

Extensivo Volta ao Mundo

Aula 16A: Elementos e fatores climáticos

Tarefa: Lista 16A

1. Atmosfera: camada gasosa que envolve todo o planeta Terra, na qual ocorrem eventos climáticos e meteorológicos, cuja constituição variou ao longo do tempo geológico.

- Composição da atmosfera: Nitrogênio (78,03%) e Oxigênio (20,99%). Os cerca de 1% restante compreende outros gases, como argônio e dióxido de carbono.
- Esses gases são mantidos ao redor da Terra graças à força da gravidade e são responsáveis por regular a temperatura do planeta e reter parte dos raios ultravioletas emitidos pelo Sol. (Efeito Estufa Natural)
- A importância do sol: por meio de sua energia é responsável por ativar o comportamento da massa gasosa que compreende a atmosfera e que vai resultar na formação dos variados fenômenos climáticos, de acordo com as

características da superfície terrestre. Assim, ele promove as variações de tempo que determinam os tipos de clima.

2. Tempo e Clima

Tempo:

- Estado momentâneo da atmosfera sobre determinado
- Escala geográfica local
- Caráter dinâmico (se altera rapidamente)

Clima:

- Sucessão dos tipos de tempo sobre determinado lugar.
- Conjunto de tipos de tempo observados em um mesmo lugar ao longo de uma sequência de variações manifestadas em um intervalo de 30 anos
- 3. Elementos Climáticos: Componentes do clima que são considerados para diferenciar, caracterizar e classificar os diferentes tipos de clima existentes no mundo todo.
- a) Temperatura: Grau de agitação das moléculas.
- Indica a quantidade de energia disponível em determinada região da atmosfera.
- Maior agitação, mais calor; menor agitação, menos calor.
- Pode variar durante o dia e durante os meses (estações do ano).

b) Precipitação

- Água (proveniente do vapor d'água da atmosfera) depositada na superfície terrestre.
- Ocorre nas formas de: Chuva, Neve, Granizo, Geada, etc.
 - Neve: Ocorre guando a gueda de temperatura é intensa en rápida, fazendo com que o vapor de água em suspensão no ar passe diretamente do estado gasoso para o sólido e então precipite em forma de flocos de neve.
 - Granizo: Pedras de gelo formadas em nuvens carregadas, como as cúmulos nimbos, que se precipitam. Diferentemente

da neve, a formação do granizo decorre da solidificação da água em estado líquido nas nuvens.

Geada: Formação de cristais de gelo decorrente do congelamento do orvalho, ou seja, a solidificação da água que se depositou na vegetação, no solo e em outros objetos dispersos na superfície terrestre. Ocorre nas localidades que apresentam noites e madrugadas mais frias e úmidas, geralmente durante o inverno nas regiões Sul e Sudeste e até parte do Centro-Oeste.

Tipos de Chuvas

Classificadas de acordo com sua gênese (tipos de processos que controlam os movimentos ascensionais geradores das nuvens das quais se precipitam)

Chuva Convectiva: típica de verões quentes em regiões úmidas. O intenso calor aumenta a evaporação da água e o movimento ascendente do ar, que, aquecido, fica mais leve e sobe. Em altitudes mais elevadas, a temperatura é mais baixa, o que promove a condensação do vapor de água e a consequente precipitação, geralmente no meio ou no fim da tarde.

Chuva Frontal: decorre do encontro de massas de ar com características diferentes (uma quente e outra fria) o que promove a condensação do vapor de água e a precipitação.

Chuva Orográfica: ocorre em razão de barreiras físicas formadas pelo relevo terrestre, que conduzem a umidade do ar para áreas mais altas da atmosfera, onde a temperatura é mais baixa e ocorre a condensação do vapor de água. Por isso, também são conhecidas como "chuvas de relevo".

c) Umidade: Quantidade de moléculas de vapor de água presentes em determinado volume de ar.

Ponto de Saturação: limite para a quantidade de vapor de água que a atmosfera pode comportar. Quando esse limite é atingido, ocorre a condensação e a precipitação da água sobre a superfície terrestre.

