula for the nth term of the sequence given recursively by

anþ1 ¼ 2an þ n, a0 ¼ 1, n � 0

Hint. Using a generating function you can solve it similarly to the way we solved

Problem 155.
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Solution. Using ideas similar to those in Problem 155 we considerX
anþ1x

n ¼ 2
X

anx
n þ

X
nxn a0 ¼ 1, n � 0 and denote F xð Þ ¼

X
anx

n.

Equating the generating functions of the left and right sides we obtain

F xð Þ � 1

x
¼ 2F xð Þ þ x

1� xð Þ2

F xð Þ ¼ 1� 2xþ 2x2

1� xð Þ2 1� 2xð Þ ¼
�1

1� xð Þ2 þ
2

1� 2xð Þ

Answer. For 1, 2, 5, 12, 27, 58, 121, . . . an ¼ 2nþ1 � n� 1, a0 ¼ 0, n � 0

52. Find the nth term of the sequence given by the recursion, unþ1 ¼ 2un þ un�1,

u1 ¼ 1, u2 ¼ 2:

Solution. Consider the quadratic equation, r2 � 2r � 1 ¼ 0 with solutions:

r1 ¼ 1� ffiffiffi
2

p
, r2 ¼ 1þ ffiffiffi

2
p

. For the nth term, un ¼ A 1� ffiffiffi
2

p� �nþ B 1þ ffiffiffi
2

p� �n
.

Using the condition of the problem and substituting u1 ¼ 1, u2 ¼ 2 into the

expression above, we obtain the system for A and B:

1 ¼ A 1� ffiffiffi
2

p� �þ B 1þ ffiffiffi
2

p� �
2 ¼ A 1� ffiffiffi

2
p� �2 þ B 1þ ffiffiffi

2
p� �2

(
, Aþ Bð Þ � ffiffiffi

2
p

A� Bð Þ ¼ 1

3 Aþ Bð Þ � 2
ffiffiffi
2

p
A� Bð Þ ¼ 2

(

,
Aþ B ¼ 0

A� B ¼ � 1ffiffiffi
2

p

8<
:

A ¼ �1

2
ffiffiffi
2

p

B ¼ 1

2
ffiffiffi
2

p

2
664

un ¼ � 1

2
ffiffiffi
2

p 1�
ffiffiffi
2

p� 	n
þ 1

2
ffiffiffi
2

p 1þ
ffiffiffi
2

p� 	n

un ¼
1þ ffiffiffi

2
p� �n � 1� ffiffiffi

2
p� �n

2
ffiffiffi
2

p :

We can see that the formula is correct because

u1 ¼
1þ ffiffiffi

2
p� �1 � 1� ffiffiffi

2
p� �1

2
ffiffiffi
2

p ¼ 1

u2 ¼
1þ ffiffiffi

2
p� �2 � 1� ffiffiffi

2
p� �2

2
ffiffiffi
2

p ¼ 3þ 2
ffiffiffi
2

p

2
ffiffiffi
2

p � 3� 2
ffiffiffi
2

p

2
ffiffiffi
2

p ¼ 2; etc:

53. Evaluate the infinite series, S ¼ 1þ ln2þ ln2ð Þ2
2! þ ln2ð Þ3

3! þ ln2ð Þ2
4! þ . . .
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Solution. Comparing this series with the Maclaurin series (Section 3.2.2, Eq. 3.21)

for ex, x ¼ ln2, we can see that S ¼ eln2 ¼ 2:

Answer. S¼ 2

54. (Kaganov) Let ai form an arithmetic progression such that

a1 þ a2 þ . . .þ an ¼ a

a21 þ a2
2
þ . . .þ a2n ¼ b2

Find the progression.

Solution.Using properties of the arithmetic progression, we have the following true

equations:

a2 ¼ a1 þ d

a3 ¼ a1 þ 2d

an ¼ a1 þ n� 1ð Þd

Substituting these into the second equation of the problem, we have

b2 ¼ a21 þ a21 þ 2a1d þ d2
� �þ a21 þ 4a1d þ 4d2

� �þ . . .

þ a21 þ 2 n� 1ð Þa1d þ n� 1ð Þ2d2
� 	

¼ na21 þ 2a1d 1þ 2þ 3þ . . .þ n� 1ð Þð Þ þ d2 1þ 4þ 9þ . . . n� 1ð Þ2
� 	

Using Eqs. 1.29 and 1.30 to simplify the expressions inside the parentheses, we

obtain na21 þ a1d n� 1ð Þnþ d2n n� 1ð Þ 2n� 1ð Þ or

6b2

n
¼ 6a21 þ 6a1d n� 1ð Þ þ d2 n� 1ð Þ 2n� 1ð Þ ð5:5Þ

Next, we can rewrite the first equation of the problem as

2a1 þ d n� 1ð Þ ¼ 2a

n
ð5:6Þ

Squaring both sides of Eq. 5.6, multiplying by 1.5, and with the use of Eq. 5.5, we

obtain the system:

6a21 þ 6a1d n� 1ð Þ þ 1:5d2 n� 1ð Þ2 ¼ 6a2

n2

6a21 þ 6a1d n� 1ð Þ þ d2 n� 1ð Þ 2n� 1ð Þ ¼ 6b2

n

8>><
>>:
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Solving the system, we have d2 n� 1ð Þ 1:5n� 1:5� 2nþ 1ð Þ ¼ 6
n

a2

n � b2
� 	

. From

this we can find d and the first term of the progression:

d2 ¼ 12 b2n� a2
� �

n2 n� 1ð Þ nþ 1ð Þ , d ¼ 
 2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 b2n� a2
� �
n2 � 1

s

a1 ¼ a

n
� n� 1

2
� d ¼ a

n
� n� 1ð Þ

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 b2n� a2
� �
n2 � 1

s
:

55. Suppose that a, b, and c are different primes greater than 3. Prove that they

cannot be consecutive terms of some arithmetic progression.

Hint. See Problem 94.

Solution. The statement is false because 47, 53, 59 are primes and consecutive

members of arithmetic progression with the difference d¼ 6. It has been

conjectured that there exist arithmetic progressions of finite (but otherwise arbi-

trary) length, composed of consecutive prime numbers. Examples of such pro-

gressions consisting of three and four primes, respectively, are 5, 101, 197 (d¼ 96)

and 251, 257,263, 269 (d¼ 6).

56. Evaluate the following sum. S ¼ 1
1�2�3�4 þ 1

2�3�4�5 þ 1
3�4�5�6 þ . . .þ 1

n�3ð Þ n�2ð Þ n�1ð Þn

Hint. See Problem 56.

Solution. It can be shown that 1
k kþ1ð Þ kþ2ð Þ kþ3ð Þ ¼ 1

3
1

k kþ1ð Þ kþ2ð Þ � 1
kþ1ð Þ kþ2ð Þ kþ3ð Þ

h i
which yields

1

1 � 2 � 3 � 4¼
1

3

1

1 � 2 � 3�
1

2 � 3 � 4
� �

1

2 � 3 � 4 � 5¼
1

3

1

2 � 3 � 4�
1

3 � 4 � 5
� �

1

3 � 4 � 5 � 6¼
1

3

1

3 � 4 � 5�
1

4 � 5 � 6
� �

� � �
1

n� 3ð Þ n� 2ð Þ n� 1ð Þn¼
1

3

1

n� 3ð Þ n� 2ð Þ n� 1ð Þ �
1

n� 2ð Þ n� 1ð Þn
� �

Adding together the left and right sides of all equations we obtain

S ¼ 1

3

1

1 � 2 � 3�
1

n� 2ð Þ n� 1ð Þn
� �

¼ 1

3

1

6
� 1

n� 2ð Þ n� 1ð Þn
� �

We can see that if the number of terms will increase without bound then the sum

will go to 1/18.
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57. Investigate if the series
P1
n¼1

ffiffiffiffiffiffiffiffi
n3þ2

p
n2 sin 2n convergent or divergent.

Hint. Using inequalities, try to find the boundary for the common term.

Solution.
ffiffiffiffiffiffiffiffi
n3þ2

p
n2 sin 2n �

ffiffiffiffiffiffiffiffi
n3þ2

p
n2 � n3=2

n2 ¼ 1
n1=2

:By Comparison Criterion (Theorem 3.3) , the

given series diverges as
P1
n¼1

1
n1=2

:

Answer. Diverges.

58. Investigate if the series
P1
n¼1

sin nα
ln4ð Þn convergent or divergent.

Hint. Investigate series made of absolute values of the terms of the given series.

Solution. sin nα
ln4ð Þn
��� ��� 	 1

ln4ð Þnj j ¼ 1
ln4

� �n ¼ qn, q < 1: Hence, the absolute values series

converges by Comparison Criterion. It is absolutely convergent. Therefore, the

given series converges.

Answer. Series converges.

59. Investigate if the series
P1
n¼1

bn ¼
P1
n¼1

�1ð Þn n3

nþ1ð Þ! convergent or divergent.

