

2ª Fase | 15 de Janeiro de 2008

Física | Geografia

Nome do candidato	Nº de inscrição

Instruções para a realização da prova

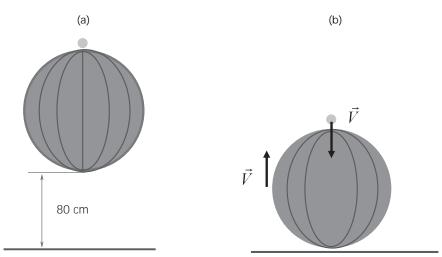
- Nesta prova você deverá responder a doze questões de **Física** e a doze questões de **Geografia**.
- Cada questão vale 4 pontos. Logo, a prova de cada uma das disciplinas vale 48 pontos no total. Será eliminado do concurso o candidato com zero em qualquer uma das provas da 2ª fase.
- Você receberá um caderno de respostas. Responda às questões de **Física** nos espaços com os números de 1 a 12. Nos espaços de 13 a 24, as questões de **Geografia**. Consulte o fiscal de sua sala caso você escreva a resposta de uma questão no espaço errado.

Atenção: não se esqueça de entregar o caderno de respostas!

- A prova deve ser feita a caneta, azul ou preta.
- Atenção: não basta escrever apenas o resultado final. É necessário mostrar os cálculos ou o raciocínio utilizado para responder às questões.
- A duração total da prova é de quatro horas.
 Você poderá levar este caderno de questões após as 17h30.

ATENÇÃO:

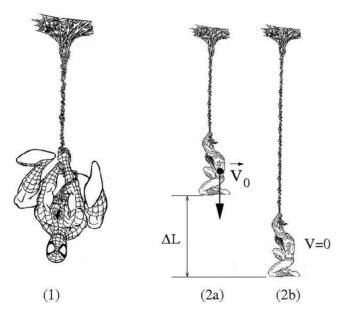
Os rascunhos **não** serão considerados. Provas a lápis **não** serão corrigidas.



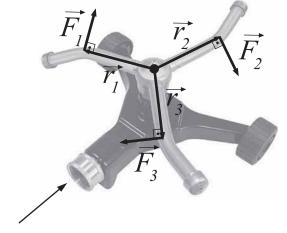
Física

Atenção: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos e o raciocínio utilizado.

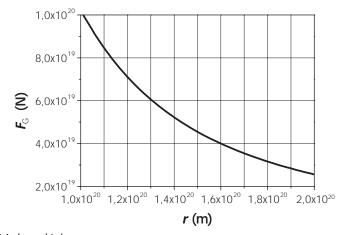
Utilize $q = 10 \text{ m/s}^2 \text{ e } \pi = 3$, sempre que for necessário na resolução das questões.


- **1.** Uma possível solução para a crise do tráfego aéreo no Brasil envolve o emprego de um sistema de trens de alta velocidade conectando grandes cidades. Há um projeto de uma ferrovia de 400 km de extensão que interligará as cidades de São Paulo e Rio de Janeiro por trens que podem atingir até 300 km/h.
- a) Para ser competitiva com o transporte aéreo, estima-se que a viagem de trem entre essas duas cidades deve durar, no máximo, 1 hora e 40 minutos. Qual é a velocidade média de um trem que faz o percurso de 400 km nesse tempo?
- b) Considere um trem viajando em linha reta com velocidade constante. A uma distância de 30 km do final do percurso, o trem inicia uma desaceleração uniforme de 0,06 m/s², para chegar com velocidade nula a seu destino. Calcule a velocidade do trem no início da desaceleração.
- **2.** Um experimento interessante pode ser realizado abandonando-se de certa altura uma bola de basquete com uma bola de pingue-pongue (tênis de mesa) em repouso sobre ela, conforme mostra a figura (a). Após o choque da bola de basquete com o solo, e em seguida com a bola de pingue-pongue, esta última atinge uma altura muito maior do que sua altura inicial.

