MATEMÁTICA

1

O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5, 3, 1, 4, 0 e 2

Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados nessa rodada para que a média de gols, nas duas rodadas, seja 20% superior à média obtida na primeira rodada?

Resolução

Sendo $M_{\rm I}$ a média de gols da primeira rodada, $M_{\rm G}$ a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se

$$M_G = (1 + 20\%) M_I \Rightarrow \frac{15 + x}{6 + 5} = 1,20 \cdot \frac{15}{6} \Leftrightarrow$$

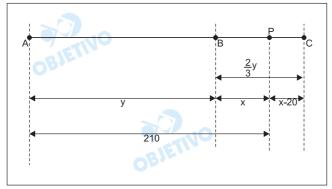
$$\Leftrightarrow 15 + x = 33 \Leftrightarrow x = 18$$

Resposta: 18 gols

2

Três cidades A, B e C situam-se ao longo de uma estrada reta; B situa-se entre A e C e a distância de B a C é igual a dois terços da distância de A a B. Um encontro foi marcado por 3 moradores, um de cada cidade, em um ponto P da estrada, localizado entre as cidades B e C e à distância de 210 km de A. Sabendo-se que P está 20 km mais próximo de C do que de B, determinar a distância que o morador de B deverá percorrer até o ponto de encontro.

Resolução



Nas condições representadas na figura, tem-se:

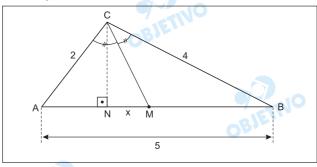
$$\begin{cases} \frac{2}{3}y = x + (x - 20) \Rightarrow 2y = 6x - 60 \\ x + y = 210 \end{cases} \Rightarrow \begin{cases} x = 60 \\ y = 150 \end{cases}$$

Resposta: 60 km

Um triângulo ABC tem lados de comprimentos AB = 5, BC = 4 e AC = 2. Sejam M e N os pontos de \overline{AB} tais que $\overline{\text{CM}}$ é a bissetriz relativa ao ângulo $\widehat{\text{ACB}}$ e $\overline{\text{CN}}$ é a

altura relativa ao lado AB. Determinar o comprimento de MN.

Resolução



Sendo x o comprimento do segmento MN, tem-se:

1)
$$\overrightarrow{CM}$$
 é bissetriz $\Rightarrow \frac{AC}{AM} = \frac{BC}{BM} \Leftrightarrow$

$$\Leftrightarrow \frac{2}{AM} = \frac{4}{5 - AM} \Leftrightarrow AM = \frac{5}{3} \Rightarrow AN = \frac{5}{3} - X$$

$$e BN = 5 - \left(\frac{5}{3} - x\right) = \frac{10}{3} + x$$

2) No triângulo retângulo ANC, $CN^2 + AN^2 = 4$

3) No triângulo retângulo BNC, $CN^2 + BN^2 = 16$

4) Dos itens (2) e (3), conclui-se que

$$BN^2 - AN^2 = 12 \Rightarrow \left(\frac{10}{3} + x\right)^2 - \left(\frac{5}{3} - x\right)^2 = 12$$

$$\Rightarrow \frac{100}{9} + \frac{20}{3} \times x + x^2 - \frac{25}{9} + \frac{10}{3} \times x - x^2 = 12 \Rightarrow$$

$$\Rightarrow 10x + \frac{25}{3} = 12 \Rightarrow x = \frac{11}{30}$$

Resposta: $\frac{11}{30}$

Considere a equação $z^2=\alpha z+(\alpha-1)\overline{z}$, onde α é um número real e \overline{z} indica o conjugado do número complexo z.

- a) Determinar os valores de α para os quais a equação tem quatro raízes distintas.
- b) Representar, no plano complexo, as raízes dessa equação quando $\alpha=0$.

