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Foreword

Geometry has apparently fallen on hard times. I learned from this excellent trea-
tise on plane geometry that U.S. President James A. Garfield constructed his own
proof of the Pythagorean Theorem in 1876, four years before being elected to an
unfortunately brief presidency.

In a recent lecture, Scott Aaronson (MIT) offered a tongue-in-cheek answer to the
question: “Suppose there is a short proof that P �= NP?” with, “Suppose space aliens
assassinated President Kennedy to prevent him from discovering such a proof?”
I found it pleasant to wonder which half of the two clauses was less probable. Sadly
he concluded that it was more likely that space aliens were behind Kennedy’s as-
sassination than that a modern president would be doing mathematics. Perhaps this
book offers hope that what was possible once will be possible again.

Young people need such texts, grounded in our shared intellectual history and
challenging them to excel and create a continuity with the past. Geometry has
seemed destined to give way in our modern computerized world to algebra. As with
Michael Th. Rassias’ previous homonymous book on number theory, it is a pleasure
to see the mental discipline of the ancient Greeks so well represented to a youthful
audience.

Michael H. FreedmanMicrosoft Station Q
CNSI Bldg., Office 2245
University of California
Santa Barbara, CA 93106-6105
USA
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Chapter 1
Introduction

μη μoυ τoυς κύκλoυς τ άραττε.
(Do not disturb my circles.)

Archimedes (287 BC–212 BC)

In this chapter, we shall present an overview of Euclidean Geometry in a general,
non-technical context.

1.1 The Origin of Geometry

Generally, we could describe geometry as the mathematical study of the physical
world that surrounds us, if we consider it to extend indefinitely. More specifically,
we could define geometry as the mathematical investigation of the measure, the
properties and relationships of points, lines, angles, shapes, surfaces, and solids.

It is commonly accepted that basic methods of geometry were first discovered
and used in everyday life by the Egyptians and the Babylonians. It is remarkable that
they could calculate simple areas and volumes and they had closely approximated
the value of π (the ratio of the circumference to the diameter of a circle).

However, even though the Egyptians and the Babylonians had undoubtedly mas-
tered some geometrical techniques, they had not formed a mathematical system of
geometry as a theoretical science comprising definitions, theorems, and proofs. This
was initiated by the Greeks, approximately during the seventh century BC.

It is easy to intuitively understand the origin of the term geometry, if we ety-
mologically study the meaning of the term. The word geometry originates from the
Greek word γ εωμετρία, which is formed by two other Greek words: The word γ η,
which means earth and the word μέτρoν, which means measure. Hence, geometry
actually means the measurement of the earth, and originally, that is exactly what
it was before the Greeks. For example, in approximately 240 BC, the Greek math-
ematician Eratosthenes used basic but ingenious methods of geometry that were
developed theoretically by several Greek mathematicians before his time in order to
measure the Earth’s circumference. It is worth mentioning that he succeeded to do
so, with an error of less than 2 % in comparison to the exact length of the circumfer-
ence as we know it today. Therefore, it is evident that geometry arose from practical
activity.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5_1,
© Springer Science+Business Media New York 2013
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2 1 Introduction

Geometry was developed gradually as an abstract theoretical science by mathe-
maticians/philosophers, such as Thales, Pythagoras, Plato, Apollonius, Euclid, and
others. More specifically, Thales, apart from his intercept theorem, is also the first
mathematician to whom the concept of proof by induction is attributed. Moreover,
Pythagoras created a school known as the Pythagoreans, who discovered numerous
theorems in geometry. Pythagoras is said to be the first to have provided a deductive
proof of what is known as the Pythagorean Theorem.

Theorem 1.1 (Pythagorean Theorem) In any right triangle with sides of lengths a,
b, c, where c is the length of the hypotenuse, it holds

a2 + b2 = c2. (1.1)

The above theorem has captured the interest of both geometers and number theo-
rists for thousands of years. Hundreds of proofs have been presented since the time
of Pythagoras. It is amusing to mention that even the 20th president of the United
States, J.A. Garfield, was so much interested in this theorem that he managed to
discover a proof of his own, in 1876.

The number theoretic aspect of the Pythagorean Theorem is the study of the
integer values a, b, c, which satisfy Eq. (1.1). Such triples of integers (a, b, c) are
called Pythagorean triples [86]. Mathematicians showed a great interest in such
properties of integers and were eventually lead to the investigation of the solvability
of equations of the form

an + bn = cn,

where a, b, c ∈ Z
+ and n ∈ N, n > 2.

These studies lead after hundreds of years to Wiles’ celebrated proof of Fermat’s
Last Theorem [99], in 1995.

Theorem 1.2 (Fermat’s Last Theorem) It holds

an + bn �= cn,

for every a, b, c ∈ Z
+ and n ∈N, n > 2.

Let us now go back to the origins of geometry. The first rigorous foundation
which made this discipline a well-formed mathematical system was provided in
Euclid’s Elements in approximately 300 BC.

The Elements are such a unique mathematical treatise that there was no need
for any kind of additions or modifications for more than 2000 years, until the time
of the great Russian mathematician N.I. Lobac̆evskiĭ (1792–1856) who developed
a new type of geometry, known as hyperbolic geometry, in which Euclid’s parallel
postulate was not considered.
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1.2 A Few Words About Euclid’s Elements

For more than 2000 years, the Elements had been the absolute point of reference
of deductive mathematical reasoning. The text itself and some adaptations of it by
great mathematicians, such as A.M. Legendre (1752–1833) and J. Hadamard (1865–
1963), attracted a lot of charismatic minds to Mathematics. It suffices to recall that
it was the lecture of Legendre’s Elements that attracted E. Galois (1811–1832), one
of the greatest algebraists of all time, to Mathematics.

Euclid’s Elements comprise 13 volumes that Euclid himself composed in Alexan-
dria in about 300 BC. More specifically, the first four volumes deal with figures, such
as triangles, circles, and quadrilaterals. The fifth and sixth volumes study topics such
as similar figures. The next three volumes deal with a primary form of elementary
number theory, and the rest study topics related to geometry. It is believed that the
Elements founded logic and modern science.

In the Elements, Euclid presented some assertions called axioms, which he con-
sidered to be a set of self-evident premises on which he would base his mathemati-
cal system. Apart from the axioms, Euclid presented five additional assertions called
postulates, whose validity seemed less certain than the axioms’, but still considered
to be self-evident.

The Axioms

1. Things that are equal to the same thing are also equal to one another.
2. If equals are to be added to equals, then the wholes will be equal.
3. If equals are to be subtracted from equals, then the remainders will be equal.
4. Things that coincide to one another are equal to one another.
5. The whole is greater than the part.

The Postulates

1. There is a unique straight line segment connecting two points.
2. Any straight line segment can be indefinitely extended (continuously) in a

straight line.
3. There exists a circle with any center and any value for its radius.
4. All right angles are equal to one another.
5. If a straight line intersects two other straight lines, in such a way that the sum

of the inner angles on the same side is less than two right angles, then the two
straight lines will eventually meet if extended indefinitely.

Regarding the first four postulates of Euclid, the eminent mathematical physicist
R. Penrose (1931–) in his book The Road to Reality—A Complete Guide to the
Laws of the Universe, Jonathan Cape, London, 2004, writes:

Although Euclid’s way of looking at geometry was rather different from the way that we
look at it today, his first four postulates basically encapsulated our present-day notion of
a (two-dimensional) metric space with complete homogeneity and isotropy, and infinite in
extent. In fact, such a picture seems to be in close accordance with the very large-scale
spatial nature of the actual universe, according to modern cosmology.



4 1 Introduction

The fifth postulate, known as the parallel postulate, has drawn a lot of attention
since Euclid’s time. This is due to the fact that the parallel postulate does not seem
to be self-evident. Thus, a lot of mathematicians over the centuries have tried to pro-
vide a proof for it, by the use of the first four postulates. Even though several proofs
have been presented, sooner or later a mistake was discovered in each and every one
of them. The reason for this was that all the proofs were at some point making use of
some statement which seemed to be obvious or self-evident but later turned out to be
equivalent to the parallel postulate itself. The independence of the parallel postulate
from Euclid’s other axioms was settled in 1868 by Eugenio Beltrami (1836–1900).

The close examination of Euclid’s axiomatics from the formalistic point of view
culminated at the outset of the twentieth century, in the seminal work of David
Hilbert (1862–1943), which influenced much of the subsequent work in Mathemat-
ics.

However, to see the Elements as an incomplete formalist foundation-building for
the Mathematics of their time is only an a posteriori partial view. Surely, a full of
respect mortal epigram, but not a convincing explanation for the fact that they are
a permanent source of new inspiration, both in foundational research and in that on
working Mathematics.

It is no accident that one of the major mathematicians of the twentieth century,
G.H. Hardy, in his celebrated A Mathematician’s Apology takes his two examples
of important Mathematics that will always be “fresh” and “significant” from the
Elements. Additionally, the eminent logician and combinatorist D. Tamari (1911–
2006) insisted on the fact that Euclid was the first thinker to expose a well-organized
scientific theory without the mention or use of extra-logical factors. Thus, according
to D. Tamari, Euclid must be considered as the founder of modern way of seeing
scientific matters. References [1–99] provide a large amount of theory and several
problems in Euclidean Geometry and its applications.



Chapter 2
Preliminaries

Where there is matter, there is geometry.
Johannes Kepler (1571–1630)

2.1 Logic

2.1.1 Basic Concepts of Logic

Let us consider A to be a non-empty set of mathematical objects. One may construct
various expressions using these objects. An expression is called a proposition if it
can be characterized as “true” or “false.”

Example

1. “The number
√

2 is irrational” is a true proposition.
2. “An isosceles triangle has all three sides mutually unequal” is a false proposition.
3. “The median and the altitude of an equilateral triangle have different lengths” is

false.
4. “The diagonals of a parallelogram intersect at their midpoints” is true.

A proposition is called compound if it is the juxtaposition of propositions con-
nected to one another by means of logical connectives. The truth values of com-
pound propositions are determined by the truth values of their constituting propo-
sitions and by the behavior of logical connectives involved in the expression. The
set of propositions equipped with the operations defined by the logical connectives
becomes the algebra of propositions. Therefore, it is important to understand the
behavior of logical connectives.

The logical connectives used in the algebra of propositions are the following:

∧(and) ∨(or) ⇒ (if . . . then)

⇔ (if and only if) and ¬(not).

The mathematical behavior of the connectives is described in the truth tables,
seen in Tables 2.1, 2.2, 2.3, 2.4, and 2.5.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5_2,
© Springer Science+Business Media New York 2013
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6 2 Preliminaries

Table 2.1 Truth table for ∧
a b a ∧ b

T T T

T F F

F T F

F F F

Table 2.2 Truth table for ∨
a b a ∨ b

T T T

T F T

F T T

F F F

Table 2.3 Truth table for ⇒
a b a ⇒ b

T T T

T F F

F T T

F F T

Table 2.4 Truth table for ⇔
a b a ⇔ b

T T T

T F F

F T F

F F T

Table 2.5 Truth table for ¬
a ¬a

T F

F T

In the case when

a ⇒ b and b ⇒ a (2.1)

are simultaneously true, we say that a and b are “equivalent” or that “a if and only
if b” or that a is a necessary and sufficient condition for b.
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Let us now focus on mathematical problems. A mathematical problem is made
up from the hypothesis and the conclusion. The hypothesis is a proposition assumed
to be true in the context of the problem. The conclusion is a proposition whose
truth one is asked to show. Finally, the solution consists of a sequence of logical
implications

a ⇒ b ⇒ c ⇒ ·· · . (2.2)

Mathematical propositions are categorized in the following way: Axioms, theo-
rems, corollaries, problems.

Axioms are propositions considered to be true without requiring a proof. Another
class of propositions are the lemmata, which are auxiliary propositions; the proof of
a lemma is a step in the proof of a theorem.

In Euclidean Geometry, we have three basic axioms concerning comparison of
figures:

1. Two figures, A and B , are said to be congruent if and only if there exists a trans-
lation, or a rotation, or a symmetry, or a composition of these transformations
such that the image of figure A coincides with figure B .

2. Two figures which are congruent to a third figure are congruent to each other.
3. A part of a figure is a subset of the entire figure.

2.1.2 On Related Propositions

Consider the proposition

p : a ⇒ b.

Then:

1. The converse of proposition p is the proposition

q : b ⇒ a. (2.3)

2. The inverse of proposition p is the proposition

r : ¬a ⇒ ¬b. (2.4)

3. The contrapositive of proposition p is the proposition

s : ¬b ⇒ ¬a. (2.5)

Example Consider the proposition

p: If a convex quadrilateral is a parallelogram then its diagonals bisect each other.

1. The converse proposition of p is q:
If the diagonals of a converse quadrilateral bisect each other, then it is a par-

allelogram.
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Fig. 2.1 Example 2.1.1

2. The inverse proposition of p is r :
If a convex quadrilateral is not a parallelogram, then its diagonals do not bisect

each other.
3. The contrapositive proposition of p is s:

If the diagonals of a convex quadrilateral do not bisect each other, then it is
not a parallelogram.

2.1.3 On Necessary and Sufficient Conditions

Proofs of propositions are based on proofs of the type

a ⇒ b,

where a is the set of hypotheses and b the set of conclusions. In this setup, we say
that condition a is sufficient for b and that b is necessary for a. Similarly, in the case
of the converse proposition

q : b ⇒ a, (2.6)

condition b is sufficient for a and condition a is necessary for b.
In the case where both

a ⇒ b and b ⇒ a (2.7)

are true, we have

a ⇔ b, (2.8)

which means that a is a necessary and sufficient condition for b.

Example 2.1.1 A necessary and sufficient condition for a convex quadrilateral to be
a parallelogram is that its diagonals bisect.

Proof Firstly, we assume that the quadrilateral ABCD is a parallelogram (see
Fig. 2.1). Let K be the point of intersection of its diagonals. We use the property
that the opposite sides of a parallelogram are parallel and equal and we have that

AB = DC (2.9)
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and

̂KAB = K̂CD (2.10)

since the last pair of angles are alternate interior. Also, we have

̂ABK = ĈDK (2.11)

as alternate interior angles. Therefore, the triangles KAB and KDC are equal, and
hence

KB = DK and AK = KC. (2.12)

For the converse, we assume now that the diagonals of a convex quadrilateral ABCD
bisect each other. Then, if K is their intersection, we have that

KA = CK and KB = DK. (2.13)

Furthermore, we have

̂BKA = D̂KC (2.14)

because they are corresponding angles. Hence, the triangles KAB and KDC are
equal. We conclude that

AB = DC (2.15)

and also that

AB ‖ DC (2.16)

since

̂KAB = K̂CD. (2.17)

Therefore, the quadrilateral ABCD is a parallelogram. �

2.2 Methods of Proof

We now present the fundamental methods used in geometric proofs.

2.2.1 Proof by Analysis

Suppose we need to show that

a ⇒ b. (2.18)
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Fig. 2.2 Proof by analysis
(Example 2.2.1)

We first find a condition b1 whose truth guarantees the truth of b, i.e., a sufficient
condition for b. Subsequently, we find a condition b2 which is sufficient for b1.
Going backwards in this way, we construct a chain of conditions

bn ⇒ bn−1 ⇒ ·· · ⇒ b1 ⇒ b,

with the property that bn is true by virtue of a being true. This completes the proof.

Example 2.2.1 Consider the square ABCD. From the vertices C and D we consider
the half-lines that intersect in the interior of ABCD at the point E and such that

ĈDE = ̂ECD = 15°.

Show that the triangle EAB is equilateral (see Fig. 2.2).

Proof We observe that

AD = BC, (2.19)

since they are sides of a square. Furthermore, we have (see Fig. 2.2)

ĈDE = ̂ECD = 15° (2.20)

hence

̂EDA = ̂BCE = 75°

and

ED = EC, (2.21)

since the triangle EDC is isosceles. Therefore, the triangles ADE and BEC are equal
and thus

EA = EB. (2.22)
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Therefore, the triangle EAB is isosceles. In order to show that the triangle EAB is,
in fact, equilateral, it is enough to prove that

EB = BC = AB. (2.23)

In other words, it is sufficient to show the existence of a point K such that the
triangles KBE and KCB are equal. In order to use our hypotheses, we can choose K

in such a way that the triangles KBC and EDC are equal. This will work as long as
K is an interior point of the square.

Let G be the center of the square ABCD. Then, if we consider a point K such
that the triangles KCB and EDC are equal, we have the following:

GN < GB, (2.24)

and hence

ĜBN < ̂GNB = ̂NBC. (2.25)

Therefore,

2ĜBN < 45°, (2.26)

so

ĜBN < 22.5°, (2.27)

and hence

̂NBC > 22.5°. (2.28)

Therefore,

̂NBC > ̂KBC, (2.29)

where M,N are the midpoints of the sides AB, DC, respectively. Therefore, the
point K lies in the interior of the angle ̂EBC. We observe that

̂KCE = 90° − 15° − 15° = 60°, (2.30)

with

KC = CE. (2.31)

Therefore, the isosceles triangle CKE has an angle of 60° and thus it is equilateral,
implying that

EK = KC = CE (2.32)

and

̂BKE = 360° − 60° − 150° = 150°. (2.33)
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Fig. 2.3 Proof by synthesis
(Example 2.2.2)

Therefore, the triangles KCB and KBE are equal, and hence

EB = BC. (2.34)

�

2.2.2 Proof by Synthesis

Suppose we need to show that

a ⇒ b. (2.35)

The method we are going to follow consists of combining proposition a with a
number of suitable true propositions and creating a sequence of necessary conditions
leading to b.

Example 2.2.2 Let ABC be a right triangle with ̂BAC = 90° and let AD be the cor-
responding height. Show that

1

AD2
= 1

AB2
+ 1

AC2
.

Proof First, consider triangles ABD and CAB (see Fig. 2.3). Since they are both
right triangles and

̂BAD = ̂ACB,

they are similar. Then we have (see Fig. 2.3)

AB

BD
= BC

AB
,

and therefore,

AB2 = BD · BC.

Similarly,

AC2 = DC · BC
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and

AD2 = BD · DC.