Umidade x Temperatura: Temperaturas elevadas expandem os gases e, assim, aumentam sua capacidade de sustentar vapor de água. O inverso ocorre em temperaturas mais baixas.

Umidade Relativa: A relação entre o ponto de saturação e a quantidade de água dispersa no ar medida em percentual.

Saúde:

- 4% é máximo que o ar consegue reter de vapor de água do seu
- Exemplo: quando a umidade relativa do ar está em 50%, isso significa que 2% do volume do ar está ocupado por vapor de água. Ao se atingir 100%, ocorre a precipitação.
- 60% é média mundial; 15% nos desertos (pode ser muito inferior).
- 40 e 70% é de acordo com a OMS os índices de umidade relativa do ar saudáveis aos seres humanos oscilam entre 40% e 70%. Acima: maior dificuldade de regular a temperatura corporal por meio da transpiração. Abaixo: aumentam os riscos de inflamação das vias aéreas, além de dificuldade de dispersão dos poluentes do ar.
- d) Pressão Atmosférica: É a força, o peso, que a coluna de ar exerce em determinado ponto ou área.
- Varia em decorrência da altitude e da temperatura.
- Altitude: Em altitudes mais baixas, a pressão é maior do que em altitudes mais elevadas. Isso se explica pelo fato de a coluna de ar sobre as áreas mais baixas ser maior do que aquela que exerce pressão nas áreas mais altas. Assim, considerando apenas esse fator, ao nível do mar, a pressão é maior que no alto das montanhas.
- Temperatura:
 - Áreas quentes: a pressão atmosférica é menor do que em áreas frias. Temperaturas elevadas promovem maior agitação das moléculas dispersas na atmosfera, que se distanciam umas das outras, diminuindo sua densidade. A menor quantidade de moléculas em um mesmo volume de ar reduz o peso desse volume e, consequentemente, sua pressão.
 - Áreas mais frias: baixas temperaturas reduzem o grau de agitação das moléculas presentes na atmosfera, aproximando-as umas das outras, promovendo sua maior concentração e o consequente aumento de pressão.
- e) Ventos: É o ar em movimento. Seu deslocamento se dá das áreas de alta pressão para as de baixa pressão.
- Varia de acordo com as diferenças de pressão atmosférica.
- Portanto: Maiores diferenças de pressão geram ventos mais intensos.
- Variam também de direção e força em razão de outros fatores, como o relevo e a rotação da Terra.
 - Constantes: Alísios

- Periódicos: Monções
- Diferenças na circulação do ar durante o dia e a noite.

Dia - Brisa Marítima (ou vento maral)	Noite- Brisa Terrestre (ou vento terral)			
Os ventos sopram do mar para o continente	Os ventos sopram do continente para o mar			
Dia - Brisa de Vale (ou vento anabático)	Noite- Brisa de Montanha (ou vento catabáticol)			
Os ventos sopram do vale para e encosta	Os ventos sopram da encosta para o vale			

4. Fatores que influenciam o clima: Elementos do espaço que influenciam ou controlam a variação dos diferentes elementos do clima.

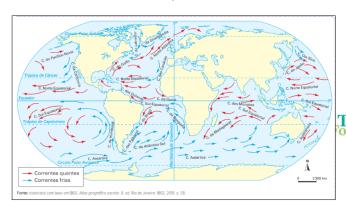
a) Latitude

- Quantidade de energia solar que cada ponto ou área da superfície terrestre recebe.
- Varia de acordo com as zonas climáticas, determinadas pelo formato arredondado do planeta, pelo eixo inclinado de rotação e pelo movimento de translação.
- Zonas Equatoriais: Recebem mais energia que aquelas próximas aos
- Zonas polares: Quanto maior a latitude, mais inclinados chegam os raios do Sol; portanto, a energia recebida é distribuída por uma área maior, e sua intensidade é menor. Ao longo do ano, há variação no ângulo de incidência dos raios solares, o que provoca a alternância das estações.
- b) Altitude: A espessura da atmosfera é condição básica para o efeito estufa e assim determina o aproveitamento da radiação solar.
- A quantidade de gases presentes na atmosfera não é distribuída de forma a homogênea, sendo assim: quanto mais alto um local, menos denso é o ar sobre ele, portanto menores são as quantidades de CO2 e vapor de água. Havendo pouca concentração dos "gases estufa", esse efeito é menor, propiciando menos aquecimento do que nas regiões mais baixas, portanto uma temperatura média menor.