- a) Para h = 80 cm, calcule a velocidade com que a bola de basquete atinge o solo. Despreze a resistência do ar.
- b) Abandonadas de uma altura diferente, a bola de basquete, de massa M, reflete no solo e sobe com uma velocidade de módulo V = 5,0 m/s. Ao subir, ela colide com a bola de pingue-pongue que está caindo também com V = 5,0 m/s, conforme a situação representada na figura (b). Considere que, na colisão entre as bolas, a energia cinética do sistema não se conserva e que, imediatamente após o choque, as bolas de basquete e pingue-pongue sobem com velocidades de $V_b' = 4,95$ m/s e $V_p' = 7,0$ m/s, respectivamente. A partir da sua própria experiência cotidiana, faça uma estimativa para a massa da bola de pingue-pongue, e, usando esse valor e os dados acima, calcule a massa da bola de basquete.

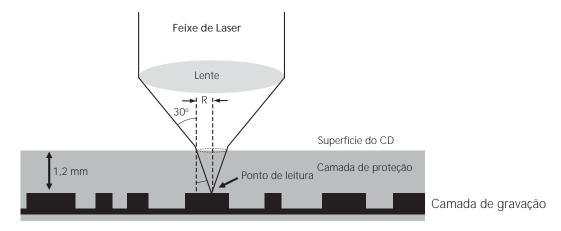

3. Nas cenas dos filmes e nas ilustrações gráficas do Homem-aranha, a espessura do cabo de teia de aranha que seria necessário para sustentá-lo é normalmente exagerada. De fato, os fios de seda da teia de aranha são materiais extremamente resistentes e elásticos. Para deformações ΔL relativamente pequenas, um cabo feito de teia de aranha pode ser aproximado por uma mola de constante elástica k dada pela fórmula $k = (10^{10} \frac{A}{L})$ N/m, onde L é o comprimento inicial e A a área da seção transversal do cabo. Para os cálculos abaixo, considere a massa do Homemaranha M = 70 kg.

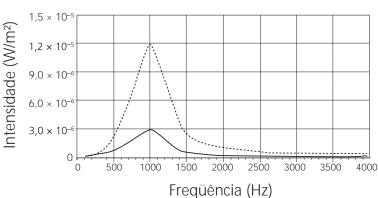
- a) Calcule a área A da seção transversal do cabo de teia de aranha que suportaria o peso do Homem-aranha com uma deformação de 1,0 % do comprimento inicial do cabo.
- b) Suponha que o Homem-aranha, em queda livre, lance verticalmente um cabo de fios de teia de aranha para interromper a sua queda. Como ilustra a figura (2a), no momento em que o cabo se prende, a velocidade de queda do Homem-aranha tem módulo V_0 . No ponto de altura mínima mostrado em (2b), o cabo de teia atinge uma deformação máxima de $\Delta L = 2,0$ m e o Homem-aranha tem, nesse instante, velocidade V = 0. Sendo a constante elástica do cabo de teia de aranha, neste caso, k = 7700 N/m, calcule V_0 .
- **4.** Uma lata de refrigerante contém certa quantidade de açúcar, no caso de um refrigerante comum, ou de adoçante, no caso de um refrigerante dietético.
- a) Considere uma lata de refrigerante comum contendo 302 ml de água e 40 g de açúcar, e outra de refrigerante dietético, contendo 328 ml de água e uma massa desprezível de adoçante. Mostre qual das duas latas deveria boiar em um recipiente com água, cuja densidade é $d_a = 1.0 \, \text{g/cm}^3$. A massa da lata de refrigerante vazia é igual a 15,0 g e seu volume total é de 350 ml. Neste item, despreze o volume ocupado pelo material da lata e a massa de gás carbônico no seu interior.
- b) Suponha, agora, uma outra situação na qual o gás carbônico ocupa certo volume na parte superior da lata, a uma pressão $P = 3.0 \times 10^5$ N/m² para uma temperatura T = 300 K. A massa molar do gás carbônico vale 44 g/mol e, assumindo que o mesmo se comporte como um gás ideal, calcule a densidade de gás carbônico na parte superior da lata. A lei dos gases ideais é dada por PV = nRT, onde R = 8.3 J/mol-K e n é o número de moles do gás.