Resolução

a) Sendo
$$z = x + y i$$
, com $x e y$ reais, tem-se
$$z^{2} = \alpha z + (\alpha - 1) \overline{z} \Rightarrow (x + y i)^{2} = \alpha (x + y i) + + (\alpha - 1) (x - y i)$$

$$\Rightarrow x^{2} + 2xyi - y^{2} = \alpha x + \alpha y i + \alpha x - \alpha y i - x + y i \Leftrightarrow$$

$$\Leftrightarrow x^{2} - y^{2} + 2xy i = (2\alpha - 1) x + y i \Rightarrow$$

$$\begin{cases} x^{2} - y^{2} = (2\alpha - 1) x \\ 2xy = y \Leftrightarrow y = 0 \text{ ou } x = -\frac{1}{2} \end{cases}$$

Para
$$y = 0$$
 tem-se $x^2 = (2\alpha - 1) x \Leftrightarrow$
 $\Leftrightarrow x^2 - (2\alpha - 1)x = 0$, que só admite duas raízes
distintas se $(2\alpha - 1) \neq 0 \Leftrightarrow \alpha \neq \frac{1}{2}$

Para
$$x = \frac{1}{2}$$
, tem-se $\left(\frac{1}{2}\right)^2 - y^2 = (2\alpha - 1)$. $\frac{1}{2} \Rightarrow \frac{1}{4} - y^2 = \alpha - \frac{1}{2} \Rightarrow y^2 = \frac{3}{4} - \alpha$, que só admite duas raízes distintas se $\frac{3}{4} - \alpha > 0 \Rightarrow \alpha < \frac{3}{4}$.

Assim sendo, se
$$\alpha < \frac{3}{4}$$
 e $\alpha \neq \frac{1}{2}$, as 4 raízes serão

$$z_1 = 0, z_2 = 2\alpha - 1, z_3 = \frac{1}{2} + i \sqrt{\frac{3}{4} - \alpha} e$$

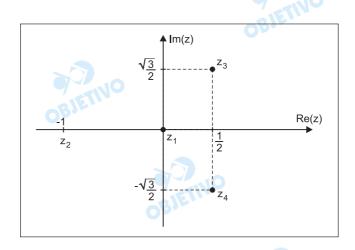
$$z_4 = \frac{1}{2} - i \sqrt{\frac{3}{4} - \alpha}$$

b) Para
$$\alpha = 0$$
, as raízes são $z_1 = 0 = (0; 0)$,

$$z_2 = -1 = (-1; 0), z_3 = \frac{1}{2} + \frac{\sqrt{3}}{2} i = (\frac{1}{2}; \frac{\sqrt{3}}{2})$$

$$e z_4 = \frac{1}{2} - \frac{\sqrt{3}}{2} i = (\frac{1}{2}; -\frac{\sqrt{3}}{2})$$

cuja representação no gráfico cartesiano é:



Respostas: a)
$$\alpha \in \mathbb{R} / \alpha < \frac{3}{4} e \alpha \neq \frac{1}{2}$$

b) gráfico

5

O produto de duas das raízes do polinômio

 $p(x) = 2x^3 - mx^2 + 4x + 3$ é igual a – 1. Determinar a) o valor de m.

b) as raízes de p.

Resolução

Sendo $V = \{a, b, c\}$ o conjunto-verdade da equação $p(x) = 2x^3 - mx^2 + 4x + 3 = 0$ e ab = -1, temos:

a)
$$a \cdot b \cdot c = -\frac{3}{2}$$

$$ab = -1$$

$$\Rightarrow c = \frac{3}{2}$$

$$ab + ac + bc = 2 \Leftrightarrow ab + c (a + b) = 2 \Rightarrow$$

$$\Rightarrow -1 + \frac{3}{2}(a+b) = 2 \Leftrightarrow a+b=2$$

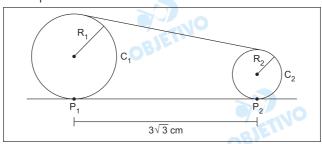
$$a+b+c=\frac{m}{2} \Leftrightarrow 2+\frac{3}{2}=\frac{m}{2} \Leftrightarrow m=7$$

b)
$$\begin{cases} a+b=2\\ a\cdot b=-1 \end{cases} \Rightarrow x^2-2x-1=0 \Leftrightarrow x=1\pm\sqrt{2}$$