Hence

1

AB2
+ 1

AC2
= 1

BD · BC
+ 1

DC · BC

= BC

BD · BC · DC

= 1

AD2
. �

2.2.3 Proof by Contradiction

Suppose that we need to show

a ⇒ b. (2.36)

We assume that the negation of proposition a ⇒ b is true. Observe that

¬(a ⇒ b) = a ∧ (¬b). (2.37)

In other words, we assume that given a, proposition b does not hold. If with this
assumption we reach a false proposition, then we have established that

a ⇒ b (2.38)

is true.

Example 2.2.3 Let ABC be a triangle and let D,E,Z be three points in its interior
such that

3SDBC < SABC, (2.39)

3SEAC < SABC, (2.40)

3SZAB < SABC, (2.41)

where SABC denotes the area of the triangle ABC and so on. Prove that the points D,
E, Z cannot coincide.

Proof Suppose that inequalities (2.39), (2.40), and (2.41) hold true and let P be the
point where D, E, Z coincide, that is,

D ≡ E ≡ Z ≡ P.



14 2 Preliminaries

Fig. 2.4 Proof by
contradiction (Example 2.2.3)

Then (see Fig. 2.4),

3[SPBC + SPAC + SPAB] < 3SABC (2.42)

and thus

SABC < SABC, (2.43)

which is a contradiction. Therefore, when relations (2.39), (2.40), and (2.41) are
satisfied, the three points D, E, Z cannot coincide. �

Now, we consider Example 2.2.1 from a different point of view.

Example 2.2.4 Let ABCD be a square. From the vertices C and D we consider the
half-lines that intersect in the interior of ABCD at the point E and such that

ĈDE = ̂ECD = 15°.

Show that the triangle EBA is equilateral.

Proof We first note that the triangle EBA is isosceles. Indeed, since by assumption

ĈDE = ̂ECD = 15°

one has

̂EDA = ̂BCE = 75° ⇒ ED = EC. (2.44)

We also have that AD = BC, and therefore the triangles ADE and BEC are equal and
thus EA = EB, which means that the point E belongs to the common perpendicular
bisector MN of the sides AB, DC of the square ABCD.

Let us assume that the triangle EBA is not equilateral. Then, there exists a point
Z on the straight line segment MN, Z different from E, such that the triangle ZAB
is equilateral. Indeed, by choosing the point Z on the half straight line MN such that

MZ = AB
√

3

2
< AB = AD = MN,
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Fig. 2.5 Proof by
contradiction (Example 2.2.4)

the point Z is an interior point of the straight line segment MN and the equilaterality
of the triangle ZBA shall be an obvious consequence (see Fig. 2.5).

We observe that

̂DAZ = ̂ZBC = 30° and DA = ZA = AB = BZ = BC.

Thus

2 ̂ZDA = 180° − 30° ⇒ ̂ZDA = 75°,

which implies that

̂CDZ = 90° − 75° = 15°. (2.45)

Hence the points E, Z coincide, which is a contradiction. Therefore, the triangle
EBA is equilateral. �

2.2.4 Mathematical Induction

This is a method that can be applied to propositions which depend on natural num-
bers. In other words, propositions of the form

p(n), n ∈N. (2.46)

The proof of proposition (2.46) is given in three steps.

1. One shows that p(1) is true.
2. One assumes proposition p(n) to be true.
3. One shows that p(n + 1) is true.
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Remarks

• If instead of proposition (2.46) one needs to verify the proposition

p(n), ∀n ∈N \ {1,2, . . . ,N}, (2.47)

then the first step of the process is modified as follows:
Instead of showing p(1) to be true, one shows p(N + 1) to be true. After that,

we assume proposition p(n) to be true and we prove that p(n + 1) is true.
• Suppose p(n) is of the form

p(n) : k(n) ≥ q(n), ∀n ≥ N, (2.48)

where n,N ∈ N.
Suppose that we have proved

k(N) = q(N). (2.49)

We must examine the existence of at least one natural number m > N for which
k(m) > q(m).

This is demonstrated in the following example.

Example 2.2.5 Let ABC be a right triangle with ̂BAC = 90°, with lengths of sides
BC = a, AC = b, and AB = c. Prove that

an ≥ bn + cn, ∀n ∈ N\{1}. (2.50)

Proof Applying the induction method we have.

• Evidently, for n = 2, the Pythagorean Theorem states that Eq. (2.50) holds true
and is, in fact, an equality. We shall see that for n = 3 it holds

a3 > b3 + c3.

In order to prove this, it suffices to show

a
(

b2 + c2) > b3 + c3. (2.51)

To show (2.51), it is enough to show

ab2 + ac2 − b3 − c3 > 0, (2.52)

for which it is sufficient to show

b2(a − b) + c2(a − c) > 0. (2.53)

This inequality holds because the left hand is strictly positive, since a > c and
a > b.
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• We assume that

an > bn + cn (2.54)

for n ∈ N \ {1,2}.
• We shall prove that

an+1 > bn+1 + cn+1. (2.55)

For (2.55) it suffices to show that

a
(

bn + cn
) − bn+1 − cn+1 > 0, (2.56)

for which, in turn, it is enough to show that

bn(a − b) + cn(a − c) > 0. (2.57)

Again, in the last inequality the left hand side term is greater than 0, since
a > c and a > b. Therefore, (2.50) is true. �



Chapter 3
Fundamentals on Geometric Transformations

Geometry is knowledge of the eternally existent.
Pythagoras (570 BC–495 BC)

A topic of high interest for problem-solving in Euclidean Geometry is the determi-
nation of a point by the use of geometric transformations: translation, symmetry,
homothety, and inversion. The knowledge of geometric transformations allows us
to understand the geometric behavior of plane figures produced by them.

3.1 A Few Facts

1. In order to create a geometric figure, it is enough to have a point and a clear
mathematical way (see Fig. 3.1) in which the point moves on the plane in order
to produce this shape. We can then say that the point traverses the planar shape.

2. Two points of the plane that move in the plane in the same mathematical way
traverse the same or equal planar shapes.

3. A bijective correspondence (bijective mapping) is defined between two shapes if
there is a law that to each point of the one shape corresponds one and only one
point of the other shape, and conversely. The shapes are then called correspond-
ing.

Between two equal shapes, there is always a bijective correspondence. The con-
verse is not always true. For example, see Fig. 3.2. It is clear that the easiest way
to establish a bijective transformation between the straight line segment AB and the
crooked line segment KLM, where A, B are the projections of K , M on AB, re-
spectively, is to consider the projection of every point of KLM to the corresponding
point of AB.

The projection is unique because from every point of the plane there exists a
unique line perpendicular to AB.

If AB ‖ l, then the semi-circumference with center O and diameter AB, with A,B

excluded, can be matched to l in the following way: From the point O , we consider
half-lines Ox (see Fig. 3.3 and Fig. 3.4).

Then to each intersection point M of Ox with the semi-circumference, one can
select the unique point N which is the intersection of l with Ox, and conversely.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5_3,
© Springer Science+Business Media New York 2013
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Fig. 3.1 A few facts
(Sect. 3.1)

Fig. 3.2 A few facts
(Sect. 3.1)

Observation We shall say that two corresponding shapes are traversed similarly if
during their traversal their points are traversed in the same order.

• A circumference

(i) is traversed in the positive direction if a “moving” point traverses it anticlock-
wise.

(ii) is traversed in the negative direction if a “moving” point traverses it clock-
wise. We think of the clock as lying on the same plane as our shape (see
Fig. 3.1).

Remark Assume that we have two congruent shapes. Then we can construct a cor-
respondence between their points in the following way:

A1A2 . . .An = B1B2 . . .Bn, (3.1)

with

A1A2 = B1B2,

A2A3 = B2B3,

. . .

An−1An = Bn−1Bn,

AnA1 = BnB1,

and assume that from their vertices A1, B1 two points start moving at the same
speed, traversing their respective circumferences. Then at a given point in time t0
the points have covered equal paths.
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Fig. 3.3 A few facts
(Sect. 3.1)

Fig. 3.4 A few facts
(Sect. 3.1)

Fig. 3.5 Translation
(Sect. 3.2)

3.2 Translation

1. Let A be a point and let −→
a be a vector. Consider the vector

−→
AB = −→

a . Then the
point B is the translation of A by the vector −→

a .
2. Let S be a shape and let −→

a be a vector. The translation S1 of the shape S is the
shape whose points are the translations of the points of S by the vector −→

a . If S1
is the translation of S by −→

a , then S2 is the opposite translation of S if S2 is the
translation of S by −−→

a (see Fig. 3.5).
3. The translation of a shape gives a shape equal to the initial shape.
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Fig. 3.6 Translation
(Sect. 3.2)

4. If l1 and l2 are parallel lines, then these lines are translations of each other (see
Fig. 3.6).

Proof Let A1 be a point on l1 and let A2 be a point on l2. Consider the vector
−−−→
A1A2.

Let Bx be a point on l1. We consider By to be a point such that

−−−→
BxBy = −−−→

A1A2. (3.2)

This implies that the point By lies on l2, since

−−−→
A1A2 = −−−→

BxBy

implies

A2By ‖ A1Bx.

Now, from the well-known axiom of Euclid (see Introduction), there exists only one
parallel line to l1 that passes through A2, and that line is l2. The point By is a unique

point of l2, corresponding to Bx with respect to the translation by the vector
−−−→
A1A2.

Therefore, the line l2 is a translation of the line l1. �

Definition 3.1 Two translations are said to be consecutive if the first one translates
the shape S to the shape S1 and the second translates S1 to the shape S2.

Theorem 3.1 Two consecutive translations defined by vectors of different directions
can be replaced by one translation, which is defined by one vector which is the vector
sum of the other two vectors.

Proof We consider the vectors
−−→
OA1 and

−−→
OA2 that have a common starting point O

and are equal to the vectors defining the translation (see Fig. 3.7). Let M be a point
of the initial shape. After the first translation, M is translated to M1 so that

−−→
MM1 = −−→

OA1. (3.3)

After the second translation, M1 is translated to the point M ′
2 so that

−−−→
M1M

′
2 = −−→

OA2. (3.4)
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Fig. 3.7 Translation
(Sect. 3.2)

Therefore, after the second translation the point M has been moved to the point M ′
2.

It is clear that
−−→
MM′

2 = −−→
MM1 + −−−→

M1M
′
2, (3.5)

hence
−−→
MM′

2 = −−→
OA1 + −−→

OA2 = −→
OA, (3.6)

since

−−→
MM1 = −−→

OA1 and
−−−→
M1M

′
2 = −−→

OA2. (3.7)

Therefore, instead of the two translations we can perform only the one translation

defined by the vector
−−→
MM′

2 = −→
OA, which is the sum of

−−→
OA1 and

−−→
OA2. �

Remarks It is easy to show the following:

(i) A translation of a shape can be replaced by two other consecutive translations.
(ii) The above holds for more than two consecutive translations as well.

(iii) The resultant of the two translations is the translation that replaces them.
(iv) The final position of a shape, when it is a result of several translations, is inde-

pendent of the order in which the translations take place.

3.2.1 Examples on Translation

Example 3.2.1 Let ABCD be a quadrilateral with AD = BC and let M,N be the
midpoints of AB and CD, respectively. Show that MN is parallel to the bisector of
the straight semilines AD, BC.

Proof We translate the sides AD and BC to the positions MM1 and MM2, respec-
tively (see Fig. 3.8). It is sufficient to show that

M̂1MN = N̂MM2. (3.8)
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Fig. 3.8 Picture of
Example 3.2.1

Indeed, we have

MM1 = MM2. (3.9)

Therefore, MM1M2 is an isosceles triangle. Also,

−−→
DM1 = −→

AM (3.10)

because
−−→
DM1 is a translation of

−→
AM, and

−−→
M2C = −→

MB (3.11)

since
−−→
M2C is a translation of

−→
MB.

Additionally, we have

−→
AM = −→

MB. (3.12)

From Eqs. (3.10), (3.11), and (3.12), we conclude that

−−→
DM1 = −−→

M2C. (3.13)

Therefore, DM1CM2 is a parallelogram and thus

M1N = NM2. (3.14)

Therefore, MN is the median of the isosceles triangle MM1M2. This means that MN
is also the bisector of the angle M̂1MM2. �

Example 3.2.2 Let (K,R1) and (L,R2) be two circles, ε be a straight line and
s > 0. Are there points A,B on (K,R1) and (L,R2), respectively, such that AB = s

and AB ‖ ε?

Solution Since AB = s and AB ‖ ε, we have that B is on the translation of (K,R1)

onto (H,R1) with
−→
KH = −→

AB. If (H,R1) intersects (L,R2) at the point B , then the

vector
−→
HB is determined (see Fig. 3.9). Since

−→
KH = −→

AB, then AB determines the
points A and B so that AB = s and AB ‖ ε. �
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Fig. 3.9 Picture of
Example 3.2.2

3.3 Symmetry

3.3.1 Symmetry with Respect to a Center

Let O and M be two points. The point M ′ is called symmetrical to the point M with
respect to O , if O is the midpoint of the segment MM′.

Let O be a point and S be a shape. We say that the shape S′ is the symmetrical
of S with respect to the center O if for every point M of S, there is a point M ′ of
S′ such that O is the midpoint of MM′, and conversely, if for every point M ′ of S′
there is a point M on S such that O is the midpoint of MM′. Two shapes that are
symmetrical to each other are equal.

3.3.2 Symmetry with Respect to an Axis

Let l be a straight line and M be a point. We say that the point M ′ is symmetrical to
M with respect to the straight line l if the straight line l is the perpendicular bisector
of MM′.

Let l be a straight line and S be a shape. The shape S′ is symmetrical to S with
respect to l if for every point M of S there is a point M ′ of S′ that is symmetrical to
M with respect to l, and conversely, if for every point M ′ of S′ there is a point M

on S such that M is the symmetrical point of M ′ with respect to l.
Two shapes that are symmetrical about an axis are equal.
In the case when the symmetric of each point M , with respect to an axis l, of a

shape S lies on S as well, we say that the straight line l is an axis of symmetry of S.

3.4 Rotation

1. An angle ̂xOy is a planar shape. We consider that it is covered by the planar
motion of the one side towards the other, while the point O remains fixed. This
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Fig. 3.10 Rotation
(Sect. 3.4)

Fig. 3.11 Rotation
(Sect. 3.4)

defines an orientation (automatically the opposite orientation can be defined),
and in this way we have the sense of a directed angle (see Fig. 3.10).

In particular, consider the plane of the angle ̂xOy and a plane parallel to it on
which the arrows of a clock lie. We consider the planar motion of Ox starting at
Ox and ending at Oy. If this motion is opposite to the motion of the arrows of the
clock, then the angle is considered to be positively oriented. In the opposite case,
the angle is considered to be negatively oriented.

2. Let p be a plane and O be a point of p which will be considered as the center
of the rotation. Let A be a point of the plane and θ be an oriented angle (see
Fig. 3.11). We consider the point A′ with

ÂOA′ = θ (3.15)

and

OA = OA′. (3.16)

The correspondence of A to A′ is called the rotation of A with center O and
angle θ . The points A and A′ are called homologous.

3. The rotation of the shape S with center O and angle θ is the set of the rotated
points of S with center O and angle θ .

4. Two shapes such that one is obtained from the other by a rotation about a point
O are equal.

Proof Let the shape S′ be obtained from the shape S by a rotation about the point
O and by an angle θ . We will show that S = S′.
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Fig. 3.12 Rotation
(Sect. 3.4)

Let A,B be points of S and A′,B ′ be their homologous points (see Fig. 3.12).
We have

ÂOA′ = B̂OB′ (3.17)

and

ÂOA′ = ̂AOB + B̂OA′. (3.18)

Also,

B̂OB′ = B̂OA′ + Â′OB′. (3.19)

Therefore,

̂AOB = Â′OB′, (3.20)

and hence the triangles AOB and A′OB′ are equal. Thus

AB = A′B ′, (3.21)

for every pair of points A and B . Therefore, S = S′. �

5. The rotation of a straight line about the center O and by an angle θ is a straight
line. The angle between the two straight lines is θ .

To show this, we consider two points A and B of the straight line ε and their
homologous points A′ and B ′, respectively (see Fig. 3.13). We have

ÂOA′ = B̂OB′ = θ. (3.22)

The defined straight line ε′ is the rotation of ε about the center O and by an
angle θ .

6. The rotation of a circumference (K,R) about the center O and by an angle θ

is the circumference (K ′,R) equal to (K,R), where K ′ is the rotation of K .
Hint. If A is a point on (K,R) and A′ its homologous point on (K ′,R), then the
triangles OKA and OK′A′ are equal (see Fig. 3.14). From this we conclude that
R = R′.

7. Generally, let the shape S′ be obtained from the shape S by a rotation about the
point O by an angle θ . Let A and B be two points of S and let A′ and B ′ be their
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Fig. 3.13 Rotation
(Sect. 3.4)

Fig. 3.14 Rotation
(Sect. 3.4)

corresponding homologous points which lie on S′. Let l be the straight line that
connects A and B and let l′ be the straight line that connects the points A′ and
B ′. Then the angle between the straight lines l and l′ is equal to the angle θ .
Hint. The proof is based on the previous proposition.

8. If two shapes S, S1 are equal, then one can be applied onto another by means of
a translation and a rotation.

Indeed, let A,A′ be corresponding homologous points of the two equal shapes

S, S1. We translate the first shape S by
−−→
AA′ and bring the point A to the point A′.

This translates S to S′. By rotating S′ about A′, we observe that S′ coincides
with S1.

Remark Symmetry with respect to a point O is the same as the rotation about the
point O by an angle π .
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Fig. 3.15 Picture of
Example 3.4.1

3.4.1 Examples of Rotation

Example 3.4.1 Let (K,R) be a circle and let A be a point outside the circle. Let
B be a point that moves on the circle and let the triangle ABC be moving so that
̂A = ̂B = ̂C = π

3 . Where does the point C lie?

Solution Since

AC = AB (3.23)

and

̂BAC = π

3
or ̂BAC = −π

3
, (3.24)

the point C belongs to the rotation of (K,R) with center A and angle π/3 or −π/3,
respectively (see Fig. 3.15). �

Example 3.4.2 Consider a shape that moves on a constant plane such that it remains
unchanged and each one of two given lines of it pass through a constant point.
Show that there are infinitely many lines of the plane, each of which rotates about a
constant point.