Starting from what term, each consecutive term is smaller than the preceding term?

Hint. This is a Leibniz series.

Solution. Consider corresponding absolute value series,
P1
n¼1

an ¼
P1
n¼1

bnj j, and using
the Leibniz Theorem, we have liman

n!1
¼ lim

n!1
n3

nþ1ð Þ! ¼ 0: Next, we find out starting

from what term of the series, the value of each following term is less than the value

of the previous term. Let us find the limit of the ratio of two consecutive terms:
anþ1

an
¼ nþ1ð Þ3 nþ1ð Þ!

nþ2ð Þ!n3 ¼ nþ1
n

� �3 � 1
nþ2

< 2n
n

� �3 � 1
nþ2

¼ 8
nþ2

: Because 8
nþ2

< 1 if n > 6,

then starting from the 7th term of the series the important condition is fulfilled

and the given series converges as Leibniz series. Moreover, applying

the D’Alembert Ratio Test (Corollary 3.3) and because lim
n!1

anþ1

an
¼ 0 < 1, then the

alternating series is absolutely convergent.

Answer. Absolutely converges

60. Evaluate the sum of the series
P1
n¼1

�1ð Þn n
1þn3ð Þ2 with accuracy of α ¼ 0:001:

Hint. See Problem 151.
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Solution. Consider the series made of absolute values of the terms of the given

series, such that anj j ¼ n
1þn3ð Þ2 and evaluate its third and fourth terms:

a3j j ¼ 3

1þ33ð Þ2 ¼
3

784
> 0:001 and a4j j ¼ 4

1þ43ð Þ2 ¼
4

4225
< 0:001. So three terms are

required :
P1
n¼1

�1ð Þn n
1þn3ð Þ2 � �1

4
þ 2

81
� 3

784
¼ �14551

63504
:

61. Find convergence radius of the series
P1
n¼1

nþ1ð Þ5x2n
2nþ1

.

Hint. Use the Cauchy-Hadamard Formula.

Solution.

R�1 ¼ lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ5
2nþ 1

n

s
¼ lim

n!1
nþ 1ð Þ5n
2nþ 1ð Þ1n

¼ lim
n!1

nþ 1ð Þ 1
nþ1

� 	5 nþ1ð Þ
n

2nþ 1ð Þ 1
2nþ1

� 	2nþ1
n

¼ 1 ¼ R:

Here we used a standard fact that lim
n!1 n

1
n ¼ 1:

Answer. R ¼ 1:

62. Find a Taylor expansion as powers of x for f xð Þ ¼ ln 2þx
1�x

� �
.

Hint. First simplify f(x) using the properties of logarithms, then use a power

expansions of known functions.

Solution.

f xð Þ ¼ ln 2þ xð Þ � ln 1� xð Þ
¼ ln2þ ln 1þ x

2

� 	
� ln 1� xð Þ

¼ ln2þ
X1
n¼1

�1ð Þn�1 � xn
2nn

�
X1
n¼1

�1ð Þn�1 � �1ð Þn � xn
n

which can be further simplified as f xð Þ ¼ ln2þ P1
n¼1

�1ð Þn�1 xn

2nn þ
P1
n¼1

xn

n :While the

first series converges at xj j < 2, the second series converges at xj j < 1, so the

obtained power series expansion for the given function will converge for xj j < 1.

Answer. f xð Þ ¼ ln 2þx
1�x

� � ¼ ln2þ P1
n¼1

�1ð Þn�1 xn

2nn þ
P1
n¼1

xn

n :

63. Find a Taylor series expansion as powers of x for f xð Þ ¼ 3
2�x�x2.

Hint. Factor the denominator and rewrite the function as a sum of two other

functions.
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Solution. After factoring the denominator, the given function can be written as

f xð Þ ¼ 3

2� x� x2
¼ 3

1� xð Þ 2þ xð Þ ¼
1

1� x
þ 1

2þ x

¼ 1

1� x
þ 1

2
� 1

1� �x

2

� 	
X1
n¼0

xn þ
X1
n¼0

�1ð Þnxn
2nþ1

:

The first series converges at xj j < 1 and the second at xj j < 2, hence this power

series for the given function is valid only for xj j < 1.

Answer. f xð Þ ¼ 3
2�x�x2 ¼

X1
n¼0

xn þ
X1
n¼0

�1ð Þnxn
2nþ1

, xj j < 1:

64. Investigate the convergence of the series
P1
n¼1

2n

n�3n.

Hint. Use the Cauchy Root Test (Theorem 3.6) or the D’Alembert Ratio Test

(Corollary 3.3).

Solution.

1) Using the Cauchy Root Test, we have

lim
n!1

ffiffiffiffiffi
ann

p ¼ lim
n!1

ffiffiffiffiffi
2n

3nn
n

q
¼ 2

3
� lim
n!1

ffiffi
1
n

n

q
¼ 2

3
< 1, hence the series converges.

2) Using the D’Alembert ratio test, we have lim
n!1

anþ1

an
¼ 2

3
� lim
n!1

n
nþ1

¼ 2
3
< 1 there-

fore the series converges.

Answer. The series converges.

65. Is the series
P1
n¼1

sin 1
n convergent or divergent?

Solution. Because sin 1
n � 1

n then
P1
n¼1

sin 1
n behaves the same way as the harmonic

series
P1
n¼1

1
n, so it diverges.

Answer. It diverges.

66. Does the series
P1
n¼1

1
n
ffiffi
n

p converge or diverge?

Solution. The series can be written as
P1
n¼1

1
n3=2

which is the Dirichlet series for

p ¼ 3
2
> 1; hence it converges.

Answer. The series converges.
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67. Using a Taylor series expansion as powers of x, evaluate the integralÐ0:1
0

cos 100x2ð Þdx with accuracy of α ¼ 0:001:

Hint. See Problem 150.

Solution. Using the power series (Eq. 3.25),

cos t¼
X1
n¼0

�1ð Þnt2n
2nð Þ! , t2 �1,1ð Þ, t ¼ 100x2 ) cos 100x2ð Þ

¼
X1
n¼0

�1ð Þn104nx4n
2nð Þ! , x2R,

ð1
0

cos 100x2
� �

dx

¼
X1
n¼0

ð1
0

�1ð Þn104nx4n
2nð Þ! dx ¼

X1
n¼0

�1ð Þn104nx4nþ1

2nð Þ! 4nþ 1ð Þ
����0:1
0

¼
X1
n¼0

�1ð Þn
10 � 2nð Þ! 4nþ 1ð Þ

Because we have an alternating series, if we take n� 1ð Þ terms for the approxima-

tion of the integral the absolute value of the error of such estimation will be less

than the following nth term of the series. Thus the following inequality must be

satisfied errorj j 	 anj j ¼ 1
10 4nþ1ð Þ 2nð Þ!. Given the error of 0.001, we rewrite it as

1
10 4nþ1ð Þ 2nð Þ! < 0:001. Instead of solving this inequality in general, we begin by

evaluating the first several terms of the expansion,

a0 ¼ 1

10 � 1 � 1 ¼ 0:1 > 0:001

a1 ¼ 1

10 � 5ð Þ � 2 ¼ 1

100
> 0:001

a2 ¼ 1

10 � 4 � 2þ 1ð Þ � 4! ¼
1

2160
< 0:001

Because the value of the third term is smaller than 0.001, we need to approximate

the integral by only the first two terms. Finally,
Ð1
0

cos 100x2ð Þdx �
P1
0

�1ð Þn
10 4nþ1ð Þ 2nð Þ! ¼ 0:1� 0:01 ¼ 0:09:

Answer. 0.09

68. Find the first four terms of the Taylor’s series expansion of f xð Þ ¼ xx by powers
of x > 0 centered at x0 ¼ 1:
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Hint. Use the fact that f xð Þ ¼ xx ¼ exlnx, x > 0:

Solution. Let us find the first three derivatives of the function

f 0 xð Þ ¼ ex ln x 1þ ln xð Þ

f
00
xð Þ ¼ ex ln x 1þ 2 ln xþ ln2 xþ 1

x

� 

f
000
xð Þ ¼ ex ln x 1þ 3 ln xþ 3 ln2 xþ ln3 xþ ln x

x
þ 2

x
þ 2 ln x

x
� 1

x2

� 

and evaluate their values at x ¼ 1 obtaining that f 1ð Þ ¼ 1,

f 0 1ð Þ ¼ 1, f
00
1ð Þ ¼ 2, f

000
1ð Þ ¼ 2. Substituting these into the Taylor’s series, we

get f xð Þ ¼ xx ¼ 1þ x� 1ð Þ þ 2 x�1ð Þ2
2! þ 2 x�1ð Þ3

3! þ . . .

Answer. 1þ x� 1ð Þ þ 2 x�1ð Þ2
2! þ 2 x�1ð Þ3

3! þ . . .