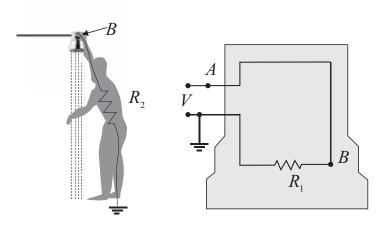
5. O irrigador rotativo, representado na figura, é um dispositivo bastante utilizado para a irrigação de jardins e gramados. Para seu funcionamento, o fluxo de água de entrada é dividido em três terminais no irrigador. Cada um destes terminais é inclinado em relação ao eixo radial para que a força de reação, resultante da mudança de direção dos jatos de água no interior dos terminais, proporcione o torque necessário para girar o irrigador. Na figura, os vetores coplanares $\vec{F_1}$, $\vec{F_2}$ e $\vec{F_3}$ representam as componentes das forças de reação perpendiculares aos vetores $\vec{r_1}$, $\vec{r_2}$ e $\vec{r_3}$ respectivamente.

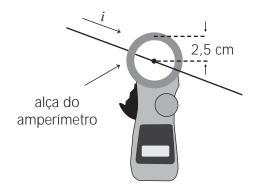
- a) Se os módulos das forças $\vec{F_1}$, $\vec{F_2} \in \vec{F_3}$ valem 0,2 N e os módulos de $\vec{r_1}$, $\vec{r_2} \in \vec{r_3}$ são iguais a 6,0 cm, qual é o torque total (momento resultante das forças) sobre o irrigador, em relação ao seu centro, produzido pelos três jatos de água em conjunto?
- b) Considere que os jatos de água sejam lançados horizontalmente da extremidade do irrigador a uma altura de 80 cm do solo e com velocidade resultante de 8,0 m/s. A que distância horizontal do ponto de lançamento, a água atinge o solo?
- **6.** Observações astrônomicas indicam que as velocidades de rotação das estrelas em torno de galáxias são incompatíveis com a distribuição de massa visível das galáxias, sugerindo que grande parte da matéria do Universo é escura, isto é, matéria que não interage com a luz. O movimento de rotação das estrelas resulta da força de atração gravitacional que as galáxias exercem sobre elas.


A curva no gráfico abaixo mostra como a força gravitacional $F_G = \frac{GMm}{r^2}$, que uma galáxia de massa M exerce sobre uma estrela externa à galáxia, deve variar em função da distância r da estrela em relação ao centro da galáxia, considerando-se $m = 1.0 \times 10^{30} \ kg$ para a massa da estrela. A constante de gravitação G vale $6.7 \times 10^{-11} \ m^3 \ kg^{-1} \ s^{-2}$.


- a) Determine a massa M da galáxia.
- b) Calcule a velocidade de uma estrela em órbita circular a uma distância $r = 1.6 \times 10^{20}$ m do centro da galáxia.

7. A informação digital de um CD é armazenada em uma camada de gravação que reside abaixo de uma camada protetora, composta por um plástico de 1,2 mm de espessura. A leitura da informação é feita através de um feixe de laser que passa através de uma lente convergente e da camada protetora para ser focalizado na camada de gravação, conforme representa a figura abaixo. Nessa configuração, a área coberta pelo feixe na superfície do CD é relativamente grande, reduzindo os distúrbios causados por riscos na superfície.