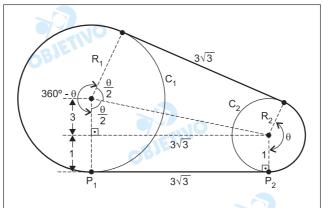
então:
$$V = \{(1 - \sqrt{2}), (1 + \sqrt{2}), 3/2\}$$

Respostas: a)
$$m = 7$$
 b) $V = \{(1 - \sqrt{2}), (1 + \sqrt{2}), 3/2\}$

A figura abaixo representa duas polias circulares C_1 e C_2 de raios R_1 = 4 cm e R_2 = 1 cm, apoiadas em uma superfície plana em P_1 e P_2 , respectivamente. Uma correia envolve as polias, sem folga. Sabendo-se que a distância entre os pontos P_1 e P_2 é $3\sqrt{3}$ cm, determinar o comprimento da correia.



Resolução



O comprimento L, em centímetros, dessa polia é dado por:

$$L = \left(\frac{360^{\circ} - \theta}{360^{\circ}}\right) \cdot 2 \cdot \pi \cdot 4 + \frac{\theta}{360^{\circ}} \cdot 2 \cdot \pi \cdot 1 + 2 \cdot 3$$

$$\sqrt{3}, \text{ em que:}$$

$$tg\left(\frac{\theta}{2}\right) = \frac{3\sqrt{3}}{3} = \sqrt{3} e \, 0^{\circ} < \theta < 180^{\circ}$$

Assim:
$$\frac{\theta}{2} = 60^{\circ} \Leftrightarrow \theta = 120^{\circ} e$$

$$L = \left(\frac{360^{\circ} - 120^{\circ}}{360^{\circ}}\right).2.\pi.4 + \frac{120^{\circ}}{360^{\circ}}.2.\pi.1 + 2.3\sqrt{3} \Leftrightarrow$$

$$\Leftrightarrow L = \frac{2}{3} \cdot 2 \cdot \pi \cdot 4 + \frac{1}{3} \cdot 2 \cdot \pi \cdot 1 + 2 \cdot 3\sqrt{3} \Leftrightarrow$$

$$\Leftrightarrow L = 6\pi + 6\sqrt{3} \iff L = 6(\pi + \sqrt{3})$$

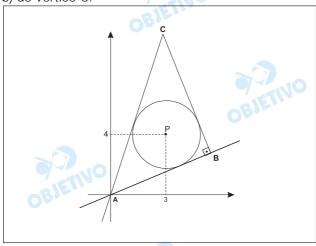
Resposta: 6 ($\pi + \sqrt{3}$) cm

Na figura a seguir, os pontos A, B e C são vértices de um triângulo retângulo, sendo \hat{B} o ângulo reto.

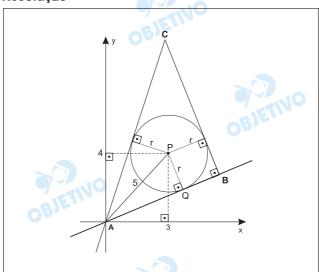
Sabendo-se que A(0,0), B pertence à reta x-2y=0 e P=(3,4) é o centro da circunferência inscrita no triângulo ABC, determinar as coordenadas

a) do vértice B.

b) do vértice C.