69. Find the nth term of the sequence 1, 6, 19, 44, 85, 146. . .

Answer. an ¼ n 2n2þ1ð Þ
3

70. Find the nth term of the sequence 1, 5, 15, 35, 70, 126, 210, . . .

Answer. an ¼ n nþ1ð Þ nþ2ð Þ nþ3ð Þ
24

:

71. Evaluate the sum of the first n terms of the series,

1 � 4þ 2 � 7þ 3 � 10þ 4 � 13þ . . .

Solution. It is easy to see that the nth term can be written as a product of the number

of the term, n, and the corresponding number that divided by 3 gives a remainder of

1, (3nþ 1). You can visualize the second factor of each term as consecutive terms

of an arithmetic progression with the first term of 4 and common difference of 3.

Then the nth partial sum is
Pn
n¼1

n 3nþ 1ð Þ ¼ 3
Pn
n¼1

n2 þ Pn
n¼1

n ¼ n nþ1ð Þ 2nþ1ð Þ
2

þ
n nþ1ð Þ

2
¼ n nþ 1ð Þ2:

Answer. n nþ 1ð Þ2:
72. Using mathematical induction prove that 1þ xð Þn > 1þ nx, x > �1, n2ℕ:

Proof.

1. The statement is true for n ¼ 1:.
2. Assume that it is true for n ¼ k, i.e.

1þ xð Þk > 1þ kx ð5:7Þ
3. Let us demonstrate that the statement is also true for n ¼ k þ 1 and that

1þ xð Þkþ1 > 1þ k þ 1ð Þx.
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Multiplying both sides of Eq. 5.7 by 1þ xð Þ > 0 we obtain the following true

inequality that can be further simplified because kx2 > 0:

1þ xð Þk 1þ xð Þ � 1þ kxð Þ 1þ xð Þ
¼ 1þ kxþ xþ kx2 > 1þ k þ 1ð Þx:

The statement is proven.

73. Prove that for the Fibonacci sequence satisfying a1 ¼ a2 ¼ 1,

an ¼ an�1 þ an�2, n > 2, that for any natural n, the following statements are true:

a.
Pn
k¼1

a2k ¼ an � an�1

b.
Pn
k¼1

a2k�1 ¼ a2n:

Hint. Use mathematical induction.

74. Prove that the recurrent sequence anf g : a1 ¼ 3, a2 ¼ 5, anþ2 ¼ 3anþ1 � 2an
can be defined by an ¼ 2n � 1.

Hint. Evaluate several terms and then use mathematical induction as we did in

Problem 74 of the book.

75. Prove that any term of the sequence an ¼ n3 þ 35 is divisible by 6.

Hint. Use mathematical induction.

76. Prove that the number 6 divides each term of the sequence an ¼ n3 þ 17n.

Hint. Use mathematical induction or a direct proof by rewriting the common term

of the sequence.

Solution. n3 � nþ 18n ¼ n� 1ð Þn nþ 1ð Þ þ 18n. Now the common term consists

of two terms, the first is always divisible by 6 as a product of three consecutive

integers and the second term is also always divisible by 6.

77. Prove that any term of the sequence an ¼ 4n þ 15n� 1 is divisible by 9.

Hint. Use mathematical induction.

78. Prove that
P1
n¼1

6
nð Þ nþ1ð Þ nþ2ð Þ ¼ 3

2
:

Hint. See Problem 68.

79. Evaluate the sum of the first 100 triangular numbers.

Answer. 171,700.
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80. For what real values of a and b will the sequence x0 ¼ a, x1 ¼ 1þ b � x0, . . . ,
xnþ1 ¼ 1þ b � xn converge?
Solution. By induction we can establish that

xn ¼ 1þ bþ b2 þ b3 þ . . .þ bn�1
� �þ a � bn ¼ bn � 1

b� 1
þ a � bn

¼ 1

1� b
þ bn � a� 1

1� b

� 
:

This sequence converges to 1
1�b.

There are two cases:

1. If b 6¼ 1, a ¼ 1
1�b, then the sequence is convergent for any real b 6¼ 1, b2ℝ:

2. If a2ℝ, bj j < 1:

81. Find the formula for the nth term of the Lucas sequence, 1, 3, 4, 7, 11, 18, 29, 47,

76,. . ..

Hint. Note that Ln¼ Ln-1 + Ln-2.

Answer. Ln ¼ 1þ ffiffi
5

p
2

� 	n
þ 1� ffiffi

5
p
2

� 	n
82. Given Sn ¼ 1þ 1ffiffi

2
p þ 1ffiffi

3
p þ 1ffiffi

4
p þ . . .þ 1ffiffi

n
p , prove 2

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1
� �

< Sn < 2
ffiffiffi
n

p
:

Is the corresponding infinite series convergent or divergent?

Hint. Using a difference of squares formula to show thatffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p � ffiffiffi
k

p ¼ 1ffiffiffiffiffiffi
kþ1

p þ ffiffi
k

p < 1

2
ffiffi
k

p :

Proof. Applying the inequality to each term of the series, we have

2
ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p � 2
ffiffiffi
k

p
< 1ffiffi

k
p < 2

ffiffiffi
k

p � 2
ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
: Let us add these inequalities for all

n terms of the partial sum,

2
Pn
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p � 2
Pn
k¼1

ffiffiffi
k

p
<
Pn
k¼1

1ffiffi
k

p < 2
Pn
k¼1

ffiffiffi
k

p � 2
Pn
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
. Because

Pn
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p þPn
k¼1

ffiffiffi
k

p � 1 )Pn
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p �Pn
k¼1

ffiffiffi
k

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1: And

finally, 2
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 2 <
Pn
k¼1

1ffiffi
k

p ¼ Sn < 2
ffiffiffi
n

p
: The statement is proven.

Next, let us decide if the infinite series is convergent of divergent. Clearly if

1
2

P1
k¼1

1ffiffi
k

p diverges, then 1þ 1ffiffi
2

p þ 1ffiffi
3

p þ . . . also diverges and vise versa. Denote

P1
k¼1

uk ¼
P1
k¼1

1

2
ffiffi
k

p and
P1
k¼1

vk ¼
P1
k¼1

1ffiffi
k

p þ ffiffiffiffiffiffi
kþ1

p : Obviously uk ¼ 1

2
ffiffi
k

p >

1ffiffi
k

p þ ffiffiffiffiffiffi
kþ1

p ¼ vk, 8k2N:
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As we demonstrated by solving Problem 60 of Chapter 2, for the partial sum of

the second series
Pn
k¼1

vk ¼
Pn
k¼1

1ffiffi
k

p þ ffiffiffiffiffiffi
kþ1

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1: This partial sum increases

without bound so the corresponding infinite series is divergent. Therefore, using

Theorem 3.5, because
Pn
k¼1

uk >
Pn
k¼1

vk,we can state that it is also divergent.

83. Prove that π
8
¼ 1

1�3 þ 1
5�7 þ 1

9�11 þ 1
13�15 þ . . .

Hint. Check Probs. 50 and 140.

Proof. The quantities inside each denominator differ by two, then the infinite sum

on the right can be written as 1
2
� 1� 1

3
þ 1

5
� 1

7
þ 1

9
� 1

11
þ . . .

� � ¼ 1
2
� π
4
¼ π

8
: Inside

the parentheses we recognize the infinite series representation for arctan 1.

84. Find approximate value of
ffiffiffi
3

p
:

Solution. Let
ffiffiffi
3

p ¼ 2 � 1� 1
4

� �1
2 and apply Eq. 3.27 for x¼ 1/4,ffiffiffi

3
p ¼ 2 1� 1

2
� 1
4
� 1

2
� 1
4
� 1
16
� 1�1�3

2�4�6 � 1
64
� . . .

� � ¼ 2� 1
4
� 1

64
� 1

512
� . . .

85. Given a finite arithmetic progression of 100 terms with the first term 3 and

common difference 4, how many terms are multiples of 11? Find them.

Solution. Because 11 is the 3rd term of the given progression, the mth multiple of

11 will have a position n ¼ 3þ m� 1ð Þ � 11 ¼ 11m� 8, which must be less than

100, then

11m� 8 < 100

11m < 108

m 	 108

11

� �
¼ 9:

There are nine multiples of 11 among the 100 terms of the arithmetic progression.

Each multiple of 11 is in a new arithmetic progression

bm ¼ 3þ 11m� 8� 1ð Þ � 4
bm ¼ 44m� 33 ¼ 11 4m� 3ð Þ

The numbers are 11, 55, 99, 143, 187, 231, 275, 319, 363.

Answer. Nine multiples of 11 that are 11, 55, 99, 143, 187, 231, 275, 319, 363.

86. Give an example of an arithmetic progression with 100 integer terms such that

any two selected terms are relatively prime?

Hint. See Problem 95.

Answer. a1 ¼ 1þ 99! d ¼ 99!
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87. Given a sequence of n consecutive natural numbers, prove that only one of its

terms is divisible by n.

