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PREFACE

This book contains one hundred highly rated problems used in the train-
ing and testing of the USA International Mathematical Olympiad (IMO)
team. It is not a collection of one hundred very difficult. impenetrable
questions. [nstead, the book gradually builds students’ algebraic skills
and techniques. This work aims to broaden students’ view of mathemat-
ics and better prepare them for possible participation in various mathe-
matical competitions. It provides in-depth enrichment in important areas
of algebra by reorganizing and enhancing students’ problem-solving tac-
tics and strategies. The book further stimulates students’ interest for
future study of mathematics.




INTRODUCTION

In the United States of America, the selection process leading to par-
ticipation in the International Mathematical Olympiad (IMO) consists
of a series of national contests called the American Mathematics Con-
test 10 (AMC 10), the American Mathematics Contest 12 (AMC 12),
the American Invitational Mathematics Examination(AIME), and the
United States of America Mathematical Olympiad (USAMO). Partici-
pation in the AIME and the USAMO is by invitation only, based on
performance in the preceding exams of the sequence. The Mathemati-
cal Olympiad Summer Program (MOSP) is a four-week, intense train-
ing of 24-30 very promising students who have risen to the top of the
American Mathematics Competitions. The six students representing the
United States of America in the IMO are selected on the basis of their
USAMO scores and further IMO-type testing that takes place during
MOSP. Throughout MOSP, full days of classes and extensive problem
sets give students thorough preparation in several important areas of
mathematics. These topics include combinatorial arguments and identi-
ties, generating functions, graph theory, recursive relations, telescoping
sums and products, probability, number theory, polynomials, theory of
equations, complex numbers in geometry, algorithmic proofs, combinato-
rial and advanced geometry, functional equations and classical inequali-
ties.

Olympiad-style exams consist of several challenging essay problems. Cor-
rect solutions often require deep analysis and careful argument. Olym-
piad questions can seem impenetrable to the novice, yet most can he
solved with elementary high school mathematics techniques, cleverly ap-
plied.

Here is some advice for students who attempt the problems that follow.

e Take your time! Very few contestants can solve all the given prob-
lems.

e Try to make connections between problems. A very important
theme of this work is: all important techniques and ideas featured
in the book appear more than once!

e Olympiad problems don’t “crack” immediately. Be patient. Try
different approaches. Experiment with simple cases. In some cases,
working backward from the desired result is helpful.

¢ Even if you can solve a problem, do read the solutions. They may
contain some ideas that did not occur in your solutions, and they

R
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Introduction

may discuss strategic and tactical approaches that can be used else-
where. The formal solutions are also models of elegant presenta-
tion that you should emulate, but they often obscure the torturous
process of investigation, false starts, inspiration and attention to
detail that led to them. When you read the solutions, try to re-
construct the thinking that went into them. Ask yourself, “What
were the key ideas?” “How can | apply these ideas further?”

Go back to the original problem later, and see if you can solve it
in a different, way. Many of the problems have multiple solutions,
but not all are outlined here.

All terms in boldface are defined in the Glossary. Use the glossary
and the reading list to further your mathematical education.

Meaningful problem solving takes practice, Don't get, discouraged
if you have trouble at first. For additional practice, use the books
on the reading list.

ACKNOWLEDGEMENTS

Thanks to Tiankai Liu who helped in proof reading and preparing solu-

tions. |
Many problems are either inspired by or ﬁ>.<ed f.rom mathematical contests
in different countries and from the following journals:

High-School Mathematics, China .

Revista Matematicd Timisoara, Romania

Kvant, Russia

We did our best to cite all the original sources of the probl.er.ns iln the sofl}t;
tion part. We express our deepest appreciation to the original propos
1 .

of the problems.




ABBREVIATIONS AND NOTATIONS

Abbreviations

AHSME American High School Mathematics
Examination

AIME American Invitational Mathematics
Examination

AMCI10 American Mathematics Contest 10

AMC12 American Mathematics Contest 12,
which replaces AHISME

ARML American Regional Mathematics League

IMO International Mathematical Olympiad

USAMO United States of America Mathematical Olympiad

MOSP Mathematical Olympiad Summer Program

Putnam The William Lowell Putnam Mathematical
Competition

St. Petersburg St. Petersburg (Leningrad) Mathematical
Olympiad

Notations for Numerical Sets and Fields

Z the set of integers

Z, the set of integers modulo n

N the set of positive integers

No the set of nonnegative integers

Q the set of rational numbers

Qt the set of positive rational numbers
Q°  the set of nonnegative rational numbers
Q™ the set of n-tuples of rational numbers
R the set of real numbers

R* the set of positive real numbers

R?  the set of nonnegative real numbers
R™  the set of n-tuples of real numbers

C the set of complex numbers
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1. INTRODUCTORY PROBLEMS

Problem 1

Let a.b. and ¢ be real and positive parameters. Solve the equation

Jatbr+ Vb+cr—verar= Vb —ar+ Ve —br +Va—cx.

Problem 2

Find the general terni of the sequence defined by ro = 3.2 =1 and

2 .
Ipel =25 | — NIy

for all'n € N.

Problem 3

Let zy.22... .\ z, be a sequence of integers such that

(i) ~1<x, <2 fori=

1.2,
(it) 2y + 22+ -+, = 1O

(i) 22 + 23+ - + 22 =99.

Determine the minimum and maximum possible values of

R G
Problem 4
The function f. defined by

£ ar+b
Z

cr+d

where «. b.¢. and d are nonzero real nunibers, has the propertics
F19y=19. f971) =97 and f(f(r))=u.
for all values of r. excopt -~

Find the range of f.
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Problem 5
Prove that

(a—b)?2 a+b (a —b)?
< vV <
8¢ = 2 <5
foralla>b> 0.

Problem 6

Several (at, least two) nonzero numbers are written on a board. One may

. b
erase any two numbers. say a and b, and then write the numbers a + —

and b - % instead.

Prove that the set of numbers on the board, after any number of the

preceding operations, cannot coincide with the initial set,.

Problem 7
The polynomial

1—z422— g3 ... g g6 _ 17
may be written in the form

@0 + a1y +asy’ + -+ a1ey'® + ay0y7,
where y = z + 1 and g;s are constants.
Find a,.
Problem 8

Let a,b, and ¢ be distinct nonzero real numbers such that

a+>=b+=-=c+

) -
O |
| —

Prove that |abc| = 1.

Problem 9

Find polynomials f(z), g9(z), and h(z), if they exist, such that for all z,

-1 if x < —1
(@) =lg(@)| +h(z)={ 3c+2 if-1<z<o
—2x+2 ifzx>0.

1. Introductory Problems

Problem 10 |
Find all real numbers z for which
8T +27 7
122 4182 6
Problem 11

Find the least positive integer m such that

on\ ¥
" <m
n
for all positive integers n.

Problem 12
Let a, b, ¢, d, and e be positive integers such that
1V

abede =a+b+c+d+e

Find the maximum possible value of max{a,b,¢,d, e}.

Problem 13
Evaluate
3 4 2001 _
Trair3 T arrsr4l + 1 19991 + 20001 + 20011

Problem 14
Letz=val+a+1—-Va2—a+1,aeR
Find all possible values of z.

Problem 15
Find all real numbers z for which

10° + 11% + 127 = 13% + 14"
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Problem 16

. , Problem 22
Let f: N x N — N be a function such that f,H) =2, e integer 7, let p(n) be the product of the non-zero digits

Civen a positiv y \ 101

flm+1,n) = f(m.n) +m and f(m,n+ 1) = f(m,n) of n. (If n has only one digit, then p(n) is equal to that digit.) Let
i : s = ,n)—n

for all m,n € N. S =p(1) +p(2) + -+ p(999).

Find all pairs (p, q) such that f(p,q) = 2001. What is the largest prime factor of S?
Problem 17 Problem 23
Let f be a function defined on [0, 1] such that Let z,, be a sequence of nonzero real numbers such that
_ ITpn-2Tn-1
f(0) = f(1) = 1and [f(a) = f(b)| < |a—b]. T Y2y g— Tat
for all a # b in the interval [0, 1]. for n = 3.4,....
Prove that 1 Establish necessary and sufficient conditions on z; and zg for z, to be
|fa) = f(b)| < 5. an integer for infinitely many values of n.
Problem 18 Problem 24
: . . Solve the equation
Find all pairs of integers (z,y) such that P -3x=vVz+2
zs + 3 _ 2
y (@ +9)" Problem 25
For any sequence of real numbers A = {a1,a2,0a3,"" -}, define AA to be
Problem 19 the sequence {as — a1, a3 —a2,a4 — ag,. . .}. Suppose that all of the terms
Let f(z) = 12 for real mumbers 1. of the sequence A(AA) are 1, and that a19 = ag2 = 0.
4% +2 Find a;.
Evaluate
l 2
/ <M> / <2001> TS <§88(1)> P-mblem >
Find all real numbers z satisfying the equation
Problem 20 2T 4+ 3% — 4" +6° -9 =1,
Prove that for n > 6 the equation
Problem 27
1.1, L P
Z Tz ot E =1 rove that %
has int luti 16<> R
as Integer solutions. = \/Z
Problem 21 Prob] 28
em
Find all pairs of integers (a, b) such that i 17 16 ;
is divisible by 22 — oo 1 (a,b) such that the polynomial az!” + bz!¢ + 1 (I))ete;mme the number of ordered pairs of integers (m, n) for which mn 2
J : an

m3 + n® + 99mn = 33°.

i

I $zé@092°0° A aaa—— ey |




6 1. Introductory Problems

Problem 29

Let a,b, and c be positive real numbers such that a + b + ¢ < 4 and
ab +bc+ca > 4.

Prove that at least two of the inequalities

la—b/<2, |b—c|<2, |c—a]<2
are true.
Problem 30
Evaluate
u 1
RAY N

= (n=k)l(n+ k)
Problem 31
Let 0 < a < 1. Solve

za — al‘

for positive numbers z.

Problem 32
What is the coefficient of z2 when

(1+2)(1 4+ 22)(1 + 4z)-- (1 + 2"x)
is expanded?
Problem 33

Let m and n be distinct positive integers.

Find the maximum value of [¢™ — z™|, where z is a real number in the
interval (0,1).

Problem 34
Prove that the polynomial
(z—a)(z-a2) (z~an)—1,

where ay.az, -+, a, are distinct integers, cannot be written as the prod-
uct of two non-constant polynomials with integer coefficients, ie., it is
irreducible.

1. Introductory Problems

blem 35 ..
1;“:1 all ordered pairs of real numbers (z. y) for which:
in
7
A+n+ad)1+at) = 147
and (1+9)(1 +y°)(1 +yh) = 1+
Problem 36

Solve the equation

9007 — )22 + (25 — Qe =271 =2
for real numbers T.

Problem 37
Let a be an irrational number and let n be

Prove that (a N \/;z_f{) 1 . (a _ ,——a2 — 1)%

is an irrational number.

an integer greater than 1.

Problem 38

Solve the system of equations
(T, — 2 +x3)? = ma(zat+Ts - T3)
(xg —z3 + $4)2 = wx3(Ts + 21 — T3)
(z3— T4 +75)° = xa(z1+ T2 — Td)
($4—$5+$1)2 = z5(xy + T3 — T5)
(Ts — 1 +1)° = 71 (3 + T4 — T1)

for real numbers z1, z2, T3, T4, Ts.

Problem 39
Let z,y, and z be complex numbers such that

T+y+z=2,
z2+y2+22=3

and
ryz =4
eliate, 1 L LI
‘STAATS-U.U.\'W.-? my+z-1+yz+z—1+zz+y—1

BisLjotigry !
k(‘.or'r:x\ P
i s

—
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Problem 40

Mr. Fat is going to pick three non-zero real numbers and Mr. Taf is going !
to arrange the three numbers as the coefficients of a quadratic equation *

T4+ _z+_=0.

Mr. Fat wins the game if and only if the resulting equation has two
distinct rational solutions.

Who has a winning strategy?

Problem 41

Given that the real numbers a,b

;¢ d, and e satisfy simultaneously the
relations

a+b+c+d+e=8and a2+b2+cz+d2+62=16,
determine the maximum and the minimum value of q.

Problem 42

Find the real zeros of the polynomial

Po(z) = (2 + 1)(z ~ 1) - az?,

where a is a given real number.

Problem 43
Prove that
13 -1 1
2 4 2n 3n
for all positive integers n.
Problem 44
Let

P(z) = apx™ + a1z" ' + .. +q,

be a nonzero polynomial with integer coeflicients such that P(r) =
P(s) =0 for some integers 7 and s. with 0 <r<s.

Prove that aj, < —s for some £.

Problem 45
Let m be a given real number.
Find all complex numbers z such that

L 2+ z 2—mz-l-m
T+1 r—-1) — '

1. Intro

Problem 46

. — = nd
The sequence given by 2o = a, r1 = b, a

is periodic.
Prove that ab=1.

Problem 47
Let a,b, ¢, and d be real numbers such that

(a2 + 0% = 1)(c +d* — 1) > (ac+ bd — 1),

Prove that a?+b?>1and P +d* > 1.

Problem 48
Find all complex numbers z such that

3z + 1)(4z + 1)(6z + 1)(122 + 1) = 2.

Problem 49 ‘
Let 1,23, -+ ,Tn—1, be the zeros different from 1 of the polynomial
P(z)=2z"-1,n2>2.
Prove that
-1
1 1 1 _n-1
1—.T1 1—1‘2+ 1—zp1 2

Problem 50

Let a and b be given real numbers. Solve the system of equations

-y x? —y? —

y-o/el gt o,
-2t

for real numbers z and Y.

a,




ADVANCED PROBLEMS

n(x+1)(1+n>

P1L=Yy + Yy +ys= 2w + 2;8;3,

st

D2 = Y1Yo + Y2ys + Yszy1 = T3

R 2
P3 = y1yoys = 1722 + 2133
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2. ADVANCED PROBLEMS

Problem 51

Evaluate
2000 2000 2000 2000
(50 (757 = (F) ++= (o)

Problem 52

Let z, y, 2 be positive real numbers such that z¢ +y* + 2% = 1.
Determine with proof the minimum value of

23 Y3 .3

—r TT- 1=

Problem 53
Find all real solutions to the equation

2% + 3% + 6% = 22,

Problem 54

Let {an}n>1 be a sequence such that a; = 2 and

a 1
e
n

for all n e N.

Find an explicit formula for a.,.
Problem 55
Let z, y, and z be positive real numbers. Prove that

T n Yy
T+V(e+y)(z+2) y+Jly+2)(y+z)

+ Z < 1.

z4+/(z+2)(z+y)
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Problem 56

Find, with proof, all nonzero polynomials f(2) such that

FE)+ f()fz+1) =0

Problem 57
Let /- N — N be a function such that f(n + 1) > f(n) and

J(F(n)) =3n

for all n.
Evaluate f(2001).

Problem 58

Let I be the set of all polynomials f(x) with integers coefficients such
that f(x) = 1 has at least one integer root.

For each integer & > 1. find My, the least integer greater than 1 for

which there exists f € F such that the equation f(x) = my has exactly
k distinct integer roots.

Problem 59
Let 11 = 2 and
Tp+1 =I3, — In+ 1,

forn >1.
Prove that

1 < ! + ! + .+ ! <1 !

277 T o 1 T 22"

Problem 60

Suppose that f : Rt — Rt is a decreasing function such that for all
I,y € RY,

Flr+y) + f(1@) + fW)) = f(Je + f(@) + fly + F(2).

Prove that f(f(z)) = .

2 Advanced Problems
/

15

Find all functions f:Q — Q such that

flz+y)+ flz—y)=2f(2)+2f(y)
for all z.y € Q.

Problem 62
Let $ <a<l. |
Prove that the equation
Pz +1) = (z+a)(2x +a)

has four distinct real solutions and find these solutions in explicit form.

Problem 63
Let a,b, and ¢ be positive real numbers such that abc = 1.

Prove that 1 i 1

+ + < 1.
a+b+1 b+c+1 c+a+l

Problem 64 | -
Find all functions f, defined on the set of ordered pairs of positive inte-
gers, satisfying the following properties:

flmx) ==, fz,y) = f(y,2), =+ yfle.y) =yf(r.2+y).

Problem 65

Consider n complex numbers zj. such that |z| < 1. k = 1,2..... s
Prove that there exist ;. ea,....en € {—1.1} such that, for any m <n,

e121 4 Cozo + -+ + Cmizm| £ 2.

Problem 66

Find a triple of rational numbers (a.b.c) such that

33/5—1:6/&+\3/5+\3/5-
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Problem 67
Find the minimum of

1 1 1
log,,, zz—z + log,, z3.—Z +. - +log, 1,1—5

where z,, 2, ...,z, are real numbers in the interval (% 1).
Problem 68
Determine 22 + y2 + 22 + w? if
72 Y2 52 . w?
roptE_gtyE_prtepoa b
72 Y2 52 w2
PR TP - T pop b
72 2 52 w?
- EZ_g g_mteEon- b
72 2 52 w2
2T o Tt =1L
8217 "8-32 g_5 T F_7

Problem 69
Find all functions f: R — R such that

f@f@) + f(y) = (f(2)* +y
for all z,y € R.

Problem 70
The numbers 1000, 1001, - - -, 2999 have been written on a board.
Each time, one is allowed to erase two numbers, say, a and b, and replace

them by the number %min(a. b).

After 1999 such operations, one obtains exactly one number ¢ on the
board. Prove that ¢ < 1.

Problem 71
Let a1,a9,...,a, be real numbers, not ali zero.
Prove that the equation

Vitaz+V1+ar+ - +VI+taz=n

oblem 72
E; (a } be the sequence of real numbers defined by a; = ¢ and

An+1 = 4un(1 - an)

forn=>1
For how many distinct values of t do we have a99s = 07

Problem 73
(a) Do there exist functions f: R — R and ¢: R — R such that

flglx)) =2 and  g(f(z)) =2’
for all z € R?
(b) Do there exist functions f/: R = R and g : R — R such that
flg(z) =2 and  g(f(x)) =2
for all 2 € R?

Problem 74
Let0<ay <ag - <ap, 0< by <by--+ < by, be real numbers such that

Suppose that there exists 1 < & < n such that b; < a; for 1 <i <k and
b; > a; fori > k.

Prove that
@10y Gp 2 b1by - by
Problem 75
Given eight non-zero real numbers ay,as, -, 0g, prove that at least one

of the following six numbers: a a3 + G204, 105 + 206, Q107 + G203,
0305 + 406, a3ar + a4as. asar + agag is non-negative.
Problem 76

Let a, b and ¢ be positive real numbers such that abc = 1.
Prove that

ab be : ca <1
St rab Brdtbe Ftatea s

has at most one nonzero real root.
adhr
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Problem 77
Find all functions f : R — R such that the equality

f(f(@) +y) = f(z® —y) + 4f(z)y

holds for all pairs of real numbers (z.y).

Problem 78
Solve the system of equations:
3r —y
SmC g
T+ R
T+ 3y
-——==0.
v r y?

Problem 79

Mr. Fat and Mr. Taf play a game with a polynomial of degree at least 4:
mZn +_z2n—l +_z2n—2 e

They fill in real numbers to empty spaces in turn. If the resulting poly-
nomial has no real root, Mr. Fat wins; otherwise, Mr. Taf wins.

If Mr. Fat goes first, who has a winning strategy?

Problem 80

Find all positive integers & for which the following statement is true: if
F(z) is a polynomial with integer coefficients satisfying the condition

0<F(c)<k for ¢c=0.1....,k+1,
then F(0) = F(1) = = F(k+1).

Problem 81

The Fibonacci sequence F,, is given by

Fi=F =1,Foy=Fop1 +F, (neN).