Resolução



a) 1°) O raio da circunferência de centro P (3; 4), e tangente à reta de equação x – 2y = 0, é a distância:

$$r = \frac{|3-2.4|}{\sqrt{1+4}} = \frac{5}{\sqrt{5}} = \sqrt{5}$$

2°) O ponto B pertence à reta x - 2y = 0, então B(2b; b).

3°) O triângulo APQ é retângulo no ponto Q, com $AP = 5 \ e \ PQ = \sqrt{5}$, então:

$$AQ^2 = 5^2 - (\sqrt{5})^2 = 20 \Leftrightarrow AQ = 2\sqrt{5}$$

4°)
$$AB = AQ + r = 3\sqrt{5} \Leftrightarrow$$

$$\Leftrightarrow$$
 $(2b)^2 + b^2 = (3\sqrt{5})^2 \Leftrightarrow 5b^2 = 45 \Leftrightarrow$

$$\Leftrightarrow b^2 = 9 \Rightarrow b = 3$$
, pois $b > 0$

Portanto, B(6; 3).

b) 1°) A reta \overrightarrow{AC} , de equação $y = m \cdot x \Leftrightarrow mx - y = 0$,

$$\frac{|m \cdot 3 - 4|}{\sqrt{m^2 + 1}} = \sqrt{5} \Leftrightarrow 4m^2 - 24m + 11 = 0 \Leftrightarrow$$

$$\Leftrightarrow m = \frac{11}{2} \text{ ou } m = \frac{1}{2}$$

$$\Leftrightarrow m = \frac{11}{2} \text{ ou } m = \frac{1}{2}$$

Como a reta AC tem coeficiente angular $m = \frac{11}{2}$, pois $\frac{1}{2}$ é o coeficiente angular da

reta
$$\overrightarrow{AB}$$
, sua equação é $y = \frac{11}{2}x$

2°) A reta BC, que passa pelo ponto B (6; 3) e tem coeficiente angular m = -2 (a reta BC é perpendicular à reta AB) tem equação:

$$y - 3 = -2 \cdot (x - 6) \Leftrightarrow y = -2x + 15$$

3º) O ponto C é a intersecção das retas AC e BC,

$$\begin{cases} y = \frac{11}{2} \cdot x \\ y = -2x + 15 \end{cases} \iff \begin{cases} x = 2 \\ y = 11 \end{cases}$$

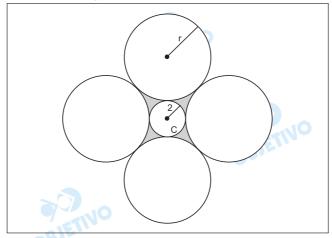
Portanto: C (2; 11).

Respostas: a) B(6; 3)

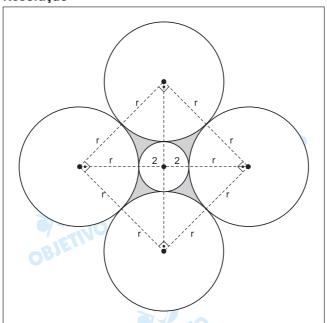
Na figura ao lado, cada uma das quatro circunferências externas tem mesmo raio r e cada uma delas é tangente a outras duas e à circunferência interna C.

Se o raio de C é igual a 2, determinar

- a) o valor de r.
- b) a área da região hachurada.



Resolução



a) 2(r + 2) é a medida da diagonal de um quadrado de lado 2r

Assim:

$$2(r+2) = 2r\sqrt{2} \Leftrightarrow r+2 = r\sqrt{2} \Leftrightarrow r(\sqrt{2}-1) = 2 \Leftrightarrow r = \frac{2}{\sqrt{2}-1} \Leftrightarrow r = 2(\sqrt{2}+1)$$

b) A área S da região hachurada é igual à área de um quadrado de lado 2r menos a soma das áreas de um círculo de raio r e um círculo de raio 2, ou seja: $S = (2r)^2 - \pi r^2 - \pi 2^2 \Leftrightarrow S = (4 - \pi).r^2 - 4\pi$ Assim:

$$S = (4 - \pi) \cdot (2\sqrt{2} + 2)^2 - 4\pi \Leftrightarrow$$

$$\Leftrightarrow S = (4 - \pi).(12 + 8\sqrt{2}) - 4\pi \Leftrightarrow$$

$$\Leftrightarrow S = 4[(4-\pi)(3+2\sqrt{2})-\pi]$$

Respostas: a) $2(\sqrt{2} + 1)$

b)
$$4[(4-\pi)(3+2\sqrt{2})-\pi]$$

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

Seja m ≥ 0 um número real e sejam f e g funções reais definidas por $f(x) = x^2 - 2|x| + 1 e g(x) = mx + 2m$.

a) Esboçar, no plano cartesiano representado ao lado,

os gráficos de f e de g quando m = $\frac{1}{4}$ e m = 1.

- b) Determinar as raízes de f(x)=g(x) quando $m=\frac{1}{2}$.
- c) Determinar, em função de m, o número de raízes da equação f(x) = g(x).

Resolução

a) Sendo:

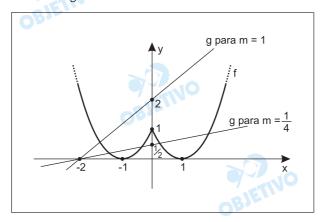
$$f(x) = x^2 - 2|x| + 1,$$

$$f(x) = x^2 - 2|x| + 1,$$

 $g(x) = \frac{1}{4}x + \frac{1}{2}$ (quando $m = \frac{1}{4}$) e

$$g(x) = x + 2$$
 (quando $m = 1$),

temos os gráficos abaixo:



b)
$$f(x) = g(x) \Leftrightarrow x^2 - 2|x| + 1 = \frac{1}{2}x + 1$$
, para $m = \frac{1}{2}$

1°)
$$x \le 0 \Rightarrow f(x) = g(x) \Leftrightarrow x^2 + 2x + 1 = \frac{1}{2}x + 1 \Leftrightarrow$$

$$\Leftrightarrow x^2 + \frac{3}{2}x = 0 \Leftrightarrow x(x + \frac{3}{2}) = 0 \Leftrightarrow$$

$$\Leftrightarrow x = 0 \text{ ou } x = -\frac{3}{2}$$

$$2^{0}) \quad x \ge 0 \Rightarrow f(x) = g(x) \Leftrightarrow x^{2} - 2x + 1 = \frac{1}{2}x + 1 \Leftrightarrow$$

$$\Leftrightarrow x^{2} - \frac{5}{2}x = 0 \Leftrightarrow x(x - \frac{5}{2}) = 0 \Leftrightarrow$$

 $\Leftrightarrow x = 0 \text{ ou } x = \frac{5}{2}$

O conjunto-verdade da equação é

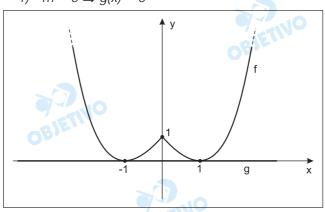
$$V\left\{0; -\frac{3}{2}; \frac{5}{2}\right\}, para m = \frac{1}{2}$$

c) O gráfico de f não depende dos valores assumidos pelo número real $m \ge 0$.

A sentença g(x) = mx + 2m representa uma família de retas que passam pelo ponto (-2; 0).

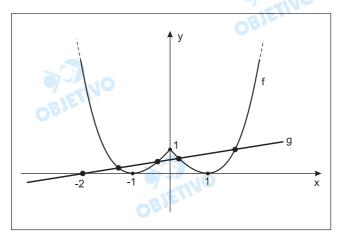
Analisando as posições dos dois gráficos, para m ≥ 0, temos:

1)
$$m = 0 \Rightarrow g(x) = 0$$



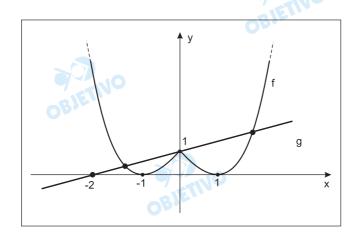
A equação tem duas raízes reais distintas, que são -1 e 1.