Proof. Let a, aþ 1, aþ 2, . . . , aþ n� 1 is the required sequence. Any two

numbers of this sequence cannot simultaneously be divisible by n because their

difference is always less than n and hence cannot be divisible by n. Assume that

a ¼ n � qþ r, where 0 	 r < n. If r ¼ 0, the first term of such a sequence is

divisible by n. If r � 1, then aþ n� r is a term of the given sequence and

aþ n� r ¼ n � qþ r þ n� r ¼ n qþ 1ð Þ. Therefore, aþ n� r is divisible by n.

88. Use mathematical induction to prove that the Fibonacci numbers satisfy

f 1 þ f 2 þ f 3 þ . . .þ f 2n�1 ¼ f 2n.

Proof.

1. If n ¼ 1 ) f 1 ¼ f 2 1 ¼ 1ð Þ is true.
2. Assume that the statement is true for n¼ k, i.e., f 1 þ f 2 þ f 3 þ . . .þ f 2k�1 ¼ f 2k.
3. Let us demonstrate that the statement is true for n¼ kþ 1 and that

f 1 þ f 2 þ f 3 þ . . .þ f 2 kþ1ð Þ�1 ¼ f 2 kþ1ð Þ:

Indeed,

f 1 þ f 2 þ f 3 þ . . .þ f 2 kþ1ð Þ�1 ¼ f 1 þ f 2 þ . . .þ f 2k�1ð Þ þ f 2kþ1

¼ f 2k þ f 2kþ1 ¼ f 2kþ2 ¼ f 2 kþ1ð Þ:

As shown in the box we used the property of Fibonacci recurrence. Therefore, the

statement is proven.

89. Show that no term of an infinite arithmetic progression an ¼ 30nþ 7 can be

written as a sum or difference of two prime numbers.

Solution. The given progression consists of only odd integers so if we assume that

some of its terms can be written as the sum or difference of two primes, one of them

must be 2. First, assume that a term can be represented by the sum of two primes,

an ¼ 30nþ 7 ¼ 2þ p

30nþ 5¼ p

5 6nþ 1ð Þ ¼ p:

Clearly, p is not prime.

Now assume that a term can be written as a difference of two primes:

an ¼ 30nþ 7 ¼ p� 2

30nþ 9¼ p

3 10nþ 3ð Þ ¼ p:
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Again we obtain the contradiction because this p is also not prime. Therefore, no

term of the given infinite progression can be written as a sum of difference of two

primes.

90. Prove that for every positive integer n, that 3 15 þ 25 þ 35 þ . . .þ n5
� �

is

divisible by 13 þ 23 þ 33 þ . . .þ n3
� �

.

Hint. Look at Probs. 47 and 48.

Proof.

Method 1. Consider the difference of the sixth powers of two consecutive numbers.

Next take the sum from 1 to n from the left and the right sides, using the fact thatPn
n¼1

n6 � Pn
n¼1

n� 1ð Þ6 ¼ n6:

n6 � n� 1ð Þ6 ¼ 6n5 � 15n4 þ 20n3 � 15n2 þ 6n� 1

n6 ¼ 6
Xn
n¼1

n5 � 15
Xn
n¼1

n4 þ 20
Xn
n¼1

n3 � 15
Xn
n¼1

n2 þ 6
Xn
n¼1

n� n

We solve this for 3
Pn
n¼1

n5 which must be proven to be divisible by
Pn
n¼1

n3: Since all

summations are from 1 to n, for simplicity we omit the indices of summation; also

we do not expand the sum of the first n cubes:

3
X

n5 ¼
n6 þ n� 6

X
nþ 15

X
n4 þ

X
n2

� 	
2

� 10
X

n3

Using the summation formulas it can be shown that the following is true:

15
X

n4 þ
X

n2
� 	

¼ n nþ 1ð Þ 2nþ 1ð Þ 3n2 þ 3nþ 4ð Þ
2

n6 þ n� 3n nþ 1ð Þ ¼ n nþ 1ð Þ n4 � n3 þ n2 � n� 2ð Þ

3
X

n5 ¼ n nþ 1ð Þn nþ 1ð Þ � 2n2 þ 2nþ 9ð Þ
4

� 10
X

n3

Factors of the first term can be recognized as the sum of the first n cubes,P
n3 ¼ n2 nþ1ð Þ2

4
, so the following is valid:

3
X

n5 ¼ 2n2 þ 2nþ 9ð Þ
X

n3 � 10
X

n3

3
X

n5 ¼ 2n2 þ 2n� 1ð Þ �
X

n3

¼ k �
X

n3:

The statement is proven.
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Method 2. Use mathematical induction.

91. Evaluate the sum 4� 4
3
þ 4

5
� 4

7
þ 4

9
þ . . .þ �1ð Þn�4

2nþ1
þ . . ..

Solution. We know that this series is convergent. In order to find its sum, let us

consider the following power series:
X1
n¼0

�1ð Þnx2nþ1

2nþ 1
. We know that for all xj j 	 1,

this series represents the Maclaurin series for y ¼ arctanx. Hence at x ¼ 1, we

obtain that

4 1� 1

3
þ 1

5
� 1

7
þ 1

9
þ . . .þ �1ð Þn

2nþ 1
þ . . .

� 
¼ 4 �

X1
n¼0

�1ð Þn
2nþ 1

¼ 4arctan1 ¼ π:

Answer. π

92. Determine the nth term of the series and evaluate the infinite sum,

1þ 2
2
þ 3

22
þ 4

23
þ 5

24
þ . . .

Hint. Multiply or divide the series by 2. See also Probs. 59, 63 or 88.

Solution. This series can be written as
X1
n¼1

n

2n�1
, so the nth term is an ¼ n

2n�1 :Assume

that the requested sum of the infinite series is S, S ¼ 1þ 2
2
þ 3

22
þ 4

23
þ 5

24
þ . . ., and

divide both sides by 2 to obtain half of the requested sum,
S
2
¼ 1

2
þ 2

22
þ 3

23
þ 4

24
þ 5

25
þ . . .. Subtracting the left and right sides of two sums

and using the formula for the sum of infinite geometric progression, we obtain:

S� S

2
¼ 1þ 2

2
� 1

2

� 
þ 3

22
� 2

22

� 
þ 4

23
� 3

23

� 
þ 5

24
� 4

24

� 
þ . . .

S

2
¼ 1þ 1

2
þ 1

22
þ 1

23
þ . . . ¼ 1

1� 1

2

¼ 2

S¼ 4:

Answer. S¼ 4.

93. Evaluate the sum:

S ¼ 1

1 � 2þ
2

1 � 3þ
3

2 � 5þ
5

3 � 8þ
8

5 � 13þ . . .þ Fn

Fn�1 � Fnþ1

;

where Fn the nth Fibonacci number.

Hint. Rewrite each fraction as difference of two other fractions.

Solution. Since Fnþ1 ¼ Fn�1 þ Fn, then
Fn

Fn�1�Fnþ1
¼ 1

Fn�1
� 1

Fn�1
, and the given sum

can be rewritten as follows
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S ¼ 1� 1

2
þ 1� 1

3
þ 1

2
� 1

5
þ 1

3
� 1

8
þ 1

5
� 1

13
þ . . .þ 1

Fn�4

� 1

Fn�2

þ 1

Fn�3

� 1

Fn�1

þ 1

Fn�2

� 1

Fn
þ 1

Fn�1

� 1

Fnþ1

¼ 2� 1

Fn
� 1

Fnþ1

:

Answer. S ¼ 2� 1
Fn
� 1

Fnþ1
:

94. Given infinite series 1
1
þ 1

2
þ 2

22
þ 3

23
þ 5

24
þ 8

25
þ 13

26
þ . . . Find the nth term of the

series and evaluate its sum.

Hint. Note that the denominators of each fraction are powers of 2. Divide or

multiply by 2.

Solution. The numerators are represented by Fibonacci numbers: 1, 1, 2, 3, 5, 8,

13, etc. and the denominators are powers of 2. Similarly to what we did in the

previous problem, let us denote the requested sum by S,

S ¼ 1

1
þ 1

2
þ 2

22
þ 3

23
þ 5

24
þ 8

25
þ 13

26
þ . . .

Divide both sides by 2,

S

2
¼ 1

2
þ 1

22
þ 2

23
þ 3

24
þ 5

25
þ 8

26
þ 13

27
þ . . .

Next, subtract the first and the second sums :

S� S

2
¼ 1þ 1� 1

2
þ 2� 1

22
þ 3� 2

23
þ 5� 3

24
þ 8� 5

25
þ 13� 8

26
þ. . .

S

2
¼ 1þ 1

22
þ 1

23
þ 2

24
þ 3

25
þ 5

26
þ ::|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S
4

:

We notice that the series to the right of 1 is the series divided by 4, i.e., S/4 so
S
2
¼ 1þ S

4
)¼ 4:

Answer. 4.