Proof Let ε1, ε2 be lines passing through the points O1,O2, respectively (see
Fig. 3.16). Since the shape remains unchanged, the angle (̂εl, ε2) = ω̂ remains con-
stant. Therefore, the intersection point B moves on a constant arc whose points see
the line segment O1O2 under angle ω̂. A line ε passing through B with (̂ε, ε1) = ̂φ

intersects the circumference at the point K . Since the angle ̂φ remains constant, this
shows that the line ε passes through K . Therefore, each line that passes through B

and preserves a constant angle with ε1, passes through a constant point. �
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Fig. 3.16 Picture of
Example 3.4.2

Fig. 3.17 Homothety
(Sect. 3.5)

3.5 Homothety

1. The point M ′ is called homothetic to the point M with respect to a point O (the

homothetic center) if the vector
−−→
OM′ satisfies

−−→
OM′ = r

−→
OM, (3.25)

where r �= 0. The real number r is called the ratio of homothety.

We observe that if r > 0, then
−→
OM and

−−→
OM′ have the same orientation, and if

r < 0, the vectors
−→
OM and

−−→
OM′ have opposite orientations. If r > 0, the point M ′

is said to be directly homothetic to the point M with respect to the point O , and
if r < 0, then the point M ′ is said to be homothetic by inversion to the point M

(see Fig. 3.17).
(i) The center of homothety is homothetic with respect to itself.

(ii) The points M,M ′ are called homologous or corresponding points.
2. The planar shape S′ is homothetic to the planar shape S if there is a real number

r �= 0 such that the points of S′ are homothetic to the points of S with ratio of
homothety r (i.e., S′ is the geometrical locus of the homothetic points of S) (see
Figs. 3.18, 3.19).
(i) If r = 1 then S ≡ S′.

(ii) If M is a point homothetic to M ′ with respect to center O and ratio r , then
M ′ is homothetic to M with respect to the point O and ratio 1/r .
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Fig. 3.18 Homothety (Sect. 3.5)

Fig. 3.19 Homothety
(Sect. 3.5)

3. A characteristic criterion of homothety. A necessary and sufficient condition for
a shape S′ to be homothetic to a shape S with ratio r �= 0,1 is that for each pair

of points A,B of S there is a pair of points A′,B ′ of S′ such that
−−→
A′B ′ = r

−→
AB.

Proof Let S′ be homothetic to S with respect to O with ratio r �= 0,1. Let A,B be
points of S and let A′,B ′ be their corresponding homologous points on S′. Then

−→
OA′ = r

−→
OA (3.26)

and
−→
OB′ = r

−→
OB. (3.27)

Therefore,

−→
OA′ − −→

OB′ = r(
−→
OA − −→

OB), (3.28)

that is,

−−→
B ′A′ = r

−→
BA, (3.29)

or equivalently,

−−→
A′B ′ = r

−→
AB. (3.30)
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Fig. 3.20 Homothety
(Sect. 3.5)

Conversely, let A,B be points on S and let A′,B ′ be points on S′ such that

−−→
A′B ′ = r

−→
AB, (3.31)

with r �= 0,1. Let A,A′ be constant points and B,B ′ traverse S,S′, respectively.
We consider O to be a point of AA′ so that

−→
OA′ = r

−→
OA. (3.32)

The number r is unique. By hypothesis, we have

−−→
A′B ′ = r

−→
AB. (3.33)

Therefore,

−→
OA′ + −−→

A′B ′ = r(
−→
OA + −→

AB), (3.34)

that is,
−→
OB′ = r

−→
OB, (3.35)

for the points B,B ′ with
−−→
A′B ′ = r

−→
AB. �

Corollary 3.1 If the point M “produces” the vector
−→
AB, then the point M ′ which is

homothetic to M produces the vector
−−→
A′B ′ which is homothetic to

−→
AB.

Corollary 3.2 The homothetic shape of a line is a line parallel to the initial one
(see Fig. 3.20).

Corollary 3.3 The homothetic shape of a planar polygon is a polygon similar to the
initial one. Its sides have the same orientation with the sides of the initial polygon if
r > 0 and the opposite orientation if r < 0.

Remark 3.1 The converse of Corollary 3.3 is also true, that is, if two similar pla-
nar polygons have respective sides that all have the same or all have the opposite
orientation, then the polygons are homothetic. If r �= 0, then there is a center of
homothety.
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Fig. 3.21 Homothety (Sect. 3.5)

Remark Suppose that the points Mi form a planar polygon and that the points Si

also form a planar polygon (i = 3,4, . . . , n) where n is a natural number. Then if it
is asked whether the lines MiSi have a common point, then that point is very likely
going to be the center of homothety.

Theorem 3.2 If two planar polygons are similar, then they can be positioned so that
they are homothetic.

Hint. Let S,S′ be two planar similar polygons. Let A, B be two vertices of the
polygon S and A′, B ′ be the corresponding vertices of the polygon S′. If we consider
a point K such that A′K ‖ AB , it suffices to rotate the polygon S′ about the point
A′ by the angle B̂ ′A′K .

4. Two circles are homothetic shapes with ratio r equal to the ratio of their radii.
(i) The centers of the circles are homologous points.

(ii) The circles are homothetic in only two ways if r �= 1. The first homothety
has center O and the second one has center O ′.

Corollary 3.4 The common external tangents of two circles (if they exist) pass
through the “external” center of homothety which is the intersection of the lines

KL and MM′ with
−→
KM and

−−→
LM′ being parallel and having the same orientation.

The common internal tangents of two circles pass through the “internal” center of
homothety which is the intersection of the lines KL and MM′′ with the vectors

−→
KM

and
−−→
LM′′ being parallel and having opposite orientations.

Remark 3.2 Two circles with different centers and equal radii do not have an exter-
nal center of homothety, but have an internal center which is equal to the midpoint
of the straight line segment determined by the centers of the circles (see Fig. 3.21
and 3.22).
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Fig. 3.22 Homothety
(Sect. 3.5)

Fig. 3.23 Homothety
(Sect. 3.5)

Proposition 3.1 Let S1, S2, S3 be three shapes. If S1 is homothetic to S2 and S2 is
homothetic to S3, then S1 is also homothetic to S3. Furthermore, the three centers
of homothety are collinear.

Hint. Let S1, S2, S3 be three figures such that S2 is homothetic to S1 with homo-
thety center O1 and S3 is homothetic of S2 with homothety center O2. It follows
that S3 shall be homothetic to S1 with homothety center a certain point O3. If M1,
M2 are homological points of the figures S1, S2, respectively, and M3, M2 are ho-
mological points of the figures S2, S3, respectively, then we can apply Menelaus’
Theorem (4.12) to the triangle M1M2M3.

Remark 3.3 The above proposition can be used also as a method for proving that
three given points are collinear.

Definition 3.2 Let O be the center of homothety of two circles (K, r1) and (L, r2).
Let A ∈ (K, r1) and B ∈ (L, r2) two homologous points of the circles. If the line
AB intersects the circles at the points A1 ∈ (K, r1) and B1 ∈ (L, r2), the point B1 is
called anti-homologous of A and the point A1 is called anti-homologous of B .

Theorem 3.3 The inner product of two vectors with initial point the center of homo-
thety of two circles (K, r1), (L, r2) and terminal points a pair of anti-homologous
points is constant.

Proof Since the points A and A′ are homologous (Fig. 3.23), we have

OA

OA′ = r1

r2
, (3.36)
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Fig. 3.24 Homothety
(Sect. 3.5)

and therefore,

OA = r1

r2
OA′. (3.37)

Furthermore,
−→
OA′ · −→OB′ = OL2 − r2

2 . (3.38)

Thus
−→
OA · −→OB′ = r1

r2

(

OL2 − r2
2

)

, (3.39)

which is constant. With respect to the center of homothety O ′, we get

O ′A
O ′A′

1
= − r1

r2
or

−−→
O ′A = − r1

r2

−−−→
O ′A′

1. (3.40)

Furthermore,
−−−→
O ′B ′

1 · −−−→
O ′A′

1 = O ′L2 − R2. (3.41)

Therefore,

−−→
O ′A · −−−→

O ′B ′
1 = r1

r2

(

R2 − O ′L2), (3.42)

which is constant. �

Theorem 3.4 Let C1,C2 be two circles and let A, B ′ be anti-homologous points
that belong to C1, C2, respectively. Then there exists a circle tangent to C1 and C2
at the points A, B ′, respectively.

Proof Let O be the homothety center of the circles C1, C2 (see Fig. 3.24),

M ≡ AK ∩ B ′L, B ≡ C1 ∩ AB′ and A′ ≡ C2 ∩ AB′.
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Fig. 3.25 Picture of
Example 3.5.1

From the isosceles triangle LA′B ′, we get

̂A′ = ̂B ′.

But

LA′ ‖ KA,

hence

̂A = ̂A′.

Finally, we have

̂A = ̂B ′.

Thus the triangle MAB′ is isosceles. Consequently, there is a circle with center M

and radius MA which is tangent to the circles C1, C2 at the points A and B ′.
We follow the same method with the center of homothety O ′, which lies between

the points K and L. �

3.5.1 Examples of Homothety

Example 3.5.1 Let ABC be a triangle and P be a point on the plane of the triangle.
From the midpoint M1 of BC we draw the line parallel to PA. From the midpoint
M2 of CA we draw the parallel to PB, and from the midpoint M3 of AB we draw the
line parallel to PC. Prove that the three parallel lines pass through the same point.

Proof Let O be the intersection point of the lines parallel to AP, CP that pass
through the points M1 and M3, respectively (see Fig. 3.25). Then the triangles
OM1M3 and PAC are homothetic with ratio r = −2. Therefore, the center of ho-
mothety is the barycenter G of the triangle M1M2M3 since, if M ′

2 is the midpoint
of M1M3, we have

−−→
GM2 = −2

−−→
GM′

2. (3.43)
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Therefore,

−→
GO = −1

2
−→
GP. (3.44)

Consequently, the point O is the point of intersection of the three lines. �

Example 3.5.2 Let (K1, r1), (K2, r2), and (K3, r3) be circles. Let O1,O
′
1 be the

centers of homothety of the circles (K3, r3), (K2, r2), let O2,O
′
2 be the centers of

homothety of the circles (K1, r1), (K3, r3), and O3,O
′
3 be the centers of homothety

of the circles (K1, r1), (K2, r2). Prove that the lines K1O
′
1, K2O

′
2, and K3O

′
3 pass

through the same point.

Proof For the triangle K1K2K3, we obtain

O ′
2K1

O ′
2K3

= r1

r3
, (3.45)

O ′
3K2

O ′
3K1

= r2

r1
, (3.46)

and

O ′
1K3

O ′
1K2

= r3

r2
. (3.47)

Therefore,

O ′
2K1

O ′
2K3

· O ′
3K2

O ′
3K1

· O ′
1K3

O ′
1K2

= 1. (3.48)

Hence, Ceva’s theorem applies (see Chap. 4: Theorems), and therefore the lines
K1O

′
1, K2O

′
2, and K3O

′
3 pass through the same point. �

Example 3.5.3 Let ABCD be a rectangle such that AB = BC
√

2. Let E be a point
of the semicircumference with diameter AB which does not have common part with
ABCD apart from AB. Let K,L be the intersections of AB with ED and EC, respec-
tively. Show that

AL2 + BK2 = AB2. (3.49)

Proof We consider a rectangle KLNM, homothetic to the rectangle ABCD (see
Fig. 3.26). Then the points A,M,E are collinear, and the points B,N,E are
collinear. Let

AK = a, KL = b, and BL = c.



38 3 Fundamentals on Geometric Transformations

Fig. 3.26 Picture of
Example 3.5.3

Equation (3.49) is equivalent to

(a + b)2 + (b + c)2 = (a + b + c)2, (3.50)

which is equivalent to

b2 = 2ac. (3.51)

It is therefore enough to show that Eq. (3.51) holds true. Because of the homothety,
we have that ABCD and MNLK are similar. Therefore,

KL = MK
√

2, (3.52)

and from the similarity of the triangles AMK and BNL, we have

a

MK
= NL

c
, (3.53)

therefore,

MK2 = ac, (3.54)

and thus

2MK2 = 2ac. (3.55)

Hence

KL2 = 2ac, (3.56)

and thus

b2 = 2ac. (3.57)

�
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Fig. 3.27 Inversion
(Sect. 3.6.1)

3.6 Inversion

3.6.1 Inverse of a Point

Let O be a point in the Euclidean plane E2, λ ∈ R \ {0}. The inverse of a point M

with respect to O is the point M ′ ∈ OM such that

−→
OM · −−→OM′ = λ

where “·” stands for the usual inner product of two vectors. The point O is said to
be the pole (or inversion center) and the real number λ the power of the inversion.

If λ > 0 then
−→
OM,

−−→
OM′ are of the same orientation (

̂
(
−→
OM,

−−→
OM′) = 0).

In the case λ < 0,
−→
OM,

−−→
OM′ are of opposite orientation (

̂
(
−→
OM,

−−→
OM′) = π ).

The inverse of a point M with respect to a pole O and of power λ ∈ R \ {0} is
uniquely defined (see Fig. 3.27).

The inverse of the pole O with respect to itself and of power λ ∈ R\{0} is a point
at infinity.

3.6.2 Inverse of a Figure

Let a figure S, a point O , and a real number λ �= 0 be given. Define the inverse of
S with respect to the pole O and of power λ to be a figure S′ that is the locus of
the inverses of the points of the figure S with respect to the pole O and of the same
power λ.

It is evident that the property of inversibility satisfies the duality condition: If S′
is the inverse of S with respect to the pole O and of power λ, then S is the inverse
of S′ with respect to the same pole O and of the same power. In order to abbreviate
notation, we shall denote, in what follows, by Inv(O,λ) S = S′ the inverse of S with
respect to the pole O and of power λ.
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Fig. 3.28 Criterion
(Sect. 3.6.4)

3.6.3 An Invariance Property

Let ε be a straight line, O a point, and λ �= 0. Then, Inv(O,λ) ε = ε if and only if
O ∈ ε. Indeed, if M ∈ ε and M ′ is its inverse with respect to O of power λ, then the
points M,O,M ′ are collinear with O,M ∈ ε and thus M ′ ∈ ε.

3.6.4 Basic Criterion

It is well known that the power of a point O with respect to a circle C(K,ρ) is the

product
−→
OA ·−→OB, with O , A, B collinear and A, B points of the circle. Furthermore,

if C and D are points of the circle with O , C, D collinear and belonging to a straight
line, different from the one defined by A and B , then

−→
OA · −→OB = −→

OC · −→OD.

Conversely, let O ∈ E2, ε1, ε2 (ε1 �= ε2) be straight lines with {O} = ε1 ∩ ε2 and
A,B ∈ ε1, C,D ∈ ε2 such that

−→
OA · −→OB = −→

OC · −→OD,

then the points A,B , C,D belong to the same circle (see Fig. 3.28). Thus we derive
the following

Corollary 3.5 Let S, S′ be two figures in the Euclidean plane E2, S′ = Inv(O,λ) S,
λ �= 0, and O the pole of inversion. Then, for any pair of points A,C ∈ S with
corresponding inverses B,D ∈ S′ the points A,B,C,D belong to the same circle.

Conversely, let O be a point and ε1, ε2 (ε1 �= ε2) be two straight lines. Let S,S′
be a pair of plane figures and O /∈ S ∩ S′ be a given point. Suppose that for any
pair of points A,B ∈ S the corresponding inverse images C,D ∈ S′ are obtained
by means of the corresponding intersections of the straight lines OA, OC with S′ so
that O,A,B,C and D are homocyclic, then the figure S′ is the inverse of S with

respect to the pole O and power
−→
OA · −→OB.
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Fig. 3.29 Tangent to a curve
(Sect. 3.6.7)

3.6.5 Another Invariance Property

Let C be a circle and O a point in the plane of the circle. The point O is considered
to be the pole of the inversion with power a real number λ �= 0. Then, the circle C

admits as its inverse C itself if and only if the power of the pole O with respect to
the circle is equal to the power λ of the inversion.

3.6.6 Invertibility and Homothety

Theorem 3.5 Two figures S1 and S2 which are the inverses of a third figure S̃ with
respect to the same pole of inversion O are homothetic.

Proof Let S1, S2 be two figures with Si = Inv(O,λi ) S̃, and λi be the corresponding
powers of inversion where λi ∈ R \ {0} for i = 1,2. Consider the points Mi ∈ Si ,
i = 1,2 with Mi = Inv(O,λi ) M for a certain point M ∈ S̃. By the above assumptions,
the following properties hold:

−−→
OM1 · −→OM = λ1

−−→
OM2 · −→OM = λ2

⇒
OM1 · OM = |λ1|,
OM2 · OM = |λ2|.

(3.58)

Hence, we obtain

OM1

OM2
= |λ1|

|λ2| . (3.59)

Therefore, the figures are homothetic. �

3.6.7 Tangent to a Curve and Inversion

Let c : I → E2, I ⊂ R, be a plane curve and the point M0 ∈ c. For any point M ∈ c,
an infinity of straight lines M0M can be constructed and, intuitively speaking, the
limit, if it exists, of this family of straight lines passing through the point M0 shall
be a straight line ε0 which is called the tangent of the curve c at M0 and it has
the property (see Fig. 3.29): There exists a segment AB of c, with M0 being an
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Fig. 3.30 Tangent to a curve (Sect. 3.6.7)

interior point of AB, such that M0 is the unique common point of ε0 and AB. The
behavior of the tangents of a curve with respect to the operation of inversion can be
characterized by the following:

Theorem 3.6 Let S1, S2 be a pair of plane curves such that S1 = Inv(O,λ) S2, λ �= 0.
The tangent lines to the corresponding points Mi of Si , i = 1,2 form angles with−−−→
M1M2 that are equal.

Proof We have S1 = Inv(O,λ) S2, λ �= 0. It should be enough to prove that

X̂M1M2 = M̂1M2Y where M1X is tangent to S1 at the point M1 and M2Y is tan-
gent to S2 at the point M2, and the points O,M1,M2,M , A are collinear. For any
point M ′

1 of the curve S1, there exists the corresponding (inverse) point M ′
2 ∈ S2.

Using Theorem 3.5, the quadrilateral M1M
′
1M

′
2M2 can be inscribed in a circle and

thus it holds (see Fig. 3.30)

̂M1M
′
1M

′
2 = M̂ ′

2M2A.

Even to the limit, this property of inscribability still holds, hence

M1 → M ′
1 ⇔ M2 → M ′

2.