Gradiente Vertical Térmico (GVT): Em média a temperatura diminui 6 acada 1 000 metros de altitude.

- Exemplos de atuação da altitude: em zonas tropicais, tipicamente quentes, temos a ocorrência de grandes cadeias montanhosas com picos nevados como o Quilimanjaro na África.

- c) Relevo: Afeta a circulação atmosférica (impedem a passagem de massas de ar, fazendo com que algumas regiões se tornem mais secas ou até desérticas.)
- d) Vegetação: a contenção ou absorção dos raios solares, minimizando os seus efeitos, e a elevação da umidade por meio da evapotranspiração, o que ajuda a diminuir as temperaturas e elevar os índices de chuva.


e) Continentalidade e Maritimidade

Maritimidade: Áreas mais próximas ao mar; Continentalidade: Áreas mais distante do mar;

Essa maior ou menor proximidade com o oceano tem como consequência:

- Diferença de umidade: maior em áreas litorâneas;
- Diferenca no armazenamento de calor nas águas do mar (Diferenca na capacidade térmica entre oceano e continente): A proximidade de grandes corpos de água diminui a amplitude térmica devido ao calor específico da água. Durante o dia, os raios solares aquecem a água de forma mais lenta que o continente. E, à noite, o continente perde rapidamente essa energia e esfria. Já a água libera mais lentamente o calor que armazenou. Portanto, o litoral apresenta menor amplitude térmica.
- Diferenças de temperatura entre os hemisférios Norte e Sul: Como os oceanos cobrem cerca de 51% do Hemisfério Norte e 81% do Hemisfério Sul, as variações de temperatura são mais extremas no Hemisfério Norte. Lá, as médias no verão oscilam na casa dos 22 °C, enquanto no Hemisfério Sul fica em torno de 17 °C. No inverno, a média no Norte é de cerca de 8 °C e no Sul, de 10 °C. Portanto, a amplitude térmica no Hemisfério Norte, onde predominam as terras emersas, é maior do que no Hemisfério Sul.
- f) Correntes Marítimas: Extensos volumes de água com características semelhantes de temperatura e salinidade que circulam pelos oceanos em razão dos ventos e da rotação da Terra.
- Dependendo de onde se originam, são quentes (formadas em baixas latitudes) ou frias (altas latitudes).
- Ao circular, alteram as condições dos mares por onde passam e, consequentemente, do ar.
- A maior ou menor influência dessas correntes dependerá da continentalidade.

Exemplos: A corrente quente do Brasil colabora para a grande quantidade de chuvas em toda a costa leste do país. Já a corrente fria de Humboldt provoca seca na costa oeste da América do Sul, onde existe o Deserto de Atacama.

- g) Massas de ar: Grandes volumes de ar horizontal, como grandes "bolhas", que internamente apresentam características semelhantes de temperatura, umidade e pressão.
- Estão em constante deslocamento, sobretudo horizontal, alteram as condições de tempo meteorológico nas áreas por onde circulam e têm grande influência nos diferentes climas do planeta.

- Guardam as características do clima regional de onde se formam, como a temperatura e a umidade.

Área de Formação	Características	
Oceano	Úmidas	
Continente	Secas (a mEc é uma exceção, pois nasce na Amazônia)	
Zona Tropical e Equatorial	Quentes	
Zona Temperada e Polar	Frias	

Massas de ar que atuam no Brasil

	Massa	Origem	Características	Consequências
ŀ				
•		4		
Political	his nagio			

Bons Estudos.