95. Find the sum, S ¼ 12 þ 42 þ 72 þ 102 þ . . .þ 3nþ 1ð Þ2:

Hint. The sum can be written as 1þ Pn
n¼1

3nþ 1ð Þ2 ¼ 1þ Pn
n¼1

9n2 þ 6nþ 1ð Þ ¼ 1

þ9
Pn
n¼1

n2 þ 6
Pn
n¼1

nþ n and then use Eqs. 1.29 and 1.30.
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Answer. S ¼ nþ1ð Þ 6n2þ9nþ2ð Þ
2

:

96. Evaluate 1 � 1!þ 2 � 2!þ 3 � 3!þ . . .þ 2017 � 2017!
Hint. Notice that nþ 1ð Þn!� n! ¼ n � n! ) nþ 1ð Þ!� n! ¼ n � n!. Replace each

term of the finite series using this formula and cancel opposite terms.

Solution. 2!�1!þ 3!� 2!þ 4!� 3!þ 5!� 4!þ . . .þ 2018!� 2017! ¼ 2018!� 1:

Answer. 2018!� 1.

97. Evaluate the infinite sum: 1
1�3 þ 1

5�7 þ 1
9�11 þ 1

13�15 þ . . .

Hint. Note that the numbers within each denominator differ by 2 and rewrite each

fraction as a difference of two corresponding fractions.

Solution. We obtain 1
2
1� 1

3
þ 1

5
� 1

7
þ 1

9
� 1

11
þ . . .

� � ¼ 1
2
� π
4
¼ π

8
:

Answer. π
8
:

98. Find the sum of the first 500 natural numbers with 3 as the last digit.

Solution.All natural numbers with last digit 3 can be written as 10nþ 3, so the sum

of the first 500 of such numbers will be 3þ P499
n¼1

10nþ 3ð Þ ¼ 3�
500þ 10�499�500

2
¼ 1, 249, 000.

99. Prove that the triangular numbers T k þ nð Þ ¼ T kð Þ þ T nð Þ þ nk for all natural

numbers n and k.

Hint. Use the formula for a triangular number.

Proof. Using the formula for a triangular number (Eq. 1.27), we rewrite the left side

as

T k þ nð Þ ¼ k þ nð Þ k þ nþ 1ð Þ
2

¼ k k þ 1ð Þ
2

þ n nþ 1ð Þ
2

þ nk þ kn

2

¼ T kð Þ þ T nð Þ þ kn:

100. Prove that
Ð1
0

xxdx ¼ 1� 1
22
þ 1

33
� 1

44
þ . . .

Hint. Use logarithms and Eq. 3.21, i.e., xx ¼ eln x
� �x ¼ ex ln x ¼ 1þ

x ln xþ x ln xð Þ2
2! þ . . .þ x ln xð Þn

n! þ . . .. Next, integrate the series from 0 to 1 and use

the fact that
Ð
xn ln xð Þndx ¼ �1ð Þn�n!

nþ1ð Þnþ1 þ C
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Proof.

ð1
0

xxdx¼
ð1
0

X1
n¼1

x ln xð Þn
n!

 !
dx ¼ 1þ

X1
n¼1

�1ð Þnn!
n! nþ 1ð Þnþ1

¼ 1þ
X1
n¼1

�1ð Þn
nþ 1ð Þnþ1

¼
X1
n¼1

�1ð Þnþ1

nn
¼ 1� 1

22
þ 1

33
� 1

44
þ . . .

101. Evaluate the infinite sum
P1
n¼2

1
n2þn�2

.

Hint. Factor the denominator as n� 1ð Þ nþ 2ð Þ.
Solution. Because the quantities within each denominator differ by 3, by shifting

the summation index, we can rewrite the given series as

1

3

X1
n¼2

1

n� 1
�
X1
n¼2

1

nþ 2

 !

¼ 1

3
�
X1
n¼1

1

n
�
X1
n¼4

1

n

 !
¼ 1

3
� 1þ 1

2
þ 1

3

� 
¼ 11

18
:

Answer. 11/18.

102. A debt of $2000 in one year is to be repaid by a payment due two years from

now and a final payment of $1000 three years from now. If the interest rate is 4%

compounded annually, what is the payment due in two years?

Solution. Let x be the unknown payment. Using the ideas presented in Chapter 4

and after sketching the diagram of the situation, we can equate the present values in

both scenarios:

2000 � 1:04�1 ¼ x � 1:04�2 þ 1000 � 1:04�3

x ¼ 1:042 2000 � 1:04�1 � 1000 � 1:04�3
� � � $1118:46

Answer. The payment is $1118.46.

103. Given the sequence 1, 4, 10, 19, 31, 46, 64, . . . find its nth term and the sum of

the first n terms.

Hint. Consider the series made out of differences of the consecutive terms: 3, 6,

9, 12, 15, 18,. . . This is an arithmetic progression. Hence the solution is similar to

Problem 32.

Solution. Because the first difference forms an arithmetic progression with first

term 3 and common difference also 3, then in general it can be written as
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a2 � a1 ¼ d

a3 � a2 ¼ 2d

a4 � a3 ¼ 3d

. . .

an � an�1 ¼ a1 þ d 1þ 2þ 3þ . . . n� 1ð Þ

an ¼ a1 þ d � n n� 1ð Þ
2

So Sn ¼
Pn
n¼1

a1 þ dn n�1ð Þ
2

� 	
¼ na1 þ d n�1ð Þn nþ1ð Þ

6
: Substituting the values of the first

term and common difference, we obtain the formulas for the given sequence,

an ¼ a1 þ d � n n�1ð Þ
2

¼ 3n2�3nþ2
2

and Sn ¼ na1 þ d n�1ð Þn nþ1ð Þ
6

¼ n3þn
2

: In order to

check the formulas, we can sum the first four terms: 1þ 4þ 10þ 19 ¼ 34 and

verify that the sum is equal to that of our formula, S4 ¼ 43þ4
2

¼ 34:

Answer. an ¼ 3n2�3nþ2
2

; Sn ¼ n3þn
2

:

104. Given an arithmetic progression with the first term a1 and common difference

d, denote by Sn the sum of the first n terms of the series. Evaluate

F nð Þ ¼ Snþ3 þ 3Snþ1 � Sn � 3Snþ2.

Hint. Instead of expressing each partial sum using the formula for an arithmetic

progression, think about what it means, i.e., “What is Snþ3 ?” It is

Sn þ anþ1 þ anþ2 þ anþ3. Replacing each sum properly, we obtain Snþ3 ¼ Sn þ
anþ1 þ anþ2 þ anþ3 ; 3Snþ1 ¼ 3Sn þ 3anþ1 ; �Sn ¼ Sn ; �3Snþ2 ¼
�3Sn � 3anþ1 � 3anþ2. Adding the left sides of all equations and the right sides,

we have F nð Þ ¼ anþ1 � 2anþ2 þ anþ3 ¼ 0:

Answer. F(n)¼ 0.

Remark. The reason why the answer is 0 is because for any arithmetic progression

a middle term is an arithmetic mean of its left and right neighbors.

105. Investigate the convergence of the series, 1
10
þ 7

102
� 13

103
þ 19

104
þ 25

105
� 31

106
þ . . ..

Solution. The series terms change sign but not alternately (þ�þ or�þ� ) so we

cannot apply Leibniz’s Theorem for alternating series. Consider the corresponding

absolute value series,
P1
n¼1

unj j ¼ P1
n¼1

an
bn

��� ���. By inspecting the numerators, anj jf g ¼ 1,

7, 13, 19, 25, 31, . . . we can see that they represent an arithmetic progression

with the first term and common difference of a1 ¼ 1, d ¼ 6, respectively. On the

other hand, the denominator sequence is a geometric progression with the first term

and common ratio b1 ¼ 10, r ¼ 10: The common term of the absolute value series

can be written as unj j ¼ a1þ n�1ð Þd
b1rn�1 ¼ 6n�5

10n
. Applying the D’Alembert Ratio Test
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(Corollary 3.3) to
P1
n¼1

unj j ¼ P1
n¼1

an
bn

��� ���, we obtain lim
n!1

unþ1

un

��� ��� ¼ lim
n!1

6nþ1
6n�5

� 10n

10nþ1 ¼ 0:1

< 1: Therefore, the given series is absolutely convergent.

Answer. The series absolutely converges.

106. Investigate the convergence of the series
P1
n¼1

�1ð Þnþ1
arcsin 1ffiffi

n3
p .

Solution. This series is an alternating series that satisfies the Leibniz Theorem

(Theorem 3.9), unþ1j j < unj j because 1ffiffiffiffiffiffi
nþ13

p < 1ffiffi
n3

p 8n2ℕ: Moreover,

lim
n!1 unj j ¼ lim

n!1 arcsin 1ffiffi
n3

p Þ ¼ 0
�

and the necessary condition is satisfied. Because

arcsin 1ffiffi
n3

p � 1ffiffi
n3

p , n ! 1 (see formulas) and the series
P1
n¼1

1

n
1
3

is divergent, the given

series
P1
n¼1

�1ð Þnþ1
arcsin 1ffiffi

n3
p is conditionally (not absolutely) convergent.