In this case, we deduce that

X̂M1M2 = M̂1M2Y .
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Fig. 3.31 Tangent to a curve
(Sect. 3.6.8)

Therefore, if the tangents are intersecting at a point P then the triangle PM1M2 has
to be isosceles. In general, these tangents have to be symmetrical with respect to
the axis of symmetry determined by the perpendicular bisector of the line segment
M1M2. �

3.6.8 Inversion and Angle of Two Curves

Let y1, y2 be two curves intersecting at a point M . We define the angle ŷ1My2 (of
the curves at their common point M) to be the complement of the angle formed by
their semi-tangents at this point M . The following holds:

Theorem 3.7 The angle of two intersecting curves at a point M is equal (in mea-
sure) to either the angle formed by the intersection of the corresponding inverse
curves at the corresponding point M ′ or to their symmetric counterparts with re-
spect to the perpendicular line at the middle point of MM′.

Proof It is an immediate consequence of Theorem 3.6 (see Fig. 3.31). �

3.6.9 Computing Distance of Points Inverse to a Third One

Let the point O of the Euclidean plane E2 be the inversion pole, λ ∈ R \ {0} the in-
version power, and S1, S2 be two figures which are inverse to each other with respect
to the point O and of power λ. Let also A,B ∈ S1 be given and their corresponding
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Fig. 3.32 Distance
(Sect. 3.6.9)

λ-inverses with respect to the point O be A′,B ′ ∈ S2. It is evident that the quadri-
lateral AA′B ′B can be inscribed in a circumference and, in fact (see Fig. 3.32),

�OAB ∼ �OA′B ′.

It follows that

A′B ′

AB
= OA′

OB
⇒ A′B ′ = AB · OA′

OB
. (3.60)

But

−→
OA′ · −→OA = λ ⇒ OA′ · OA = |λ|. (3.61)

From (3.60) and (3.61), we derive that the distance between the inverses A′,B ′ is
given by

A′B ′ = AB · OA′ · OA

OB · OA
= AB · |λ|

OA · OB
. (3.62)

3.6.10 Inverse of a Line Not Passing Through a Pole

Let ε be a straight line in the Euclidean plane E2, then the inverse of ε with respect
to the pole O with O /∈ ε is a circle Cε passing through the pole O . The diameter of
the circle passing through O is perpendicular to ε.

In fact, this holds true because

−→
OM · −→ON = −→

OT · −→OP, (3.63)

and therefore, either MTNP is a quadrilateral with ̂N = ̂T = 90° or MTNP is in-
scribed in a certain circle, that is, ̂ONP = 90°, and thus the point N is moving on a
circle of diameter OP (see Figs. 3.33 and 3.34). Consequently, ε⊥OP.
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Fig. 3.33 Inverse of a line
(Sect. 3.6.10)

Fig. 3.34 Inverse of a line
(Sect. 3.6.10)

3.6.11 Inverse of a Circle with Respect to a Pole Not Belonging to
the Circle

Let C(K,ρ) be a circle in the Euclidean plane E2, and O a point with O /∈ C(K,ρ).
We consider the point O as the inversion pole with power λ �= 0. We are going to
determine the curve described by the inverse M ′ of the point M when M runs along
the circle C(K,ρ). Let OK be the straight line intersecting the circle C at the points
T and Y . It is true that

−→
OM · −−→OM′ = λ. (3.64)

Consider the points T ′, Y ′ ∈ OK such that

−→
OT · −→OT ′ = λ (3.65)

and

−→
OY · −→OY ′ = λ. (3.66)
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Fig. 3.35 Inverse of a circle (Sect. 3.6.11)

Using (3.64), (3.65), and (3.66), we derive (see Fig. 3.35)

OM · OM′ = OT · OT ′ = OY · OY ′ = |λ|, (3.67)

and thus

OM

OT
= OT ′

OM′ ⇒ �OMT ∼ �OM′T ′ (3.68)

and

OM

OY
= OY ′

OM′ ⇒ �OMY ∼ �OM′Y ′. (3.69)

However, ŶMT = 90°, hence T̂ ′M ′Y ′ = 90° and the geometrical locus of the point
M ′ has to be a circle of diameter equal to T ′Y ′. This is actually the inverse of the
circle C.

3.6.12 Inverse of a Figure Passing Through the Pole of Inversion

The inverse of a circle passing through the pole of inversion is a straight line per-
pendicular to the diameter of the circle passing through the center—the pole of the
inversion (see Fig. 3.36). Indeed, it is enough to observe that the relation

OM · OM′ = OA · OB (3.70)

holds true. This is the case when the point A is the foot of the perpendicular from
the point M ′ to the line OB, since either the quadrilateral ABMM′ can be inscribed
in a circle or the quadrilateral AMBM′ can be inscribed in a circle. This happens
because either

ÔMB = B̂AM′ = 90° when
−→
OM · −−→OM′ = p > 0,
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Fig. 3.36 Inverse of a figure
(Sect. 3.6.12)

or

M̂ ′AB = M̂ ′MB = 90° when
−→
OM · −−→OM′ = p < 0,

respectively. The following holds:

Theorem 3.8 Two circles can always be considered inverses to one another in ex-
actly two different ways if they are not tangent and in exactly one way if they are
tangent.

Proof Indeed, when the circles are not tangent, this occurs since two circles with
centers O1, O2 are homothetic in exactly two different ways, in general. This means
that they can be considered inverses to one another in two different ways. The pole of
the inversion is the same with the center of homothety, and the power of inversion is
equal to the product of the powers of the poles with the similarity ratio, with respect
to the first circumference. �

Remark 3.4 These two inversions are the only operations that transform one of the
circles under consideration to the other, and vice versa.

3.6.13 Orthogonal Circles and Inversion

Let an inversion of pole O with power ρ > 0 be given. The circle of center O and
radius

√
ρ is the geometrical locus of the points of the Euclidean plane E2 which

coincide with their inverses. This is called the inversion circle of pole O and of
power ρ.

Theorem 3.9 Any circle C2(K,R′) passing through a pair of inverse points A,B

is orthogonal to the inversion circle C1(O,R).

Proof It is enough to observe that (see Fig. 3.37)

−→
OA · −→OB = R2, |−→OP| = R.
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Fig. 3.37 Orthogonal circles
and inversion (Sect. 3.6.13)

Thus

−→
OP2 = −→

OA · −→OB,

which implies

ÔPK = 90°. �

Remark 3.5 If the points A,B are such that every circle of center K passing through
A and B is orthogonal to every other circle of center O and of radius R, then the
points A,B are inverses with respect to this circle.

3.6.14 Applications of the Inversion Operation

Example 3.6.1 (Ptolemy’s inequality) Let A, B , C, D be four points in the plane,
then

AC · BD ≤ AB · DC + AD · BC. (3.71)

Proof Consider the inversion with pole A and power a certain real number ρ �= 0.
Let B ′, C′, and D′ be the inverses of B , C, and D, respectively. Then, by the triangle
inequality

B ′D′ ≤ B ′C′ + C′D′

with

B ′D′ = BD · |ρ|
AB · AD

, (3.72)

B ′C′ = BC · |ρ|
AB · AC

, (3.73)

C′D′ = CD · |ρ|
AC · AD

. (3.74)
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Fig. 3.38 Ptolemy’s theorem
(Example 3.6.2)

Hence

BD · ρ

AB · AD
≤ (BC + CD) · ρ

AB · AD
,

which implies

BD · AC ≤ BC · AD + CD · AB, (3.75)

and the assertion has been proved. �

Example 3.6.2 (Ptolemy’s theorem) A quadrilateral ABCD can be inscribed in a
circle if and only if

AB · CD + AD · BC = AC · BD, (3.76)

i.e., (3.71) holds with equality.

Proof Let us consider the inversion of the quadrilateral ABCD with pole A and
power ρ �= 0, with the points B ′, C′, D′ being the inverses of the points B , C, D,
respectively (see Fig. 3.38). Then, the following relations hold

BD = B ′D′ · |ρ|
AB′ · AD′ , (3.77)

AC = |ρ|
AC′ , (3.78)

BC = B ′C′ · |ρ|
AB′ · AC′ , (3.79)

AD = |ρ|
AD′ , (3.80)

CD = C′D′ · |ρ|
AC′ · AD′ , (3.81)

AB = |ρ|
AB′ . (3.82)

Hence, by (3.71), we derive the relation

B ′D′ = B ′C′ + C′D′, (3.83)
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Fig. 3.39 Picture of
Example 3.6.3

Fig. 3.40 Picture of
Example 3.6.4

that is, the points B ′, C′, D′ are collinear, and the straight line that contains these
points has as its inverse the circle C passing through the pole A. �

Example 3.6.3 Let C, C′ be two circles with C ∩ C′ = {A,B}. Let M ∈ C′ and
MA, MB the straight lines that intersect the other circle C at the points A′, B ′,
respectively. Prove that A′B ′ ⊥ MK′ with K ′ the center of the circle C′.

Proof Let M be the pole of an inversion with power being the inverse of the power
of M with respect to the circle C (see Fig. 3.39). In this case, the inverse of the
circumference C′ is the straight line A′B ′ (where A′, B ′ are the inverse images of
A, B with respect to this inversion) and thus MK ′ ⊥ A′B ′. �

Example 3.6.4 Let a circle C(K, r) and a point A in the interior of the circle be
given and consider a right angle ̂CAB = 90°, where C, B are points of the circle. If
the right angle ̂CAB is rotated around the point A, determine the locus of the point
of intersection of the tangents of C(K, r) at the points C and B .

Proof Let ABC be a right triangle (̂A = 90°) with T the midpoint of the hypotenuse
BC (see Fig. 3.40). We have

TA = TB = TC.

Hence

TA2 + TK2 = TC2 + TK2
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and thus

TA2 + TK2 = KC2 = R2. (3.84)

Let P be the midpoint of the straight line segment AK. By the first theorem of
medians (see Chap. 4: Theorems), we get

TA2 + TK2 = 2TP2 + AK2

2
,

which yields

R2 = 2TP2 + AK2

2
. (3.85)

It follows that AK is of constant length, and consequently the point T is moving on
a fixed circle with center P and radius

r =
√

(

R2 − AK2

2

)

/

2.

Simultaneously, from the right triangle KBM, with ̂B = 90°, we derive

KT · KM = KB2 = R2. (3.86)

The assertion follows. �

3.7 The Idea Behind the Construction of a Geometric Problem

To give an insight, in the present section we demonstrate the process of construction
in the case of a specific problem; we consider problem G5 from the Shortlisted
Problems of the 42nd I.M.O., USA, 2001 [69].

Problem Let FBD be an acute triangle. Let EFD, ABF, and CDB be isosceles tri-
angles exterior to FBD with

EF = ED, AF = AB, and CB = CD,

and such that

̂FED = 2 ̂BFD,

̂BAF = 2 ̂FBD,

̂DCB = 2 ̂FDB.
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Fig. 3.41 The starting
problem (Sect. 3.7)

Let

A1 = AD ∩ EC, C1 = CF ∩ AE, and E1 = EB ∩ AC.

Find the value of the sum
AD

AA1
+ EB

EE1
+ CF

CC1
.

It follows the construction and the solution of this problem.

1. Let ABC be a triangle, O be an interior point of the triangle, and A1,B1, C1 be
the points of intersection of AO, BO, and CO with the sides BC, AC, and AB,
respectively. Prove that

OA1

AA1
+ OB1

BB1
+ OC1

CC1
= 1. (3.87)

Solution We have
OA1

AA1
= OD

AE
= OD · BC/2

AE · BC/2
= SOBC

SABC
(3.88)

(see Fig. 3.41). Similarly,

OB1

BB1
= SOAC

SABC
(3.89)

and
OC1

CC1
= SOAB

SABC
. (3.90)

Adding Eqs. (3.88), (3.89), and (3.90), we obtain Eq. (3.87). �

2. We consider the reflections of the point O over the sides BC, CA, and AB, respec-
tively. We denote these points by O1,O2, and O3, respectively (see Fig. 3.42).
We have

OA1 = A1O1 and ÔA1B = B̂A1O1, (3.91)
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Fig. 3.42 The basic question
(Sect. 3.7)

OB1 = B1O2 and ÔB1A = ÂB1O2, (3.92)

and

OC1 = C1O3 and ÔC1A = Ô3C1A. (3.93)

Consequently,

OA1

AA1
= O1A1

AA1
, (3.94)

OB1

BB1
= O2B1

BB1
, (3.95)

and

OC1

CC1
= O3C1

CC1
. (3.96)

3. We now take advantage of the equality of the angles (see Eqs. (3.91), (3.92), and
(3.93)) and consider the segments AO1, BO2, and CO3 which intersect the sides
BC, AC, and AB at the points A2, B2, and C2, respectively (see Fig. 3.43). We
apply the theorem of bisectors to the triangles AO1A1, BO2B1, and CO3C1 and
use Eq. (3.94) to obtain Eqs. (3.97), (3.98), and (3.99), which yield

OA1

AA1
= O1A1

AA1
= O1A2

A2A
, (3.97)

OB1

BB1
= O2B1

BB1
= O2B2

B2B
, (3.98)
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Fig. 3.43 Another translation of the ratios (Sect. 3.7)

and

OC1

CC1
= O3C1

CC1
= O3C2

C2C
. (3.99)

Using Eqs. (3.97), (3.98), and (3.99), we have:

AO1

AA2
+ BO2

BB2
+ CO3

CC2

= AA2 + A2O1

AA2
+ BB2 + B2O2

BB2
+ CC2 + C2O3

CC2

= AA2

AA2
+ BB2

BB2
+ CC2

CC2
+ O1A2

AA2
+ O2B2

BB2
+ O3C2

CC2

= 3 + OA1

AA1
+ OB1

BB1
+ OC1

CC1

= 3 + 1 = 4.

Remarks

(i) Because of the fact that the point O is an interior point of the triangle ABC, the
three pairs of equal angles

B̂OC = ĈO1B, (3.100)

̂COA = ÂO2C, (3.101)
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Fig. 3.44 The construction
of the problem (Sect. 3.7)

̂AOB = B̂O3A (3.102)

all have measure less than π .
(ii) Evidently,

AO = AO2 = AO3,

BO = BO1 = BO3, (3.103)

CO = CO1 = CO2.

(iii) The chain AO2CO1BO3A is a closed polygonal chain.
(iv) We have

ĈO1B + ÂO2C + B̂O3A = 2π. (3.104)

A question: Does there exist a convex hexagon AO2CO1BO3 so that conditions (i)–
(iv) hold true for the closed polygonal chain defined by it?

Answer: Yes, one can do it as long as we make sure that the reflections of O1 over
BC, of O2 over AC, and of O3 over AB coincide in an interior point O of ABC.

Consider the convex hexagon ABCDEF that satisfies (see Fig. 3.44)

AB = AF,

CB = CD,

and

ED = EF,

and such that

̂FED + ̂BAF + ̂DCB = 2π. (3.105)
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Let

A1 = AD ∩ CE, C1 = CF ∩ AE, and E1 = EB ∩ AC.

Compute the sum

AD

AA1
+ CF

CC1
+ EB

EE1
. (3.106)

Solution We have

̂FED + ̂BAF + ̂DCB = 2π, (3.107)

thus

̂CBA + ÊDC + ̂AFE = 2π. (3.108)

The hexagon is convex and so all its angles are less than π . Based on the fact that

AF = AB, (3.109)

we can construct outside the hexagon a triangle AFB1 equal to the triangle ABC so
that

FB1 = BC and ÂFB1 = ̂CBA,

and thus

AB1 = AC. (3.110)

We observe that

̂AFE + B̂1FA = ̂AFE + ̂CBA. (3.111)

Thus

̂AFE + B̂1FA + ÊDC

= ̂AFE + ̂CBA + ÊDC = 2π (3.112)

with

̂AFE < π, (3.113)

̂CBA < π, (3.114)

and

ÊDC < π. (3.115)
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This leads to the conclusion that the point F lies in the interior of the triangle AEB1,
which is equal to the triangle ACE. Let O be the reflection of F over AE. Then O

lies in the interior of the triangle ACE. Clearly,

OE = EF = ED (3.116)

and

̂FEA = ̂AEO. (3.117)

Therefore, the point O is the reflection of D over CE. Since

AO = AF = AB,

the point O is the reflection of B over AC. We have

AD

AA1
= 1 + A1D

AA1

= 1 + DT

AP

= 1 + OT

AP

= 1 + SOCE

SACE
, (3.118)

where

AP ⊥ CE and T = OD ∩ CE. (3.119)

Similarly,

CF

CC1
= 1 + SOAE

SACE
(3.120)

and
EB

EE1
= 1 + SOAC

SACE
. (3.121)

Therefore,

AD

AA1
+ CF

CC1
+ EB

EE1
= 3 + SOCE + SOAE + SOAC

SACE
,

and hence

AD

AA1
+ CF

CC1
+ EB

EE1
= 3 + 1 = 4. (3.122)

�



Chapter 4
Theorems

Geometry is the most complete science.
David Hilbert (1862–1943)

In this chapter, we present some of the most essential theorems of Euclidean Geom-
etry.

Theorem 4.1 (Thales)

• (Direct) Let l1, l2 be two straight lines in the plane. Assume that l1, l2 intersect the
four parallel, pairwise, non-coinciding, straight lines a1, a2, a3, a4 at the points
A, B , C, D and A1, B1, C1, D1, respectively. Then, the equality

AB

A1B1
= BC

B1C1
= CD

C1D1
= AC

A1C1
= AD

A1D1

holds true.
• (Inverse) Consider two straight lines l1, l2 in the plane. Let A, B , C be points on

l1 and A1, B1, C1 points on l2 such that:

(i) AA1 ‖ CC1 and the points B , B1 are in the interior of the straight line seg-
ments AC and A1C1, respectively, or at the exterior of the straight line seg-
ments AC and A1C1, respectively.

(ii) The equality

AB

A1B1
= BC

B1C1

holds true.

Then, the parallelism relations BB1 ‖ AA1 and BB1 ‖ CC1 hold true.

Theorem 4.2 (Pythagoras) If ABC is a right triangle with ̂A = 90° then

BC2 = AB2 + AC2,

or

a2 = b2 + c2,

where a = BC, b = AC, and c = AB.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5_4,
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Theorem 4.3 (First theorem of medians) The sum of the squares of two sides of
a triangle is equal to the sum of the double of the square of the median which
corresponds to the third side and the double of the square of the half of that side.