- a) Considere que o material da camada de proteção tem índice de refração n=1,5, e que o ângulo de incidência do feixe é de 30° em relação ao eixo normal à superfície do CD. Usando a Lei de Snell, n_1 $sen\theta_1 = n_2$ $sen\theta_2$, calcule o raio R do feixe na superfície do CD. Considere R = 0 no ponto de leitura.
- b) Durante a leitura, a velocidade angular de rotação do CD varia conforme a distância do sistema ótico de leitura em relação ao eixo de rotação. Isso é necessário para que a velocidade linear do ponto de leitura seja constante. Qual deve ser a razão entre a velocidade angular de rotação do CD quando o sistema ótico está na parte central, de raio r₁ = 2,0 cm, e velocidade angular de rotação do CD quando o mesmo está na parte externa, de raio r₂ = 10 cm?
- **8.** O ruído sonoro nas proximidades de rodovias resulta predominantemente da compressão do ar pelos pneus de veículos que trafegam a altas velocidades. O uso de asfalto emborrachado pode reduzir significativamente esse ruído. O gráfico ao lado mostra duas curvas de intensidade do ruído sonoro em função da freqüência, uma para asfalto comum e outra para asfalto emborrachado.


- a) As intensidades da figura foram obtidas a uma distância r=10 m da rodovia. Considere que a intensidade do ruído sonoro é dada por $I=P/4\pi r^2$, onde P é a potência de emissão do ruído. Calcule P na freqüência de 1000 Hz para o caso do asfalto emborrachado.
- b) Uma possível explicação para a origem do pico em torno de 1000 Hz é que as ranhuras longitudinais dos pneus em contato com o solo funcionam como tubos sonoros abertos nas extremidades. O modo fundamental de vibração em um tubo aberto ocorre quando o comprimento de onda é igual ao dobro do comprimento do tubo. Considerando que a freqüência fundamental de vibração seja 1000 Hz, qual deve ser o comprimento do tubo? A velocidade de propagação do som no ar é v = 340 m/s.

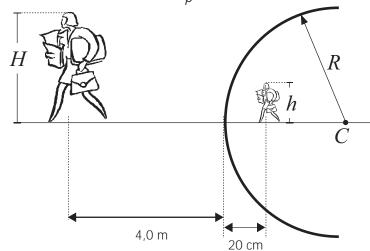
9. O chuveiro elétrico é amplamente utilizado em todo o país e é o responsável por grande parte do consumo elétrico residencial. A figura abaixo representa um chuveiro metálico em funcionamento e seu circuito elétrico equivalente. A tensão fornecida ao chuveiro vale V = 200 V e sua resistência é $R_1 = 10 \Omega$.

- a) Suponha um chuveiro em funcionamento, pelo qual fluem 3,0 litros de água por minuto, e considere que toda a energia dissipada na resistência do chuveiro seja transferida para a água.
 O calor absorvido pela água, nesse caso, é dado por Q = mcΔθ, onde c = 4 × 10³ J/kg °C é o calor específico da água, m é a sua massa e Δθ é a variação de sua temperatura. Sendo a densidade da água igual a 1000 kg/m³, calcule a temperatura de saída da água quando a temperatura de entrada for igual a 20 °C.
- b) Cosidere agora que o chuveiro esteja defeituoso e que o ponto B do circuito entre em contato com a carcaça metálica. Qual a corrente total no ramo AB do circuito se uma pessoa tocar o chuveiro como mostra a figura? A resistência do corpo humano nessa situação vale $R_2 = 1000 \Omega$.
- **10.** O alicate-amperímetro é um medidor de corrente elétrica, cujo princípio de funcionamento baseia-se no campo magnético produzido pela corrente. Para se fazer uma medida, basta envolver o fio com a alça do amperímetro, como ilustra a figura ao lado.
- a) No caso de um fio retilíneo e longo, pelo qual passa uma corrente i, o módulo do campo magnético produzido a uma distância r do centro do fio é dado por $B=\frac{\mu_0\,i}{2\pi r}$, onde $\mu_0=4\pi\times 10^{-7}\frac{T\,m}{A}$. Se o campo magnético num ponto da alça circular do alicate da figura for igual a $1.0\times 10^{-5}\,\mathrm{T}$, qual é a corrente que percorre o fio situado no centro da alça do amperímetro?

b) A alça do alicate é composta de uma bobina com várias espiras, cada uma com área $A=0.6~\rm cm^2$. Numa certa medida, o campo magnético, que é perpendicular à área da espira, varia de zero a $5.0\times10^{-6}~\rm T$ em $2.0\times10^{-3}~\rm s$. Qual é a força eletromotriz induzida, ϵ , em uma espira? A lei de indução de Faraday é dada por: $\epsilon=-\frac{\Delta\Phi}{\Delta t}$, onde Φ é o fluxo magnético, que, nesse caso, é igual ao produto do campo magnético pela área da espira.