Prove that . 5
an — F2n+2 ;FQn—Q _ 2F23n
for all n > 2.

oblem 82 , . -
g.r 4 all functions o | R — R for which there exists a strictly monotonic
in

function [ : R — R such that
flz+y) = f@uly) + fv)

for all z,y € R.

Problem 83
Let 21,22, -5 Zn be complex numbers such that
|z ]+ lz2] +0o + || = 1
Prove that there exists a subset S of {z1,z2,.... 25} such that
IEEF
—_— 6 *
z€S8
Problem 84

A polynomial P(z) of degree n > 5 with integer coefficients and n distinct
integer roots is given.
Find all integer roots of P(P(r)) given that 0 is a root of P(x).

Problem 85
Two real sequences 1, s, ..., and 41, ¥a, . . ., are defined in the following

way:
L1 =49 = V3. Tnel = 2n + /1 + 22,

and

U
A I

for all n > 1. Prove that 2 < z,y, < 3 for all n > 1.

Problem 86

For a polynomial P(z), define the difference of P(z) on the interval [a.b]
([2.0). (a,d). (a,b]) as P(b) - Pla).

Prove that it is possible to dissect the interval [0. 1] into a finite number
of intervals and color them red and blue alternately such that, for every
Quadratic polynomial P(x). the total difference of P(z) on red intervals
's equal to that of P(z) on blue intervals.

What about cubic polynomials?
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Problem 87

Given a cubic equation
r® 4+ _2? +_r+_=0,

Mr. Fat and Mr. Taf are playing the following game. In one move, Mr,
Fat chooses a real number and Mr. Taf puts it in one of the empty spaces,
After three moves the game is over. Mr. Fat wins the game if the final
equation has three distinct integer roots.

Who has a winning strategy?

Problem 88

Let n > 2 be an integer and let f: R? — R be a function such that for
any regular n-gon A1 4, ... A,

f(A) + f(A2) + -+ + f(An) = 0.
Prove that f is the zero function.

Problem 89

Let p be a prime number and let f(z) be a polynomial of degree d with
integer coeflicients such that:

() 7(0)=0,f(1)=1;

(ii) for every positive integer n, the remainder upon division of f(n)
by p is either 0 or 1.

Prove that d > p — 1.
Problem 90
Let n be a given positive integer.

. . 1
Consider the sequence ag,a1.---.a, with ag = 3 and

2
a
k=1
ar = Qp-1 + |
n

fork=1,2..--.n
Prove that
1
l-—-—<a, <1.
n

21
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problem 91

a., be nonnegative real numbers. not all zero.
Let a1,02, %"

n-1_ ... —q,_1I — an, = 0 has precisely one
(a) Prove that z™ — 1T Gn-1 n P

positive real root R.
(b) Let A= S ay and B = > day.

prove that A% < RP.

Problem 92 . .
Prove that there exists a polynomial P(z,y) with real coefficients such

that P(z,y) =0 for all real numbers x and y, which lcannot be written
as the sufn of— squares of polynomials with real coeflicients.

Problem 93 | - .
For each positive integer n. show that there exists a positive integer

such that s = f(x)(l‘ + 1)271 4 g(‘r)(‘EZn + 1)

for some polynomials f,g with integer coefficients, and find the smallest
such % as a function of n.
Problem 94

Let  be a positive real number.

(a) Prove that

oS (n—1)! 1
;:1 (z+1) - (x+n) =z
(b) Prove that
= (n—1)! B sl 1 |
;n(z+1)..7.(1‘+n) _; (z + k)2




22 2. Advanced Problem;

Problem 95
Let n > 3 be an integer, and let

XCcs={12....2%

be a set of 3n? elements.

Prove that one can find nine distinct numbers @ bicy (1=1.2,3)in X
such that the system

mr+bhy+cs =
2T + by + a2z =

M
o o o

a3 + byy + caz

has a solution (o, yo, z0) in nonzero integers.

Problem 96
Let n > 3 be an integer and let x1.20. - .z, be positive real numbers,
n
1
S that =1
uppose tha ; e
Prove that

\/Hﬁ-\/z—z-l-'-'ﬁ-\/ﬁZ(n—l)(%-*- +-~+\/1r_>
1 B “n

Hb—‘
L]

Problem 97

Let z1,25...., In be distinct real numbers. Define the polynomials
Pa)=(z—x)(r—22) (2= zp)

and

Q(z)zP(z)( I S g )

I—I -1 T - Iy

Let y1,92.....Yn—1 be the roots of Q. Show that

mjn |2 — x| < min fy; — /.

2 Advanced Problems
/

23

oblem 98 :
;f w that for any positive integer n. the polynomial
o \

fa)= (" +a)" +1

ot be written as the product of two non-constant polynomials with
canm

integer coefficients.

Problem 99
Let fi, fa: f3 R — R be functions such that

a1 f1+ a2 fo+azfs

is monotonic for all a1,a2,a3 € R.
Prove that there exist ¢, ca2, c3 € R. not all zero. such that

c1f1(z) + cafa(x) +c3fa(x) =0
for all z € R.

Problem 100

Let #1.Zs,....Z, be variables. and let y1.92.....y2n—1 be the sums of
nonempty subsets of x,. o
Let pp(z1....,2,) be the Lth elementary symmetric polynomial in
the y; (the sum of every product of k distinct y,s).

For which k and n is every coefficient of py, (as a polynomialin 1,...,Zn)
even?

For example, if n = 2. then y;.y2.y3 are r;.x2, 21 + 72 and

L= Y1+ Yo + Ys = 221 + 2T9,
2 .
P2 = Y2 + Y2z + Y3l = 1‘% + x5 + 3r120.

2
P3 = y1yays = IiTe + T3,

Problem 101

Prove that there exist 10 distinct real numbers ay,aa. ..., ao such that
the equation

(= a1)(z—as) (2 - aw) = (@ +a1)(& +a2) - (z + aw)

has exactly 5 different real roots.

N S
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3. SOLUTIONS TO
INTRODUCTORY PROBLEMS

f

Problem 1 [Romania 1974]

Let @, b and ¢ be real and positive parameters.

Solve the equation

\/a+b$+\/b+cm+ﬁ+~am=\/b—a$+\/c—-bx—+—\/a—cx.

Solution 1

It is easy to see that z = 0 is a solution. Since the right hand side is a
decreasing function of x and the left hand side is an increasing function
of z, there is at most one solution.

Thus z = 0 is the only solution to the equation.

Problem 2
Find the general term of the sequence defined by zo = 3, z1 = 4 and

_ 2
Tptl = Tp_y — NTp

foralln ¢ N.

Solution 2

We shall prove by induction that z, = n + 3. The claim is evident for
n=0,1.

Fork>1,if rp_y =k + 2 and z = k + 3, then
The1 = Th_y — kay = (k+2)2 —k(k +3) =k +4,

as desired.

This completes the induction.
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3. Solutions to Introductory Problem

Problem 3 [AHSME 1999]

(i) —1§xi§2,fori=1,2,...,n'

)
(i) oy 4+ a0+ 4 g, = 19;
(iii) 22 + 23+ - + 22 = 99.
Determine the minimum and maximum possible values of

$§+$§+~~+$i.

Solution 3

Let a,b, and ¢ denote the number of —1s, 1s, and 2s in the sequence,

respectively. We need not consider the zeros. Then a, b, c are nonnegative
integers satisfying

—a+b+2c=19anda+b+4c=99.

It follows that @ = 40— ¢ and b = 59—3c, where 0 < ¢ < 19 (since b > 0),
50

xf+$g+---+$i=—a+b+8c= 19 + 6c.
When ¢ =0 (a =40, = 59), the lower bound (19) is achieved.
When ¢ =19 (a = 21,5 = 2), the upper bound (133) is achieved.

Problem 4 [AIME 1997]
The function f, defined by

_ar+b
T cx+d

(z)
where a, b, ¢, and d are nonzero real numbers, has the properties

f9) =19, fOT)=97. and f(f(x)) =a,

for all values of z, except —g.
Find the range of f.

Solution 4, Alternative 1
Forall z, f(f(z)) = r, i.e.,

azr + b
a(cx+d> o

az + b -0
C(caz+d> +d

s to Introductory Problems 29

3. Solution

(a® + be)z + b(a + d)
c(a + d)z + be + d2

=[E,/

e cla+d)z® + (d - a®)z — bla +d) =0,

hich implies that ¢(a + d) = 0. Since ¢ # 0, we must have = —d
ghe conditions f(19) = 19 and f(97) = 97 lead to the equations

192¢=2-19a+b  and 97%c=2-97a +b.

Hence (972 = 19%)c = 2(97 — 19)a.

It follows that a = 58¢, which in turn leads to b = —1843c. Therefore

58T — 1843 1521
o)== =%

which never has the value 58.
Thus the range of f is R — {58}.
Solution 4, Alternative 2

The statement implies that f is its own inverse. The inverse may be
found by solving the equation

ay +b
= cy +d
for y. This-yields . P |
—cr+a
The nonzero numbers a, b, ¢, and d must therefore be proportional. to d,
=b, —¢, and g, respecti{fely; it follows that a = —d, and the rest is the

same as in the first solution.

Problem 5
Prove that

2
(a—b)2<a+b_\/ﬁs(a_b)
8 — 2 8b

foralla > 5> 0.

Solution 5, Alternative 1

Note that )
Va+ Vb
2V/a

A
—_
A
TN
‘é
+
S
N~—
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ie.
2 _ 2 _
i.e.
(a —b)? a—2\/_+b (a — b)2
8a 2 8
from which the result follows.
Solution 5, Alternative 2
Note that
a+b\>
—ab 5
a+b 7o 2 (a—b)

2 T + = 2a+b)+4vab

Thus the desired inequality is equivalent to

4a>a+b+2Vab > 4b,

which is evident as a > b > 0 (which implies @ > Vab > b).

Problem 6 [St. Petersburg 1989]

Several (at least two) nonzero numbers are written on a board. One may
. b
erase any two numbers, say a and b, and then write the numbers a + -

2
and b — % instead.

Prove that the set of numbers on the board. after any number of the
preceding operations, cannot coincide with the initial set.
Solution 6

Let S be the sum of the squares of the numbers on the board. Note that
S increases in the first operation and does not decrease in any successive
operation, as

b\*? aN? _ 5. 5 4o 2 12
- —_ - = e >

with equality only if a = b = 0.
This completes the proof.

3 Solutions to Intr
-

oductory Problems
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Problem 7 [AIME 1986]

The polynomial
. 2 .3 ... 16 _ 17
l—-xr+cx x° + +zx

may be written in the form

17
ao + a1y + azy2 + o+ aleIG + a7y,

here y = = + 1 and a;s are constants. Find as.
W =

Solution 7, Alternative 1
Let f(z) denote the given expression. Then

ef(z) =z —at+2°— -t
and (1+z)f(x)=1-2"
flence 1=y -0 _1--D®

Therefore a, is equal to the coefficient of y® in the expansion of

1-(y-1"

18 _
as = <3> = 816.

Solution 7, Alternative 2
Let f(z) denote the given expression. Then

flz) = f(y—l)—l—(y—l) +(y - )Q—_--—(y—l)”
=1+(1-p+1-ypP++1-p"
Thus
o= (3)= ()= (2) - (5)
Here we used the formula
R

and the fact that

50
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Problem 8
Let a. b, and ¢ be distinct nonzero real numbers such that
1 1 1
a+—-=b+-=c+ -,
b c a

Prove that |abc| = 1.

Solution 8
From the given conditions it follows that
b-c c— a—~b
be ' 0TeS ab

Multiplying the above equations gives (abc)? = 1, from which the desired
result follows.

a
a—b= .andc—a =

Problem 9 [Putnam 1999
Find polynomials f(z), g(x), and A(z). if they exist. such that for all g,

-1 ifr<—1
[f(z)] = |g(z)| + h(z)={ 3r+2 if-1<z<0
—-2r+2 ifz>0.
Solution 9, Alternative 1
Since £ = —1 and = = 0 are the two critical values of the absolute
functions, one can suppose that
F(z) = alz+1/+blr|+cx+d

(c—a-dr+d-a ifz<-1

(a+c—br+a+d f-1<x2<0

(a+b+c)x+a+d ifr>o0.
which implies that a = 3/2, b = =-5/2.c=-1.and d = 1/2.
Hence f(z) = (3z +3)/2, g(x) = 51/2, and hMz)= -z + 3.

Solution 9, Alternative 2

Note that if 7(z) and s(z) are any two functions, then

r+s4[r—s

max(r, s) = 5
Therefore, if F(z) is the given function. we have
Flz) = max{-3z - 3,0} — max{5z. 0}+3r+2
= (=32-3+3z+3))/2- 5z + [52))/2 + 32 + 2
1
= |(Bx+3)/2] - |52/2| — 1 + 3"

“
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10
Problem |
Find all real numbers z for which
8 +21 7
[PEEa T

Solution 10 )
By setting 2% = 0 and 3% = b, the equation becomes

a’ +b° 7

a?b+b2a 6

e a? —ab+b? _T
ab 6’

v 6a® — 13ab + 60° = 0.
ie.

(2a — 3b)(3a — 2b) = 0.
Therefore 27+! = 37+1 or 22~1 = 371 which implies that z = —1 and
r=1 .
It is easy to check that both x = -1 and = = 1 satisfy the given equation.

Problem 11 [Romania 1990]
Find the least positive integer m such that

<2n> g
<m
n

for all positive integers n.

Solution 11
Note that

n n n 277> o 4n
<n><<0>+<1>+ <‘2n (
andforn=5!
<10>=252>35.
5
Thus m = 4,

-
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Problem 12
Let a, b, ¢, d. and e be positive integers such that

abede =a+b+c+d+e.

Find the maximum possible value of max{a, b, c.d, e}.

Solution 12, Alternative 1
Suppose that a < b < ¢ < d < e. We need to find the maximum value of
e. Since
e<a+b+c+d+e<be,
then e < abcde < 5e, ie. 1 < abed < 5.
Hence (a,b,¢,d) = (1.1,1,2), (1,1,1,3). (1.1, 1,4), (1,1,2,2), or
(1,1, 1,5), which leads to max{e} = 5.
Solution 12, Alternative 2
As before, suppose that a < b< ¢ < d < e. Note that

| = 1 L 1 . 1 -+ 1 . 1
" bede ' cdea | deab | cabe abed

1 1 1 1 1 3+d+e
< —F —F—4-p==2T2TC
_de+de+de+c+d de

Therefore, de <3 +d+eor (d—1)(e—1) < 4.
Ifd=1,thena=b=c=1and4+¢ = e, which is impossible.
Thusd—1>1lande—1<4dore<s5.

It is easy to see that (1,1,1,2, 5) is a solution.

Therefore max{e} = 5.

Comment: The second solution can be used to determine the maxi-
mum value of {1, xs,...,2,}, when z1,2s,.... 2, are positive integers
such that
1T Ty =21 + X2+ -+ - + T,
Problem 13
Evaluate
3 4 2001

m+or+3 a4 T T 990 T 20000 —30011"
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Solution 13

Note that

k+2 k+2

Tkt D+ (k+2)! I+ k+ 1+ (k+ D(k+2)

1
kl(k +2)
k+1
(k+2)!
(k+2) -1
(k +2)!
1 1

T k+Dl T RV

By telescoping sum, the desired value is equal to

1 1

2 20011

Problem 14
Letz=val+a+1—-vVaZl—-a+1,acR.
Find all possible values of .

Solution 14, Alternative 1

Since
Vva? +la|+ 1> |af
and
2a
T V@ taril+tVa-a+l
we have

|x| < |2a/a| =2.
S%aring both sides of

x+\/a2_a+1:\/a72+a+1

Yields

22v/0? —a +1=2a - 2"
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Squaring both sides of the above equation gives
4(z* = 1)a® = xz(mz'_ 4)ora® =
Since a® > 0, we must have

2} (z® - 4)(z% - 1) > 0,

Since |z < 2, £2 —4 < 0 which forces 22 —1 < 0. Therefore, -1 < = < 1.
Conversely, for every = € (—1, 1) there exists a real number a such that

x=\/a2+a+1—\/a2—a+1.

Solution 14, Alternative 2
Let A = (-1/2,v/3/2), B = (1/2,v/3/2), and P = (a,0). Then P

is a point on the z-axis and we are looking for all possible values of
d=PA- PB.

By the Triangle Inequality, |PA — PB| < |AB| = 1. And it is clear
that all the values —1 < d < 1 are indeed obtainable. In fact, for such
a d, a half hyperbola of all points Q such that QA — QB = d is well
defined. (Points A and B are foci of the hyperbola.)

Since line AB is parallel to the z-axis, this half hyperbola intersects the
z- axis, i.e., P is well defined.

Problem 15

Find all real numbers z for which

10% 4 117 + 12% = 137 4 14%.

Solution 15

It is easy to check that z = 2 is a solution. We claim that it is the only
one. In fact, dividing by 13% on both sides gives

10V (YT 1)1y

13 13 13) 13/
The left hand side is a decreasing function of z and the right hand side
is an increasing function of z.

Therefore their graphs can have at most one point of intersection.

3. Sol
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Comment: More generally.

@ +(a+ 17+ + (@t k)
=(a+k+ 17+ (a+k+27++(a+2k)

for a = k(2k + 1), keN

problem 16 [Korean Mathematics Competition 2001]

Let f:NxN—-N be a function such that f(1,1) =2,

fim+1.n)= f(m,n) +m and f(m,n+1) = f(m.n) —n

for allm,n € N.
Find all pairs (p, ) such that f(p.q) = 2001.

Solution 16

We have
fpg = flp—lg+p-1
= fp-2,9+(@-2)+(-1)
- -1
= fLg+ (p2
-1
= g-D-(g- 1+ 2
] glg—1)  plp—1)
= L) - =5+
= 2001.
Therefore
10(102— n 4(42— U _ 1999,
ie.

(p—q)(p+q—1)=21999.

Note that 1999 is a prime number and that p—q < p+gq— lforp.geN.
e have the following two cases:

L p—g=1and p+q—1=3998. Hence p= 2000 and g = 1999.

2. p~g=2and p+q—1=1999. Hence p = 1001 and g = 999.




38 3. Solutions to Introductory Problem

Therefore (p. q) = (2000, 1999) or (1001, 999).

Problem 17 [China 1983]
Let f be a function defined on [0, 1] such that

£(0) = £(1) = 1 and [(a) = £(b)| < |a— b,

for all a # b in the interval [0, 1].
Prove that

N —

[f(a) = f(b)| <

Solution 17

We consider the following cases.
1. |a—b| £1/2. Then |f(a) - f(b)| < |a - bl < % as desired.

2. [a—b] > 1/2. By symmetry, we may assume that @ > 5. Then

[f(a) =) = |f(a)= f(1)+ £(0) - f(b)|
< [f(@) = F)[+[£(0) = f(b)]
< la-1/+0-1]
= l—a+b-0
= 1-(a-b)

1
< 5'
as desired.

Problem 18
Find all pairs of integers (z,y) such that

2’ +y’ = (z+y)%

Solution 18

Since z° +y% = (z+y)(2% ~ 2y +y?), all pairs of integers (n,—n),n € Z.
are solutions.

Suppose that  +y # 0. Then the equation becomes
x2—$y+y2 =z +y,

ie.

mz—(y+1)$+y2—-y=0.

9
utions to Introductory Problems 3

3. Sol

ted as a quadratic equation in x, we calculate the discriminant
Treaté

A=y +2+1-4y+4y=-3y>+6y+ 1.

A > 0 yields
3-2V3 3+2V3

3 <y< 3

Thus the possible values for y are 0, 1, and 2, which lead to the solutions
(1,0), (0,1), (1,2), (2:1), and (2,2), .
Therefore, the integer solutions of the equation are (z,y) = (1,0), (0, 1),
1,2), (2, 1), (2,2), and (n, —n). for all n € Z.

yen !