Theorem 4.4 (Second theorem of medians) The absolute value of the difference of
the squares of two sides of a triangle is equal to the double of the product of the
third side with the projection of the median (which corresponds to this side) on this
side.

Theorem 4.5 (Stewart) Let ABC be a triangle. On the straight line BC we consider
a point D. Then the relation

AB2 · DC + AC2 · BD = AD2 · BC + BD · DC · BC,

holds true.

Theorem 4.6 (Angle bisectors)

• (Internal bisector) Let AD be the internal angle bisector of the triangle ABC. Then

BD

DC
= AB

AC
.

Conversely, if D is an interior point of the side BC of the triangle ABC and the
relation

BD

DC
= AB

AC

holds true then the straight line AD is the angle bisector of the angle ̂A of the
triangle ABC. The equalities

BD = ac

b + c
(4.1)

and

DC = ab

b + c
(4.2)

hold true, where a = BC, b = AC, and c = AB.
• (External bisector) Let AE be the external angle bisector of the triangle ABC with

AC < AB. Then

BE

EC
= AB

AC
.

Conversely, if for the external point E of the side BC the relation

BE

EC
= AB

AC
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holds true then the straight line AE is the angle bisector of the external angle
π − ̂A of ̂A of the triangle ABC. If AC < AB then the relations

EB = ac

c − b
, (4.3)

EC = ab

c − b
(4.4)

are valid, where a = BC, b = AC, and c = AB.

Note 1 The equality

DE = 2abc

c2 − b2

holds.

Note 2 Using the previously mentioned relations, we also conclude that

BD

DC
= BE

EC
�= 1 (4.5)

holds true. In this case, we say that the points D, E are harmonic conjugates of the
points B , C.

Theorem 4.7 (Apollonius circle) Let the points B , C be given on a straight line.
On this straight line we consider two points D, E such that

BD

DC
= BE

EC
�= 1.

The points D, E are called harmonic conjugates of the points B , C, or alternatively,
we say that the points B , C, D, E form a harmonic quadruple and we denote it by
(B,C,D,E) = −1.

The geometrical locus of the points M with the property:

MB

MC
= BD

DC
�= 1

is the circle with diameter the straight line segment ED. This circle is called the
Apollonius circle. In the case where

BD

DC
= 1,

the geometrical locus of the points M with MB = MC is obviously the perpendicular
bisector of BC and the harmonic conjugate of the middle point of BC is a point at
infinity.

Two basic properties of the harmonic quadruple B , C, D, E are the following:
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• (Desargues)

2

BC
= 1

BD
+ 1

BE
, if

BD

DC
> 1 (4.6)

and

2

BC
= 1

BD
− 1

BE
, if

BD

DC
< 1. (4.7)

• (Newton) The relation

BM2 = MD · ME

holds true when the point M is the midpoint of the straight line segment BC.
• The geometrical locus of the points M of the Euclidean plane E2 such that

MB

MC
= m

n
�= 1,

where m, n are given straight line segments, is a circle of diameter DE when the
points B , C, D, E form a harmonic quadruple (see Theorem 4.7). The radius RA

of this circle is given by

RA = BC · MC · MB

BM2 − MC2
, (4.8)

that is,

RA = BC · m
n

(m
n
)2 − 1

. (4.9)

Theorem 4.8 (Vecten’s point) Let the triangle ABC be given. Consider the squares
ABDE, ACZH, BCQI that are externally constructed with respect to the triangle
ABC. Then, the following propositions hold true (see Fig. 4.1):

• EC = HB, DC = AI, AQ = BZ, and EC⊥HB, AQ⊥BZ, DC⊥AI.
• EH = 2AM (M is the midpoint of BC).
• If we consider the parallelogram AEA′H then we have �EAA′ = �ABC, and

furthermore the median AM of the triangle ABC is an altitude of the triangle
AEH and the altitude AL of the triangle ABC is the median of the triangle AEH.

• The straight lines BZ, CD and the altitude AL of the triangle ABC pass through
the same point.

• The straight lines EZ, HD and the median AM of the triangle ABC pass through
the same point.

• The circumscribed circles to the squares ABDE, ACZH and the straight lines BH,
CE, DZ, AK1, where K1 is the center of the square BCQI, pass through the same
point.
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Fig. 4.1 Illustration of Theorem 4.8

• If K1, K2, K3 are the centers of the squares BCQI, ACZH, ABDE then the straight
lines AK1, BK2, CK3 have a point in common, the so-called Vecten’s point. This
point is the orthocenter of the triangle K1K2K3.

• If T is the midpoint of DZ then the triangle TBC is isosceles and orthogonal
( ̂BTZ = 90°).

Theorem 4.9 (Euler’s relation) Let ABC be a triangle inscribed in a circle (O,R).
Consider (I, r) to be the inscribed circle of the triangle ABC. Then, the relation

OI2 = R2 − 2rR

holds true. The property is called Euler’s relation.
We shall investigate the inverse of this proposition: Let the circles (O,R), (I, r)

be given and such that

OI2 = R2 − 2rR.
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Fig. 4.2 Euler’s relation
(Theorem 4.9)

Then, there exists a triangle inscribed in one of the circles under consideration and
circumscribed around the other one (see Fig. 4.2).

Proof Using the given condition

OI2 = R2 − 2rR,

we obtain

R ≥ 2r and R > OI. (4.10)

The inequalities (4.10) actually imply that the circle (I, r) is inside the circle (O,R).
Let B be a point of the circle (O,R) and S be the middle point of BI. Suppose that
D is the point of intersection of the perpendicular straight line to BI at S with the
circle (O,R).

The perpendicular straight line to BI at the point S intersects the circle (O,R)

since the point B belongs to this circle and the point I is in its interior.
The circle (D,DB) with DB = DI intersects the circle (O,R) at a point C. Con-

sidering as the point A the common point of the straight line DI with the circle
(O,R) it follows that I is the center of the circle inscribed in the triangle ABC.

Indeed, if r1 is the radius of the circle inscribed in the triangle ABC, by using the
well known relation of Euler and the assumption of the problem, we get

OI2 = R2 − 2Rr1,
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Fig. 4.3 Illustration of
Morley’s Theorem 4.11

and therefore,

R2 − 2Rr = R2 − 2Rr1.

Hence r = r1.
In conclusion, considering the point B in the circle (O,R), there is actually a

triangle ABC inscribed in the circle (O,R) and such that (I, r) is the inscribed circle
in the triangle ABC. Since this occurs for any choice of the point B ∈ (O,R), we
obtain an infinite family of triangles inscribed in the circle (O,R) and circumscribed
around the circle (I, r). �

Theorem 4.10 Let ABC be a triangle and P , T , R be any points on the sides BC,
CA, and AB, respectively. Then the circumcircles of the triangles ART , BPR, CTP
pass through a common point.

Theorem 4.11 (Morley) Assume ABC is a triangle. Consider the trisectors of the
angles ̂BAC and ̂CBA, which lie closer to the side AB of the triangle and let A′ be
their intersection. Similarly, let B ′ and C′ be the corresponding intersections for the
sides AC and BC, respectively. Then the triangle A′B ′C′ is equilateral.

Proof Let ̂A = 3a, ̂B = 3b, ̂C = 3c. Let B ′, T , S be the points of intersection of the
trisectors (see Fig. 4.3 and 4.4). If we assume that

2a + 2c ≤ 60°, 2a + 2b ≤ 60°,

and

2b + 2c ≤ 60°

then

4a + 4b + 4c ≤ 180°,

that is,

a + b + c ≤ 45°,
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Fig. 4.4 Illustration of
Morley’s Theorem 4.11

which implies

3a + 3b + 3c ≤ 135°,

or equivalently,

180° ≤ 135°,

a contradiction. We conclude that at least one of the sums 2a + 2b, 2a + 2c, 2b + 2c

should exceed 60°. Suppose that 2a + 2c > 60°, then ̂B < 90°. Let

B ′B1⊥AC and B ′B3⊥AT.

Then, since every point of the angle bisector is equidistant from both sides of the
angle, we get

B ′B3 = 2B ′F = 2B ′B1.

Similarly, if we consider B ′B2⊥SC, we obtain

B ′B2 = 2B ′B1,

and thus

B ′B2 = B ′B3.

We also observe that

B̂3B ′B2 = 2a + 2c > 60°.

Consider the points A′, C′ of the semi-straight lines AT and CS, respectively, so
that the triangle A′B ′C′ is isosceles. We obviously have

Â′B ′B3 = Ĉ′B ′B2 = s,
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therefore

2s = 2a + 2c − 60°.

Observe that

A′B3 = A′B ′ (due to symmetry)

and

C′B2 = C′B ′.

It follows that

s = a + c − 30°

and

2h + 2a + 2c = 180°,

hence

h = B̂2B3B ′ = B̂ ′B2B3.

Consequently, we have

h = 90° − a − c,

thus

h − s = 120° − 2a − 2c

= 120° − 2

3
(3a + 3c)

= 120° − 2

3

(

180° − 3b
)

= 2b,

and thus

u = 2b, (4.11)

where u = B̂2B3A′ = ŜB2B3. At this point, we observe that

B3A
′ = A′C′ = C′B2

because of the isosceles triangle A′B ′C′, and thus

B̂3C′B2 = 180° − u − u

2

= 180° − 3u

2
= 180° − 3b. (4.12)
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By (4.12), it follows that the quadrilateral BB3C
′B2 is inscribed in a circle, and

similarly, we obtain that the quadrilateral BB2A
′B3 can be inscribed in a circle, as

well. Consequently, the straight lines BA′, BC′ trisect the angle ̂B , hence

T ≡ A′ and S ≡ C′. �

Theorem 4.12 (Menelaus) Let ABC be a triangle and let D, E, F be points on the
lines defined by the sides BC, CA, and AB, respectively, such that not all three of
these points are interior points of the sides of the triangle. The points D, E, F are
collinear if and only if the following condition holds true

AF

FB
· DB

DC
· EC

EA
= 1. (4.13)

Theorem 4.13 (Ceva) Let ABC be a triangle and let D,E,F be points on the sides
BC, CA and AB, respectively. Then the lines AD, BE, and CF are concurrent if and
only if

AF

FB
· BD

DC
· CE

EA
= 1. (4.14)

Theorem 4.14 (Desargues) Let two triangles ABC and DEF be given. Suppose that

K = AB ∩ DE, L = AC ∩ DF, and M = BC ∩ EF.

Then the points K,L,M are collinear if and only if the lines AD, BE, and CF are
mutually parallel or concurrent.

Proof It should be enough to prove that the relation (see Fig. 4.5)

LD

LF
· MF

ME
· KE

KD
= 1 (4.15)

holds true, by applying the inverse of Menelaus’ theorem to the triangle DEF. Ap-
plying Menelaus’ theorem to the triangle ODF with secant the straight line LAC,
we get

LD

LF
· CF

CO
· OA

AD
= 1. (4.16)

Applying Menelaus’ theorem to the triangle OFE with secant the straight line MCB,
we get

MF

ME
· BE

BO
· OC

CF
= 1. (4.17)

Applying again Menelaus’ theorem to the triangle ODE with secant the straight line
KAB, we get

KE

KD
· AD

AO
· BO

BE
= 1. (4.18)
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Fig. 4.5 Illustration of Desargues Theorem 4.14

Multiplying the relations (4.16)–(4.18), we finally deduce (4.15), and this completes
the proof. �

Theorem 4.15 (Brahmagupta) Consider a cyclic quadrilateral, that is, a quadrilat-
eral whose four vertices lie on a circle, with sides of lengths a, b, c, and d . Then its
area S is given by the formula

S = √

(s − a)(s − b)(s − c)(s − d),

where

s = a + b + c + d

2
.

Theorem 4.16 (Simson–Wallace) Let A,B,C be three points on a circle. Then the
feet of the perpendicular lines from a point P to the lines AB,BC,CA are collinear
if and only if the point P also lies on the circle (see Fig. 4.6).

Theorem 4.17 (Archimedes) Let D be the midpoint of the arc AC of a circle, B

a point that lies on the arc DC, and let E be the point on AB such that DE is
perpendicular to AB (see Fig. 4.7). Then

AE = BE + BC.

Proof Let us consider the point Z on the semistraight line AB such that

AB < AZ and BZ = BC.
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Fig. 4.6 Illustration of
Simson–Wallace
Theorem 4.16

Observe that

̂DBZ = 180° − ̂ABD

= 180° − ̂ACD (4.19)

and

̂CBD = 180° − ̂DAC. (4.20)

The point D is the midpoint of the arc ABC, therefore

̂ACD = ̂DAC. (4.21)

Using the relation (4.21) and the fact that by construction DZ = DC, we obtain

̂CBD = ̂DBZ. (4.22)

By applying (4.21) and the fact that by construction BZ = BC, we get the equality
of the triangles BCD and DZB, and thus

DZ = DC = DA.

Hence, the triangle DZA is isosceles, hence the height DE is also the median, and in
conclusion,

AE = EZ = EB + BZ = EB + BC. (4.23)

�
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Fig. 4.7 Illustration of Archimedes Theorem 4.17

Fig. 4.8 Illustration of Euler’s line and circle (Theorem 4.18)

Theorem 4.18 (Euler’s line—Euler’s circle)

1. Let H be the point of intersection of the heights of the triangle ABC, O be the
center of the circumscribed circle, and G be the barycenter of ABC. Then the
point G lies on the segment OH and GH = 2OG.

The line that contains the points O , G, and H is called the Euler’s line of the
triangle ABC.

2. In a triangle ABC, the midpoints of its sides, the feet of its heights, and the
midpoints of the segments that connect the intersection point of the heights (or-
thocenter) with the vertices of ABC all lie on one circle with center of this circle
being the midpoint of the straight line segment OH.

The above circle is called the nine-point circle or Euler’s circle (see Fig. 4.8).
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Fig. 4.9 Illustration of Fermat–Toricelli Theorem 4.19

Theorem 4.19 (Fermat–Toricelli point) Let ABC be a triangle. Consider the equi-
lateral triangles AC1B,AB1C, and BA1C which lie on the plane determined by the
points A,B,C and are in the exterior of the triangle ABC (see Fig. 4.9).

1. Then the lines AA1, BB1, and CC1 pass through a common point S.
2. It holds

SA + SB + SC = AA1 = BB1 = CC1.

3. Let T be a point in the plane determined by the triangle ABC. Then

TA + TB + TC ≥ SA + SB + SC,

when the angles of the triangle are less than 120°.

Theorem 4.20 (Miquel–Steiner) Consider a complete quadrilateral ABCDEZ,
where E = AB ∩ DC and Z = AD ∩ BC. The circumscribed circles of the trian-
gles AED, ABZ, BEC, and DCZ pass through a common point. This point is called
the Miquel’s point (see Fig. 4.10).

Corollary 4.1 Miquel’s point belongs to the line EZ if and only if the complete
quadrilateral is inscribed in a circle.

Corollary 4.2 In a complete quadrilateral ABCDEZ, the centers of the circum-
scribed circles of the triangles AED, ABZ, CBE, CZD and Miquel’s point belong to
the same circle.
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Fig. 4.10 Illustration of
Miquel–Steiner Theorem 4.20

Theorem 4.21 (Feuerbach) The Euler circle (nine-point circle) of a triangle ABC
is tangent to the incircle circumference and to all the three excircles of the triangle
ABC.

Proof Let E be the point of contact of the incircle (I, r) with the side BC and Z the
point of contact of the excircle (Ia, ra) with the side BC (see Fig. 4.11). Consider the
height AA′, the angle bisector AD (with the points I , Ia lying on AD, as it is evident)
and the midpoint M of the side BC, where BC is a common internal tangent of the
circles (I, r) and (Ia, ra).

Let LS be the other internal common tangent of the same circles. It is a fact that
the point of intersection of these common tangents EZ, LS is the internal point of
homothety, but also the inversion point, of the circles (I, r), (Ia, ra), which lies on
the straight line joining their centers. Consequently, it is the point D.

The straight lines BC and LS are symmetrical with respect to the straight line
AD. Hence the straight line LS is anti-parallel to the straight line BC, with respect
to the straight lines AB, AC.

The straight line BI is the angle bisector of the angle ̂CBA and BIa is the angle
bisector of its exterior angle. It follows that

AI

ID
= AIa

IaD

and thus

A′E
ED

= A′Z
DZ

. (4.24)

We know that

BE = ZC = s − b,
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Fig. 4.11 Illustration of
Feuerbach Theorem 4.21

where s is the semiperimeter of the triangle ABC, and hence

ME2 = MD · MA′. (4.25)

The equality (4.25) is a necessary and sufficient condition so that

ED

DZ
= A′E

A′Z

holds true, when the point M is the midpoint of the straight line segment EZ, that is,
a necessary and sufficient condition so that the points A′, D are harmonic conjugates
of the points E, Z.

Now, if we consider the inversion with inversion pole M and power ME2, we
obtain, by means of this inversion, the transformation of the point I to the point
Ia and of the point Ia to the point I . The Euler circle is transformed, through the
inversion (M,ME2), to a straight line parallel to its tangent at the point M .

We know that the Euler circle passes through the point A′ and since

ME2 = MD · MA′

and the point D should belong to the inverse of the Euler circle which is a straight
line parallel to the tangent of the circle at the point M , that is, the anti-parallel of the
straight line BC with respect to the straight lines AB, AC. Namely, it is the straight
line LS, the common internal tangent of the circles (I, r), (Ia, ra). It follows that
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the straight line LS has as its inverse the Euler circle which happens to be tangent
to the circles (I, r), (Ia, ra) at the corresponding inverses of the points L, S. �

Theorem 4.22 (Brocard) Let ABCD be a quadrilateral inscribed in a circle with
center O and let

E = AB ∩ CD, F = AD ∩ BC, and J = AC ∩ BD.

Then O is the orthocenter of the triangle EFJ.

Theorem 4.23 (The butterfly theorem) Let PQ be a chord of a circle and M be its
midpoint. Let AB and CD be two other chords of the circle which pass through the
point M . Let AD and BC intersect the chord PQ at the points X and Y , respectively.
Then

MX = MY.