11. Com um pouco de capacidade de interpretação do enunciado, é possível entender um problema de Física moderna, como o exposto abaixo, com base nos conhecimentos de ensino médio.

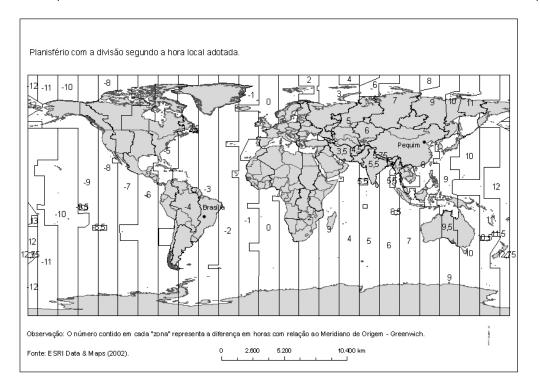
O Positrônio é um átomo formado por um elétron e sua anti-partícula, o pósitron, que possui carga oposta e massa igual à do elétron. Ele é semelhante ao átomo de Hidrogênio, que possui um elétron e um próton. A energia do nível fundamental desses átomos é dada por $E_1 = \frac{-13,6}{(1+\frac{m_e}{m_p})}eV$, onde m_e é a massa do elétron e m_p é a massa do pósitron,


no caso do Positrônio, ou a massa do próton, no caso do átomo de Hidrogênio. Para o átomo de Hidrogênio, como a massa do próton é muito maior que a massa do elétron, $E_1 = -13,6$ eV.

- a) Calcule a energia do nível fundamental do Positrônio.
- b) Ao contrário do átomo de Hidrogênio, o Positrônio é muito instável, pois o elétron pode se aniquilar rapidamente com a sua anti-partícula, produzindo fótons de alta energia, chamados raios gama. Considerando que as massas do elétron e do pósitron são $m_e = m_p = 9 \times 10^{-31} \text{ kg}$, e que, ao se aniquilarem, toda a sua energia, dada pela relação de Einstein $E_p + E_e = m_e c^2 + m_p c^2$, é convertida na energia de dois fótons gama, calcule a energia de cada fóton produzido. A velocidade da luz é c = 3,0 × 10⁸ m/s.

12. Para espelhos esféricos nas condições de Gauss, a distância do objeto ao espelho, p, a distância da imagem ao espelho, p', e o raio de curvatura do espelho, R, estão relacionados através da equação $\frac{1}{p} + \frac{1}{p'} = \frac{2}{R}$. O aumento linear transversal do espelho esférico é dado por $A = \frac{-p'}{p}$, onde o sinal de A representa

a orientação da imagem, direita quando positivo e invertida, quando negativo.


Em particular, espelhos convexos são úteis por permitir o aumento do campo de visão e por essa razão são freqüentemente empregados em saídas de garagens e em corredores de supermercados. A figura ao lado mostra um espelho esférico convexo de raio de curvatura *R*. Quando uma pessoa está a uma distância de 4,0 m da superfície do espelho, sua imagem virtual se forma a 20 cm deste, conforme mostra a figura. Usando as expressões fornecidas acima, calcule o que se pede.

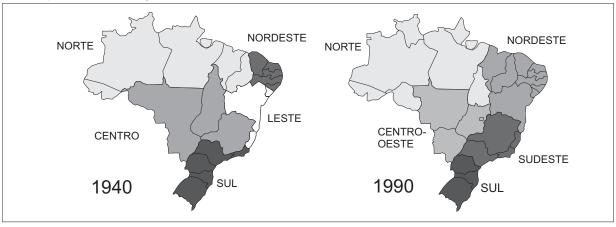
- a) O raio de curvatura do espelho.
- b) O tamanho h da imagem, se a pessoa tiver H = 1,60 m de altura.