Answer. The series is conditionally convergent.

107. (1985USSRMathematicsOlympiad)Solve theequation
x

2þ x

2þ x
...

2þ
xffiffiffiffiffiffiffiffiffiffiffi
1þ x

p

¼ 1.

Hint. See Problem 90.

Solution. Adding the number 2 to both sides of the equation, we be able to rewrite

its left hand side by the recursive formula, anþ1 ¼ 2þ x
an
with the initial condition

a1 ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
. The characteristic equation r2 � 2r � x ¼ 0 has two roots:

r1 ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
, r2 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p

. Because r1 ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
; this sequence is

constant and the solution to the given equation can be found from solving

1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ¼ 3. The only solution to this equation is x ¼ 2:

Answer. x ¼ 2

108.Given an arithmetic progression, {an} , with Sk as the sum of the first k terms of

the progression, it is known that Sn ¼ m, Sm ¼ n: Evaluate the common difference

of the arithmetic progression.

Hint. Use the formula for a partial sum of an arithmetic progression and solve a

system of two equations.

Solution. Suppose that the first term and common difference of the progression are

a1, d, respectively. We have the system,
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2a1 þ m� 1ð Þd
2

� m ¼ n

2a2 þ n� 1ð Þd
2

� n ¼ m

8>><
>>: ,

2a1 þ m� 1ð Þd ¼ 2n

m

2a1 þ n� 1ð Þd ¼ 2m

n

8>><
>>:

Subtracting the left and the right sides of the equations of the system and using the

difference of squares formula, we obtain d ¼ 2 nþmð Þ
nm .

Answer. d ¼ 2 nþmð Þ
nm

109. The functions � sin x, 4 sin x � cot 2x, cos x are the kth, k þ 1ð Þ, and k þ 2ð Þ
terms of an arithmetic progression, respectively. Find all values of x and k if the 7th

term of this progression is 1/5.

Solution. The middle term of the three consecutive terms of an arithmetic progres-

sion must be the arithmetic mean of two neighbors, i.e., it must satisfy the equation,

4 sin x cot 2x ¼ cos x� sin x
2

, simplifying which, we have 4 tan 2x� tan x� 3 ¼ 0 so

there are two possibilities:

1
�
tan x ¼ 1 2

�
tan x ¼ �3

4

x ¼ π

4
þ πn

x ¼ �arctan
3

4
þ 2πk

x ¼ π � arctan
3

4
þ 2πk

2
664 n, k2ℤ:

Case 1. sin x ¼ cos x ¼ 
 1ffiffi
2

p , cot 2x ¼ 0 ) d ¼ � 1ffiffi
2

p :

Using the value of the 7th term, we have

a7 ¼ 1

5
¼ a1 þ 6d ¼ a1 � 6ffiffiffi

2
p

a1 ¼ 1

5

 6ffiffiffi

2
p :

Let us find the value of k:

ak ¼ a1 þ k � 1ð Þd
ak ¼ � sin x ¼ � 1ffiffiffi

2
p

From this we obtain 5 k � 8ð Þ ¼ 
 ffiffiffi
2

p
, which has no solutions in the integers.

Therefore, case 1 is not applicable.
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Case 2. We evaluate that if

x¼ �arctan
3

4
þ 2πn ) sin x ¼ �3

5
, cot 2x ¼ � 7

24
,

d ¼ 1

10
, a1 ¼ �2

5
, ak ¼ �2

5
þ k � 1

10
¼ 3

5
,

k¼ 11:

Additionally, for the second possible value of x ¼ π � arctan3
4
þ 2πn we obtain the

following

sin x ¼ 3

5
, cot 2x ¼ � 7

24
,

d ¼ � 1

10
, a1 ¼ 4

5
, ak ¼ 4

5
� k � 1

10
¼ 3

5
k ¼ 15:

Answer.

x ¼ arctan
3

4
þ 2πn, n2ℤ, k ¼ 11 a1 ¼ �2

5
, d ¼ 1

10

� 
x ¼ π � arctan

3

4
þ 2πn, n2ℤ, k ¼ 15 a1 ¼ 4

5
, d ¼ � 1

10

� 
2
664

110. Find Maclaurin series for y ¼ earctanx.

Hint. Use the method of undetermined coefficients (Problem 133).

Solution. Let us find the derivative of the given function and then express the

function in terms of its derivative:

y0 ¼ earctanx � 1

1þ x2

y ¼ 1þ x2ð Þy0

Next, we rewrite the functions as a power series and also in terms of its derivative:

y ¼ a0 þ a1xþ a2x
2 þ . . .þ anx

n þ . . .

y ¼ 1þ x2ð Þ a1 þ 2a2xþ 3a3x
2 þ . . .þ nanx

n�1 þ nþ 1ð Þanþ1x
n þ . . .ð Þ

Equating the coefficients of x raised to the same power, we obtain the following true

relationships:

a1 ¼ a0

2a2 ¼ a1

1 � a1 þ 3a3 ¼ a2

2a2 þ 4a4 ¼ a3

. . .

n� 1ð Þan�1 þ nþ 1ð Þanþ1 ¼ an
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Using the initial condition and the formula above we can obtain coefficients of the

power series:

x¼ 0 � earctan0 ¼ 1 ) a0 ¼ y 0ð Þ ¼ 1,

a2 ¼ 1

2
, a3 ¼ �1

6
, a4 ¼ � 7

24
, a5 ¼ 5

120
¼ 1

24
, a6 ¼ 29

144
, . . .

anþ1 ¼ an � n� 1ð Þan�1

nþ 1
:

Finally, we have the requested Maclaurin series,

y ¼ earctanx ¼ 1þ xþ x2

2
� 1

6
x3 � 7

24
x4 þ 1

24
x5 þ 29

144
x6 þ . . .

Answer. y ¼ earctanx ¼ 1þ xþ x2

2
� 1

6
x3 � 7

24
x4 þ 1

24
x5 þ 29

144
x6 þ . . .

111. Using power series, solve the differential equation

y
00 ¼ x cos y0, y 1ð Þ ¼ π

2
, y0 1ð Þ ¼ 0:

Solution. We look for a solution in the form,

y ¼ f 1ð Þ þ f 0 1ð Þ x� 1ð Þ
1!

þ f
00
1ð Þ x� 1ð Þ2

2!
þ f

000
1ð Þ x� 1ð Þ3

3!
þ . . .

Evaluating several derivatives, we have

y
00 ¼ x cos y0

y
00
1ð Þ ¼ 1 � cos y0 1ð Þ ¼ 1

y
000 ¼ cos y0 þ x sin y0 � y00

y
000
1ð Þ ¼ 1

y 4ð Þ ¼ � sin y0 � y00 � y
00
sin y0 � xy

000
sin y0 � xy

00
cos y0 � y00

y 4ð Þ 1ð Þ ¼ �1 . . .

Finally, we obtain the Taylor series solution to the given differential equation,

y ¼ π

2
þ 0 � x� 1ð Þ þ x� 1ð Þ2

2!
þ x� 1ð Þ3

3!
� x� 1ð Þ4

4!
þ . . .

Answer. y ¼ π
2
þ x�1ð Þ2

2! þ x�1ð Þ3
3! � x�1ð Þ4

4! þ . . ..

112. How many terms of the infinite series
P1
n¼1

1
n4 are needed in order to evaluate it

with accuracy of 10�3?
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Solution. This famous series converges to π4

90
and was first evaluated by Euler.

However, we want to approximate the sum of the infinite series so we use the

Cauchy integral property for the remainder rn ¼ S� Sn 	
Ð1

n�1

dx
x4 ¼ 1

3 n�1ð Þ3. We can

see that the remainder is less than 1/1000 if we approximate the sum by eight terms,
1

3 8�1ð Þ3 ¼ 1
3�343 ¼ 1

1029
< 1

1000
: Hence n ¼ 8: S8 ¼ 1þ 1

24
þ 1

34
þ 1

44
þ . . .þ 1

84
�

1:08178. Note that π4

90
� 1:082323234:

Answer. We need 8 terms.

113. Evaluate the infinite sum
P1
n¼1

1
n2þ3n.

Solution. If we factor the denominator, we can see that the two quantities differ by

3 and we can rewrite the common term of the series as the difference of two

fractional expression multiplied by 1/3,

an ¼ 1

n nþ 3ð Þ ¼
1

3

1

n
� 1

nþ 3

� 
:

The given sum now can be rewritten as
P1
n¼1

1
n2þ3n ¼ 1

3

P1
n¼1

1
n �

P1
n¼1

1
nþ3

� 
:Using the

shifting summation index property,
P1
n¼1

1
nþ3

¼ P1
n¼4

1
n, we can simplify this difference

as 1
3

P3
n¼1

1
n þ

P1
n¼4

1
n �

P1
n¼4

1
n

� 
¼ 1

3
1þ 1

2
þ 1

3

� � ¼ 11
18
:

Answer. 11/18.