Theorem 4.24 (Maclaurin) Consider the angle ̂xOy. Two points A and B are mov-
ing on its sides Ox and Oy, respectively, in such a way that

mOA + nOB = k,

where m,n are given positive real numbers and k is a given straight line segment.
Then the circumscribed circle of the triangle OAB passes through a fixed point.

Remark 4.1 This point lies on the straight line Oh which is the geometrical locus
of the points satisfying the property that their distances from the sides of the angle
̂xOy are m/n.

Theorem 4.25 (Pappou–Clairaut) Let ABC be a triangle. In the exterior of ABC,
we consider the parallelograms ABB′A′, ACC′A′′, P is the common point of the
straight lines B ′A′, C′A′′, and T is the intersection point of AP, BC.

On the extension of the straight line segment AT and in the exterior of the trian-
gle, we consider a straight line segment TN = PA.

Let BB′′C′′C be the parallelogram such that the point N belongs to the side
B ′′C′′. Then the equality

SBB′′C′′C = SAA′B ′B + SACC′A′′ (4.26)

holds true, where S denotes the enclosed area of the corresponding quadrilateral.

Observation By using the Pappou–Clairaut Theorem, one can easily prove the
Pythagorean Theorem. This can be done as follows (see Fig. 4.12). We observe
that the right triangles HTA and ABC are equal. Indeed, it holds

AC = AH and HT = AE = AB,
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Fig. 4.12 Illustration of
Pappou–Clairaut
Theorem 4.25

hence

AT = BC = BK,

and therefore,

B̂AM = ̂A1 = ̂C.

Thus

̂A2 + ̂B = ̂C + ̂B = π

2
,

where M is considered to be a point on the side BC which is the intersection point
of the straight lines BC and AT . It follows that

AT⊥BC,

which implies that

AT ‖ BK.

Since the squares are also parallelograms, by a direct application of the Pappou–
Clairaut Theorem, we deduce that

(ABDE) + (ACZH) = (BKLC),

that is,

AB2 + AC2 = BC2.
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Theorem 4.26 Let ABC be a triangle and M be a point in its interior. If x, y, z

denote the distances of the point M from the sides BC, CA, and AB, respectively,
of the triangle then the product xyz attains its maximum value when the point M is
identified with the barycenter of ABC.

Theorem 4.27 (Cesáro) Let the triangle ABC be given. Consider two triangles
KLM and K ′L′M ′ circumscribed around the given triangle and similar to another
given triangle with their respective homological sides perpendicular to each other,
that is,

KL⊥K ′L′, KM⊥K ′M ′, ML⊥M ′L′.

Then the sum of the areas of the triangles KLM and K ′L′M ′, that is,

SKLM + SK ′L′M ′ ,

is constant, where S denotes the enclosed area of the corresponding triangle.

Theorem 4.28 The three Apollonian circles of a given triangle form a bundle, that
is, they have a chord in common.

Theorem 4.29 Consider a circle with center O and two points M and N in its
interior such that M , N are symmetrical with respect to its center O . Let T be a
point on the circle. Consider A, C, B the intersection points of the straight lines
TM, TO, TN with the circle. Then, the tangent to the circumference at the point C

and the straight line AB have a point in common that belongs to the straight line
MN.

Theorem 4.30 Consider a circle and an orthogonal triangle ABC, ̂A = 90°, in-
scribed in this circle. Consider the straight lines defined by the sides of the orthogo-
nal triangle and the tangent straight lines to the circle at the points O , D, Q of the
arcs BC, AB, and AC, respectively, such that

OM = ON, DE = OZ, HQ = QL,

where

• M , N are the intersection points of the tangent line at the point O with the
straight lines AB, AC,

• E, Z are the intersection points of the tangent line at the point D with the straight
lines AB, AC, and

• H , L are the intersection points of the tangent line at the point Q with the straight
lines BC and AC.

Then the triangle OQD is equilateral.

Theorem 4.31 Let three circles be given, considered in pairs, and the six centers of
similarity, three of them in the exterior and the other three in the interior. The three
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points in the exterior are collinear as well as two external points are collinear with
one of the interior points.

Theorem 4.32 Let the triangle ABC be given. Consider the six projections of the
feet of the altitudes onto the other pair of sides of the triangle. Then, the feet of these
projections are homocyclic points.

Theorem 4.33 Let ABC be a triangle. If A1, B1, C1 are the points of contact of
the incircle of the triangle with the sides BC, CA, AB, respectively (or the contact
points of the excircle with these sides), then the straight lines AA1, BB1, and CC1
pass through the same point. This point is called the Gergonne’s point.

Theorem 4.34 (Pascal’s line) In a hexagon inscribed in a circle, the intersection
points of its opposite sides are collinear.

Theorem 4.35 (Nagel’s point) Let ABC be a triangle. If D, E, F are the contact
points of the corresponding exscribed circles of the triangle with the sides bc, CA,
AB then the straight lines AD, BE, and CF pass through the same point N . This
point is called the Nagel’s point.

Theorem 4.36 Let ABC be a triangle, define the symmedian of the triangle ABC
with respect to the vertex A to be the straight semiline Ax that is the geometrical
locus of the points M such that the ratio of its distances from the sides AB, AC is
AB/AC. Then, the three symmedians of a triangle ABC pass through the same point
which is called the Lemoine’s point.

Theorem 4.37 Let K be the Lemoine point of the triangle ABC. Assume that the
line segments KA, KB, KC are divided in analogous parts between them by using the
points A1, B1, C1. Then, the intersections of the straight lines B1C1, C1A1, A1B1
with the sides of the triangle ABC are homocyclic points (the Tucker’s circle). The
center of this circle belongs to the straight line KO, where O is the center of the
circumscribed circle of the triangle ABC.

Theorem 4.38 (Erdős–Mordell) If from a point O situated in the interior of a given
triangle ABC, we consider the perpendiculars to its sides OD, OE, OF, then

OA + OB + OC ≥ 2(OD + OE + OF).

The equality holds if and only if the triangle ABC is equilateral and O is its centroid.



Chapter 5
Problems

Problems worthy of attack prove their worth by fighting back.
Paul Erdős (1913–1996)

5.1 Geometric Problems with Basic Theory

5.1.1 Let a, b, c, d be real numbers, different from zero, such that three of them are
positive and one is negative, and also

a + b + c + d = 0.

Prove that there exists a triangle with sides of length

√

a + b

ab
,

√

b + c

bc
,

√

a + c

ac
,

respectively.

5.1.2 Let ABC be an equilateral triangle. Find the straight line segment of minimal
length such that when it moves with its endpoints sliding along the perimeter of the
triangle ABC, it covers all the interior of the triangle ABC.

5.1.3 Let PBCD be a rectangle inscribed in the circle (O,R). Let DP be an arc of
(O,R) which does not contain the vertices of PBCD and let A be a point of DP. The
line parallel to DP that passes through A intersects the line BP at the point Z. Let F

be the intersection point of the lines AB and DP and let Q be the intersection point
of ZF and DC. Show that the straight line AQ is perpendicular to the line segment
BD.

5.1.4 Let l be a straight line and H be a point not lying on l. Let S be the set of
triangles that have their orthocenter at H and let ABC be one of these triangles. Let
l1, l2, l3 be the reflections of the line l with respect to the sides BC,CA,AB. Let
A1 = l2 ∩ l3, B1 = l3 ∩ l1, and C1 = l1 ∩ l2. Show that the ratio of the perimeter of
the triangle A1B1C1 to the area of the triangle A1B1C1 is constant.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5_5,
© Springer Science+Business Media New York 2013
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5.1.5 Let ABC be a triangle. Consider two circles (K,R) and (L, r) with constant
radii, which move in such a way that they remain tangent to the sides AB and AC,
respectively, such that their centers belong to the interior of ABC, and finally such
that the length of KL is preserved. Prove that there is a circle (M,h) (with constant
radius) that moves in such a way that it remains tangent to the side BC and such that
the triangle MKL has sides of constant length.

5.1.6 Let ABC and A1B1C1 be triangles. Let AD and A1D1 be bisectors of the
angles ̂A and ̂A1, respectively, and let CE and C1E1 be the distances of the vertices
C,C1 from the lines AD and A1D1, respectively. Suppose that

AD = A1D1,

̂CBA = Ĉ1B1A1,

CE = C1E1.

Prove that

ABC = A1B1C1.

5.1.7 In the triangle ABC, let B1, C1 be the midpoints of the sides AC and AB,
respectively, and H be the foot of the altitude passing through the vertex A.

Prove that the circumcircles of the triangles AB1C1, BC1H , and B1CH have a
common point I and the line HI passes through the midpoint of the line segment
B1C1.

(Shortlist, 12th IMO, 1970, Budapest–Keszthely, Hungary)

5.1.8 Let ABC be an acute triangle and AM be its median. Consider the perpendic-
ular bisector of the side AB and let E be its common point with the median AM. Let
also D be the intersection of the median AM with the perpendicular bisector of the
side AC. Suppose that the point L is the intersection of the straight lines BE and CD
and that L1, L2 are the projections of L to AC and CD, respectively. Prove that the
straight line L1L2 is perpendicular to AM.

5.1.9 Prove that in a triangle with no angle larger than 90° the sum of the radii R, r

of its circumscribed and inscribed circles, respectively, is less than the largest of its
altitudes.

5.1.10 Let KLM be an equilateral triangle. Prove that there exist infinitely many
equilateral triangles ABC, circumscribed to the triangle KLM such that

K ∈ AB, L ∈ BC and M ∈ AC

with

KB = LC = MA.
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5.1.11 Let ABC be a triangle. Consider the points

K ∈ AB, L ∈ BC, M ∈ AC

such that

KB = LC = MA.

If the triangle KLM is equilateral, prove that the same holds true for the triangle
ABC.

5.1.12 Let ABC be an isosceles triangle with ̂A = 100°. Let BL be the angle bisector
of the angle ̂ABC. Prove that

AL + BL = BC.

(Proposed by Andrei Razvan Baleanu [23], Romania)

5.1.13 Let ABC be a triangle with ̂A = 90◦ and d be a straight line passing through
the incenter of the triangle and intersecting the sides AB and AC at the points P and
Q, respectively. Find the minimum of the quantity AP · AQ.

(Proposed by Dorin Andrica [17], Romania)

5.1.14 Let P be a point in the interior of a circle. Two variable perpendicular lines
through P intersect the circle at the points A and B . Find the geometrical locus of
the midpoint of the line segment AB.

(Proposed by Dorin Andrica [16], Romania)

5.1.15 Prove that any convex quadrilateral can be dissected into n, n ≥ 6, cyclic
quadrilaterals.

(Proposed by Dorin Andrica [19], Romania)

5.1.16 Let ABC be a triangle such that ̂ABC > ̂ACB and let P be an exterior point
in its plane such that

PB

PC
= AB

AC
.

Prove that

̂ACB + ̂APB + ̂APC = ̂ABC.

(Proposed by Mircea Becheanu [25], Romania)

5.1.17 Prove that if a convex pentagon satisfies the following properties:

1. All its internal angles are equal;
2. The lengths of its sides are rational numbers,



82 5 Problems

then this is a regular pentagon.
(18th BMO, Belgrade, Serbia)

5.1.18 Let k points be in the interior of a square of side equal to 1. We triangulate
it with vertices these k points and the square vertices. If the area of each triangle is
at most 1

12 , prove that k ≥ 5.
(Proposed by George A. Tsintsifas, Greece)

5.1.19 Let ABC be an equilateral triangle and D, E, F be points of the sides BC,
CA, and AB, respectively. If the center of the inscribed circle of the triangle DEF is
the center of the triangle ABC, determine what kind of triangle DEF is.

(Proposed by George A. Tsintsifas, Greece)

5.2 Geometric Problems with More Advanced Theory

5.2.1 Consider a circle C(K, r), a point A on the circle and a point P outside the
circle. A variable line l passes through the point P and intersects the circle at the
points B and C. Let H be the orthocenter of the triangle ABC. Prove that there exists
a unique point T in the plane of the circle C(K, r) such that the sum

HA2 + HT2

remains constant (independent of the position of the line l).

5.2.2 Consider two triangles ABC and A1B1C1 such that

1. The lengths of the sides of the triangle ABC are positive consecutive integers and
the same property holds for the sides of the triangle A1B1C1.

2. The triangle ABC has an angle that is twice the measure of one of its other angles
and the same property holds for the triangle A1B1C1.

Compare the areas of the triangles ABC and A1B1C1.

5.2.3 Let a triangle ABC be given. Investigate the possibility of determining a point
M in the interior of ABC such that if D, E, Z are the projections of M to the sides
AB, BC, CA, respectively, then the relations

AD

m
= BE

n
= CZ

l

should hold if m, n, and l are the lengths of given line segments.

5.2.4 Let ̂xOy be a right angle and on the side Ox fix two points A,B with OA <

OB. On the side Oy, we consider two moving points C,D such that OD < OC
with CD/DO = m/n, where m,n are given positive integers. If M is the point of
intersection of AC and BD, determine the position of M under the assumption that
the angle D̂MA attains its minimum.
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5.2.5 Given ̂xOy = 60°, we consider the points A, B moving on the sides Ox and
Oy, respectively, so that the length of the line segment AB is preserved subject to the
assumption that the triangle OAB is not an obtuse triangle. Let D, E, Z be the feet
of the heights OD, AE, and BZ of the triangle OAB to AB, BO, and OA, respectively.
Compute the maximal value of the sum

√
DE + √

EZ + √
ZD.

5.2.6 Let O be a given point outside a given circle of center C. Let OPQ be any
secant of the circle passing through O and R be a point on PQ such that

OP

QO
= PR

RQ
.

Find the geometrical locus of the point R.

5.2.7 Prove that in each triangle the following equality holds:

1

r

(

b2

rb
+ c2

rc

)

− a2

rbrc
= 4

(

R

ra
+ 1

)

,

where s is the semiperimeter of the triangle, S is the area enclosed by the triangle,
a, b, c are the sides of the triangle, R is the radius of the circumscribed circle, r is
the corresponding radius of the inscribed circle, and ra , rb , rc are the radii of the
corresponding exscribed circles of the triangle.

(Proposed by Dorin Andrica, Romania, and Khoa Lu Nguyen [14], USA)

5.2.8 Let A1A2A3A4A5 be a convex planar pentagon and let X ∈ A1A2, Y ∈ A2A3,
Z ∈ A3A4, U ∈ A4A5, and V ∈ A5A1 be points such that A1Z, A2U , A3V , A4X,
A5Y intersect at the point P . Prove that

A1X

A2X
· A2Y

A3Y
· A3Z

A4Z
· A4U

A5U
· A5V

A1V
= 1.

(Proposed by Ivan Borsenko [26], USA)

5.2.9 Given an angle ̂xOy and a point S in its interior, consider a straight line passing
through S and intersecting the sides Ox, Oy at the points A and B , respectively.
Determine the position of AB so that the product OA · OB attains its minimum.

5.2.10 Let the incircle of a triangle ABC touch the sides BC, CA, AB at the points
D, E, F , respectively. Let K be a point on the side BC and M be the point on the
line segment AK such that AM = AE = AF. Denote by L and N the incenters of the
triangles ABK and ACK, respectively.

Prove that K is the foot of the altitude from A if and only if DLMN is a square.
(Proposed by Bogdan Enescu [41], Romania)
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5.2.11 Let ABCD be a square of center O . The parallel through O to AD intersects
AB and CD at the points M and N , respectively, and a parallel to AB intersects the
diagonal AC at the point P . Prove that

OP4 +
(

MN

2

)4

= MP2 · NP 2.

(Proposed by Titu Andreescu [7], USA)

5.2.12 Let O , I , H be the circumcenter, the incenter, and the orthocenter of the
triangle ABC, respectively, and let D be a point in the interior of ABC such that

BC · DA = CA · DB = AB · DC.

Prove that the points A, B , D, O , I , H are cocyclic if and only if ̂C = 60°.
(Proposed by T. Andreescu, USA, and D. Andrica and C. Barbu [8], Romania)

5.2.13 Let H be the orthocenter of an acute triangle ABC and let A′, B ′, C′ be
the midpoints of the sides BC, CA, AB, respectively. Denote by A1 and A2 the
intersections of the circle (A′,A′H) with the side BC. In the same way, we define
the points B1,B2 and C1,C2, respectively. Prove that the points A1, A2, B1, B2, C1,
C2 are cocyclic.

(Proposed by Catalin Barbu [24], Romania)

5.2.14 Let ABC be a triangle with midpoints Ma , Mb , Mc and let X,Y,Z be the
points of tangency of the incircle of the triangle MaMbMc with MbMc , McMa , and
MaMb, respectively.

(a) Prove that the lines AX, BY , CZ are concurrent at some point P .
(b) If A1, B1, C1 are points of the sides BC, AC, AB, respectively, such that the

straight lines AA1, BB1, CC1 are concurrent at the point P , then the perime-
ter of the triangle A1B1C1 is greater than or equal to the semiperimeter of the
triangle ABC.

(Proposed by Roberto Bosch Cabrera [34], Cuba)

5.2.15 Let Ia be the excenter corresponding to the side BC of a triangle ABC. Let
A′, B ′, C′ be the tangency points of the excircle of center Ia with the sides BC, CA,
and AB, respectively. Prove that the circumcircles of the triangles AIaA

′, BIbB
′,

CIaC
′ have a common point, different from Ia , situated on the line GaIa , where Ga

is the centroid of the triangle A′B ′C′.
(Proposed by Dorin Andrica [20], Romania)

5.2.16 Let C1, C2, C3 be concentric circles with radii R1 = 1, R2 = 2, and R3 = 3,
respectively. Consider a triangle ABC with A ∈ C1, B ∈ C2, and C ∈ C3. Prove that

maxSABC < 5,



5.2 Geometric Problems with More Advanced Theory 85

where maxSABC denotes the greatest possible area attained by the triangle ABC.
(Proposed by Roberto Bosch Cabrera [35], Cuba)

5.2.17 Consider an angle ̂xOy = 60° and two points A,B moving on the sides
Ox, Oy, respectively, so that AB = a, where a is a given straight line segment. Let
AD,BE be the angle bisectors of ̂A, ̂B in the triangle OAB. Determine the position
for which the product

AEm · BDn

attains its maximum value, when m, n are positive rational numbers expressing the
lengths of two straight line segments.