Solving for

Problem 19 [Korean Mathematics Competition 2001]

Let 2
f@) =57

for real numbers z. Evaluate

1 2\, (2000>
f (——2001> / (2001> 2001
Solution 19

Note that f has a half-turn symmetry about point (1/2, 1/2). Indeed,

2 2-4* 4
f(l_x)=41—r+2=4+2-41—4I+2’

from which it follows that f(z) + f(1—2)=1.
Thus the desired sum is equal to 1000.

Problem 20
Prove that for n > 6 the equation

has integer solutions.

Solution 20
Note that
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from which it follows that if (x4, z,, - - yTn) = (a1.02, -+, a,) is an inte.
ger solution to
] ! + L _ 1
22 7 13 2
then
(xla Loy, Tn—1,ZIn, Tnt1- Tn+2, $n+3)
= (al 02,y An—1, 20n, 20y, 20, 2an. )
is an integer solution to
1 1 1
Sttt =—=1
Iy x Tn+s

Therefore we can construct the solutions inductively if there are solutiong
forn = 6,7, and 8.

Since 71 = 1 is a solution for n = 1, (2,2,2,2) is a solution for n = 4,
and (2,2.2,4,4.4,4) is a solution for n = 7.

It is easy to check that (2,2,2,3,3,6) and (2,2.2.3,4,4,12,12) are solu-
tions for n = 6 and n = 8, respectively. This completes the proof.

Problem 21 [AIME 1988]
Find all pairs of integers (a,b) such that the polynomial

azt’ +bz'® + 1
is divisible by z? — z — 1.

Solution 21, Alternative 1

Let p and ¢ be the roots of 22 — 2z — 1 = 0. By Vieta’s theorem,
p+ g =1and pg = —1. Note that p and g must also be the roots of
az'” 4+ bz'® 4+ 1 = 0. Thus

ap?” +bp'® = —1 and aq’” + bg'® = —1.

Multiplying the first of these equations by ¢'®, the second one by p*®,
and using the fact that pg = —1, we find

ap+b= —q16 and ag + b = —p!'S, (1)
Thus

0=——— ="+ )" + g + ) (p+q).
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3. Solution

Since
p+q L,
P+ = (p+q’-2p=1+2=3,
ptegt = P+ -2 =9-2=T7
P+e® = '+ -2 =49-2=47,

it follows that a =1~ 3.7 .47 = 987.
Likewise, eliminating a in (1) gives

; p17_q17
- p-q

p16+p15q+p14q2+m+q16 .
(0'® + q'%) + pg(p** + ¢**) + P’ (" + %)

8
44970+ ) + P 2
= P+ -+ - )L

For n > 1, let ko = p?* 4+ ¢*>™. Then ky = 3 and k4 =7, and

kones = prHt+gn . .
= @+ PP+ ) - PP )
= 3k2n+2 - an

for n > 3. Then ks = 18, kg = 47, k1o = 123, k12 = 322, k14 = 843,
ke = 2207.
Hence

—b= 2207 — 843 +322 — 123 + 47— 18 +7 - 3+ 1 = 1597

or
(a,b) = (987, —1597).

Solution 21, Alternative 2
The other factor is of degree 15 and we write

17 | p16
(c152'° — cpaz™ + - +azr —co)(z? —z— 1) =ax + bz + 1.

Comparing coefficients:

20 co=1.

2t cg—c1=0,c0=1

2?2 —cg—c1+ca=0.c0=2,
andfor 3< k<15, oF: —cko—ck—1+cx =0
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——&ms

It follows that for k < 15, ¢4 = F4; (the Fibonacci number).

ThUS a = Ci5 = FIG = 087 and b = —Cl14 — C15 = -—F17 = —1597 or
(a,b) = (987, —1597).

Comment: Combining the two methods. we obtain some interesting
facts about sequences k,,, and Fon_1. Since

3Fon+3 = Fonys = 2Fopi3 — Fongg = Fopyg — Fonya = Foptq,

it follows that Fh,_; and ko, satisfy the same recursive relation. It is
easy to check that ky = Fy + F3 and ky = Iy + Fs.

Therefore kop, = Fop_q + Font1 and

Fongr =Ko = kon—o 4 kon_g — - + (=1)" Tk, + (=1

Problem 22 [AIME 1994]

Given a positive integer n, let p(n) be the product of the non-zero digits

of n. (If n has only one digit, then p(n) is equal to that digit.) Let
§=p(1) +p(2) + - + p(999).

What is the largest prime factor of S?

Solution 22

Consider each positive integer less than 1000 to be a three-digit number
by prefixing Os to numbers with fewer than three digits. The sum of the
products of the digits of all such positive numbers is

(00:0+0-0-1+--49.9.9)=0.0.0
=0+1+---+9)°-0.

However, p(n) is the product of non-zero digits of n. The sum of these
products can be found by replacing 0 by 1 in the above expression, since
ignoring 0’s is equivalent to thinking of them as 1’s in the products. (Note
that the final 0 in the above expression becomes a 1 and compensates
for the contribution of 000 after it is changed to 111.)

Hence
S=46>—1= (46— 1)(462 + 46+ 1) = 33.5.7. 103,

and the largest prime factor is 103.
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3, Solut

[Putnam 1979]

m 23
proble nce of nonzero real numbers such that

Let Tn be a seque
Tp—2Tn-1

T, = ———

" 2$n-—2 — Tp-1

=3,4,...
iy nblish’ n’ecessary and sufficient conditions on x; and z, for z, to be
aE:t;lteger for infinitely many values of n.
Solution 23, Alternative 1
We have 1 2Tpn_0 — Tp—1 _ 2 B 1 .
-x_n Tn—2Tn-1 Tn-1 Tn-2

— Yn—1 = Yn—1 — Yn—2. 1., Yn is an arithmetic
e -

= 1/x,. Then yn 2, o
:guye;ce {f ;n is a nonzero integer when n is in an infinite set S, the

isfy -1 <y, < 1.

s for n € S satisfy =1 < yn < |
g'i‘nce an arithmetic sequence is unbounded unless the common difference
50, Yn = Yn-1 =0 for all n, which in turn implies that z;, =z, = m, a

1IN -
nonzero integer.
Clearly, this condition is also sufficient.

Solution 23, Alternative 2
An easy induction shows that

T1Xo T1T2

(n—1Dx, — (n—2)zz (a1 —22)n + (202 — z1)’

Iy =

forn=34,.... _
In this form we see that z,, will be an integer for .mﬁmtely many values
of n if and only if z; = x, = m for some nonzero integer m.

Problem 24
Solve the equation

2 —-3r=vVr+2

Solution 24, Alternative 1
It is clear that + > —2. We consider the following cases.

L -2<zr<a2. Setting z = 2cosa, 0 < a <, the equation becomes

8cos® a — 6cosa = v/2(cosa + 1).

or

/ a
2cos3a = /4 cos? 7
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T

from which it follows that cos3a = cos g.

Then 3a - § =2mm, m € 7, orda+ § =2nm, ne€Z

Since 0 < a < 7, the solution in this case is

T =2cos0 =2, x=2cos4§, andm=2cos4—7r.

2. 2> 2. Then 2* - 47 = z(z? —4) > 0 and

xg—x—2=(.p—2)(m+1) >0
or
z>Vr+2.
It follows that

173—3x>x>\/x+2.

Hence there are no solutions in this case.

Therefore, £ = 2, z = 2 cos 47 /5, and © = 2 cos /7.
Solution 24, Alternative 2
For z > 2, there is a real number ¢ > 1 such that
1
_ 42
r=tF ZE

The equation becomes

2, 1Y 2 1 , 1
t+t_2 —31+t—2 = t+t—2+2.

le.

(t7 - 1)(t5 - 1) = 07
which has no solutions for ¢ > 1.
Hence there are no solutions for z > 2.

For —2 <z < 2, please see the first solution.
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IME 1992]

blem 25 [A

Proany sequence of real numbers A = {a1,a2.as,- -}, define AA to be
fl?; sequence {a2 — 01,03 —@2.04 — a3, - -+

Suppose that all of the terms of the sequence A(AA) are 1, and that
up

a9 =092 =
Find a1

Solution 25 '
Suppose that the first term of the sequence AA is d.

Then AA={dd+1.d+2....}

with the nth term given by d + (n — 1).
Hence

A={a,a+da+d+(d+1).a1+d+(d+1) +(d+2)....}
with the nth term given by
1
an=a;+(n-1)d+ E(n - 1){n-2).

This shows that a, is a quadratic polynomial in n with leading coeflicient
1/2.
Since a19 = age = 0. we must have

an = l(n - 19)(n = 92),
2
soa; = (1-19)(1 - 92)/2 = 819.

Problem 26 [Korean Mathematics Competition 2000]

Find all real numbers z satisfying the equation
27 43 4+ 67 -9 = 1.
Solution 26
Setting 27 = g and 37 = b, the equation becomes
1+a2+b—a-b—ab=0.

Mlﬂtiplying both sides of the last equation by 2 and completing the
S$quares gives

(1-a)?+(a—b%+(b-1)7%=0.
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Therefore 1 = 27 = 37, and z = 0 is the only solution. e 35 solutions altogether: (0,33), (1,32), -+, (33,0), and

Hence there ar

Problem 27 [China 1992] (-33,~3%)
roblem ina
Prove that 50 Comment: More generally, we have
. 3 4 p% + ¢ — 3ab
16<Zﬁ<17. a+1b+c abe 2 2 2
. =§(a+b+c)[(a—b) +(b—c)’+ (c—a)’]
Solution 27
Note that . ‘s
Mathematics Competition 2001]
2 (vk +1- ﬁ) -2 < i Problem 29 [Korearf . . b3 < 4 and
VE+T+VE Vi Let a,b, and ¢ be positive real numbers such that a + b6+ ¢ < 4 2
Therefore . w0 ab+be+ca >4 l
t two of the inequalities
> % >2%° <\/k Ii- \/1?) = 16. Prove that at least tw:
k=1 k=1

la—bl <2, [b—c/<2, [c—al<2
which proves the lower bound.

On the other hand, are true.
2 1 Solution 29
2 (VE-VETT) = 2 s L %
4 — 2 We have |
VE+VE=T T Vi (a+b+0)? <16,
Therefore ]
ie.
L & : 0% + b2 + ¢ + 2(ab + be + ca) < 16, }
Z—<1+22<\/_~—\/k~1>=2\/8—0—1<17. 4
k=1 vk k=2 Le. 9 |
a2 + b2 +c S 87
which proves the upper bound. Our proof is complete. ) |
ie |
Problem 28 [AHSME 1999] a® + b7+ ¢* — (ab+bc+ca) < 4, |
Determine the number of ordered pairs of integers (m.n) for which mn > ie. ) |
0 and (a—b)2+(b—c)+(c—0a) <8,

3, .3 803
m” +n” 4+ 99mn = 33°. and the desired result follows.

Solution 28

Problem 30
Note that (m 4+ n)® =m® +n% + 3mn(m +n). If m + n = 33. then

Evaluate

i 1
3 _ 3 3 4 3 _ .3, .3 - .
337 =(m+n)° =m’+n’ + 3Imn(m +n) = m> + n® + 99mn e

b
1l
o

Hence m +n — 33 is a factor of m3 + n3 + 99mn — 333, We have

m® +n? + 99mn — 33°
= (m+n—33)(m* + n? -~ mn + 33m + 33n + 33%)

= %(m +n=33)[(m—n)’+ (m+33)%* + (n+ 33)7.
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Solution 30
Let S, denote the desired sum. Then

1 < (2n)!

Sy =

o
3}——*
| —
—
[\W]
e
3
+
TN
s 3
N—
| S |

Problem 31 [Romania 1983]
Let 0 < a < 1. Solve

for positive numbers z.

Solution 31

Taking log, yields
a®log, r = 2%

Consider functions from Rt — R,
f(z) = a”,

Then both f and g are decreasing and A is increasing. It follows that
f(z)g(x) = h(z) has unique solution z = a.

g(z) =log,z, h(z)=2°

Problem 32
What is the coefficient of z2 when

(I1+2)(1+22)(1 +42)--- (1 4+ 2"2)

is expanded?

to Introductory Problems 49
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golution 32

Let )
f (z)=an_0+an‘1x+--',+an'nx” =(1+2)(1+2z) - (1+2%2).
n

It is easy to see that a,0 = 1 and
n1 =142+ - +27 =21

Since
fol@) = fama(o)(1+272)
= (142" =Dz +ap-102° +--) (1+2")
= ]_*_(2n+1_1)‘,L._+_(0171_1'2__|_22'n,_2n>x2+”‘7
we have
n2 = Qn-12+ 22n _om
= Qnogo +2°"T2 o7l 0% on
= ap+ (2 20+ 427 - (224274 4 27)
4/02n—2 _
22n+2 _ g, gn+l +9 (2n+1 _ 1) (2n+1 _ 2)
= 3 — 3 .
Problem 33

Let m and n be distinct positive integers.

Find the maximum value of |z™ — z™|, where z is a real number in the
interval (0, 1).

Solution 33

By Symmetry, we can assume that m > n. Let y = 2™ ™",
Since0<x<1, ™ < " and 0 < y < 1. Thus

1
|xm _ In| =" — ™ = In(l _ xm—n) — (yn(l _ y)m—n) m—n

Applying the AM-GM inequality yields

(7) (#5) 0o

( n > <n tm=n)y +<m—n><1—y>>”+’”'”

y"(]_ - y)m—n

IA

m—-n n+m-n

n™(m —n)"""

mm
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Therefore
nn 2 )m—n F-Ln nn #—7
nm_xwg<_ﬁL_i__> :@n_m<__>
mm mm
Equality holds if and only if
(m—n)y 1oy

or
n m—n
T={— :
m
Comment: For m =n + 1, we have

:L,n _ :L.n+l < J_
~ (n41)nr?

for real numbers 0 < = < 1. Equality holds if and only if z = n/(n+1).

Problem 34
Prove that the polynomial
(z—a))(r—a) - (z-an) -1,

where ay,aq,- -, a, are distinct integers, cannot be written as the prod-
uct of two non-constant polynomials with integer coefficients, i.e., it is
irreducible.

Solution 34
For the sake of contradiction, suppose that

fl@)=(z-a)(z—ax) (z—ay) - 1

is not irreducible. Let f(z) = p(x)q(z) such that p(z) and ¢(z) are two
polynomials with integral coefficients having degree less than n. Then

g9(z) = p(z) + ¢(x)

is a polynomial with integral coefficients having degree less than n.
Since

plai)q(a;) = f(a;) = ~1
and both p(a;) and g(a;) are integers,

Ip(a:)] = |g(as)| =1
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and plas) + glas) = 0

Thus g(z) has at least n roots. But degg < n, so g(z) = 0. Then
p(z)=—q(z) and  f(z)=—p(2)".

which implies that the leading coefficient of f(z) must be a negative

integer which is impossible, since the leading coefficient of f(z) is 1.

Problem 35 '
Find all ordered pairs of real numbers (z,y) for which:
Q1+)(1+2)1+2h) = 1+9
and (1+9)1+¢)(1+yYH) = 1+2".

Solution 35
We consider the following cases.

1. zy = 0. Then it is clear that ¢ = y = 0 and (z,y) = (0,0) is a
solution.

2. zy < 0. By the symmetry, we can assume that z > 0 > y. T'hen
(1+2)(1+2%)(1+2z*) >1and 1+ < 1. There are no solutions

in this case.

3. z,y > 0 and z # y. By the symmetry, we can assume that z >
y > 0. Then

Q+)(1+)1+2H)>1+2" > 1+,
showing that there are no solutions in this case.

4. z,y < 0 and z # y. By the symmetry, we can assume that z < y <
0. Multiplying by 1 —z and 1 —y the first and the second equation,
respectively, the system now reads

1-28 = (1+yN(1-a)=1-z+y —ay
1-y®* = (1+2N)(1-y)=1-y+z -2y
Subtracting the first equation from the second yields
2~y = (z—y) + (27 —y7) — 2y(2® - %), M

Sincer < y< 0,28 -y >0, 20—y <0,2"—y" <0, —zy <0, apd
2%~ 48 >0, Therefore, the left-hand side of (1) is positive while
the right-hand side of (1) is negative.

Thus there are no solutions in this case.
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5. z = y. Then solving
1—x8=1—x+'y7—xy7=1—x+x7-—x8
leads to z = 0,1, -1, which implies that (z.y) = (0.0) or (=1,-1),

Therefore, (z,y) = (0,0) and (=1,-1) are the only solutions to the
system.

Problem 36
Solve the equation

2027 — 1)2% 4+ (2% — 2)z = 251 _
for real numbers z.

Solution 36

Rearranging terms by powers of 2 yields
27 + 27 (22 — 1) — 2?4 2 — 1) = 0. (1)
Setting y = 22 — 1 and dividing by 2 on the both sides, (1) becomes
2 4+2% —(z+y) =0
or
T(2¥ - 1)+ y(2* - 1) =0. (2)

Since f(z) = 2% — 1 and « always have the same sign,
z(2¥-1)-y(2*-1) > 0.

Hence if the terms on the left-hand side of (2) are nonzero, they must

have the same sign, which in turn implies that their sum is not equal to
0.

Therefore (2) is true if and only if z = 0 or y = 0, which leads to solutions
z=-1,0,and 1.
Problem 37

Let @ be an irrational number and let n be an integer greater than 1.

Prove that
1

(a—{—\/az—l)‘k—F(a—\/a?—l)"

is an irrational number.
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golution 37
Let

1 L
N=<a+\/(}2——1)"+<a— az—l)"v
and let b= (a+ \/(1—2——1)%'

Then N = b+1 /b. For the sake of contradiction. assume that N is
rational. Then by using the identity

1 1 m— 1
bm+1+bml+1 = <b+5> (bm+b_m> — (b 1+an—_—1>

repeatedly for m = 1,2,..., we obtain that b™ + 1/b™ is rational for all
meN.
In particular,

b"+bin=a+\/a2—1+a—\/a2—1=2a

is rational, in contradiction with the hypothesis.
Therefore our assumption is wrong and N is irrational.

Problem 38
Solve the system of equations

2

T1— Ty +T3)° = T4+ Ts— T2

(V]

Ty — X3+ T4 = x3{r5+T1 — T3

( )
( )
(3 — x4 + x5)
( )
( )

S
|

T4 — x5+ 31)° = z5(T0+ 23— 5

2 =

( )
( )
T4(T1 + T2 — T4)
( )
( )

T5 — 21 + o T1(T3+ x4 — 21

for real numbers X1, Ta, T3, T4, Ts.
Solution 38
Let o, = Zr. Adding the five equations gives

5 5
2
2(31% - 41‘k-73k+1 + 21‘k1'k+2) = Z(—Z‘k + kaxk+2).
k=1 k=1

It follows that

5
E(xi — TpTp+1) = 0.

k=1

4
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Multiplying both sides by 2 and completing the squares yields

5
> @k — zk41)? =0,

k=1
from which #; = z5 = 23 = 4 = z5. Therefore the solutions to the
system are
(z1,72,73,74,25) = (a,0.0.0,0a)

for a € R.

Problem 39

Let z.y, and z be complex numbers such that THy+z=2 22+’ 422 =
3, and ryz = 4.

Evaluate
1 1 1

a:y+z—1+yz+a:—-1+zx+y—1'

Solution 39
Let S be the desired value. Note that

rYyt+z-l=zy+l-c—-y=(x-1)(y-1).