114. Find integer solutions to x2 þ xþ 1ð Þ þ x2 þ 2xþ 3ð Þ þ x2 þ 3xþ 5ð Þ þ . . .þ
x2 þ 20xþ 39ð Þ ¼ 510:

Solution. You can recognize this as the sum of an arithmetic progression where

the first term, common difference and 20th term are: a1 ¼ x2 þ xþ 1, d ¼ xþ 2,

a20 ¼ x2 þ xþ 1þ 19 xþ 2ð Þ ¼ x2 þ 20xþ 39:The formula for the sum of the first

20 terms of such a progression is a quadratic equation,

x2 þ xþ 1þ x2 þ 20xþ 39

2
� 20 ¼ 510

2x2 þ 21x� 11 ¼ 0

x ¼ �21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
212 þ 4 � 2 � 11

p
4

¼ �21
 23

4

x ¼ �112Z, x ¼ 1

2

a1 ¼ 111, d ¼ �9:

where we selected only the integer solution.
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Answer. x ¼ �11

115. A piece of charcoal from a tree killed by the volcanic eruption that formed the

caldera of Crater Lake in the state of Oregon measured a radioactivity of 7.0 dpm/

g C. Assume that the steady state radioactivity of carbon-14 in the living tree is

16.0 dpm/g C (16 counts per second). How long ago did the eruption occur?

Solution.We calculate the age of the charcoal using the equation,N tð Þ ¼ N0
1
2

� � t
t1=2 ,

which can be rewritten also as

ln
N0

N

� 
¼ t

t1=2
ln 2

t ¼ t1=2

ln
N0

N

� 
ln 2

:

Substituting t1=2 ¼ 5730, N0 ¼ 16, N ¼ 7, we obtain an approximate age,

t ¼ 5730
ln16

7

ln2
� 6834 years:

Answer. The volcanic eruption occurred approximately 6834 years ago.

116. Find the difference of two distinct positive numbers if their arithmetic mean is

3
ffiffiffi
3

p
and geometric mean is

ffiffiffi
2

p
.

Solution. Denote the numbers by x, y, x > y > 0: next, we have

xþ y

2
¼ 3

ffiffiffi
3

p

xy ¼ 2

8<
: ) x� yð Þ2 ¼ xþ yð Þ2 � 4xy ¼ 2 � 3

ffiffiffi
3

p� 	2
� 4 � 2 ¼ 100:

Because the numbers are positive, their difference is 10.

Answer. 10.

117. Estimate the value of irrational number e and estimate the error of the

estimation.

Solution. Consider the Maclaurin series for e, i.e.,

ex ¼ 1þ xþ x2

2! þ x3

3! þ � � � þ xn

n! þ . . . , x2R: Replacing x by 1 and cutting off the

infinite series at the nth term, we obtain the approximation for

e; e � 1þ 1þ 1
2
þ 1

6
þ . . .þ 1

n! :For each value of n, the estimation will be different.

Let us consider the remainder
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Rn ¼ 1

nþ 1ð Þ!þ
1

nþ 2ð Þ!þ
1

nþ 3ð Þ!þ . . .

¼ 1

nþ 1ð Þ! 1þ 1

nþ 2
þ 1

nþ 2ð Þ nþ 3ð Þ þ
1

nþ 2ð Þ nþ 3ð Þ nþ 4ð Þ þ . . .

� 

<
1

nþ 1ð Þ! 1þ 1

nþ 1
þ 1

nþ 1ð Þ2 þ
1

nþ 1ð Þ3 þ . . .

 !

¼ 1

nþ 1ð Þ!
1

1� 1

nþ 1

0
B@

1
CA ¼ 1

nþ 1ð Þ! �
1

n

The quantity inside the parentheses is always less than the sum of the decreasing

infinite geometric progression. Hence, the remainder of the approximation satisfies

the inequalityRn <
1
n!n. If we estimate the value of e by taking only four terms of the

infinite series, the error of such estimation will be

R4 <
1

4! � 4 ¼ 1

96
>

1

100
,

1

100
< R5 <

1

5!5
¼ 1

600
<

1

1000
:

Approximation of e by four terms would give us 2.67 and by five terms 2.71.

118. Evaluate the infinite sum S ¼ �3
2
x2 þ 3

8
x4 � 19

720
x6 þ 33

8! x
8 þ . . ..

Hint. The given series can be written using sigma notation as
P1
n¼1

�1ð Þn 2n2þ1ð Þ
2nð Þ! � x2n:

Solution. We can rewrite the series as the sum of two series,

X1
n¼1

�1ð Þn 2n2 þ 1ð Þ
2nð Þ! � x2n ¼

X1
n¼1

�1ð Þnx2n
2nð Þ! þ

X1
n¼1

�1ð Þn2n � n
2n� 1ð Þ!n � x2n:

You can see that the first series is the Maclaurin series for cos x. Next, we focus on
the second series,

X1
n¼1

�1ð Þn
2n� 1ð Þ!nx

2n ¼ x �
X1
n¼1

�1ð Þnx2n�1n

2n� 1ð Þ! ¼ x � f xð Þ:

Let us find this function! Notice that f 0ð Þ ¼ 0 and consider the integral,
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ðx
0

f tð Þdt ¼
X1
n¼1

�1ð Þnx2nn
2n � 2n� 1ð Þ! ¼

x

2
�
X1
n¼1

�1ð Þnx2n�1

2n� 1ð Þ! ¼ �x

2
� sin x:

Hence, after differentiation we obtain the function as f xð Þ ¼ �1
2
sin x� x

2
cos x:

Finally, the given sum is equal to S ¼ cos x� 1
2
sin x� x

2
cos x:

Answer. S ¼ �1
2
sin xþ 1� x

2

� �
cos x:

119. Find the nth term of the infinite series and evaluate the infinite sum,

0

1
� 1

2
� 1

4
� 1

8
þ 0

16
þ 2

32
þ 6

64
þ 13

128
þ 25

256
þ . . .

Solution. It seems reasonable to look for the nth term in the form

un ¼ an
bn
, bn ¼ 2n�1, n2ℕ, an ¼ ? Consider the sequence of the numerators:

0, � 1, � 1, � 1, 0, 2, 6, 13, 25, . . .. Next, subtract two consecutive terms

(find the first difference as we did in solving Prob. 32)

�1, 0, 0, 1, 2, 4, 7, 12, . . .. This is the Fibonacci sequence minus 1! Let us

again subtract pairs of consecutive terms and find the second sequence of differ-

ences: 1, 0, 1, 1, 2, 3, 5, . . . which is also a Fibonacci type sequence. Hence, the

given series can be written as

1� 1

1
þ 1� 2

2
þ 2� 3

22
þ 3� 4

23
þ 5� 5

24
þ 8� 6

25
þ 13� 7

26
þ 21� 8

27

þ 34� 9

28
þ 55� 10

29
þ 89� 11

210
þ . . .

¼ 1

20
þ 1

21
þ 2

22
þ 3

23
þ 5

24
þ 8

25
þ 13

26
þ 21

27
þ 34

28
þ 55

29
þ 89

210
þ . . .þ Fn

2n
þ . . .

� 

� 1

1
þ 2

2
þ 3

22
þ 4

23
þ 5

24
þ 6

25
þ 7

26
þ 8

27
þ 9

28
þ 10

29
þ 11

210
þ . . .þ n

2n�1
þ . . .

� 
¼ 0:

Here Fn is the nth Fibonacci number. Let us explain how we obtain the answer.

Evaluating each sum inside parentheses separately, denote the first sum by

S ¼ 1þ 1
2
þ 2

4
þ 3

8
þ 5

16
þ 8

32
þ 13

64
þ 21

128
þ 34

256
þ 55

512
þ 89

1024
þ . . .. Dividing it by 2 we

obtain S
2
¼ 1

2
þ 1

4
þ 2

8
þ 3

16
þ 5

32
þ 8

64
þ 13

128
þ 21

256
þ 34

512
þ 55

1024
þ . . .. Subtracting S and

S/2 we obtain a new expression for S/2: S
2
¼ S� S

2
¼

1þ 1
4
þ 1

8
þ 2

16
þ 3

32
þ 5

64
þ 8

128
þ 13

256
þ 21

512
þ 34

1024
þ . . .. On the other hand, dividing

the first sum by four we obtain S
4
¼ 1

4
þ 1

8
þ 2

16
þ 3

32
þ 5

64
þ 8

128
þ 13

256
þ

21
512

þ 34
1024

þ . . .. We notice that this is the sum for S/2 minus one, which can be

written as 1þ S
4
¼ S

2
) S ¼ 4:
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Similarly, we can evaluate the sum inside second parentheses

σ ¼ 1þ 2

2
þ 3

22
þ 4

23
þ 5

24
þ 6

25
þ 7

26
þ 8

27
þ 9

28
þ 10

29
þ 11

210
þ . . .