5.2.18 Let ̂xOy = 90° and points A ∈ Ox, B ∈ Oy (with A �= O , B �= O), so that
the condition

OA + OB = 2λ

holds, where λ > 0 is a given positive number. Prove that there exists a unique point
T �= O such that

SOATB = λ2,

independently of the position of the straight line segment AB.

5.2.19 Let a given quadrilateral A′B ′C′D′ be inscribed in a circle (O,R). Consider
a straight line y intersecting the straight lines A′D′, B ′C′, B ′A′, and D′C′, at the
points A, A1, B , B1, respectively, and also the circle (O,R) at the points M , M1.
Prove that

√

MA · MA1 · MB · MB1 + √

M1A · M1A1 · M1B · M1B1

= √

(MA · MA1 + M1A · M1A1) · (MB · MB1 + M1B · M1B1).

5.2.20 Let ABC be a triangle with ̂BCA = 90° and let D be the foot of the altitude
from the vertex C. Let X be a point in the interior of the segment CD. Let K be the
point on the segment AX, such that BK = BC. Similarly, let L be the point on the
segment BX such that AL = AC. Let M be the point of intersection of AL and BK.
Show that MK = ML.

(53rd IMO, 2012, Mar del Plata, Argentina)

5.2.21 Let AB be a straight line segment and C be a point in its interior. Let
C1(O, r), C2(K,R) be two circles passing through A, B and intersecting each other
orthogonally. If the straight line DC intersects the circle C2 at the point M , compute
the supremum of x ∈R, where

x = SMAC

denotes the area of the triangle MAC.
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5.2.22 Let ABCWD be a pentagon inscribed in a circle of center O . Suppose that
the center O is located in the common part of the triangles ACD and BCW , where
the point W is the intersection of the height of the triangle ACD, passing through
the vertex A, with the circle. Let E be the intersection point of the straight line OK
with the straight line AW , where K is the midpoint of the side AD. Suppose that
the diagonal BW passes through the point E. Let Q be the common point of the
diagonal BW with the straight line OK such that ZQ ‖ AW and let Z be the point
of intersection of the diagonals AC and BW . Compute the sum

̂CDB + ̂CBA.

5.2.23 On the straight line ε consider the collinear points A, B , C and let AB > BC.
Construct the semicircumferences (O1), (O2) with diameters AB, BC, respectively,
and let D, E be their intersection points with the semicircle (O) having as diameter
the line segment O1O2. Define the points

D′ ≡ (O1) ∩ DE, E′ ≡ (O2) ∩ DE.

Prove that the points

P ≡ AD′ ∩ CE′, Q ≡ AD ∩ CE

and the midpoint M of the straight line segment AC are collinear.
(Proposed by Kostas Vittas, Greece)

5.2.24 Let ̂xOy be an angle and A, B points in the interior of ̂xOy. Investigate the
problem of the constructibility of a point C ∈ Ox in such a manner that

OD · OE = OC2 − CD2, (5.1)

where

D ≡ CA ∩ Oy and E ≡ CB ∩ Oy.

5.2.25 Let ABC be a triangle satisfying the following property: there exists an inte-
rior point L such that

̂LBA = ̂LCA = 2̂B + 2̂C − 270°.

Let B ′, C′ be the symmetric points of the points B and C with respect to the straight
lines AC and AB, respectively. Prove that

AL⊥C′B ′.

5.2.26 Let AB = a be a straight line segment. On its extension towards the point
B , consider a point C such that BC = b. With diameter the straight line segments
AB and AC, we construct two semicircumferences on the same side of the straight
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line AC. The perpendicular bisector to the straight line segment BC intersects the
exterior semicircumference at a point E. Prove or disprove the following assertion 1
and solve problem 2:

1. There exists a circle inscribed in the curved triangle ABEA.
2. If K is the center of the previously inscribed circle and M is the point of intersec-

tion of the straight line BK with the semicircumference of diameter AC, compute
the area of the domain that is bounded from the semicircumference of diameter
AC and the perimeter of the triangle MAC.

5.2.27 Let ABC be a triangle with AB ≥ BC. Consider the point M on the side
BC and the isosceles triangle KAM with KA = KM. Let the angle ÂKM be given
such that the points K , B are in different sides of the straight line AM satisfying the
condition

360° − 2̂B > ÂKM > 2̂C.

The circle (K,KA) intersects the sides AB, AC at the points D and E, respectively.
Find the position of the point M ∈ BC so that the area of the quadrilateral ADME
attains its maximum value.

5.2.28 Let ABCD be a cyclic quadrilateral, AC = e and BD = f . Let us denote by
ra, rb, rc , rd the radii of the incircles of the triangles BCD, CDA, DAB, and ABC,
respectively. Prove the following equality

e · ra · rc = f · rb · rd . (5.2)

(Proposed by Nicuşor Minculete and Cătălin Barbu, Romania)

5.2.29 Prove that for any triangle the following equality holds

−a2

r
+ b2

rc
+ c2

rb
= 4R − 4ra, (5.3)

where a, b, c are the sides of the triangle, R is the radius of the circumscribed circle,
r is the corresponding radius of the inscribed circle, and ra, rb, rc are the radii of the
corresponding exscribed circles of the triangle.

(Proposed by Nicuşor Minculete and Cătălin Barbu, Romania)

5.2.30 For the triangle ABC let (x, y)ABC denote the straight line intersecting the
union of the straight line segments AB and BC at the point X and the straight line
segment AC at the point Y in such a way that the following relation holds

˜AX

AB + BC
= AY

AC
= xAB + yBC

(x + y)(AB + BC)
,

where ˜AX is either the length of the line segment AX in case X lies between the
points A, B , or the sum of the lengths of the straight line segments AB and BX
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if the point X lies between B and C. Prove that the three straight lines (x, y)ABC ,
(x, y)BCA, and (x, y)CBA concur at a point which divides the straight line segment
NI in a ratio x : y, where N is Nagel’s point and I the incenter of the triangle ABC.

(Proposed by Todor Yalamov, Sofia University, Bulgaria)

5.2.31 Let T be the Torricelli’s point of the convex polygon A1A2 . . .An and (d)

a straight line such that T ∈ (d) and Ak �∈ (d), where k = 1,2, . . . , n. If we denote
by B1,B2, . . . ,Bn the projections of the vertices A1,A2, . . . ,An on the line (d),
respectively, prove that

n
∑

k=1

−→
TBk

TAk

= −→
0 .

(Proposed by Mihály Bencze, Braşov, Romania)

5.2.32 Let ABCD be a quadrilateral. We denote by E the midpoint of the side AB,
F the centroid of the triangle ABC, K the centroid of the triangle BCD, and G the
centroid of the given quadrilateral. For all points M of the plane of the quadrilateral,
different from A, E, F , G, prove the following inequality:

6MB

MA · ME
+ 2MC

ME · MF
+ MD

MF · MG
≥ 5MK

MA · MG
.

(Proposed by Mihály Bencze, Braşov, Romania)

5.2.33 Let the angle ̂xOy be given and let A be a point in its interior. Construct a
triangle ABC with B ∈ Ox, C ∈ Oy, ̂BAC = ω̂ such that AB · AC = k2, where k is
the length of a given straight line segment and ω̂ is a given angle.

5.2.34 Let a triangle ABC with BC = a, AC = b, AB = c and a point D in the
interior of the side BC be given. Let E be the harmonic conjugate of D with re-
spect to the points B and C. Determine the geometrical locus of the center of the
circumferences DEA when D is moving along the side BC.

5.3 Geometric Inequalities

5.3.1 Consider the triangle ABC and let H1,H2,H3 be the intersection points of the
altitudes AA1,BB1,CC1, with the circumscribed circle of the triangle ABC, respec-
tively. Show that

H2H
2
3

BC2
+ H3H

2
1

CA2
+ H1H

2
2

AB2
≥ 3.
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5.3.2 Let ABC be a triangle with AB = c, BC = a and CA = b and let da, db, dc be
its internal angle bisectors. Show that

1

da

+ 1

db

+ 1

dc

>
1

a
+ 1

b
+ 1

c
.

5.3.3 Let ABC be a triangle with ̂C > 10° and ̂B = ̂C + 10°. Consider a point E

on AB such that ̂ACE = 10° and let D be a point on AC such that ̂DBA = 10°. Let
Z �= A be a point of intersection of the circumscribed circles of the triangles ABD
and AEC. Show that ̂ZBA > ̂ZCA.

5.3.4 Let ABC be a triangle of area S and D, E, F be points on the lines BC,CA,
and AB, respectively. Suppose that the perpendicular lines at the points D,E,F to
the lines BC,CA, and AB, respectively, intersect the circumcircle of ABC at the pairs
of points (D1,D2), (E1,E2), and (F1,F2), respectively. Prove that

|D1B · D1C − D2B · D2C|
+ |E1C · E1A − E2C · E2A| + |F1A · F1B − F2A · F2B| > 4S.

5.3.5 Let ABC be an equilateral triangle and let D,E be points on its sides AB and
AC, respectively. Let F,G be points on the segments AE and AD, respectively, such
that the lines DF and EG bisect the angles ̂EDA and ̂AED, respectively. Prove that

SDEF + SDEG ≤ SABC.

When does the equality hold?

5.3.6 Let PQR be a triangle. Prove that

1

y + z − x
+ 1

z + x − y
+ 1

x + y − z
≥ 1

x
+ 1

y
+ 1

z
,

where

x =
√

3
√

QR2 + 5
√

QR2, y =
√

3
√

PR2 + 5
√

PR2, and z =
√

3
√

PQ2 + 5
√

PQ2.

5.3.7 The point O is considered inside the convex quadrilateral ABCD of area S.
Suppose that K , L, M , N are interior points of the sides AB, BC, CD, and DA, re-
spectively. If OKBL and OMDN are parallelograms of areas S1 and S2, respectively,
prove that

√

S1 + √

S2 < 1.25
√

S,

√

S1 + √

S2 < C0
√

S,
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where

C0 = max
0<α< π

4

sin(2α + π
4 )

cosα
.

(Proposed by Nairi Sedrakyan [88], Armenia)

5.3.8 Let ABCD be a quadrilateral with ̂A ≥ 60°. Prove that

AC2 ≤ 2
(

BC2 + CD2),

with equality, when AB = AC, BC = CD and ̂A = 60°.
(Proposed by Titu Andreescu [6], USA)

5.3.9 Let R and r be the circumradius and the inradius of the triangle ABC with
sides of lengths a, b, c. Prove that

2 − 2
∑

cycl

(

a

b + c

)2

≤ r

R
.

(Proposed by Dorin Andrica [18], Romania)

5.3.10 Let A1A2 . . .An be a regular n-gon inscribed in a circle of center O and
radius R. Prove that for each point M in the plane of the n-gon the following in-
equality holds

n
∏

k=1

MAk ≤ (

OM2 + R2)n/2
.

(Proposed by Dorin Andrica [15], Romania)

5.3.11 Let (K1, a), (K2, b), (K3, c), (K4, d) be four cyclic disks of a plane Π ,
having at least one common point. Let I be a point of their intersection. Let also O

be a point in the plane Π such that

min
{

(OA),
(

OA′), (OB),
(

OB′), (OC),
(

OC′), (OD),
(

OD′)} ≥ (OI) + 2
√

2,

where AA′, BB′, CC′, DD′ are the diameters of (K1, a), (K2, b), (K3, c), and
(K4, d), respectively. Prove that

144 · (a4 + b4 + c4 + d4) · (a8 + b8 + c8 + d8)

≥
[(

ab + cd

2

)2

+
(

ad + bc

2

)2

+
(

ac + bd

2

)2]

· [(a + b) · (c + d) + (a + d) · (b + c) + (a + c) · (b + d)
]

.

Under what conditions does the equality hold?
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5.3.12 Let the circle (O,R) be given and a point A on this circle. Consider succes-
sively the arcs AB, BD, DC such that

arc AB < arc AD < arc AC < 2π.

Using the center K of the arc BD, the center L of BD, and the corresponding radii,
we draw circles that intersect the straight semilines AB, AC at the points Z and E,
respectively. If

A′ ≡ AL ∩ DC, K ′ ≡ AK ∩ BD,

prove that

3

4
(AB · AZ + AC · AE) < 2R2 + R(AK′ + AL′)

2
+ AB2 + AC2

4
.

Is this inequality the best possible?



Chapter 6
Solutions

You are never sure whether or not a problem is good
unless you actually solve it.

Mikhail Gromov (Abel Prize, 2009)

6.1 Geometric Problems with Basic Theory

6.1.1 Let a, b, c, d be real numbers, different from zero, such that three of them are
positive and one is negative, and furthermore

a + b + c + d = 0. (6.1)

Prove that there exists a triangle with sides of length

√

a + b

ab
,

√

b + c

bc
,

√

a + c

ac
, (6.2)

respectively.

Solution If we consider

1

a
= x,

1

b
= y,

1

c
= z, and

1

d
= u,

the problem assumes the following form: Let x, y, z, u be real numbers such that
three of them are positive and the condition

1

x
+ 1

y
+ 1

z
+ 1

u
= 0

holds true. Prove that there exists a triangle with sides of lengths

√
x + y,

√
y + z,

√
z + x.

Assume that

x < 0, y > 0, z > 0, and u > 0.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5_6,
© Springer Science+Business Media New York 2013
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It is then true that

− 1

x
= 1

y
+ 1

z
+ 1

u
>

1

y
. (6.3)

Therefore,

|x| < y, (6.4)

and thus

x + y > 0. (6.5)

Similarly,

z + x > 0. (6.6)

It follows that
√

y + z >
√

x + y and
√

y + z >
√

z + x.

We have
√

x + y + √
z + x >

√
y + z

⇔ √
x + y · √z + x > −x

⇔ (z + x) · (y + x) > x2

⇔ xy + yz + zx > 0.

Since xyz < 0 with

− 1

u
= 1

x
+ 1

y
+ 1

z
= xy + yz + zx

xyz
< 0,

we get that

xy + yz + zx > 0.

Thus
√

x + y + √
z + x >

√
y + z. (6.7)

Furthermore,

|√x + y − √
z + x| < √

y + z. (6.8)

To verify Eq. (6.8), we write

|√x + y − √
z + x| < √

y + z,

that is,

x <
√

(x + y)(z + x),

where the last inequality holds true. From Eqs. (6.7) and (6.8), the result follows. �
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Fig. 6.1 Illustration of
Problem 6.1.2

6.1.2 Let ABC be an equilateral triangle. Find the straight line segment of minimal
length such that when it moves with its endpoints sliding along the perimeter of the
triangle ABC, it covers all the interior of the triangle ABC.

Solution Since the straight line segment will cover all the interior of the triangle
ABC, it will pass through its barycenter O as well. We shall prove that among all
segments that pass through the barycenter of the triangle ABC and have their end-
points on the sides of the triangle, the straight line segment with the smallest length
is the segment MN which is parallel to AC. Let M ′N ′ be a straight line segment
with endpoints on the sides of the triangle ABC and which passes through O (see
Fig. 6.1). We have

OM′ > OM = ON > ON′ (6.9)

and

ÔMM′ = 120° and N̂ ′NO = 60°. (6.10)

At the same time

M̂OM′ = N̂ON′, (6.11)

therefore, there will exist an interior point T such that the triangle OMT is equal to
the triangle ON′N . Hence

SOMM′ > SONN′ . (6.12)

Hence

SBM′N ′ > SBMN, (6.13)

and thus

M ′N ′ · BB′ > MN · BO. (6.14)
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Fig. 6.2 Illustration of
Problem 6.1.2

Since

BO > BB′, (6.15)

we have

N ′M ′ > NM. (6.16)

We have thus shown that N ′M ′ cannot be shorter than MN.
It remains to be shown that when the point M moves in the perimeter of the

triangle ABC with orientation from A to B , and N is on the perimeter of ABC, the
straight line segment MN covers all the interior points of the triangle ABC, as well as
the points of the perimeter of the triangle ABC. This is the case since the positions
of MN are in a one-to-one correspondence with the positions created if we keep
MN constant and we let the point B to move on the constant arc from B to M (see
Fig. 6.2), in a counterclockwise sense (̂B = 60° and MN is a straight line segment
of constant length).

Observing that

NS = BS + SM ≥ BM = MN, (6.17)

one can see that all the interior of the triangle ABC, including the perimeter, is
covered. �

6.1.3 Let PBCD be a rectangle inscribed in the circle (O,R). Let DP be an arc of
(O,R) which does not contain the vertices of PBCD and let A be a point of DP.
The line parallel to DP that passes through A intersects the straight line BP at the
point Z. Let F be the intersection point of the straight lines AB and DP and let Q be
the intersection point of ZF and DC. Show that the straight line AQ is perpendicular
to the straight line segment BD.

Solution The fact that we have to show perpendicularity leads us to think of how to
use the orthocenter of a triangle. For this purpose, we will create a problem equiv-
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Fig. 6.3 Illustration of
Problem 6.1.3

alent to the given one. In this problem, we will have to use the uniqueness of the
position of a point or a few points when these satisfy certain conditions. We shall
solve an equivalent problem on the same figure (see Fig. 6.3).

The problem Let PBCD be a rectangle inscribed in the circle (O,R). Let DP be
an arc of (O,R) which does not contain the vertices of PBCD and let A be a point
of DP. Consider the point Q1 on DC such that AQ1 ⊥ DB. If M = Q1F ∩BP , show
that the line AM ‖ DP.

If we show the above property, then the points M and Z will coincide and thus
the points Q1 and Q will coincide, which completes the proof.

Proof Let S = EF ∩BP and let Y = DF ∩AQ1. The third height of the triangle SBD
lies on the line SE, and therefore

SF ⊥ DB,

and so

SE ‖ AQ1.

Let E = SF ∩ DC. Then the triangles FMS and FEQ1 are similar, and therefore

MF

FQ
= SF

FE
= AY

YQ1
. (6.18)

Hence

AM ‖ DP. (6.19)

�
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Fig. 6.4 Illustration of Problem 6.1.3 (Comment 2)

Remarks

1. In the above proof, we have used the fact that in Euclidean Geometry, only one
straight line can be drawn through any point that does not belong to the given
straight line, parallel to a given straight line in a plane. This led to the coincidence
of the points M and Z.

2. An interesting problem that involves the use of orthocenters as well is the fol-
lowing:

Problem Let l be a straight line and A be a point not on l. Construct the perpendic-
ular line from A to l by using the compass only once and the straightedge as many
times needed.