Likewise,
yz+z—-1=(y—-1)(z-1)
and
zety—1=(z2-1)(z -1).
Hence
1 1 1
S =
G-Du-D G-DE-1)  G-De=1
_ T+y+z-3 _ -1
(z-Dy-D(-1)  (z-1)(y-1)(z~1)
_ -1
B ryz—(zy+yz+z2z)+r4+y+2—1
_ -1
T 5—(xy+yz+zz)
But

ey +yz+zz)=(z+y+2)2 - (m2+y2+22)=1.
Therefore S = —2/9.

tions to Introductory Problems 55

3. 50Iu

problem 40 [USSR 1990]

going to pick three non-zero real numbers and Mr. Taf is go'ing
the three numbers as the coefficients of a quadratic equation

Mr. Fat is

to arrange
i+ _z+_=0

Mr. Fat wins the game if and only if the resulting equation has two ‘

distinct rational solutions. ‘

Who has a winning strategy?

Solution 40 N | j

Mr. Fat has the winning strategy. A set of three distinct rational nonzero {
!

= ill do the trick. Let A, B,
mbers a,b. and ¢, such that a +b+c= 0, wi ,
::lld C be any arrangement of a,b, and ¢, and let f(z) = Az? + Bz + C.

Then
f(=A+B+C=a+b+c=0,

which implies that 1 is a solution.
Since the product of the two solutions is C/A, the other solution is C/A,
and it is different from 1.

Problem 41 [USAMO 1978]
Given that the real numbers a,b,c,d, and e satisfy simultaneously the
relations

a+b+c+d+e=8anda’+b +c?+d*+e =16,

determine the maximum and the minimum value of a.

Solution 41, Alternative 1 |

Since the total of b.c.d. and e is 8 — a, their average is = (8 — a)/4.
Let

b=z+b, c=x+c, d=z+d, e=z+er

Then b]_ +C1+d1+61 =0 and

(8-a)°
6=0?+42 + 02+ 2+ di+ef 2’ +4’ =a + —— (1)

or
0 > 5a° — 16a = a(5a — 16).

Therefore 0 < ¢ < 16/5, where a = 0 if and only if b=c=d = ¢ =2
d a = 16/5 if and only if b=c=d =¢ = 6/5.
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Solution 41, Alternative 2
By the RMS-AM inequality, (1) follows from

PP rd o> (b+c+d+ e)2= (8 —a)?
- 4 4 k

and the rest of the solution is the same.

Problem 42
Find the real zeros of the polynomial

Pa(z) = (2> +1)(z - 1)? — az™
where a is a given real number.

Solution 42
We have

(x> + 1)(2® = 22 + 1) — az? = 0.
Dividing by z? yields

o8] fmae ) ome

By setting y = z 4+ 1/z, the last equation becomes
y>—2y—a=0.

It follows that

x+%=1:t\/1+a,

which in turn implies that, if @ > 0, then the polynomial P,(z) has the
real zeros

_1+VTFa+Va+2/T+a-2
= 5 .
In addition, if a > 8, then P,(z) also has the real zeros

_1-vVi4+atva-2y/TFa-2

T2

Z3,.4

Problem 43
Prove that

for all positive integers n.

57
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s°1ution 43
We prove a stronger statement:

'2n—1< 1

1 3
32 on S Enil

We use induction.
= 1, the result is evident.

n c L
go;pose the statement is true for some positive integer k, l.e.,
Ul
1 3 2k-1 < 1
2°4 2% V-1
Then 1 3 2%-1 2k+1 1 2k + 1

= : < : :
2°4 T2k 2%k+2  VBE+1 2k+2
In order for the induction step to pass it suffices to prove that

1 2k+1 1
V3kE+1 2k+2  3k+4

This reduces to

2% +1\°  3k+1
<2k+2 3k +4’

ie.
(4k2 + 4k + 1)(3k +4) < (4k* + 8k +4)(3k + 1),

ie.
0<k,

which is evident. Our proof is complete.

Comment: By using Stirling numbers, the upper bound can be im-
Proved to 1/,/mn for sufficiently large n.

Problem 44 [USAMO Proposal, Gerald Heuer]
Let

P(z) = apz™ + 012"+ +an

be a nonzero polynomial with integer coefficients such that

for Some integers r and s, with 0 <7 <s.
Prove that a, < —s for some k.
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Solution 44
Write P(z) = (z — s)z°Q(x) and

Qz) =box™ +b1a™ 14 . 4p,

where b,, # 0. Since Q has a positive root, by Descartes’ rule of signg,
either there must exist some £ for which b, > 0 > bry1, or by, > 0.

If there exists a % for which be > 0 > bry1, then

Gk+1 = =8 + bty < —s.

If by, > 0, then a,, = —$by < —s.

In either case, there is a k& such that q; < —8, as desired.

Problem 45

Let m be a given real number. Find all complex numbers z such that
2 2
el + (=) = m?+m
z+1 z~1 '
Solution 45

Completing the square gives

2 2
Z +—=) = 2 +m? +m
z+1 z-1 2 -1 ’

i.e.

2?2 2__ 272 +m?em
#oi) Spoptmiem

Setting y = 22%/(z2 ~ 1), the above equation becomes

Y2 —y— (m2+m) =0,

ie.
(y=m—-1D(y+m)=0.
Thus
2x? _ 22 _ .
Zo1= morxz_l-m+,

which leads to solutions

m m+1
=4 /" —92; =4/ i .
x +21fm# 2andz =4 m_llfm;él

Solutions to Introductory Problems
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Problem 46
The

sequence given by o = a, 1 = b, and

1 1
xn+1:§ xn_1+z

is periodfC.
Prove that ab = 1.

tion 46 , L
;OI;:iplying by 2z, on both sides of the given recursive relation yields
u J

2TpTpi1 = Tn_1Tp + 1

o 2zpTp+1 — 1) = Tpo1Tq — 1.

Let ¥, = Tn—1Tn — 1 for n € N. Since yn41 = yn/Q, {‘yn} isa geometglc
sequerrllce. If z, is periodic. then so is y,, which implies that y, =0 for
all n € N. Therefore

ab=rzom1 =gy +1=1

Problem 47
Let a,b, c, and d be real numbers such that

(a® + 0> = 1)(? +d? = 1) > (ac+ bd — 1)%.

Prove that P
a?+b2> land 2 +d% > 1.

Solution 47

24 52 2 g2
For the sake of the contradiction, suppose that c;ne of a 2—}~ b b;)r cl + dd
i8 less than or equal to 1. Since (ac+ bd — 1) 22 0,2(1 + T dzan
¢ +d? - 1 must have the same sign. Thus both a“ 4+ b¢ and ¢* + d* are
less than 1. Let

r=1-a’>-blandy=1-c*>-d%

Then o < 5. ¥ < 1. Multiplying by 4 on both sides of the given inequality
Bives -

dzy > (2ac+2bd — 2)% = (2 — 2ac — 2bd)?
= (a®?+b02+z++d*+y— 2ac— 2bd)?
= [(a=c)?+(b-d)?*+z+y?
> (z47y)t =22+ 22y + 92,
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—-= .
or 0> 22 — 2zy + y? = (x — y)2, which is impossible.

golution 49, Alternative 1
Thus our assumption is wrong and both a2 + b2 and ¢2 + d2 are greatep

1.2....,n, let a; =1 -2, Let

For i =
than 1. P(1-1) _ (1=z)" -1
Q)= ——— = ——~—
Problem 48
Find all complex numbers 2 such that Then

(3z + 1)(42 + 1)(62 + 1)(122 + ) =2

Solution 48 and a;s are the nonzero roots of the polynomial Q(2), as
n

| <]_aw)n_1_l‘?—1:
o Q(a‘i) = a; 11— x; 0.
8(32 + 1)6(42 + 1)4(62 + 1)2(12z + 1) = 768, Thus the desired sum is the sum of the reciprocals of the roots of poly-
- nomial Q(z), that is,

(242 + 8)(24z + 6)(242 + 4)(242 + 2) = 768,

+o T
Setting u = 24z + 5 and w = u? yields l—z1 1-m Tn-1
1 1 1
(u+3)(u+ 1)(u - 1)(u - 3) = 768, R

ie. (203 " *Qp + 0103 Qp + '+ 0102 " Gn-1

(u? - 1)(u? - 9) = 768, = 103 - an
ie. By the Vieta’s Theorem, the ratio between

2 _

w* — 10w — 759 = 0, S=ay -an+aiaz-- an+-+0a102 an_1

ie

(w - 33)(w +23) = 0. and

P=ay--ay
Therefore the solutions to the given equation are

is equal to the additive inverse of the ratio between the coefficient of z

+V/33 -5 +/735 — 5 and the constant term in Q(z), i.e., the desired value is equal to
Z=————and z="“Z""_ °
24 24 n
S 2) _n-— 1
Problem 49 P _ (”) 2
Let x1, 29, ,2,_,, be the zeros different from 1 of the polynomial 1
Plzy=2"-1,n>2, as desired.
Prove that Solution 49, Alternative 2
R L __n-1 For any polynomial R(z) of degree n—1, whose zeros are 1. 7a.. .- Zn-1.
-z 1-m 1~ zny 2 the following identity holds:
1 R(z)
1o, 1 . oy

T—T; T —Ig -z R(z)
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For n
R(z) = xx T =z"! +2" 41,
R(1) =n and
’ TL(’I’L—' 1)
R(l)z(n—1)+(n—2)+-'+l= 5
It follows that,
1 + 1 M 1 _R(Q1) n-1
l—z;  1-1, l—z,y  RO) ~ "2
Problem 50
Let a and b be given real numbers,
Solve the system of equations
T—yy/x?—y?
V1—1a?2 442
Yy—z\/2% -2
Ve
for real numbers z and y.
Solution 50
Let U=z+yand v=2zx—y Then
O<x2—y2=uv<1, T = u+v’ andy:u_v

Adding the two equations and subtracting the two equations in the orig-

inal system yields the new system
U—uvur = (a+b)VI-—up
v+ ovur = (a=b)VI=uv.
Multiplying the above two equations yields
uv(l — uv) = (q? — b?)(1 - uv).
hence uv = a2 ~ b2, Tt follows that
" (a+b)\/mand po = VI—a7 152
1 - Va2 =92 L+va? = p2

which in turn implies that

(o) = (a +0Va? 28 bya/aT o bQ)

VI 0 Vo,

whenever 0 < g2 — p2 < |

k

<
L
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/

problem 51
Evaluate

2000 + 2000 + 2000 T 2000
2 5 8 2000,
Solution 51

Let 2000

fla)=(1+ Y2000 = Z <2012)0> s

k=0
Letw=(—-1+ V3i)/2. Then w® =1 and w? +w+1=0. Hence

3 2000 + 2000 R 2000
2 5 2000
= f(1) + wf(w) + P fw?)
____22000+w(1+w)2000 +w2(1+w2)2000 i‘
=22000+w(_w2)2000+w2(_w)2000 1

:22000+w2 +w ___22000 - 1.

Thus the desired value is
22000 -1

3

Problem 52
Let z,y, z be positive real numbers such that +yt+2i =1
Determine with proof the minimum value of
3 3 53
1—x8 * 1—y8+1—28'

Solution 52
For 0 < u < 1, let f(u) = u(1 —u®). Let A be a positive real number.
By the AM-GM inequality,

9

{Aus + 89(1 - us)} |

A(f(w) = Aub(1—u®) - (1-u®) <
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Setting A = 8 in the above inequality yields

or g
f(u) S 4 39 *
It follows that
73 P 43 r y 44
1—x8+1—y8+1—28 - x(l—x8)+y(1—y8)+z(1—zs)
S (z* +y* + 2*)V/3°
- 8
93
= =5
with equality if and only if
Tmy=z=
y 7

Comment: This is a simple application of the result of problem 33 in
the previous chapter.

Problem 53 [Romania 1990]
Find all real solutions to the equation

27 + 3% 4+ 6% = 2°.

Solution 53

For z < 0, the function f(z) = 27 + 37 + 67 — 22 ig increasing, so the
equation f(zr) = 0 has the unique solution z = —1.

Assume that there is a solution s > 0. Then
52=23+35+6523,

s0 s > /3, and hence ls] > 1.
But then s > |s] yields

222l =+l >4 5] >
which in turn implies that

6° > 4° = (2°)? > %

67
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S0 2+ 35 + 65 > s2, a contradiction.

The refore © = —1 is the only solution to the equation.

problem 54
Let {an}n>1 be a sequence such that a; = 2 and
an 1
an+1 = ? + E;‘
forall n € N.
Find an explicit formula for an.
Solution 54
Solving the equation o
r= =+ -
2 =z

leads to = = +v/2. Note that

2
an+1+\/-2-_a72l+2\/-2-01n+2= Uln+\/-2->
an+1—\/2-_a%_2‘/2-a"+2 an = V2

Therefore,

an +V2 _ (a1 +V2 ZH_ >
ani—\/;=<a1t\/2_> = (V2+1)

and

Va[(vE+1)" +1]
(vV2+1)" -1

an =

Problem 55
Let z, y, and 2 be positive real numbers. Prove that
x + Y
z+/@z+y)+2) y+/y+2)y+2)

z
24+ (z+2)(2+Yy)

+

Solution 55
Note that

V@ + )z + 2) > /7Y + V2.

IN
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In fact, squaring both sides of the above inequality vields

x2+y222x\/y_,

which is evident by the AM-GM inequality. Thus

T < T _ NG .
zr/(z+y)le+2) T THVI+VIZ VT+ i+ Vz

Likewise,

Y < \/@- .
y+Vly+2)y+e) T VEH T+ VE

and
z vz
2+ /(2 +7)(2+y) : VT i+ Vz

Adding the last three inequalities leads to the desired result.

Problem 56

Find, with proof, all nonzero polynomials f(z) such that

F) + () f(z+ 1) =0,

Solution 56

Let f(2) = az™(z — 1)"g(z), where m and n are non-negative integers
and

9(z) =(z—z1)(z — 22) -+ (2 = ),
zi#0and z; #1, for t=1,2,..., k. The given condition becomes
az”™(z = D)™z + )22 = 21)(22 — 2) -+ (2% = )
=—a?2" o+ D)™ (2 = DMz - 21)(2 = 22) - (2 — 25)
(z+1—=21)(2+ l—2z0) (z+1—-2).

Thus a = —a?, and f is nonzero, so a = —1. Since z, #1,1-2, #0.
Then 22™ = 2™+ that is, m = n.

Thus f is of the form
—2"(z = 1)"g(z2).

Dividing by 22™(2 — 1)*(z 4 1)", the last equation becomes

9(2%) = g(z)g(z + 1).

i Problems 69
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We claim that g(2) = 1. Suppose not; then clearly g must have at least
one complex root 7 # 0. Now

g(r?) = g(r)g(r +1) =0,

gtr®) = 0,

gr®) = 0.
and SO on.
Since g cannot have infinitely many roots. all its roots must have absolute
value L.
Now,

gf(r = 1)?) = g(r - L)g(r) =0,
sol(r—1)° =1
Clearly, if

rl=lr =% =1,

then

1+v3i 1-3i
7‘6 2 ] 2 ‘

2,
But 2 is also a root of g, so the same should be true of r=:

, 1+ VBi 1-VEi
T E 2 ) 2 *

This is absurd. Hence, g cannot have any roots, and g(z) = 1.

Therefore, the f(z) are all the polynomials of the form —2M(z—1)™ for
meN,

Problem 57

Let f : N — N be a function such that f(n+1) > f(n) and f(f(n))=3n
for all n.

Evaluate f(2001).

Solution 57, Alternative 1
We prove the following lemma.

Lemma Forn=0,1.2,...,
1. f(3")=2-3" and

2. f(2 . 3n) — 3n+1_
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Proof  We use induction.

For n =0, note that f(1) # 1, otherwise 3 = f(f(1)) = f(1) =1, which
is impossible. Since f : N - N, f(1) > 1. Since f(n+ 1) > fn),
J is increasing. Thus 1 < f(1) < f(f(1)) = 3 or f(1) = 2. Hence
f@)=f(f1) =3

Suppose that for some positive integer n > 1,
f(3")=2.3"and f (2 3") =3t

Then,
J3) = (f(2-37) =237,
and
F2 3 = [ (F3™Y) = 372,
as desired. This completes the induction. ]

There are 3" — 1 integers m such that 3" < m < 2- 3" and there are
3™ — 1 integers m/ such that

f(3)=2-3"<m' <31 = f(2.3"),
Since f is an increasing function,
FB"+m)=2 3"+m,
for 0 £ m < 3. Therefore
f2:3"+m)=f(f(3"+m))=3(3"+m)
for 0 < m < 3™, Hence
f(2001) = f(2-3%+ 543) = 3(3° + 543) = 3816.

Solution 57, Alternative 2

For integer n, let T(3) = @102 - a¢ denote the base 3 representation of
n.

Using similar inductions as in the first solution, we can prove that

_J 20200 ifa =1,
f(n)(a)“{ lag---a,0 ifa; =2.

Since 20013y = 2202010, f(2001) 3y = 12020100 or

f(2001) =1-32+2.3Y4+2.3% +1.37 = 3816.

i d Problems
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problem 58 [China 1999]

]

t F be the set of all polynomials f(z) with integers coefficients such
t;at f(x) =1 has at least one integer root. .

each integer k > 1, find my, the least integer greater the.m.l for. vx;hlch

f}?ergre exists an f € F such that f(z) = my has exactly k distinct integer

roots.

Solution 58 N
suppose that fi € F satisfies the condition that fi(z) = my has exacﬁl};
ku(firs)tinct integer roots, and let a be an integer such that fr(a)=1. Le
gk be the polynomial in F* such that

gr(x) = fi(z +a)

for all x. . o
Now gi(0) = fx(a) = 1, so the constant term of g is 1. Now gkl(x) = my
has exactly k distinct integer roots 71,72, ..., Tk, SO We can write

(@) = me = (z =m)(@ =7r2) .. (& = k)3 (D),

where qi(x) is an integer polynomial. n }
Note that 717« -7x divides the constant term of gr(z) — My, whic
equals 1 — .

Since my > 1, 1 — my cannot be 0,

l]. - mkl _>_ l’l‘l'f‘g' . 'Tk|.
Now ry,7, - - -7 are distinct integers, and none of them is 0, so
parg- okl 2 10 (=1) -2+ (=2) - 3+ (=1)FHR/2]

hence
me > [k/2)0- [k/2]1+ L.

This value of my is attained by

)@ = D@+ Dz -2)(@+2)
o (z 4 (=DF[R/2]) + LR/200 [R/21 4 1.

9k(x)

m = [k/2)! [k/2]1 + 1.
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Problem 59
Let 1 = 2 and
Tp+l = fo —Zn+ 1,

for n> 1.
Prove that

LU U U IO

27770 T x Tn 27

Solution 59
Since z; = 2 and
Tpt+1 — 1 =zp,(z, — 1),
T, is increasing.
Then z, — 1 #0.

Hence

Tntt — 1 B xn(-rn—l) Tn—1 z,

or
1 1 1

Tn Tp—1 Xpp-—1'
which implies that

1 1 1 1
—t+—+ o+ — =1 — .
1 T2 Tn -rn+l—1

Thus it suffices to prove that, for n € N,

1 1 1
]——— <« 1— — 1-— ]
92n=1 P < 5
or .
22 < Tpyy — 1 <277, (1)

We use induction to prove (1).

Forn =1,z = 2} — 21 + 1 = 3 and (1) becomes 2 < 3 < 4, which is
true.

Now suppose that (1) is true for some positive integer n =k, i.e.,
27 <y — 1< 2, (2)
Then for n =k + 1, the lower bound of (1) follows from

k—1 k—1 k
Thta =1 = Tpp1(Tpy — 1) > 20 227 =92

73
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gince Tk+1 is an integer, the lower bound of (2) implies that
in

% and zper — 1< 2% — 1,
Tp+1 <27 and T4 <

from which it follows that

2k zk_ ) 2k+1'
tors — 1=z (menn = 1) €225 (27 1) <227

as desired.
This finishes the induction and we are done.