Geografia

13. A próxima Olimpíada ocorrerá em 2008 e será realizada na China, tendo como sede a cidade de Pequim.

- a) Tomando por base o mapa acima apresentado, qual será a diferença horária total entre a realização das competições e seu acompanhamento televisivo ao vivo no Brasil? Supondo que a cerimônia de abertura seja realizada a partir das dezoito horas (18h00min), no dia 8 de agosto de 2008, qual a data e o horário correspondentes no horário oficial do Brasil?
- b) Sabendo-se que a diferença de horário entre as cidades de Brasília e Pequim decorre da existência de diferentes fusos horários, explique como são delimitados os fusos horários e indique qual a sua extensão padrão em graus de longitude.

- **14.** A integração européia, cuja construção se iniciou como um projeto utópico no final da 2ª Guerra Mundial, é a causa de muitas e importantes transformações na estrutura política e econômica da Europa Ocidental contemporânea. Pode-se afirmar que é graças à integração que a Europa conheceu uma longa fase de prosperidade econômica, com a modernização de estruturas produtivas e a melhoria substancial dos padrões de vida das populações européias. (Adaptado de Antonio Carlos Lessa, "A Europa, seus organismos e sua integração político econômica." In: Henrique Altemani de Oliveira e Antonio Carlos Lessa (orgs.), *Política Internacional Contemporânea: mundo em transformação.* São Paulo: Saraiva, 2006, p. 59.)
- a) O Tratado de Roma, assinado em 1957, instituiu a Comunidade Econômica Européia, um dos marcos da integração da Europa. Explique, sucintamente, os principais objetivos dessa integração.
- b) O fim da Guerra Fria provocou grandes modificações nas relações internacionais. No caso da Europa, quais foram os dois principais desafios que o fim da Guerra Fria trouxe para a integração entre os países?
- **15.** O mapa abaixo destaca as áreas áridas da Terra. Responda:

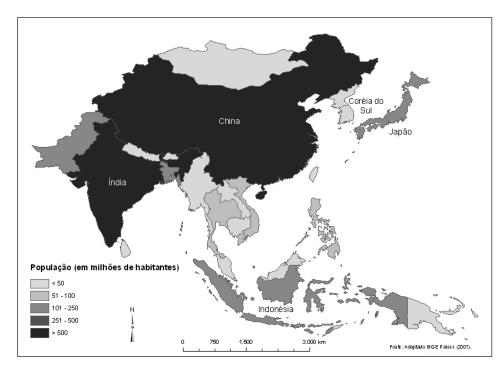

Fonte: adaptado de Ross, J.L.S. Geografia do Brasil. Edusp/FDE, 1995.

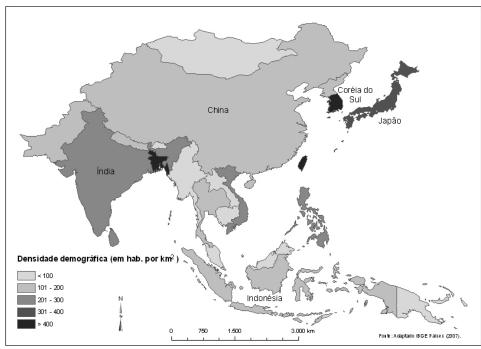
- a) Quais os fatores ambientais que determinam a existência desses grandes desertos?
- b) Apesar da escassez de água, alguns desertos são povoados. Quais as intervenções que possibilitam a uma sociedade viver nessas áreas?