2)
$$0 < m < \frac{1}{2}$$



A equação admite quatro raízes reais distintas, sen-3) $m = \frac{1}{2} \Rightarrow g(x) = \frac{1}{2} x + 1$

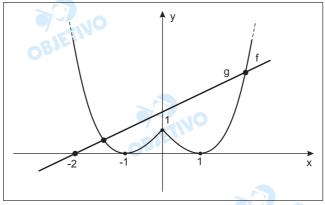
3)
$$m = \frac{1}{2} \Rightarrow g(x) = \frac{1}{2} x + 1$$



A equação admite três raízes reais distintas, que são

$$-\frac{3}{2}$$
, 0 e $\frac{5}{2}$.

4)
$$m > \frac{1}{2}$$



A equação admite duas raízes reais distintas, sendo uma negativa e outra positiva.

Respostas: a) gráfico

b)
$$\left\{-\frac{3}{2}; 0; \frac{5}{2}\right\}$$

c)
$$m = 0 \Rightarrow 2$$
 raízes reais

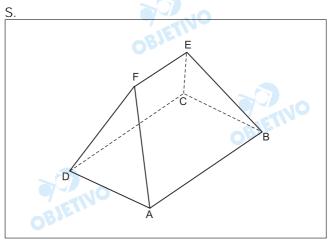
b)
$$\left\{-\frac{3}{2}; 0; \frac{5}{2}\right\}$$

c) $m = 0 \Rightarrow 2$ raízes reais
 $0 < m < \frac{1}{2} \Rightarrow 4$ raízes reais

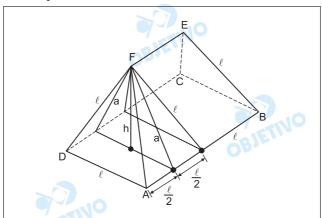
$$m = \frac{1}{2} \Rightarrow 3 \text{ raízes reais}$$

$$m > \frac{1}{2} \Rightarrow 2 \text{ raízes reais}$$

No sólido S representado na figura a seguir, a base ABCD é um retângulo de lados AB = 2ℓ e AD = ℓ as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos equiláteros e o segmento EF tem comprimento ℓ . Determinar, em função de ℓ , o volume de



Resolução



O sólido S pode ser decomposto em dois novos sólidos: uma pirâmide, cuja base é um quadrado de lado ℓ e cuja altura h é a distância entre a aresta EF e o plano do retângulo ABCD, e um prisma oblíquo de aresta lateral ℓ, cuja secção reta é um triângulo-isósceles de la dos congruentes com medida $a = \frac{\ell \sqrt{3}}{2}$ e altura h,

onde
$$h^2 = \left(\frac{\ell\sqrt{3}}{2}\right)^2 - \left(\frac{\ell}{2}\right)^2 \Leftrightarrow h = \frac{\ell\sqrt{2}}{2}$$

Assim o seu volume V será dado por:

$$V = \frac{1}{3} \cdot \ell^2 \cdot \frac{\ell \sqrt{2}}{2} + \frac{\ell \cdot \frac{\ell \sqrt{2}}{2}}{2} \cdot \ell \Leftrightarrow$$

$$\Leftrightarrow V = \frac{\ell^3 \sqrt{2}}{6} + \frac{\ell^3 \sqrt{2}}{4} \iff V = \frac{5\sqrt{2} \ell^3}{12}$$
Resposta: $\frac{5\sqrt{2} \ell^3}{12}$

Resposta:
$$\frac{5\sqrt{2} \ell^3}{12}$$