Problem 60 [Iran 1997]

Suppose that f : R — R* is a decreasing function such that for all
up :

I,y€R+7
fa+y)+ (@) + 1) = f(fa+ fW) + fly + fl@)).

Prove that f(f(x)) ==z.

Solution 60
Setting y = « gives

F(22) + f(2f (2)) = f(2f (@ + f(2)))-
Replacing = with f(z) yields
FEF@) + F2F(f(@) = Ff(f(x)+ [(f(@))).
Subtracting these two equations gives
FQF(f(@) - F22) = FRF(f(x) + f(f(2)))) = F2f(z + f(@))-
If f(f(x)) > z, the left hand side of this equation is negative, so
Ff(@) + F(f(@) > o+ f(2)

and
f@) + f(f(x)) <z + f(2),
a contradiction. A similar contradiction occurs if f(f (2)) < .

Thus f(f(z)) = = as desired.

1 inous
Comment: In the original formulation f was mgapt tc? be a cosi;s;)ry
function. The solution above shows that this condition is not ne .
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Problem 61 [Nordic Contest 1998]
Find all functions f : Q — Q such that

fle+y)+f(z~y) =2f(z) + 2f(y)
for all z,y € Q.
Solution 61
The only such functions are f(z) = kz? for rational k. Any such function
works, since

flz+y)+ flz—y) =kz+y)* +k(z - y)*

= ka® + 2kzy + ky? + kz? — 2kzy + ky?

= 2kx? + 2ky?

=2f(z) + 2f(y).

Now suppose f is any function satisfying

fle+y)+ flz-y) =2f(z) + 2/ (y).

Then letting 2 = y = 0 gives 2f(0) = 4f(0), so f(0) =0.

We will prove by induction that f(nz) = n?f(z) for any positive integer
n and any rational number z.

The claim holds for n = 0 and n = L let n > 2 and suppose the claim
holds for n — 1 and n — 2.

Then letting = (n — 1)z, y = 2 in the given equation we obtain
fn2)+ f((n=2)2) = f(n =Dz +2) + f((n - 1)z — 2)
=2f((n-1)2) + 2f(2)

S0

f(nz) = 2f((n - 1)2) + 2/(2) - f((n - 2)2)
=2(n = 1)f(2) + 2f(2) — (n - 2)*(2)
=(20° —4n+ 242 - n? +4n - 4)f(2)
=n’f(z)
and the claim holds by induction.
Letting z = 0 in the given equation gives

)+ f(=y) = 2f(0) + 2f (y) = 2f(y),

so f(—y) = f(y) for all rational y; thus f(nz) = n%f(2) for all integers
n.

4./5(-,|u_tiofns to Advanced Problems
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Now let k = f(1); then for any rational number z = p/q,
0

2 f(z) = fgz) = f(p) = P*f(1) = kp?

50 f(z) = kp?/q* = ka?.

Thus the functions f(z) = kz?, k € Q. are the only solutions.

problem 62 [Korean Mathematics Competition 2000]

Let 2 <a <1
Prove that the equation

Br+1)=(z+a)(2z+a)
has four distinct real solutions and find these solutions in explicit form.

Solution 62 o
Look at the given equation as a quadratic equation In a:

a® + 3za + 222 —2* —z* = 0.
The discriminant of this equation is

9z — 8z + 42° + 4a* = (z + 22%)°.

Thus |
-3z + (z + 227)
a=—"
2 "
The first choice ¢ = —x 42 yields the quadratic equation 22—z —a = 0. :
whose solutions are (1 4VTTT)
T = 5 .
The second choice a = —2z — 22 yields the quadratic equation
2 +2x+a=0,
|
Wwhose solutions are |
-1+v1-a.
The inequalities
1-v1+4a 14++V1+4a
~-l-vVl-a<-l+vl-a< 5 < 5

show that the four solutions are distinct.
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Indeed

-1+vVi—a< tz—m
reduces to

2vVl—-a<3—-+vV1+4a

which is equivalent to

6v1+4a < 6+ 8a,

or 3a < 4a?, which is evident.

Problem 63 [Tournament of Towns 1997]
Let a, b, and ¢ be positive real numbers such that abe = 1.

Prove that
1 1 1

< 1.
a+b+1+b+c+1+c+a+l .

Solution 63, Alternative 1

Setting £ = a+ b,y = b+ c and z = c + a, the inequality becomes

I 1 1
<1,
x+1+y+1+z+1_ ’
b 1 1
+ <
y+1 2417 z+1
ie
y+z2+2 x
(y+D(z+1) “z4+1
ie.
y+zz+2r+y+z+2<ayz+ay+ 22 + 2,
ie.
T+y+z+4+2< yz,
ie.
2a+b+c)+2<(a+b)(b+c)(c+a),
ie.

2(a +b+c) < a’b+ ab® + b2+ be? + c%a + ca.
By the AM-GM inequality,

(a%b + a%c + 1) > 3vVa4be = 3a.

; Advanced Problems
Solutions to
4, Solutions

Likewise, (b20+ b2a + 1) > 3b
and (a+2b+1) 2 3c.
Therefore we only need to prove that

2a+b+c)+3<3a+b+0),

ie 3<a+b+c,
which is evident from AM-GM inequality and abc = 1.
Solution 63, Alternative 2
Let a = a3,b= b3, c=c}. Then aibic; = 1. Note that

a3 + b3 — a3by — a1b? = (a1 — bi)(a — b?) > 0,
which implies that a:f N b? > aybufas + b,

Therefore,
1 1
a+b+1  al+b+aibier
1
arbi(a1 + b1) +arbicr

IN

a1b1c1
arbi(a1 + b1 + c1)

C1
ap +b+c1
Likewise,
1 a1
<
b+c+l " a+bh+a

and
1 by

< .
c+a+1"a+bit+a
Adding the three inequalities yields the desired result.

n
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Problem 64 [AIME 1988]
Find all functions f, defined on the set of ordered pairs of positive inte.
gers, satisfying the following properties:

fl@z)=z flz.9) = f(y.2). (@ +y)f(z.9) = yf(z,x +y).

Solution 64

We claim that f(z.y) = lem(z.y). the least common multiple of x and
y. It is clear that

lem(z,z) = x

and
lem(z, y) = lem(y, ).
Note that ez, ) ~ zy
W= ged (oy)
and

ged (z.y) = ged (2,2 + y),

where ged (u. v) denotes the greatest common divisor of u and v. Then

(@ +yllem(z,y) = (z+y)- ﬁi}w)
. z(z + y)

ged (7.2 +y)

= ylem(z,z +y).
Now we prove that there is only one function satisfying the conditions of
the problem.

For the sake of contradiction, assume that there is another function
g(x,y) also satisfying the given conditions.

Let S be the set of all pairs of positive integers (x,y) such that f(z,y) #
g(z,y), and let (m, n) be such a pair with minimal sum m+n. It is clear

that m # n. otherwise

fm,n) = f(m.m)=m = g(m.m) = g(m.n).

By symmetry (f(z,y) = f(y,z)), we can assume that n — m > 0.
Note that

nf(m,n—m) = |m+(n-m)f(m.n— m)
(n—=m)f(m,m+ (n - m))
= (n—-m)f(im,n)
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8. 2=
o fim.,n—m) = D fimon).
Likewise: n—m
glm,n—m) = - <g(m.n).

gince f(m.n) # g(m.n), f(m.n—m) #glm.n— m).

Thus (m.n—m) € S. |

Bﬁt (m.n —m) has a smaller sum m + (n —m) =n, a contradiction.
Therefore our assumption is wrong and f(z,y) = lem(x.y) is the only
solution.

Problem 65 [Romania 1990]
Consider n complex numbers z;. such that |2;| <1, k=1.2,...,n.
Prove that there exist ej.ea,. ... en € {—1.1} such that, for any m < n,

le121 + €222 + -+ emim| < 2.

Solution 65

Call a finite sequence of complex numbers each with absolute value not
exceeding 1 a green sequence.

Call a green sequence {2, }?_, happy if it has a friend sequence {cx }f—;
of s and - 1s, satisfying the condition of the problem.

We will prove by induction on n that all green sequences are happy.

For n = 2, this claim is obviously true.

Suppose this claim is true when n equals some number m. For the case
of n = m + 1. think of the z as points in the complex plane.

For each k, let £ be the line through the origin and the poipt cogre—
sponding to zr. Among the lines £1.4,. {3, some two are w1th1r} 60° of
each other; suppose they are £, and /3, with the leftover one being ..

The fact that ¢, and £5 are withjn 60° of each other implies that there
exists some number e5 € {—1, 1} such that 2’ = z, + egz has absolute
value at most 1.

Now the sequence z'.z-.24.25,..., 2k+1 IS @ k-term green sequence, so,
by the induction hypothesis, it must be happy: let ¢’.e,.eq.¢5.. ... Ch+1
be its friend.

Let €o = 1.

i : c+1 ion i
Then the sequence {e,}{*] is the friend of {2}/ Induction is now
complete.
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Problem 66 [ARML 1997]
Find a triple of rational numbers (a, b, ¢) such that

VV2-1=a+ Vb+ Ve

Solution 66
Letz = /2 —1and y = /2. Then 4°> = 2 and z = /7 — 1. Note that

1= - 1=(y- D +y+ 1),

and
W2+3y+3 P+ +3y+1 +1)3
y2+y+1=y Yy _ Yy Syt eyt =(y )1
3 3 3
which implies that
1 3
3
= —1-': =
vy v+y+l  (y+1)?
or .
3
o= T )
y+1

On the other hand,
=y’ +1=(y+DE* -y+1)
from which it follows that

1 yP-y+4l
y+ 1 3

Combining (1) and (2), we obtain

x=9/g(\3/71—\3/§+1).

o= (32

Consequently,

is a desired triple.

‘/solfut_i(ms to Advanced Problems 81

problem 67 [Romania 1984]

Find the minimum of

1 1 1
log., <x2 - Z) + log,, <353 - Z) + -+ log,, <x1 — Z)

. . N 1
where T1.%2.. .. ., are real numbers in the interval (3.1).

Solution 67 |
Since log,  is a decreasing function of z when 0 < a < 1 and, since
(x- 1/2)? > 0 implies z* > x — 1/4, we have

log Tr+1

] —
log., <xk+1 - Z) > log,, Thi1 = 2log,, Tk =2 log..

It follows that

1 1 1
log,, <$2 - Z) + log,, <$3 - Z) +- - +log, <x1 — Z)

<logx2 logxg_*_“ N log =, +logx1>

logx1+logxg T logzp-1  logzs

> 2n

by the AM-GM inequality.
Equalities hold if and only if

Ty =@p = =2Tp=1/2.

Problem 68 [AIME 1984]
Determine 22 + y2 + 22 + w? if

szjlz + sz_232 + 222_252 T 2210_272 =1,
4236_212 + 429532 + 422_252 + 42%272 =1
621:—212 * 629—232 * 622—252 * f32uf72 =L
Szlez + 829_232 + 822—?52 + 8210_272 =1
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Solution 68

The clalm that the given system of equations is satisfied by z2 Y2, 22
and w? is equivalent to claiming that

2 2 2 2

) z w _
e T i R (1)

is satisfied by ¢t = 4, 16, 36, and 64.

Multiplying to clear fractions, we find that for all values of ¢ for which it
is defined (i.e., t # 1,9,25, and 49), (1) is equivalent to the polynomia]
equation

x
t—12

-+

where

P(t) = (t = 1)(t — 9)(t — 25)(t — 49)
—z2(t - 9)(t — 25)(t — 49) — 42 (t — 1)(t — 25)(t — 49)
—22(t = 1)(t — 9)(t — 49) — w?(t — 1)(t — 9)(t — 25).
Since deg P(t) = 4, P(t) = 0 has exactly four zeros t = 4,16, 36, and 64,

- P(t) = (t — 4)(t — 16)(t — 36)(t — 64).

Comparing the coefficients of ¢3 in the two expressions of P(t) yields
1+94254+49+ 2> +y° + 22+ w? = 4+ 16 + 36 + 64,

from which it follows that

22 +y? + 22 + w? = 36.

Problem 69 [Balkan 1997]
Find all functions f : R — R such that
f@f@) +f(y) = (f(2)* +y
for all z,y € R.
Solution 69
Let f(0) = a. Setting r = 0 in the given condition yields
ff@) =a+y,
for all y € R.

Since the range of a? +y consists of all real numbers, f must be surjective.
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Thus there exists b € R such that f(b) =
Getting = = b in the given condition yields

F(F@) = FOF®) + W) = (FO)* +y =¥,

for all y € R. It follows that, for all z,y € R,

(f@)?+y=f(z f( z)+ f(y))
= fIf(f@Nf (@) + fW)] = fIf (@) f(f(z)) + ]

= J(f(@)+y=2"+y,
hat is,
o (f(x))? =2 (1)
It is clear that f(z) = z is a function satisfying the given condition.

Suppose that f(z) # z. Then there exists some nonzero real number ¢
such that f(¢) = —c. Setting = = cf(c) + f(y) in (1) yields

[F(ef(©) + @) = [ef () + fW))P == + T,

for all y € R, and, setting z = ¢ in the given condition yields
flef(e) + f) = (f(0)* +y =+,

forall y € R.
Note that (f(y))? = y*.
It follows that , ,
=+ 1)) = (¢ +v)",
or
) = -y
for all y € R, a function which satisfies the given condition.

Therefore the only functions to satisfy the given condition are f(z) = =
or f(z) = —z, for z € R.

Problem 70

The numbers 1000, 1001, - - - , 2999 have been written on a board.

Each time, one is allowed to erase two numbers, say, a and b, and replace
1

them by the number 3 min(a, b).

After 1999 such operations, one obtains exactly one number ¢ on the

board,

Prove that ¢ < 1.
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Solution 70 is concave.

By symmetry, we may assume a <b. Then Since f'(x) exists, there can be at most one point on the curve y = f(z)

with derivative 0.

%min(a, b) = % Suppose there is more than one nonzero root.
‘ Since * = 0 is also a root, we have three real roots 71 < xy < 3. Ap-
We have plying the Mean-Value theorem to f(z) on intervals [xlxg] and [zq, 73],
l + 1 < %. wé can find two distinct points on the curve with derivative 0, a contra-
e (5) 1 diction.

Therefore, our assumption is wrong and there can be at most one nonzero

from which it follows that the sum of the reciprocals of all the numbers real root for the equation f(z) = 1.

on the board is nondecreasing (i.e.. the sum is a monovariant)
At the beginning this sum is

Problem 72 [Turkey 1998]

1 1 1 1 Let {a,} be the sequence of real numbers defined by a1 =t and
= e— —— P —_— -
5= 1006 " oo "+ 355 < ¢’

Uny1 =4an(1 - ay)
where 1/c is the sum at the end. Note that, for 1 <k <999,

forn > 1.
L L — __4000 4000 1 For how many distinct values of ¢ do we have aj99g = 07

2000 — k& i 2000 + % ~ 20002 — &2 ~ 20002 1000

Solution 72, Alternative 1

Rearranging terms in § vields Let f(x) = 4z2(1 — x). Observe that

Troboe(L L)L 1y, SO ={01} TNy ={1/2h 70,1 = 0,1,
¢~ 1000 1001~ 2999 1002 © 2998
1 1 1 and [{y: f(y) =z} =2forall z € [0, 1).
o (1999 * 2001) ™ 2000 Let Ay = {x € R: f"(z) = 0} then
! L A = {zeR: f"Yz)=0}
> == x1000 + — > 1, n+l
or ¢ <1, as desired. We claim that for all n > 1, A, C (0.1]; 1 € An. and
Problem 71 [Bulgaria 1998] Al =271 +1.
Let a1, a,,....qa, be real numbers, not all zero.
Prove that the equation 3 Forn = 1, we have
/‘
\/1+a1$+\/1+azz+'--+vl+anx=n Ay ={zeR| f(z) =0} = {0.1},
has at most one nonzero real root. j  20d the claims hold. .
Solution 71 , Now Suppose n > 1 and A, C [0.1], 1 € A,, and |A4,] =27~ + 1. Then
Notice that f;(z) = VT T a7 is concave. Hence ‘ T € Any1 = f(x) € A4, C [0.1] = 2 € 0. 1],

f@y=Vi+az+ - + TFaz | 0 Anpr C [0, 1.
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Since f(0) = f(1) =0, we have f**}(1)=0foralln> 1,501 € Any.
Now we have

lAnsal = [z f(z) € An}|
= > lz: fla)=a}
a€A,
= He:f(@) =1+ > a: f(z)=a}]
aaee[(?,rlt)
= 1+ > 2
a€A,
a€[0,1)
= 1+2(/4.] - 1)
= 1+22"'+1-1)
= 2741,

Thus the claim holds by induction.

Finally, ajoes = 0 if and only if f1%97(¢) = 0, so there are 2199 + 1 such
values of t.

Solution 72, Alternative 2

As in the previous solution, observe that if f(z) € [0, 1] then z € [0, 1],
80 if a1998 = 0 we must have t € [0, 1],

Now choose 6 € [0.7/2] such that sin § = /3.
Observe that for any ¢ € R,

f(sin?¢) = 45sin? ¢ (1 —sin?¢) = 4sin® ¢ cos? ¢ = sin? 2¢;

since a; = sin? 0, it follows that

ap =sin’ 20, a3 =sin®4,. .., a1005 = sin2 21979,
Therefore
a —0<:>sin219979—0<:>9—ﬁ_
1998 = - = 91997

for some k € Z.
Thus the values of ¢ which give a1g9s = 0 are

sin?(kmr /2197,

k € Z, giving 2199 1 1 such values of .
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problem 73 [IMO 1997 short list]
(a) Do there exist functions f : R — R and g: R — R such that
flge)) =a® and  glf(z)) =2°
for all x € R?
(b) Do there exist functions f: R — R and g: R — R such that
flole) =2> and  g(f(2)) =2

for all z € R?

Solution 73
(a) The conditions imply that f(2%) = f(g(f(2))) = [f(z)]?, whence
z€{-1,0,1} = 2’ =z = f(2) = [f(2)]’ = f(z) € {0. 1}.
Thus, there exist different a,b € {—1,0,1} such that f(a) = f(b).
But then a® = g(f(a)) = g(f(b)) = b3, a contradiction.
Therefore, the desired functions f and g do not exist.
(b) Let
lzfinizlif 2] > 1
g(z) =< x|~ ifo<|z]< 1
0 if z=0.

Note that g is even and |a| = |b| whenever g(a) = g(b); thus, we
are allowed to define f as an even function such that

f(z) = y%. where y is such that g(+y) = .

We claim that the functions f, g described above satisfy the condi-
tions of the problem.

It is clear from the definition of f that f(g(z)) = z°.
Now let y = /f(2).
Then g(y) = z and

9(f(x)) = g(v®)
(y2)ln(y") =yihy = (y‘“y)4 ify>1

e T+
0 if y =

= [g(y)*

= 1114.




T
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Problem 74 [Weichao Wu]

LetO<a; <ay--<a,, 0<by <by--- < b, be real numbers such that

n n

Zal > Zbi'

1=1 =1

Suppose that there exists 1 < &k < n such that b <a,for1<i<kand

b, > a, for i > k.
Prove that
ay1an - ap 2 blbg---bn,.

Solution 74, Alternative 1

We define two new sequences. For i =1.2..... n, let
a; = aj and b, = M
2
Then
a;—b;:ak—b;—?”':(;—:(ai——bi)
or

Therefore
nay =ay +ay+- o +ap 2b by +- + 0.

Applying the AM-GM inequality yields

L1
>n=(b/1b’g-..b’)%<bi+b/2+m+b/
e n

<b1b2 s bnafj
a103 - Ay,
from which the desired result follows.