16. Durante o Estado Novo (1937-1945), foi criado o Conselho Nacional de Geografia, que deu origem ao Instituto Brasileiro de Geografia e Estatística, IBGE. Uma das atribuições do IBGE era produzir estatísticas básicas sobre a população brasileira, por meio de Censos. Também caberia ao Instituto produzir informações cartográficas, bem como propor e instituir uma regionalização do território brasileiro. As figuras abaixo dizem respeito a dois momentos históricos da regionalização do território brasileiro. Pergunta-se:

A Evolução das Grandes Regiões

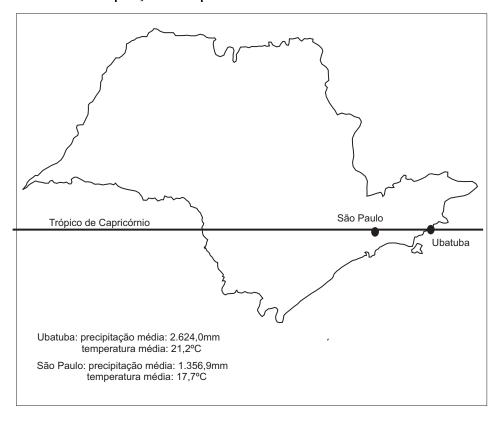
Fonte: www.ibge.gov.br


- a) Qual o principal critério utilizado para instituir a regionalização do território brasileiro em 1940? Qual a principal finalidade do Estado brasileiro ao regionalizar o seu território?
- b) Em 1988 o Estado de Tocantins foi criado. Tocantins foi desmembrado de qual Estado? Por que ele foi inserido na região Norte do Brasil?
- 17. "Os projetos de recuperação e preservação de centros históricos, associados a processos de reestruturação urbana, têm sido uma constante no Brasil, principalmente a partir do final da década de 1980 e início de 1990. Pelourinho em Salvador, Bairro do Recife na capital pernambucana e o corredor cultural no Rio de Janeiro são alguns exemplos nacionais de locais que vêm sofrendo esse tipo de intervenção. Barcelona, Nova lorque, Boston, Manchester, Paris e Buenos Aires estão entre os exemplos internacionais que marcam o fenômeno mundial de revitalização ou remodelação urbana." (Disponível em: www. comciencia.br/reportagens/cidades/cid02.htm, 05/11/07.)
- a) Por que ocorre a chamada "decadência" dos centros tradicionais das cidades?
- b) Quais são as principais estratégias utilizadas nas cidades brasileiras para "revitalizar" as áreas consideradas decadentes?



- **18.** No dia 26 de dezembro de 2004, logo após o natal, a região indo-asiática, mais particularmente Sumatra, foi assolada por um tsunami que atingiu três continentes e 12 países. Estimou-se o número de 163 mil mortos apenas na ação direta do tsunami e calculou-se que o número total de mortes tenha chegado a 300 mil, contando as vítimas de epidemias, como a cólera, o tifo, etc. (Adaptado de Paulo Roberto de Moraes, "É possível prever as ondas do horror?". *Mundo em Fúria*, ano 1, n. 1, 2005, p. 22-23).
- a) Explique os principais mecanismos que atuam na formação de um tsunami.
- b) Quando ocorre um tsunami, por que as ondas são quase imperceptíveis em alto mar, enquanto na costa podem atingir até 50 metros de altura?
- **19.** "A macrorregião Sul é a menor em área entre todas as que conformam o território nacional. Todavia, isso não significa escassa diversidade interna, mesmo em termos históricos, pois um verdadeiro mosaico sociocultural e econômico-espacial tomou forma no interior dos seus limites territoriais". (Hoyêdo Nunes Lins, "Transformações econômicas e reflexos espaciais no Brasil Meridional." In: Maria Flora Gonçalves, Carlos Antônio Brandão e Antonio Carlos Galvão (orgs.). *Regiões e cidades, cidades nas regiões: o desafio urbano-regional*. São Paulo: Editora Unesp/Anpur, 2003, p. 500.)
- a) O texto aponta a existência de um "mosaico sociocultural e econômico-espacial" na região Sul. A que se deve essa diversidade cultural?
- b) A atividade agrícola na Região Sul distribui-se em policulturas e monoculturas comerciais. Caracterize-as.