2σ ¼ 4þ 3

2
þ 4

22
þ 5

23
þ 6

24
þ 7

25
þ 8

26
þ 9

27
þ 10

28
þ 11

29
þ 12

210
þ . . .

σ ¼ 2σ � σ ¼ 3þ 1

2
þ 1

22
þ 1

23
þ 1

24
þ . . . ¼ 3þ

1

2

1� 1

2

¼ 3þ 1 ¼ 4:

Here we rewrote the second sum in a different form and applied the formula for the

sum of infinite geometric progression. Finally, the difference of two identical

quantities is zero (S� σ ¼ 4� 4 ¼ 0).

120. Prove that aþb
a2þb2

þ bþc
b2þc2

þ cþa
c2þa2 	 1

a þ 1
b þ 1

c , a, b, c > 0:

Proof. Using the inequality between the arithmetic and geometric means, we obtain

the following chain of true inequalities:

a2 þ b2 � 2ab ) 1

a2 þ b2
	 1

2ab

c2 þ b2 � 2cb ) 1

c2 þ b2
	 1

2cb

a2 þ c2 � 2ac ) 1

a2 þ c2
	 1

2ac

9>>>>>>=
>>>>>>;

and each of these inequalities can produce the following inequalities:

aþ b

a2 þ b2
	 aþ b

2ab
¼ 1

2b
þ 1

2a

cþ b

c2 þ b2
	 cþ b

2cb
¼ 1

2b
þ 1

2c

aþ c

a2 þ c2
	 aþ c

2ac
¼ 1

2c
þ 1

2a

Adding the left and right sides,

aþ b

a2 þ b2
þ bþ c

b2 þ c2
þ cþ a

c2 þ a2
	 2

2a
þ 2

2b
þ 2

2c
¼ 1

a
þ 1

b
þ 1

c
;

which completes the proof.
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Appendix 1
MAPLE Program for Fibonacci Application

> restart:with(LREtools):

> eq:¼R(nþ2)¼R(nþ1)þR(n);

and solved for R(n) subject to the two initial conditions R(0)¼ 0 and R(1)¼N

> sol:¼rsolve({eq,R(0)¼0,R(1)¼N},R(n));

> number:¼factor(sol);

> N:¼1; n:¼24;

> unassign(’n’):
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> Rabbit_pairs:¼radnormal(number);

> REplot(eq,R(n),{R(0)¼0,R(1)¼1}, 1..24, labels¼["n","R"],

tickmarks¼[3,3], color¼green, thickness¼3);

10 20

0

20,000

40,000

R

n

>
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Appendix 2
Method of Differences

Consider a sequence {an}, a1, a2, a3, a4, . . . and another sequence,

{bn}, b1, b2, b3, b4, . . ., such that the following relationships are valid:

a2 � a1 ¼ b1
a3 � a2 ¼ b2
a4 � a3 ¼ b3

. . .
an � an�1 ¼ bn�1

anþ1 � an ¼ bn:

If we add the left and right sides of all equations and denote by Sn the n
th partial sum

of sequence {bn} we obtain the formula,

Sn ¼
Xn
k¼1

bk ¼ anþ1 � a1:

This formula gives us a straightforward method of finding the nth term of a sequence

with integer terms when other methods do not work or perhaps demand too much

creativity. Usually one has to subtract the consecutive terms of the obtained

difference sequences until a difference sequence contains only the same numbers.

Some ideas are demonstrated in the following problems.

Problem A1 Given the sequence 1, 5, 15, 35, 70, 126, 210, . . . find its nth

term and the sum of the first n terms.

Solution. Consider the series made out of differences of the consecutive terms:

4, 10, 20, 35, 56, 84,. . . , then a new sequence made out of the difference the

consecutive terms of the new sequence 6, 10, 15, 21, 28, . . .. Finally, the last
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sequence made of the difference of the consecutive terms of 4, 5, 6, 7, . . . This is an
arithmetic progression with the first term 4 and common difference 1. In general,

the solution is similar to Problem 32 or to the homework problem. Let us consider

the following sequences:

aif g 1, 5, 15, 35, 70, 126, 210, . . .

bif g 4, 10, 20, 35, 56, 84, . . .

cif g 6, 10, 15, 21, 28, ::::

dif g 4, 5, 6, 7, ::::

e1f g 1, 1, 1, ::::

in general it can be written as

c2 � c1 ¼ d1
c3 � c2 ¼ d2
c4 � c3 ¼ d3

. . .
cn � cn�1 ¼ dn�1;

which is equivalent to cn ¼ c1 þ
Xn�1

n¼1

dn.

Because the last difference sequence {di} forms an arithmetic progression with

the first term 4 and common difference of 1, then its nth term can be written as dn
¼ 4þ n� 1ð Þ � 1 ¼ nþ 3 and the sum of the first n� 1 terms will be

Sn�1 ¼ 2�4þ n�2ð Þ�1
2

� n� 1ð Þ ¼ nþ6ð Þ n�1ð Þ
2

¼ n2þ5n�6
2

. Therefore,

cn ¼ 6þ n2þ5n�6
2

¼ n2þ5nþ6
2

¼ nþ2ð Þ nþ3ð Þ
2

. This formula as we can see works just

fine since c1 ¼ 1þ2ð Þ 1þ3ð Þ
2

¼ 6, c2 ¼ 2þ2ð Þ 2þ3ð Þ
2

¼ 10, c3 ¼ 3þ2ð Þ 3þ3ð Þ
2

¼ 15, etc.

Going up we can now find the second sequence from the top (the first difference)

b2 � b1 ¼ c1
b3 � b2 ¼ c2
b4 � b3 ¼ c3

. . .
bn � bn�1 ¼ cn�1
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which is equivalent to

bn ¼ b1 þ
Xn�1

n¼1

cn ¼ 4þ
Xn�1

n¼1

n2 þ 5nþ 6

2

¼ 4þ 1

2

n� 1ð Þn 2n� 1ð Þ
6

þ 5
n n� 1ð Þ

2
þ 6 n� 1ð Þ

� �

¼ 4þ n� 1ð Þ n2 þ 7nþ 18ð Þ
6

¼ nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
6

Finally,

an ¼ a1 þ
Xn�1

n¼1

bn ¼ 1þ
Xn�1

n¼1

nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
6

¼ 1þ 1

6

Xn�1

n¼1

n3 þ
Xn�1

n¼1

n2 þ 11

6

Xn�1

n¼1

nþ n� 1ð Þ

¼ nþ 1

6
� n� 1ð Þ2n2

4
þ n� 1ð Þn 2n� 1ð Þ

6
þ 11 n� 1ð Þn

12
¼ n4 þ 6n3 þ 11n2 þ 6n

24

¼ n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
24

We can see that each term of the given sequence can be evaluated using this formula

a1 ¼ 1 � 2 � 3 � 4ð Þ
24

¼ 1, a2 ¼ 2 � 3 � 4 � 5
24

¼ 5, . . . , a5 ¼ 5 � 6 � 7 � 8
24

¼ 70, . . .

Problem 37 Find the formula for the nth term of the sequence 1, 4,

10, 20, 35, 56, 84, 120, . . . (See Chapter 1 for geometric interpretation of this
problem.)

Solution. We can subtract consecutive terms until the difference of the consecu-

tive terms become the same

aif g 1, 4, 10, 20, 35, 56, 84, 120, . . .

bif g 3, 6, 10, 15, 21, 28, 36, . . .

cif g 3, 4, 5, 6, 7, 8, . . .

dif g 1, 1, 1, 1, 1, :::::

Moving from the last row up, we obtain that
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an ¼ a1 þ
Xn�1

n¼1

bn

bn ¼ b1 þ
Xn�1

n¼1

cn

an ¼ a1 þ b1ðn� 1Þ þ
Xn�1

n¼1

ð
Xn�1

k¼1

ckÞ:

The sum inside the parentheses is the n� 1ð Þ st partial sum of the arithmetic

progression {ci} with the first term 3 and common difference of 1.

Sn�1 ¼ 2 �3þn�2

2
� n�1ð Þ ) bn ¼ 3þ nþ4ð Þ n�1ð Þ

2
¼ n2þ3nþ2

2

an ¼ 1þ1

2
�
Xn�1

n¼1

n2þ3nþ2
� �¼ 1þ1

2
� n�1ð Þn 2n�1ð Þ

6
þ3

n n�1ð Þ
2

þ2 n�1ð Þ
� �

¼ 1þn�1

12
n 2n�1ð Þþ9nþ12ð Þ¼ n nþ1ð Þ nþ2ð Þ

6

Answer. an ¼ n nþ1ð Þ nþ2ð Þ
6

:
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Bernoulli, 26, 129
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Binomial distribution, 159
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C
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Common ratio, 17
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K
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L
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N
Necessary and sufficient, 127

Necessary condition, 125

Net present value of cash flow, 207

Newton, I., 141, 159

Nonnegative numerical series

properties, 126

Number theory, 113

Numerical series, 124

O
Outstanding balance, 217
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