Solution 74, Alternative 2

We define two new sequences. For ; = 1.2, .... n, let
a;=ay and b, = b, + a; - a, > 0.
Then
b1+ 05+ + b, < nay.
Note that, for cy(x — y)(y + ¢) > 0.

T+c
y+c

> s x>yand ¢c>0;

@R

Setting T = ai, y = b;, and ¢ = ay, — a;, the above inequality implies that
0;/bi > a, /b, for i =1.2,...,m. Thus,

! /
aiaz - a 010y Q
162 n 142 n (2)

bibg by = Byby -0,

Using (1) and the AM-GM inequality yields

bbbyt b s
(hdy - )t =0 > ATEE T > by by)

or
dal-al, > Wby b (3)

It is clear that the desired result follows from (2) and (3).

Problem 75

Given eight non-zero real numbers a1, ag, - - -, ag, prove that at least one
of the following six numbers: @ias + aza4, 0105 + G206, G107 + 4208,
0305 + 4406, Q307 + Q403, 507 + Apag IS non-negative.

Solution 75 [Moscow Olympiad 1978]

First, we introduce some basic knowledge of vector operations.

Let u = [a.b] and v = [m, n] be two vectors.

Define their dot product u-v = am + bn.

It is easy to check that

(i) v-v =m2+n? = |v|?, that is, the dot product of vector with itself
is the square of the magnitude of v and v - v > 0 with equality if
and only if v = [0.0];

(i) u-v=v- u
(ili) u- (v+w)=u-v+u-w, where w is a vector;
(iv) (cu)-v = c(u-v), where c is a scalar.

When vectors u and v are placed tail-by-tail at the origin O. let A and
B be the tips of u and v, respectively. Then AB=v-u

Let /ZAOB =6.
Applying the law of cosines to triangle AOB yields

lv—u? = AB?
= 0A?+0OB?-20A-0OBcos0
lu)? + |v|? - 2|u||v|cosd.

S

R
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It follows that
(v—u)-(v-u)=u-u+v v-2ulv|cosé,

or

=

Y
cosf =

lul|v|
Consequently, if 0 < 0 < 90°, u-v > 0.
Consider vectors vi = [a;,as],v2 = [as, as),vs = [as,ag], and vy =
[a7. ag].
Note that the numbers aia3+asa4. aias +aqas, a1a7+aqas, a3as +a4as,

azay + asag, asay + agag are all the dot products of distinct vectors A
and v;j.

Since there are four vectors, when placed tail-by-tail at the origin, at
least two of them form a non-obtuse angle, which in turn implies the
desired result.

Problem 76 [IMO 1996 short list]
Let a, b and ¢ be positive real numbers such that abc = 1.
Prove that

ab i bc ca <1
a’ + b5 +ab b5+C5+bC+Cs+a5+ca_

Solution 76
We have

a® +b° > a%b*(a +b),
because

(@® = b°)(a® - %) > 0,
with equality if and only if @ = b. Hence

ab < ab
a®+b5+ab T a2b(a+b)+ab
1
abla +b)+1
abc

abla+b+ c)
c

a+b+c

Likewise,
be Q

<
B5+cb+bc " a+b+ec
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and

ca < b
S +aitcaa+b+c

Adding the last three inequalities leads to the desired result.

Equality holds ifand only ifa=b=c=1.

Comment:
second solution of problem 13 in this chapter.

Please compare the solution to this problem with the

problem 77 [Czech-Slovak match 1997]
Find all functions f : R — R such that the equality

F(f@) +y) = fl@® —y) +4f(x)y

holds for all pairs of real numbers (z,y).

Solution 77
Clearly, f(z) = x? satisfies the functional equation.

Now assume that there is a nonzero value a such that f(a) # a*.

Let y =

2 _
L AC) 2f(x) in the functional equation to find that

M) _f <M> 2 ()2 — f(x) ]

/

or 0= 2f(xz)(z? — f(z)). Thus, for each z, either f(z)=0or f(z) =z%
In both cases. f(0) = 0. 1
Setting « = a, it follows from above that either f(a) =0 or fla)=0or 3

fla) = a®.

2

2 2

The latter is false, so f(a) = 0.
Now, let z = 0 and then z = a in the functional equation to find that

and so

f) = f(=y), fy)=fd-y)

Fy) = f(=y) = f(a® +y);

that is, the function is periodic with nonzero period a?.

Let y = @2 in the original functional equation to obtain

F(f(z))

f(f(z) +a?) = f(z% - o) +4a’f(z) = f(z?) + 4a? f(z).

L T
However, putting y = 0 in the functional equation gives f(f(x)) = f(z?)

for al] 2.
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Thus, 4a?f(z) = 0 for all z. Since a is nonzero, f(z) =0 for all z.
Therefore, either f(z) =z? or f(x) =0.

Problem 78 [Kvant]

Solve the system of equations:

3x—y

20 J 3
x+$2+y2
_Etdy
y x2+y2_

Solution 78, Alternative 1

Multiplying the second equation by 7 and adding it to the first equation

vields

Bz —y)—(x+3y)i _
x? + 92 B

T+ yt+ 3.

> 3z —yi) ilx—yi) _a

T+ yt+ .
Y 2 + 2 22 + 12

Let z=x + yi. Then
1 x—yi

z x4y

Thus the last equation becomes

or
2 —32+(3-1)=0.

Hence

. 3+vV-3+4i  34(1+29)
B 2 - 2 ’
that is, (z,%) = (2,1) or (z,y) = (1. -1).
Solution 78, Alternative 2
Multiplying the first equation by y, the second by z, and adding up yields

Bz —yly— (z+3y)z
Ql'y + 22 n y2 = Sy

or 2xy — 1 = 3y. It follows that y # 0 and

3y +1
T=—g

4 Solutions to Advanced Problems

Subst

ituting this into the second equation of the given system gives
2
3y +1
2y 2y

4yt =3 -1=0.

or

1t follows that y? = 1 and that the solutions to the system are (2,1) and
(17 —'1) ’

Problem 79 [China 1995]
Mr. Fat and Mr. Taf play a game with a polynomial of degree at least 4:

22 4 ¥t + 74+ L

They fill in real numbers to empty spaces in turn.

If the resulting polynomial has no real root. Mr. Fat wins; otherwise, Mr.
Taf wins.

If Mr. Fat goes first, who has a winning strategy?

Solution 79

Mr. Taf has a winning strategy.

We sav a blank space is odd (even) if it is the coefficient of an odd (even)
powervof T

First Mr. Taf will fill in arbitrary real numbers into one of the remaining
even spaces, if there are any.

Since there are only n — 1 even spaces, there will be at least one odd
space left after 2n -3 plays, that is, the given polynomial becomes

p(z) = q(z) + _7° +_z?t

where s and 2t — 1 are distinct positive integers and q(z) is a fixed

polynomial.

We claim that there is a real number a such that

p(z) = q(z) +az’ + 2t

: 2t-1
will always have a real root regardless of the coefficient of 2=~

Then Mr. Taf can simply fill in a in front of z° and win the game.

P :_vo. -
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Now we prove our claim. Let b be the coefficient of 2~ in p(z). Note
that

273_—117(2) + p(-1)
= <#q(2) + 2572 g 4 b) +1g(=1) + (=1)%a ~ b]

= <§2}T1‘I(2) + q(_1)> +a[2sHT 4 (=1)%].

Since s # 2t — 1, 2572#FL 4+ (—1)s £ 0.
Thus !
73-14(2) +a(-1)
25=2+T 1 (—1)s
is well defined such that a is independent of b and

a =

1
g2—TP(2) +p(=1) =0.

It follows that either p(—1) = p(2) = 0 or p(-1) and p(2) have different
signs, which implies that there is a real root of p(z) in between —1 and
2.

In either case, p(z) has a real root regardless of the coefficient of r2-1
as claimed.

Our proof is thus complete.

Problem 80 [IMO 1997 short list]
Find all positive integers & for which the following statement is true: if
F(z) is a polynomial with integer coefficients satisfying the condition

0<F(e)<k for ¢=0,1,...,k+1,

then F(0) = F(1)=---=F(k +1).

Solution 80

The statement is true if and only if £ > 4.

We start by proving that it does hold for each k > 4.

Consider any polynomial F(x) with integer coefficients satisfying the
inequality 0 < F(c) < % for each c € {0.1,.... k+1}.

Note first that F(k + 1) = F(0), since F(k + 1) — F(0) is a multiple of
k + 1 not exceeding k in absolute value.

Hence

F(z) ~ F(0) = z(z — k - 1)G(x).
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where G(z) is a polynomial with integer coefficients.

Consequently,

k> |F(e) = F(0)] = c(k+1-0c)|G(c)] (1)

foreach c € {1.2,..., k}. N
The equality c(k+1—c) > k holds for each ¢ € {2,3.... .k — 1}, as it is
equivalent to (c—1)(k — c) >0 |
Note that the set {2.3....,k — 1} is not empty if & > 3, and for any ¢ in
this set. (1) implies that |G(c)| < 1.
Since G(c) is an integer, G(c) = 0.
Thus

Flz) - F0)=2(z—2)(x=3)---(x~k+ D(e—k-1H(z). (2)

where H(z) is a polynomial with integer coefficients.

To complete the proof of our claim. it remains to show that H(1) =
H(k)=0.

Note that for ¢ = 1 and ¢ = k, (2) implies that

k> |F(c) = F(O)| = (k=2)!- k- [H(c)]

For k >4, (k- 2)! > 1.

Hence H(c) = 0.

We established that the statement in the question holds for any & > 4.
But the proof also provides information for the smaller values of £ as
well,

More exactly, if F(x) satisfies the given condition then 0 and k + 1 are
roots of F(x) and F(0) for any &k > 1; and if & > 3 then 2 must also be
aroot of F(z) — F(0).

Taking this into account, it is not hard to find the following counterex-
amples:

F(z)=2z(2-x) for k=1.
F(z)=2(3 - x) for k= 2.
F(z) =2(4 - 2)(z~2)? fork=3.
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Problem 81 [Korean Mathematics Competition 2001]
The Fibonacci sequence F, is given by

F1=F2=1,Fn+2= n+1+Fn (TLEN)

Prove that . s
_ Fopqo + Fos

FQn 9

— 2F23n
foralln > 2.
Solution 81
Note that
Fonyo = 3Fon = Font1 — 2Fon = Fop1 — Fop = —Fop g,

whence
3Fon — Fonpo — Fon2 =0 (1)

for alln > 2.
Setting a = 3F%y,, b = —Fop4o, and ¢ = —F5,_» in the algebraic identity
a® + b3 + ¢ — 3abc = (a + b+ c)(a® + b? + ¢ — ab — bc — ca)

gives
2TFs, — Forvo — For o — 9Font0Fap oo = 0.

Applying (1) twice gives

FonyoFon—2 — F3, = (3Fs, — Fop—g)Fon_o — F},
= Fon(3Fon-g — Fop) = F3,_y = FonFop_s — F2._,
= . =FF-F}=-1

The desired result follows from

VP ons2FonFon—o — 9F5 = OFs,(FapyoFon—g — F3) = —0F,,.
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problem 82 [Romania 1998]

Find all functions u : R — R for which there exists a strictly monotonic
function f: R — R such that

flz+y) = f2)uly) + f(y)

forall z,y € R.

Solution 82

The solutions are u(z) = a®. a € R*.

To see that these work, take f(z) =z fora=1.
If a # 1, take f(x) = a® — 1; then

fle+y) =a™ - 1=(a" - 1)a* +a¥ - 1 = f(z)u(y) + f(y)

for all z, y € R.

Now suppose u : R — R, f: R — R are functions for which f is strictly
monotonic and f(z +y) = f(z)u(y) + f(y) for all z, y € R.

We must show that u is of the form u(z) = a® for some a € R*. First,
letting y = 0, we obtain f(z) = f(z)u(0) + f(0) for all z € R,

Thus, u(0) # 1 would imply f(z) = f(0)/(1 — u(0)) for all z, which
would contradict the fact that f is strictly monotonic, so we must have
u(0) =1 and f(0) =0.

Then f(x) # 0 for all x # 0.

Next, we have

F@yu(y) + fy) = f(z +y) = (@) + f(y)u(2),

or
f(@)(u(y) = 1) = f(¥)(u(z) - 1)
for all z,y € R. That is,

for all zy # 0.
It follows that there exists C' € R such that
u(z)—1
f(2)

for all z # 0.
Thus, u(z) = 1+C f(x) for = # 0: since u(0) = 1, f(0) =0, this equation
also holds for z = 0.
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If C =0, then u(z) = 1 for all z, and we are done.

Otherwise, observe

uz+y) = 1+Cf(z+y)

1+ Cf(x)u(y) + Cf(y)
u(y) + Cf(&)u(y)
u(z)u(y)

for all z,y € R.
Thus u(nz) = u(z)" for alln € Z, z € R.

Since u(z) = 1 + Cf(z) for all z, u is strictly monotonic, and u(—z) =
1/u(z) for all z, so u(z) > 0 for all z as u(0) = 1.

Let a = u(1) > 0; then u(n) =a” for all n € N, and

u(p/q) = (u(p))/? = aP/

forallpe Z, g € N, sou(z) =a” forall z € Q.

Since u is monotonic and the rationals are dense in R, we have u(z) = a®
for all z € R.

Thus all solutions are of the form u(z) = a%, a € RT.

Problem 83 [China 1986]
Let 21, 22,. .., 2, be complex numbers such that

1]+ lzal + o+ Jzal = 1.
Prove that there exists a subset S of {z1,22,...,2,} such that

>z

z€S

R~

2

Solution 83, Alternative 1

Let 41,44, and {3 be three rays from origin that form angles of 60°,180°,
and 300°, respectively, with the positive z-axis.

For i = 1,2, 3, let R; denote the region between £; and £i+1 (here 4 = £),
including the ray ¢;. Then

1= lal+ D lal+ D lal
2k €ER1 zZk€ER2 2k€R3

By the Pigeonhole Principle, at least one of the above sums is not less
than 1/3.
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Gay it's R3 (otherwise, we apply a rotation, which does not effect the
magnitude of a complex number). Let zx = xx + iyg. Then for z;, € Ra,

zp = |Tk| 2 |2k|/2.

Consequently,
1 11 1
i S-.2==
sz?-zxkz lekt—gg 6
zkER3 2k€ER3 Zk€R3
as desired.
Solution 83, Alternative 2
We prove a stronger statement: there is subset S of {21,272, .., 2n} such
that
IEES:
Py 4'
z€S

For | <k < n,let 2 = ok + 1Yk Then

1

|z1| + 22| + - + |2nl
< (o1l + ) + (ol + ly2l) + - + (Izal + lynl)

S lel + 3 bkl + Yl + D kel

20 T, <0 Y20 yr <0

By the Pigeonhole Principle, at least one of the above sums is not less
than 1/4. By symmetry, we may assume that

%SZWH: > an

IkZO IkZO

Consequently,

N

> >

> o

Ik_>_0

> =

2,20

Comment: Using advanced mathematics, the lower bound can be
further improved to 1/7.

Problem 84 [Czech-Slovak Match 1998

A polynomial P(z) of degree n > 5 with integer coefficients and n distinct
integer roots is given.

Find all integer roots of P(P(x)) given that 0 is a root of P(z).
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Solution 84

The roots of P(z) are clearly integer roots of P(P(z)); we claim thepe
are no other integer roots.

We prove our claim by contradiction. Suppose, on the contrary, that
P(P(k)) =0 for some integer k such that P(k) #0.

Let
P(z) =alx —r)(z =)z ~r3) - (x = 1p),

where a.71,79,..., 7, are integers,
r=0<[ra] <rsf <o < gl

Since P(k) # 0, we must have |k — ri| = 1 for all 4.

Since the r; are all distinct, at most two of |k — roly [k — 73], |k — r4| equal
1, so

la(k = 72) - (k = rp_1)| 2 Jallk — 7ol |k — r3l[k — r4] > 2,

and |P(k)| > 2fk(k — ).
Also note that P(k) = r;, for some g, so [P(K)| < |ry).
Now we consider the following two cases:

L. k| > |ral. Then [P(k)] > 2lk(k ~rn)| > 2lk| > |r,|, a contradic-
tion.

2. |k| < |rnl, that is, 1 < k| < Irn] = 1. Let a. b, ¢ be real numbers,
a < b. For z € [a,b], the function

fz) =z(c—2)

reaches its minimum value at an endpoint = g or = b, or at
both endpoints.

Thus
(R(k = o)l = [kllrn ~ k| 2 [k|(Ira] = k) 2 [ral - 1.
It follows that
I7al 2 [P(R)] 2 2k(k = 7p)] > 2(Jrn] — 1),
which implies that |r,,| < 2. Since n > 5, this is only possible if
Pz) = (z 4+ 2)(z + Da(z - 1)(z - 2).

But then it is impossible to have k& # r; and |k| < |rnl, a contra-
diction.
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Thus our assumption was incorrect, and the integer roots of P(P(z)) are
exactly all the integer roots of P(z).

Problem 85 [Belarus 1999}

Two real sequences 1, Tz, ....and y1, ya, . . ., are defined in the following
way:
xlzylz\/i Tptl = Tn T 1+$%a

and

Yn
Yn+1 = 1+ /—1_‘_‘2/721

for all n > 1. Prove that 2 < 2,y, < 3 foralln > 1.

Solution 85, Alternative 1
Let z, = 1/y, and note that the recursion for y, is equivalent to

Zn+1 = Rn + 1 + Z?L-

Also note that zo = V3 = z;; since the z;5 and z;s satisfy the same
recursion, this means that z, = z,-; for all n > 1.

Thus
’ In _ _%n
X = e— = .
nYn P Tr1

Vi+22_) > 2o

Thus z,, > 2x,_1 and z,y, > 2, which is the lower bound of the desired
inequality.

Note that

Since x,s are increasing for n > 1, we have

which implies that

22,1 > /1 +22_5.

Thus 3%,_1 > x,. which leads to the upper bound of the desired inequal-
ity.

Solution 85, Alternative 2
Setting z,, = cot 8, for 0 < 8, < 90° yields

On
Tpy1 = cot O, + 1+ cot? 6, = cot b, + csch, = cot <7> .

N
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]

Since #; = 30°, we have in general 4,, = 57 Similar calculation shoy,

Qn
that 9 tan
an
Yn = tan(?@n) = _]Tngnaz
It follows that 5
sl = 1 tan? 6,

Since tan @, # 0. tan? 8, is positive and Inyn > 2.
And since for n > 1 we have 6,, < 30°. we also have

1
tal"l2 0, < 5
so that x,y, < 3.

Comment: From the closed forms for z, and Yn in the second solution,
we can see the relationship

used in the first solution.

Problem 86 [China 1995]

For a polynomial P(z), define the difference of P(z) on the interval [a.b]
([a,0); (a,b), (a,b]) as P(b) - P(a).

Prove that it is possible to dissect the interval [0. 1] into a finite number
of intervals and color them red and blue alternately such that, for every
quadratic polynomial P(z), the total difference of P(z) on red intervals
is equal to that of P(x) on blue intervals.

What about cubic polynomials?

Solution 86
For an interval 7, let A,P denote the difference of polynomial P on 1.

For a positive real number ¢ and a set S C R, let S + ¢ denote the set
obtained by shifting S in the positive direction by c.

We prove a more general result.

Lemma

Let £ be a positive real number, and let £ be a positive integer. It is
always possible to dissect interval Ix = [0,2%¢] into a finite number of
intervals and color them red and blue alternatively such that, for every
polynomial P(x) with deg P < k, the total difference of P(z) on the red
intervals is equal to that on the blue intervals.
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proof

We induct on k.

For k = 1, we can just use intervals [0,¢] and (¢, 28] It is easy to see
that a linear or constant polynomial has the same difference on the two
intervals.