20. Com base nos mapas apresentados a seguir,



- a) analise a informação representada em cada mapa, considerando a situação da China e da Coréia do Sul;
- b) justifique as diferenças encontradas na comparação entre as informações representadas em cada mapa.

21. O mapa abaixo representa o estado de São Paulo e as médias de temperatura em duas cidades paulistas. Observando o mapa, responda:

Médias de Precipitação e Temperatura das cidades de Ubatuba e São Paulo

Fonte: IBGE, Região Sudeste, 1977. p. 667

- a) Por que as cidades de São Paulo e Ubatuba, situadas na mesma latitude, apresentam médias de temperatura distintas?
- b) Na Serra do Mar, durante o verão, ocorrem movimentos de massa, causando prejuízos e perdas humanas. Esses deslizamentos, em grande medida, são desencadeados por intensas chuvas orográficas. Explique como se formam as chuvas orográficas.

- **22.** "De 1998 para cá, o preço do petróleo foi multiplicado por sete. A procura pelo produto, com o vigoroso crescimento mundial, aproximou-se da capacidade de produção (...) Há um surto na procura pela *commodity*, em contraste com a baixa capacidade de expansão rápida da oferta." (Folha de S. Paulo, editorial: Petróleo nas Alturas, 22/10/07, p. A2)
- a) O que é uma commodity?
- b) Quais as principais razões do aumento da demanda por petróleo em período recente?
- **23.** A tabela abaixo diz respeito à distribuição absoluta e percentual das principais Unidades de Conservação do Brasil, por região. A partir desses dados responda:

Brasil. Principais Unidades de Conservação (UCs) por região geográfica (números absolutos e percentuais)

Categorias de UCs/ Regiões	N	%	NE	%	со	%	S	%	SE	%	TOTAL	%
Estação Ecológica	12	8,7	6	4,5	3	4,5	5	2,2	5	3,2	31	4,3
Parque Nacional	13	9,4	16	11,9	7	10,4	14	6,1	12	7,6	62	8,5
Refúgio da Vida Silvestre	0	0	1	0,7	0	0	2	0,8	0	0	3	0,4
Reserva Biológica	8	5,8	8	5,9	1	1,5	3	1,3	9	5,7	29	4,0
Área de Proteção Ambiental	1	0,7	8	5,9	6	8,9	7	3,0	9	5,7	31	4,3
Área de Relevante Interesse Ecológico	3	2,2	3	2,2	1	1,5	2	0,8	8	5,1	17	2,3
Floresta Nacional	38	27,5	9	6,7	3	4,5	13	5,6	10	6,4	73	10,0
Reserva de Desenvolvimento Sustentável	2	1,4	0	0	0	0	0	0	0	0	2	0,3
Reserva Extrativista	31	22,5	9	6,7	0	0	8	3,5	2	1,3	50	6,9
Reserva Particular do Patrimônio Natural	30	21,7	74	55,2	46	68,6	177	76,6	102	65,0	429	59,0
Total	138	100	134	100	67	100	231	100	157	100	727	100,0

Fonte: www.ibama.gov.br/siucweb/listaUc.php, acessado em 21/10/2007.

- a) Por que a categoria RPPN (Reserva Particular do Patrimônio Natural) predomina em termos percentuais nas regiões Sul e Sudeste, enquanto na região norte há um predomínio da categoria Floresta Nacional?
- b) O que diferencia uma reserva biológica de uma reserva extrativista?
- **24.** "Saem as economias costeiras do Brasil e da China e entra o interior dos dois países. Em vez da Índia e Rússia, estão Filipinas, Indonésia, México, Turquia e Vietnã. Serão esses os 'novos BRICs?'". (Folha de São Paulo. Sérgio Dávila, "Brasil rural desponta entre novos BRICs.", 23/09/07, p. C3)
- a) O acrônimo BRIC se forma pela junção da primeira letra dos nomes de um grupo específico de países. Quais são esses países e qual a similaridade que esses países apresentam?
- b) Quais as principais causas do crescimento elevado da China na última década?