Suppose that the statement is true for & = n, lwhe?re n is a positive
integer; that is. there exists a set R, of red disjoint intervals and a set
B, of blue disjoint intervals such that R, N B, = 0. RT‘ U B, = I,, and,
for any polynomials P(z) with deg P < n. the total differences of P on
R, is equal to that of P on B,.

Now consider polynomial f(z) with deg f < n+ 1. Define
g(z) = f(z +2™¢) and h(z) = f(z) — g(x).

Then degh < n. By the induction hypothesis,

N Dh= )" Ak,

bEB, r€Rn
or
ST auf+ S Ag=S A0+ Y g
bEBA T€ERA TERR r€Bn
It follows that
YooMf= Y AL
bEBL rE€R!

where

w1 = RaU(Bp+270),

and B, = BpU(R,+2"0).

(If Ry, and B}, both contain the number 27/, that number may be
removed from one of them.)
It is clear that B, and R, form a dissection of I,1; and, for any
polynomial f with deg f < n + 1, the total difference of f on B, is
equal to that of f on R .
The only possible trouble left is that the colors in B, UR,,,; might not
be alternating (which can happen at the end of the I, and the beginning
of I, + 27¢).
But note that if intervals i, = [a1, b1] Qnd iz = [b1,¢1] are in the same
color, then

Ay f+ALf= Ag, f,

Where ig = [a1,61]-
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Thus. in By, {UR}, ., we can simply put consecutive same color intervals
into one bigger interval of the same color.

Thus, there exists a dissection
[n+1 = Bn+1 U Rn+1

such that, for every polynomial f(z) with deg f <n+ 1.

Yo Af= ) A
bEBn+1 r€Rn+1

This completes the induction and the proof of the lemma. O

Setting first £ = 1 and then £ = 3 in the lemma, it is clear that the

answer to each of the given questions is “yes.”
Problem 87 [USSR 1990]
Given a cubic equation

x3+_x2+_x+_:0.

Mr. Fat and Mr. Taf are playing the following game.

In one move, Mr. Fat chooses a real number and Mr. Taf puts it in one
of the empty spaces.

After three moves the game is over.

Mr. Fat wins the game if the final equation has three distinct integer
roots.

Who has a winning strategy?

Solution 87
Mr. Fat has a winning strategy.

Let the polynomial be z® + az? + bx + ¢. Mr. Fat can pick 0 first. We
consider the following cases:

(a) Mr. Taf chooses a = 0, yielding the polynomial equation
3 +br+c=0.

Mr. Fat then picks the number —(mnp)?, where m.n, and p are
three positive integers such that

m? +n* = p’.
If Mr. Taf chooses b = —(mnp)?, then Mr. Fat will choose ¢ = 0.
The given polynomial becomes

x(x — mnp)(z + mnp).
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If Mr. Taf chooses ¢ = —(mnp)?. then Mr. Fat will choose

2,2
b =m2n? — n?p? — p°m?.

The given polynomial becomes
(z +m?)(z+n’)z - ).
Mr. Taf chooses b = 0. yielding the equation
z® +ar’* +c=0.
Mr. Fat then picks the number
m2(m + 1)2(m? 4+ m + 1%,
where m is an integer greater than 1.
If Mr. Taf chooses
a=m?m+1)2m?+m+ 13,
then Mr. Fat can choose
c=—m¥(m+1¥m?+m+ 1°.
The polynomial becomes
(z — mp)|z + (m + V)pl[z +m(m + 1)pl,

where
p=m*m+ DEm* +m+ 1)2.

If Mr. Taf chooses
c=m2(m+1)*m>+m+ 1)%
then Mr. Fat can choose
a=—(m?+m+1)>%
The polynomial becomes
(z +mq)[z — (m+ L)g][z —m(m + 1)ql,

where
g=m*+m+1
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(c) Mr. Taf chooses ¢ = 0.

Then the problem reduces to problem 40 of the previous chapter.
Mr. Fat needs only to pick two integers a and b such that

abla—1)(b—1)#0
and a+b=-1.
The polynomial becomes either z(z — 1)(z — a) or z(z — 1)(z — b).

Our proof is complete.

Below is an example of what Mr. Fat and Mr. Taf could do:

F T F T F Roots

0 a -3600 b 0 —60, 0. 60

"o "o —481 -16,-9,25

b 497 o —28.3%.75 [ —8.27. 40,
—4-27-49,

8.9-49

e "o —49 -14,21,42

7o 2 a -3 -3.0,1

” b3 " b _3 ()7 1. 2

Problem 88 [Romania 1996]

Let n > 2 be an integer and let f : R? — R be a function such that for
any regular n-gon A1 4,... A,,

FlA) + f(A2) + -+ f(An) = 0.
Prove that f is the zero function.

Solution 88
We identify R? with the complex plane and let ¢ = ¢27#/7,

Then the condition is that for any z € C and any positive real ¢,

En:f(z +t¢%) =0
j=1

In particular, for each of k = 1,...,n, we obtain

D fz=¢+¢)=0
J=1
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gumming over k, we have

n

szz— - ™t =

m=1k=1

For m = n the inner sum is nf(z); for other m, the inner sum again runs
over a regular polygon, hence is 0.

Thus f(z) =0 for all z € C.

Problem 89 [IMO 1997 short list]
Let p be a prime number and let f(z) be a polynomial of degree d with

integer coefficients such that:
(i) £(0)=0,f(1) =
(i) for every positive integer n, the remainder upon division of f(n)
by p is either 0 or 1.
Prove that d > p— 1.

Solution 89, Alternative 1
For the sake of the contradiction, assume that d < p— 2.

Then by Lagrange’s interpolation formula the polynomial f(x) is
determined by its values at 0, 1, ..., p — 2; that is,

(z—k+D(x-k-1) - (z—p+2)

i@ = Ef Fol (D (k-p+2)
=3 - (z—k+D(x—-k-1)--(z—p+2)
= 1B k!E—l)P'k (p—k—2) '

Setting x = p — 1 gives

p—2 -D(p=-2)(p—k)
f(P-l) = Zf(’”)(p )((p_l)p)—kkgp

k=0
-2
g (=Dkk!
= l;f(k)(—m
p—=2
= (-)?Y_ f(k) (modp)
k=0
It follows that
S(f) = f0)+ f(1)+ -+ f(p—-1)=0 (mod p). (1)
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On the other hand, (ii) implies that S(f) =; (mod p), where J denoteg
the number of those k& € {0.1,...,p— 1} for which f(k) =1 (mod D).

But (i) implies that 1 < j <p—1.

So S(f)#0 (mod p), which contradicts (1).

Thus our original assumption was wrong. and our proof is complete,
Solution 89, Alternative 2

Again, we approach the problem indirectly.

Assume that d < p — 2, and let

f(2) = ap—0zP 2+ + a1z + ay.

Then
p—1 p—1p~2 p—2 p-1 p—2
-5 iw-T5ar - Sa S e T,
k=0 k=0 i=0 1=0 =0
p—1
where S; = Zki.
k=0

We claim that S; =0 (mod p) for alli =0,1,....p— 2.
We use strong induction on 7 to prove our claim.
The statement is true for i =0 as So = p

Now suppose that S = S; = -- =S, =0 (mod p) for some 1 < i <
p — 2. Note that

-1
kal kal — pz: k+ 1)i+1 —k"H]
k=0
1

_ZZC“)u (i +1)8; +Z<Z+1>5J
k=0 75=0 7=0 J

(1 +1)S; (mod p)

]

Since 0 < i+1 < p, it follows that S; =0 (mod p). This completes the
induction and the proof of the claim. Therefore,

S(f)= ZaiSi =0 (mod p).

The rest is the same as in the first solution.
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problem 90
Let n be a given positive integer.

, 1
Consider the sequence ag,ay. ", an with ao = 3 and

2
ag = ax—1 + k=
; = Ok—1
k n )

for k=127

Prove that )

1-=<a, <1
n

Solution 90, Alternative 1

We prove a stronger statement: For k=1.2,.... n,
n+1 n
S p L — (1)
m—k+2 Sk

We use induction to prove both inequalities.
We first prove the upper bound. For k =1, it is easy to check that

1, 1 _ sl m
o= +Z};_ 4n n-—1

B —

Suppose that

< n
a N
kS on Tk

for some positive integer k < n. Then

L
Gk+1 = ;k(n +ax)

1 L
S m—k\" T 2n—k

n(2n —k+1)
(2n - k)2
n
2n—k -1’

A

as
Qn—k+1)@2n-—k—-1)=2n-k)? 1< (2n—k)>.
Thus our induction step is complete. In particular, for k=n — 1,

n
On = Qp+1 < m

=1,




T
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as desired.
Now we prove the upper bound. For k = 1, it is easy to check that

_2n+1> n+1
T 4n n+1

a1

Suppose that
n+1

K2 on—k1d
for some positive integer k < n. Then

a

a =a +?i> ntl —+ (n+1)?
T S T k2 Tnn -k + 22

Tt follows that

gar Pt 1 s _ n+1 (n+1)?
1Tk +1 T T@n-k+D@n—k+2)  n@n-k+2)7

n+1 nt+l 2n-k+2
2n—-k+22\ n 2n—k+1

S U S (S SR S
T om—-k+22\n 2n—k+1 '
This complete the induction step. In particular, for n = k — 1, we obtain

G = Gpey > n+1 _n+1 1 1
e T -1+l n+2  nt2 n

as desired.

Solution 90, Alternative 2
Rewriting the given condition as

1 n 1 1

1
ax ai_,  ap—1(n+ag-1)  Gg_1 M+ ap—1
ak-1 +

yields
Q-1 Qk N+ ag—1

fork=1,2,...,n.
It is clear that as are increasing.
Thus

1
Qn > Gp_1 >--->a0=§,
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Thus (2) implies that

1 1 1
—_—— < p—
Af-1 ag n
fork=1,2,...,n
Telescoping summation gives
L 1
o Qnp
or
i>i—1=2—1=1,
[02% Qo

that is, an < 1, which gives the desired upper bound.
Since a, < 1, and, since ags are increasing, % =ap < ar < ap < 1 for
k=1,2,...,n.
Then (2) implies
1 1 1 1

> i
ap—1 Ok n+ag—1 n+1

for k=1,2,...,n.
Telescoping sum gives |

1_1,.n
ag an n+1
x 1 1 n _n+2
a, ap n+1 n+1
that is, 1 . .
n
=1- >1-—,
;) L n+2 ’

which is the desired lower bound. ]

Problem 91 [IMO 1996 short list]
Let a1, a9, ..., a, be nonnegative real numbers, not all zero.

(a) Prove that 2™ — a1z”~ ! — -+ — an-12Z — an = 0 has precisely one
positive real root K.

(b) Let A=3""_ a;and B=37_, jaj;.

Prove that A4 < RB.
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Solution 91

(a) Consider the function

Note that f decreases from oo to 0 as z increases from 0 to oo,

Hence there is-a unique real number R such that f(R) =1, that is,
there exists a unique positive real root R of the given polynomia.

(b) Let ¢ = a;/A.
Then c;s are non-negative and 3 ¢, =1

Since —In z is a convex function on the interval (0, 00), by Jensen’s
inequality,

; lA > -1 A =-1 R))=0
2\ TR ) 2 I | ey | = -n(i(R) =0
= =

It follows that

n

Y ei(~lnA+jInR) >0
J=1

or
n

ch-lnA < En:jcjlnR.
J=1 J=1

Substituting ¢; = a;/A, we obtain the desired inequality.

Comment: Please compare the solution of (a) with that of the problem
15 in the last chapter.

Problem 92

Prove that there exists a polynomial P(z,y) with real coefficients such
that P(z,y) > 0 for all real numbers z and y, which cannot be written
as the sum of squares of polynomials with real coefficients.

Solution 92

We claim that

1
p = (22422 — 1\g2,2 4 L
(,9) = (22 + 9 - D)z + 5

is a polynomial satisfying the given conditions.
First we prove that P(z,y) > 0 for all real numbers z and y.

R EEEE————.
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If 22 + ¥ — 1 > 0, then it is clear that Plz,y) >0 if 22+ 92 -1 < 0
then applying the AM-GM inequality gives

3

1—z? -2 41224 92\®
2 222 - =
(1= -z S( 3 5
or
1
(@® + 9% - Day? > 5

It follows that P(z,y) > 0.

We are left to prove that P(z,y) cannot be written as the sum of squares
of polynomials with real coefficients.

For the sake of contradiction, assume that

P(z,y) = ZQi(x,y)z-

Since deg P = 6, deg Q; < 3.
Thus

Qi(z,y) = Air® + Bizy + Cyzy® + Dy
+E, 2% + Fry + Giy® + Hiz + Ly+ J,.

Comparing the coefficients, in P(z, y) and -7, Qi(x,y)?, of terms 26

and % gives
n n
Y A=%"pi=y,
i=1 i=1

or A, =D, =0 for all 3.
Then, comparing those of z¢ and y* gives

S E=Ye o,
i=1 =1

or £; = G; =0 for all 4.
Next, comparing those of 22 and y? gives

S H =Y =0,
i=1 i=1

or H; = I; = 0 for all 5.
Thus,
Qi(z,y) = Biz’y + Cizy® + Fixy + J;.
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But, finally, comparing the coefficients of the term 7%y, we have

En:Fiz = "]-7
=1

which is impossible for real numbers Fj.

Thus our assumption is wrong, and our proof is complete.

Problem 93 [IMO 1996 short list]

For each positive integer n, show that there exists a positive integer &
such that

k= f(z)(z+1)* 4+ g(z)(2* +1)

for some polynomials f, g with integer coeflicients, and find the smallest
such k as a function of n.

Solution 93
First we show that such a k exists.
Note that z + 1 divides 1 — z?". Then for some polynomial a(z) with
integer coeflicients, we have
(14 2a(z) =1 -2 =2 (1+2°"),

or

2 = (1+ z)a(z) + (1 + 2™).
Raising both sides to the (2n)*" power, we obtain

22" = (14 2)*(a(x))®™ + (1 + 22™)b(z),

where b(z) is a polynomial with integer coefficients.

This shows that a k satisfying the condition of the problem exists. Let
ko be the minimum such k.

Let 2n = 27 - q, where r is a positive integer and ¢ is an odd integer.
We claim that kg = 29.

First we prove that 29 divides ko. Let t = 27. Note that 2" +1 =
(z! + 1)Q(z), where

Q(z) = pia=D) _pt(e=2) gt

The roots of zt + 1 are

Im — _
Wy, = €OS ((—mtﬂ) + i sin (M), m=1,2,...,t
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that iS,
Riz)=zt+1=(z—w)(z—ws) - (z—wt)

Let f(x) and g(z) be polynomials with integer coefficients such that

ko = fl2)(z+ 1) +g@) (@ +1)
= flz)(z+1)™ +g(2)Q(z)(z" + 1).

It follows that
flwp)(wm+ 1) =ky, 1<m<t (1)
Since r is positive, t is even. So

2=R(-1)=14w)(1+w) (1 + wi).

Since f(w1)f(ws) - - f(we) is a symmetric polynomial in wy, wa, ..., w
with integer coefficients, it can be expressed as a polynomial with integer
coefficients in the elementary symmetric functions in wy,wa,...,wt

and therefore
F = flw)f(wa) - flwy)
is an integer.

Taking the product over m = 1,2,...,t, (1) gives 2InF = kb or 2279F =
kZ". Tt follows that 27 divides ko.

It now suffices to prove that kg < 29.
Note that Q(—1) = 1.
It follows that
Q(z) = (z+ () + 1,

where c(z) is a polynomial with integer coefficients.
Hence

(¢ + 1)%(c(2))™ = (Q(z) - 1)** = Qz)d(z) + 1, (2)
for some polynomial d(z) with integer coefficients.

Also observe that, for any fixed m,
{wf,{‘l 1) = 1,2,...,t} = {wl,wg,...,wt}.

Thus
(1+wm)(1+u) - (1+wid ) =R(-1) =2,

and writing

14wt =(1+wm)(1—wm+wfn—---+w3{‘2),
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we find that for some polynomial h(x), independent of m. with integer

coefficients such that
(14 W) h(wm) = 2.

But then (z 4 1)h(z) — 2 is divisible by 2! + 1 and hence we can write

(z+ Dh(z) =2+ (' + Du(z),

for some polynomial u(z) with integer coefficients.
Raising both sides to the power ¢ we obtain

(z + 12" (h(z))? =27 + (' + 1)v(z),

where v(z) is a polynomial with integer coefficients.
Using (2) and (3) we obtain
(z + 1)?"(c(2))?(zt + 1)v(2)
)@t + Du(z) + (2" + 1)o(e)
) + (z +1)*((x))? - 27,

that is,
27 = fi(z)(z + 1) + g1 (z) (2" + 1),

where f1(x) and g;(z) are polynomials with integer coefficients.

Hence kg < 29, as desired.

Our proof is thus complete.

Problem 94 [USAMO 1998 proposal, Kiran Kedlaya]
Let x be a positive real number.

(a) Prove that

(b) Prove that
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Solution 94
We use infinite telescoping sums to solve the problem.

(a) Equivalently, we have to show that

i nlz
Zn(z+l)---(m+n) =1

n=1
Note that
ote tha . 11
(3) n(z+n) n zT+n
It follows that
nle
n(z+1)--(z+n)
_ (n—1)! B n!

T+ (z+n-1) (z+1)-(z+n)

and this telescoping summation yields the desired result.

(b) Let

Then, by (a), f(z) < =.

In particular, f(z) converges to 0 as = approaches oo, so we can
write f as an infinite telescoping series

Fa) =S U+ k= 1) = [z + B, ()

On the other hand, the result in (a) gives

gk

(n—1)! 11
fe=1)~-f(z) = 1ﬂ(x+1)...(x+n—1)<x x+n)

1 & (n—1)!
- Ez(x+1)v--(x+n)

n=1

3
]

T2
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Substituting the last equation to (1) gives

= 1
=Z(m+k)2’

k=1

as desired.

Problem 95 [Romania 1996]
Let n > 3 be an integer, and let

XCcS={12,...,n%)

be a set of 3n? elements.

Prove that one can find nine distinct numbers a;,b;,¢; (i = 1,2,3) in X
such that the system

az+by+caz = 0
9T + by + coz =
a3T + b3y +c3z = 0

has a solution (g, yo, z9) in nonzero integers.

Solution 95
Label the elements of X in increasing order ; < -+ < z3,2, and put

X, = {mlw"axn?}a
Xy = {$n2+15--'ax2n2}7
X3 = {$2n2+17"'7x3n2}'

Define the function f: X; x X3 x X3 — S x S as follows:
fla,b,c) = (b_avc_b)'

The domain of f contains n® elements.

The range of f, on the other hand, is contained in the subset of S x S
of pairs whose sum is at most n3, a set of cardinality

E: n_1)<%6.

By the Pigeonhole Principle, some three triples (a;, b5, ¢;) (1 =1, 2, 3)
map to the same pair, in which case z = b; — cL,y=c¢ —ay,z=a;—b
is a solution in nonzero integers.
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Note that a; cannot equal b; since X; and X, are disjoint, and that
a; = az implies that the triples (a1,b1,¢1) and (ag, b2, c2) are identical,
s contradiction.

Hence the nine numbers chosen are indeed distinct.

Problem 96 [Xuanguo Huang)]
Let n > 3 be an integer and let z1, 29, -, 2, be positive real numbers.
Suppose that

Prove that

¢H+¢5+W+MEZM—U<

3|~
_l_
+
+

—

~——

Solution 96
By symmetry, we may assume that z; < 2 < -+ < 7,. We have the
following lemma.

Lemma Forl<i<j<n,

Proof Since n > 3, and, since
Y=t
= 1+ z;

1 + 1 _ 2+z;+ x5
1+z; 1+.’Ej_(1+.'131;)(].+$j)

we have

1>

or
l+2z,+2; + 335 > 2+ 25 + 25

It follows that z;x; > 1. Thus

NG Vi \/m_i(1+$j)—\/51_5_77(1+$12)
1+z; 1+z; (1 +z) (1 + z5)

(VT — /T3)(1 = \/TiT;)

(14 z,)(1 + ;)

)
=)
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as desired. O

By the lemma, we have

and, since

—
[y

T 72' 'Z\/x—n-a

it follows by the Chebyshev Inequality

Z\f—zl+xz<i§:<\/— 1+xz) Zl+x1:' 1)

By the Cauchy-Schwartz Inequality, we have

1—+—acz
Zlﬁ—xziz_:

or

<Z +Zx/7) > n?, (2)

i=1 i=1

Multiplying by

1o~ 1

on both sides of (2) and applying (1) gives

which in turn implies the desired inequality.
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Problem 97
Let z1,Z2,. .., Ty be distinct real numbers. |

Define the polynomials

Pz)=(z-z1)(z—22)  (x = zp)

" qere (e )

rT—IT1 T —I2 T —Tn

Let ¥1,¥2,- - Yn—1 be the roots of Q.

Show that
min |z, — x;| < min |y; — ¥
ilg,ll % J| i |yz yy|

Solution 97
By symmetry, we may assume that

d=minly, — ¥l =2 — -
1]

Let sy =y1 —x, for k=1.2,...,n

By symmetry, we may also assume that s; < s <+ < 8p, ie, z; >

Ty > > T,

For the sake of contradiction, assume that
d<r1r;£1n|acz—acjl—mm:m—:w]—m<1§1sj—s1 (1)

Since P has no double roots, it shares none with Q.

Then

1 1

Py + 4+t
(&) (yi—xl Yyi — T2 Yi = Tn

)=Q@0=Q

or

1 1
+ +o
Yi— I Y= T2 Yi — Tn

In particular, setting i = 1 and ¢ = 2 gives

1 L1
Zs_k_:kz:;skﬁ—d:o' @

We claim that there is a k such that s (s + d) < 0, otherwise, we have
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for.all &, which in turn implies that

L1 "1
Zsk+d<k§=:1;’

k=1

which contradicts (2).

Let j be the number of ks such that s (sx+d) < 0, thatis, s < 0 < sk+d.
A simple but critical fact is that s; + d and sg4, have the same sign. In
fact, suppose that

81 < <8 <81 < <8y <0< sipjp1 <0 < Sy

then
s1+d< <8 +d<0<s41 +d< - <5 +d.

Then sg4+; > 0 if and only if k£ > 7+ 1, that is sp +d > 0.

From (1), we obtain s; +d < sk+;, and, since si + d and sg4, have the

same sign, we obtain

1>1

sk+d " Skt;

for all k =1,2,---,n — j. Therefore,

n-=j

3
|
<

1 1
> < ,
i1 Sk+i =y Sk +d
or
n 1 n-—j 1
2 o< - ()
kgt Sk kz=:1 Sk+d

Also note that

3
—
3

which contradicts (2).

Thus our assumption is wrong and our proof is complete.
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Problem 98 [Romania 1998]
Show that for any positive integer n, the polynomial

flz) =@ +2)¥ +1

cannot be written as the product of two non-constant polynomials with
integer coeflicients.

Solution 98

Note that f(z) = g(h(z)), where h(z) = z® + z and g(y) =¢*" + 1.
Since

27 —1
gy+ =@+ +1=¢"+{ > ( )y’“ +2,
k=1 k
and (2,:) is even for 1 < k < 2" — 1, g is irreducible, by Eisenstein’s
criterion.
Now let p be a non-constant factor of f, and let r be a root of p.
Then g(h(r)) = f(r) =0, so s := h(r) is a root of g.
Since s = 2 +r € Q(r), we have Q(s) C Q(r), so

deg p > deg(Q(r)/Q) > deg(Q(s)/Q) = deg g = 2"

Thus every factor of f has degree at least 2™.

Therefore, if f is reducible, we can write f(z) = A(z)B(z) where A and
B have degree 2".

Next, observe that

flz) = (22 +2)¥" +1
2n+1

= 22" 1 +1=@? +2+ 1) (mod 2).

Since z2 + z + 1 is irreducible in Zy[z], by unique factorization we must
have

A =B@ =@ +r+1)7 ="+ +1  (mod 2).
Thus, if we write

Alz) = agnz? 4+ +ao,
B(z) = banz® +-- +bo,

then agn, Ggn-1, Qg, ban, ban-1, bo are odd and all the other coefficients
are even. Since f is monic, we may assume without loss

of generality
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that agn = bon = 1; also, aghgp = f(0) = 1, but ag > 0, bg > 0 as f has
no real roots, so ag = bg = 1.

Therefore,

(227 + 22" Dg()h())

an 2n—1
< Z aib2n+2n—1_i> + Z aibgn—l_i
1=2n1 1=0

= Q9n b?n—l + agn-lbzn + a()bgn—l + Qon-1 bo

= 2(agn-1 + bgn-1) =0 (mod 4)

as agn-1 + bon-1 is even.
But

(4 D) = () =2 )

and (2,2,21__11) is odd by Lucas’s theorem, so

(12" 1+ 2D (f(2) =2 (mod 4),
a contradiction.

Hence f is irreducible.

Problem 99 [Iran 1998]
Let f1, f2, f3 : R — R be functions such that

arf1+az2fz +azfs
is monotonic for all a;,as,a3 € R.
Prove that there exist c1, ca, c3 € R, not all zero, such that
c1fi(x) + cafo(z) + cafa(x) =0
for all z € R.

Solution 99, Alternative 1
We establish the following lemma.
Lemma: Let f,g: R — R be functions such that f is nonconstant and

af + bg is monotonic for all a,b € R. Then there existg ¢ € R such that
g —cf is a constant function.

Proof. Let s,t be two real numbers such that f(s) # f(b).

Let

Let hy = g — d f for some d; € R.
Then h; is monotonic. But

hi(s) — ha(t) = g(s) — g(t) — di(f(s) = £(£)) = (f(s) = f())(u = d).

Since f(s) — f(t) # 0 is fixed, the monotonicity of h; depends only on
the sign of u — d;.

Since f is nonconstant, there exist x1,z2 € R such that f(z1) # f(x2).
Let

and h =9 —cf.
Then r = h(z;) = h(z2) and the monotonicity of hy = g — dif, for each
di1, depends only on the sign of ¢ — d;.

We claim that h = g — cf is a constant function.

We prove our claim by contradiction.

Suppose, on the contrary, that there exists z3 € R such that h(zz) # 7.
Since f(z1) # f(z2), at least one of f(x1) # f(xs) and f(z2) # f(z3) is

true.
Without loss of generality, suppose that f(z1) # f(x3).

Let
¢ = o) = gla)

~ fle) = flzs)
Then the monotonicity of h; also depends only on the sign of ¢’ — di.
Since h(x3) # r = h(z1),

9(331)—9(333) _ .
F fa) = flan)

hence ¢ — dy # ¢’ — d;.
So there exists some dy such that hy is both strictly increasing and de-
creasing, which is impossible.

Therefore our assumption is false and h is a constant function. O
Now we prove our main result.
If f1, fa, f3 are all constant functions, the result is trivial.

Without loss of generality, suppose that f; is nonconstant.
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For ag = 0, we apply the lemma to f; and fs, so fo = cfy +d; for ap = 0,
we apply the lemma to f1 and f3,s0 f3 =c¢'f1 +d'.

Here ¢, ¢/, d, d’ are constant.
We have

(dd—cd)fr +d fo—dfs = ((d—ed)fr + d'(cfi +d) —d(c'fi + d) =
If (¢d—cd',d,—d) # (0,0,0), then let
(c1,¢0,¢3) = (c'd — ed', d', —d)

and we are done.
Otherwise, d = d' = 0 and f5, f3 are constant multiples of f;.
Then the problem is again trivial.

Solution 99, Alternative 2
Define the vector

v(@) = (fi(z), f2(z), f3(2))
for z € R.

If the v(x) span a proper subspace of R3, we can find a vector (cy, ¢, ¢3)
orthogonal to that subspace, and then c1f1( T) + cafe(z) + cafs(z) =0
forall z € R.

So suppose the v(z) span all of RS.

Then there exist 1 < 22 < z3 € R such that v(z1), v(z2), v(z3) are
linearly independent, and so the 3 x 3 matrix 4 with Ay = fi(z;) has
linearly independent rows.

But then A is invertible, and its columns also span R3,
This means we can find ¢y, ¢, c3 such that

3
i=1

Zcz fz xl fz l‘g) fz(l‘S)) = (0,1,0),

and the function ¢; f; +co fp 4¢3 f5 is then not monotonic, a contradiction.

I G -

—ﬁ—
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Problem 100 [USAMO 1999 proposal, Richard Stong]

Let x1,22,...,%, be variables, and let y1,¥2,...,y2n_1 be the sums of
nonempty subsets of z,.

Let p(z1,...,2,) be the k" elementary symmetric polynomial in
the y; (the sum of every product of k distinct ¥;’s).

For which k and 7 is every coefficient of p (as a polynomial in z1,..., z,,)
even?

For example, if n = 2, then 41,2, y3 are 1,22, £1 + 22 and

P1=Y1+ Y2 + ys = 2x1 + 2129,
P2 = Y192 + Y2ys + Ysy1 = 25 + 23 + 31122,
P3 = Y1%2Y3 = TiT2 + 7173

Solution 100

We say a polynomial py is even if every coefficient of py is even.
Otherwise, we say py is not even.

For any fixed positive integer n, we say a nonnegative integer k is bad
for n if k = 2™ — 27 for some nonnegative integer j.

We will show by induction on n that pi(z1, 2, ,z,) is not even if and
only if k is bad for n.

For n = 1, p1(x1) = 1 is not even and &k = 1 is bad for n = 1 as
k=1=21-20=292n_20

Suppose that the claim is true for a certain n.

We now consider pi(z1,Z2,...,ZTnt1)-

Let ox(y1,¥2,...,ys) be the k' elementary symmetric polynomial.

We have the following useful, but easy to prove, facts:

L. ox(¥1,92, 1 ¥s:0) = 0k (Y1, ¥2, ", Ys);

2, Foralll <r <s,

Ok(Y1se ) = D loay, U)o (s Ys)s
+j=k

3. orz+ynz+ye,... T+Ys)

= Z (x+y, )@ +y) (2 +Yi)

11 <l <y
k—r
= E E E ysl y32 et yer
11 <o < L1 =0 §1<82< <Sp

{s1,,8-}C {1, ik}
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k
S—r _
= ( )ar(yx,---,ys)xk .
=0

k—r
T
Hence
pk($17$2a Ty .'En+1)
= e ).
i+j=k
Uj($n+17x1 R O PRERIN. S S SR +$n+1)]
J 2" —r J~r
= Z Z j-T pi(xla"'7xn)p7‘(x11"'5xn)xn+1'
i+j=k r=0

By the induction hypothesis, every term of p,(z1,2, - ,&n) is even un-

less 7 = 2" — 2¢, for some 0 < t < .

()-(7)

is even unless j —r = 0 or Jj—r=2%

For such 7, note that

Therefore, taking coefficients modulo 2,

Pr(T1, 22,0+ Tpy)
= Z Pi(xl,xz,'"awn)Pj(xhxm"'xn)
i+i=k

n

t

+Zpk—2"(xlax2’ t ,xn)p2n_2t<$1, T, ,.'En).'L'2 .
t=0

By the induction hypothesis, the terms in the first sum are even unless
k—2n =9n _9u for some 0 < u < n, that is k = 9n+! —ou,

In the second Sum, every term appears twice except the term
Pk/2($1,$2a T 7xn)27

for k even.

By the induction hypothesis, this term is even unless k/2=2" —2% for
some 0 < v < m, that is k = 97+1 _ gu+1.

It follows that Pe(T1, T2, - py1) is even unless k=21 — 2% for some
0<w<n+1, i.e, k is bad for n + 1

4
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Furthermore, note that the odd coefficients in

Pe(T1, T2, Tpy)

occur for different powers of Tntl-

Therefore, the condition that % is bad for n+ 1 is also sufficient for
Pe(T1, T2, Tnty)

to be odd.

Our induction is complete.

Problem 101 [Russia 2000]

Prove that there exist 10 distinct real numbers ay, ay,. . ., a1 such that
the equation

(a:—-al)(a:—ag)---(a:——am) =(x+a1)(a:+ag)---(a:+a10)

has exactly 5 different real roots.

Solution 101

We show that {a1,00,... 010} = {7.6,...,~2} is a group of numbers
satisfying the conditions given in the problem.

The given equality becomes

(@~ 2)(z - Da(z + 1)(z + 2)g(2?) = 0,

(T +6+- + 3%+
(765476 4+ +5.4-3u+76...3|

o
—
=
~——
Il

If g(u) = has no real solutions, then 9(2*) = 0 has no real solutions.

If u1 and uy are real solutions of g(u) =0, then uy +us < 0 and uius > 0,
that is, both u; and u, are negative.

It follows again that g(x%) = 0 has no real solutions.
Our proof is complete.
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Arithmetic-Geometric Mean Inequality (AM-GM Inequality)

If a1, ap,...,a, are n nonnegative numbers, then
1 i
;(al +a2+---+an) _>_ (alag---an)n
with equality if and only if a1 = a2 =+ = a,.

Binomial Coefficient

The coefficient of z* in the expansion of (z + 1) is

(&) = mm=m

Cauchy-Schwarz Inequality

For any real numbers a3, as,...,a,, and by,b2,...,b,
(a2 +a3+ - +a2) (B2 + b3+ +b2) > (arhy + azby + - -+ + anby)?
with equality if and only if a; and b; are proportional, i = 1,2,...,n.

Chebyshev Inequality

1. Let x1,22...,2, and y1,92,...,Yn be two sequences of real num-
bers, such that 21 < 23 < - < zpand y1 < 2 < ... < Yn.
Then

1
;(331+$2+"'+$n)(y1+y2+"'+yn) ST +Toy2t+ o+ TnYn

2. Let x,22...,2, and y1,¥2,...,Yn be two sequences of real num-
bers, such that ©7 > 22 > - > 2, and y; 2 20 = ... 2 Un.
Then

1
~(m+mt T Y2t Hyn) 2 By H T2+ F Ty
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De Moivre’s Formula

For any angle o and for any integer n,

(cosa + isina)™ = cosna + i sin na.

Elementary Symmetric Polynomials (Functions)

Given indeterminates z, ..., Zn, the elementary symmetric functions
81;- -+, 8n are defined by the relation (in another indeterminate t)

(t+$1)"'(t+$n)=tn+81tn_1+--'+sn_1t+sn.

That is, sk is the sum of the products of the x; taken & at a time. It
is a basic result that every symmetric polynomial in zi,...,z, can be
(uniquely) expressed as a polynomial in the s;, and vice versa,
Fibonacci Numbers

Sequence defined recursively by Fy = F, =1, Foto = Foy1 + F,, for all
n€N.

Jensen’s Inequality

If f is concave up on an interval [a,b] and Ay, X, .. .y Ap are nonnegative
numbers with sum equal to 1, then

AMf(x1) + Ao f(z0) + -+ + Anf(Tn) > f(MT1 + Aozg + - + Any)

for any 21,25,..., 2, in the interval [a.b]. If the function is concave
down, the inequality is reversed.

Lagrange’s Interpolation Formula

L_et Zo,Z1,...,2, be distinct real numbers, and let yp.y,, ... , Yn be ar-
bitrary real numbers. Then there exists a unique polynomial P(z) of
degree at most n such that P(z;) = y;, i = 0.1,...,n. This is the
polynomial given by

P(.'E) = iyz <x—x0)'"(x—xi—l)(x_xz’+1)"'($—$n)

= (Ti—mo) o (zy ~ Ti-1)(Ti — Tig1) -+ (25 — Tn)

Law of Cosines

Let ABC be 3, triangle. Then
BC? = AB? + AC? — 9AR. AC cos A.
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Lucas’ Theorem
Let p be a prime; let a and b be two positive integers such that
— Lk k-1 .k k-1
@ = GkP” + k1P "+ a1p + a0, b = bep” + br_1p T+ byp + by,

where 0 < a;,b; < p are integers for ; = 0,1,....%k Then
@\ _ far) (ak-1) (a1 [ao
(-6 6)E) o

Pigeonhole Principle

If n objects are distributed among k¥ < n boxes, some box contains at
least two objects.

Root Mean Square-Arithmetic Mean Inequality (RMS-AM In-
equality)

For positive numbers 1,25, ..., z,,

\/x%+x%+---+x,§ ST+ Tot o ta

n n
More generally, let a1, as,...,a, be any positive numbers for which a; +
az t -+ +an = 1. For positive numbers 1, z,,..., 2, we define
M- =min{zy,z2,..., 24},
Mo = max{zy,xa,..., 21},

Mo = x{'23? - 2~
t ¢ t\1/t
My = (0127 + aozh + - + azal)V/?,
where t is a non-zero real number. Then

M—oo SA’-{s SMt .<_Moo

for s < t.
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Triangle Inequality

Let z = a + b be a complex number. Define the absolute value of z to

be
|z| = v/a? + b2

Let a and 8 be two complex numbers. The inequality
la+ 8| < le| +18|

is called the triangle inequality.
Let o = a1 + it and 8 = By + 311, where oy, ag, 81, B2 are real numbers.
Then a+ 8= (og + ,31) + (ag +52)i.

Vectors u = [ay, 2], v = [$1,52], and w = |ag + (1,02 + B2] form a
triangle with sides lengths |a|, |3], and |a + 3.

The triangle inequality restates the fact that the length of any side of a
triangle is less than the sum of the lengths of the other two sides.

Vieta’s Theorem
Let x1,22,...,Zn be the roots of polynomial
P(z) = anz™ + apn_ 12" + - + a1 + ao.

where a, # 0 and ag,a1,...,a, € C. Let s be the sum of the products
of the z; taken k at a time. Then

Sk = (_l)kan__ka

an
that is,
ap—1
1+ 2+ +Tp=— ;
Qn
On -2
T1ZT2 + + TiTj + Tp—1Tp = P
'

T1X2 Ty = (—l)n—

Trigonometric Identities

sin2a +cos?a =1,

addition and subtraction formulas:

sin(a £ b) = sinacosb £ cosasinb,
cos(a £ b) = cosacosb Fsinasinb,
tana+tanb

on(e %8 = T3 fanatant

double-angle formulas:

sin2a = 2sinacosa,
. .2
2g—sin®a =2cos’a—1=1-2sin’aq,

cos2a = cos

tan 2 2tana

an2q = ———
1-tan%a’

triple-angle formulas:

sin3a = 3sina — 4sin® a,
cos3a = 4cos®a — 3cosa,

3tana — tan®a
tan 3¢ = ————————

1-3tan’a
half-angle formulas:
2tan §
S G = I tan? g’
1—tan® g
cosa = T tan? e’
2tan g
tana = T~ tan? %,
sum-to-product formulas:
. . . a+b a—1b
sina +sinb = 2sin 5 cos 5
a+b a-b
cosa + cosb = 2cos——2—cos 5
tana + tanb = %}Z—;ﬁ%;
difference-to-product formulas:
sina - sinb = ZSina—E——bcos a-2l-b’
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- b
cosa—cosb=—25ina2 sina; ,
tana — tanb = _sm(a——b)'

cosacosb’

product-to-sum formulas:

2sina cosb = sin(a + b) + sin(a — b),
2cosacosb = cos(a + b) + cos(a — b),
2sinasinb = — cos(a + b) + cos(a — b).
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