Assume that the construction is achieved. Furthermore, suppose that a triangle
ABC with points B and C on the line l and heights BD, CE is constructible, then
the orthocenter could be determined. It suffices to connect it with the point A (see
Fig. 6.4). This gives rise to the idea of the circle since the points B,C,D,E all lie
on the circle diameter BC.

Construction We consider a point K on the straight line l and a point J in the
interior of AK. We construct a semicircle with center K and radius KJ that lies on
the half-plane containing A with respect to l. The semicircle intersects l at the points
B and C. We find the intersections of AC, AB with the semicircle and denote them D

and E, respectively. We then find the intersection of BD with CE which we denote
by H . Finally, we connect the points A and H and we construct the perpendicular. �

6.1.4 Let l be a straight line and H be a point not lying on l. Let Ω be the set of
triangles that have their orthocenter at H and let ABC be one of these triangles. Let
l1, l2, l3 be the reflections of the line l with respect to the sides BC,CA,AB. Let

A1 = l2 ∩ l3, B1 = l3 ∩ l1, and C1 = l1 ∩ l2.
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Fig. 6.5 Illustration of Problem 6.1.4

Prove that the ratio of the perimeter of the triangle A1B1C1 to the area of the triangle
A1B1C1 is constant.

Solution We know that for any triangle, the ratio of its area to its semi-perimeter
is equal to the radius of its inscribed circle (it is left as an exercise for the
reader).

We shall therefore show that the circle inscribed in the triangle has a constant
radius (see Fig. 6.5).

We observe that the points A,A1,K and C,C1,K are collinear when K is the
intersection of the bisectors of the triangle A1B1C1.

This is the case because A is the intersection of the bisectors of GTA, where T is
the intersection of the lines AB, l, l3.

In this case, K lies on the bisector AA1 and C is the intersection of the bisector
of Ĉ1GL with the bisector of the exterior angle Ĉ1LG, where L is the intersection
of the lines BC, l, l1.

Therefore, the line CC1 is the bisector of the exterior angle ĜC1L when G is
the intersection of AC, l, l2. This means that the point K belongs to the bisector
CC1.
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We observe that

Â1KC1 = 90° − Â1B1C1

2

= 180° − (180° − B̂1TL − B̂1LT)

2

= B̂1TL + B̂1LT

2
.

Therefore,

Â1KC1 = 180° − 2 ̂BTL + 180° − 2 ̂TLB

2

= 180° − ̂ABC. (6.20)

Equality (6.20) leads to the conclusion that the point K belongs to the circumscribed
circle of the triangle ABC. We know that the reflections of the orthocenter over the
sides of ABC lie on the circumscribed circle as well. This means that H lies on an
arc symmetrical to the arc AKC. These symmetrical arcs ought to be equal.

Let Q,R be the intersections of the line l2 with the arc AKC and let U,S be the
intersections of the line l with the arc AHC. The lines l, l2 are reflections of each
other over AC. Because of these symmetries, we have

QR = US. (6.21)

We observe that

̂KRQ = K̂C1A1 − Ĉ1KR

= 180° − ĜC1L

2
− arc CR

2
. (6.22)

We also have

K̂C1A1 = 90° − ĜC1L

2
(6.23)

and

̂GCL = 180° − Ĉ1LG

2
− Ĉ1GL

2
(6.24)

= 90° − Ĉ1LG + Ĉ1GL

2
, (6.25)

and hence

K̂C1A1 + ̂GCL = 180° − 90° = 90°. (6.26)



6.1 Geometric Problems with Basic Theory 101

Fig. 6.6 Illustration of
Problem 6.1.5

Therefore,

K̂C1A1 = ̂HAC. (6.27)

By (6.22) and (6.27), we obtain arc CR = arcSC. By the symmetry already men-
tioned, we have

K̂RA1 = ̂HUS. (6.28)

Similarly, we obtain

R̂QK = ̂USH. (6.29)

So, the triangles KQR and HSU are equal, and therefore their corresponding heights
are equal. Since the distance of H from the line l remains constant, it follows that
the radius of the circle inscribed in the triangle A1B1C1 is constant since it coincides
with the height of the triangle KA1C1 from the vertex K . �

6.1.5 Let ABC be a triangle. Consider two circles (K,R) and (L, r) with constant
radii, which move in such a way that they remain tangent to the sides AB and AC,
respectively, such that their centers belong to the interior of ABC, and finally such
that the length of KL is preserved. Prove that there is a circle (M,h) (with constant
radius) that moves in such a way that it remains tangent to the side BC and such that
the triangle MKL has sides of constant length.

Solution In order to use the movement of the circles (K,R) and (L, r), we take into
consideration the fact that their centers K,L, move in such a way that the distances
R, r from the sides AB,AC, respectively, remain constant (see Fig. 6.6).

Let G be the intersection of BC with the parallel line to the side AB at distance
R from AB and let H be the intersection of BC with the parallel line to the side AC
at distance r from AC.
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Let F be the intersection of these two parallel lines. We observe that the triangle
FGH remains constant and is similar to the triangle ABC.

The points K,L move on the sides FG, FH, respectively, and KL has constant
length. The angle ̂KFL = ̂BAC is constant and since the arc KFL corresponds to the
segment KL under a constant angle, the arc KFL is constant, too.

The fact that the arc KFL preserves constant length has an important consequence
that the sides of the triangle MKL have constant length, where M is the intersection
of the parallel line to BC with the arc KFL. This is the case because of the following
reasoning. We have

L̂FM = F̂HG (6.30)

since the angles are alternate interior. Also, the angles F̂HG and ̂ACB are corre-
sponding angles with respect to the parallel half-lines HF and CA as they intersect
with CH. Therefore,

F̂HG = ̂ACB. (6.31)

We obtain

M̂KL = L̂FM = ̂ACB, (6.32)

and since the angle remains constant, it follows that the arc LM has constant length
and thus the segment LM has constant length. Therefore,

K̂ML = ̂KFL = ̂BAC (6.33)

and

M̂KL = M̂FL = ̂ACB. (6.34)

Hence, the sides of the triangle MKL have constant length.
Considering a point W on BC such that MW ⊥ BC, we observe that the quadri-

lateral FIWM is a rectangle. Therefore,

MW = FI. (6.35)

Set h = FI, which is constant. The circle (M,h) satisfies the requirements of the
problem. �

Method For the proof of the equality of two planar shapes S, S′, given the equal-
ities

P1 = P ′
1, P2 = P ′

2, . . . , Pn = P ′
n,

where Pi , P ′
i for i = 1,2, . . . , n are elements of the shapes S and S′, respectively, it

suffices to prove that when one can construct S by the use of P1,P2, . . . ,Pn, then S

is uniquely defined.



6.1 Geometric Problems with Basic Theory 103

Example 6.1.1 Let ABC and A′B ′C′ be two triangles. Assume that

BC = B ′C′, ̂A = ̂A′,

and

AC

AB
= A′C′

A′B ′ .

Prove that the triangles are equal.

Solution For the proof of the equality of the triangles, it is sufficient to show that if
the triangle ABC can be constructed by the use of the elements

BC = a, ̂A = φ, and
AC

AB
= m

n
,

where a, m, n are given line segments and φ a given angle, then ABC is uniquely
defined.

Let us assume that the triangle ABC has been constructed. We observe that for
its vertex A we have:

1. It belongs to a constant arc C1, which is the geometrical locus of the points E

such that the angle ̂BEC is equal to the given angle φ, as well as to its symmetri-
cal, with respect to the line BC, arc C2.

2. It belongs to the circle C which is the geometrical locus of the points M such
that

AC

AB
= m

n
(Apollonius circle).

The center of this circle belongs to the straight line defined by the line segment
BC.

The circle C intersects the arcs C1, C2 in two points A, A′. Hence, we obtain two
triangles ABC and A′BC, which are equal since they are symmetrical with respect
to BC. Therefore, the triangle ABC is uniquely defined. �

6.1.6 Let ABC and A1B1C1 be triangles. Let AD and A1D1 be bisectors of the
angles ̂A and ̂A1, respectively, and let CE and C1E1 be the distances of the vertices
C,C1 from the lines AD and A1D1, respectively. Suppose that

AD = A1D1,

̂CBA = Ĉ1B1A1,

CE = C1E1.

Prove that

ABC = A1B1C1.
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Fig. 6.7 Illustration of
Problem 6.1.6

Solution We are going to prove an equivalent statement:

The construction of a triangle ABC is unique when the angle ̂CBA, the length of the bisector
AD, and the distance of the vertex C from the line containing the bisector AD are given.

Suppose that the triangle ABC has been constructed. We therefore have a triangle
ABC with the given angle ̂CBA, bisector AD, and distance CE of the vertex C from
the line AD (see Fig. 6.7).

Let M = AB ∩ CE. Then M is the reflection of C over AD. We consider the
straight line segment CF such that

CF ⊥ CM and CF = AD.

The quadrilateral ADCF is a parallelogram. The triangle FMC is constructible since
it is a right triangle with its perpendicular sides MC and CF known. Therefore,
the vertex A should lie on the perpendicular bisector of the segment MC since the
triangle AMC is isosceles. But from the parallelogram ADCF we have that

AE ‖ FC.

Therefore,

M̂AF = 180° − ̂CBA.

This implies that the arc MAF is constructible since it is the geometrical locus of
the points that correspond to the constant straight line segment MF for the constant
angle 180° − ̂CBA.

The intersection of this arc with the perpendicular bisector of MC yields a unique
point, the vertex A. The constructed triangle ABC is unique. �

6.1.7 In the triangle ABC let B1, C1 be the midpoints of the sides AC and AB,
respectively, and H be the foot of the altitude passing through the vertex A. Prove
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Fig. 6.8 Illustration of
Problem 6.1.7

that the circumcircles of the triangles AB1C1, BC1H , and B1CH have a common
point I and the line HI passes through the midpoint of the line segment B1C1.

(Shortlist, 12th IMO, 1970, Budapest–Keszthely, Hungary)

Solution We will use the following:

Lemma 6.1 Given two triangles ABC and DEZ with B̂AM = ÊDN, M̂AC = ̂NDZ,
where M and N are the midpoints of the corresponding sides BC and EZ, the tri-
angles ABC and DEZ are similar.

(The proof of the lemma is left as an exercise to the reader.)

Let F be the midpoint of B1C1 (see Fig. 6.8). Consider the circle passing through
the points C1, F , tangent to the side AB and the circle determined by the points F ,
B1, tangent to the side AC. Let I1 be the second point of intersection of these two
circles. This point I1 exists since, if the circles had only one point in common, they
would have a tangential contact at the point F . In this case, we consider the common
tangent of the two circles at the point F , which intersects the sides AC and AB at
the points S, T , respectively. By using the fact that the inscribed angle in a circle
is equal to the angle which is formed by its corresponding chord and the tangent of
the circle at the end of this chord, we have

ŜB1F = T̂C1F,

and thus the line AC1 should be parallel to the line AB1. This is a contradiction.
The points A, F , A1 are collinear when the point A1 is the midpoint of the side

BC. We observe that

F̂I1C1 = F̂C1A = ̂B.

Therefore, the points B , H1, I1, C1 belong to the same circumference (are homo-
cyclic). Similarly, we deduce that the points C, B1, I1 and H1 are homocyclic, where
H1 ≡ FI1 ∩ BC.
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We have

F̂I1C1 = F̂C1A = ̂ABC

and

B̂1I1F = ÂB1F,

where F is the midpoint of both the line segments C1B1 and AA1. By the previous
Lemma 6.1, it follows that the triangles I1B1C1 and A1B1A are similar. Hence

Â1H1F = Ĉ1FH1 = Â1FB1 = F̂A1H1 (6.36)

and

C1F ‖ H1A1. (6.37)

Consequently, the triangle FH1A1 is isosceles, and thus H1F = FA1 = FA, that is,
the triangle AH1A1 is orthogonal with Â1H1A = 90°. Thus AH1 is an altitude of
the triangle ABC, which implies that the point H1 coincides with the point H , and
therefore the point I1 must coincide with the point I because

B̂1I1C1 = ÂB1C1 + B̂1C1A = 180° − ̂BAC.

This completes the proof. �

6.1.8 Let ABC be an acute triangle and AM be its median. Consider the perpendic-
ular bisector of the side AB and let E be its common point with the median AM. Let
also D be the intersection of the median AM with the perpendicular bisector of the
side AC. Suppose that the point L is the intersection of the straight lines BE and CD
and that L1, L2 are the projections of L to AC and AB, respectively. Prove that the
straight line L1L2 is perpendicular to AM.

Solution Since BM = MC and AA′ is a common altitude to both triangles ABM,
AMC, it follows that (see Fig. 6.9)

SABM = SAMC = SABC

2
. (6.38)

We know that when an angle of one triangle is equal to the angle of another triangle
or of its supplementary angle, then the ratio of their areas is equal to the ratio of the
product of their sides forming these angles. We have

̂ACL = M̂AC ⇒ SALC

SAMC
= LC · AC

AM · AC
= LC

AM
(6.39)

and

̂LBA = B̂AM ⇒ SAMB

SALB
= AM · AB

AB · BL
= AM

BL
. (6.40)
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Fig. 6.9 Illustration of
Problem 6.1.8

From (6.39), (6.40), and (6.38), we obtain

SALC

SALB
= LC

LB
= LC · LA

LB · LA
(6.41)

with

̂ALB + ̂CLA = 180° − ̂LBA − ̂BAL + 180° − ̂ACL − ̂LAC

= 360° − 2̂A �= 180°. (6.42)

Hence

̂ALB = ̂CLA. (6.43)

Since

ÂL1L + L̂L2A = 90° + 90° = 180°

it follows that the quadrilateral AL2LL1 is inscribed in a circle, and thus

L̂1LA = L̂1L2A. (6.44)

We obtain

L̂1LA + ĈLL1 = ̂CLA = ̂ALB.

Thus

2(L̂1LA + ĈLL1) = ̂CLA + ̂ALB = 360° − ̂BLC.

Therefore,

2(L̂1LA + ĈLL1) = 360° − (

180° − (̂B − ̂LBA + ̂C − ̂LCA)
)

.
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Fig. 6.10 Illustration of
Problem 6.1.9

So

2(L̂1LA + ĈLL1) = 360° − 2̂A ⇒ L̂1LA + ĈLL1 = 180° − ̂A.

Thus

L̂1LA + ̂BAE + 90° − ̂LCA = 180° − ( ̂EBA + ̂LCA).

Hence

L̂1L2A + ̂BAE = 90°, (6.45)

and therefore the lines L1L2 and AM are perpendicular to each other. �

6.1.9 Prove that in a triangle with no angle larger than 90° the sum of the radii R, r

of its circumscribed and inscribed circles, respectively, is less than the largest of its
altitudes.

Solution Consider the circle (O,R) circumscribed around the triangle ABC. If the
triangle is equilateral, then, because of the fact that

̂A = ̂B = ̂C = 60°,

we obtain

max{ha,hb,hc} = ha = R + r, (6.46)
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Fig. 6.11 Illustration of
Problem 6.1.9 (Lemma 6.2)

since R = 2r and ha = 3r . In an equilateral triangle, the center of the circumscribed
circle, the barycenter, and the orthocenter coincide (see Fig. 6.10). Suppose that

BC ≤ AB ≤ AC.

Then

̂A ≤ ̂C ≤ ̂B.

Thus

̂A ≤ 60°, ̂B ≥ 60°, and ha ≥ hc ≥ hb.

We shall make use of the following �

Lemma 6.2 If a triangle ABC is inscribed in a circle (O,R), then the incenter I is
identical to the common point of the bisector of the angle ̂A with the circle (M,MB),
where MB = MC, and M is the midpoint of the arc BC which is seen by the angle
̂BAC (see Fig. 6.11).

We observe that from the relation ̂A ≤ 60° one derives the inequalities QM ≤ QO
and QL ≤ QO, when L is the common point of the line OM with the circle (M,MB),
when Q = OM ∩ BC, since the condition BC⊥OM holds true.

In the case 45° ≤ ̂A ≤ 60°, the isosceles triangle BA1C (BA1 = BC) is the mini-
mum non-obtuse triangle with I1 as its incenter with

BC ≤ AB ≤ AC.
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We note that the triangles A1I1O , COI1 are equal. This implies that

Â1OI1 ≥ 90°

with I ′
1 being the foot of the projection of the point I onto the height A1D1.

It is a well known fact that

D̂1A1I1 = M̂A1O = ĈBA1 − Â1CB

2
.

Thus

A1I
′
1 ≥ OA1 = R, and hence A1D1 ≥ R + r1,

given that I ′
1D1 = r1, for the triangle A1BC, where r1 is the radius of its inscribed

circle.
The non-obtuse triangle ABC has the property that its point A belongs to the

arc TA1 and the point M does not belong to this arc. This is a consequence of the
relations

AB ≤ BC = BA1 ≤ AC.

Then, if ha = AD, the relations

ha = AD ≥ R + r

also hold, where D is the foot of the perpendicular from the point A onto the
side BC.

Consequently, if 45° ≤ ̂A ≤ 60°, the inequality

max{ha,hb,hc} ≥ R + r

holds true (see Fig. 6.11).
If 0 < ̂A < 45° then A1B = BC whenever ĈBA1 = 90°. The point A of the non-

obtuse triangle ABC, with ̂A ≤ ̂C ≤ ̂B , is a point of the arc TA1 with M not be-
longing to this arc. Thus BC < BA1, and in this case, for the triangle A1BC one
gets

A1I
′
1 = s − BC,

where s is the half of the perimeter of the triangle A1BC.
We note that

A1I
′
1 > R

is equivalent to

s − BC > R,
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and this is equivalent to

A1B + BC + 2R

2
− BC > R,

which holds if and only if

A1B > BC,

hence if F is the foot of the point I onto the height AD, we get

AI ≥ A1I1,

̂DAI < Î ′
1A1I1,

and so

AF ≥ A1I
′
1 > R.

This actually results in the given assumption in the case under consideration. Thus

ha ≥ A1B > R + r.

Therefore, the proof is completed. �

6.1.10 Let KLM be an equilateral triangle. Prove that there exist infinitely many
equilateral triangles ABC, circumscribed around the triangle KLM such that

K ∈ AB, L ∈ BC and M ∈ AC (6.47)

with

KB = LC = MA.

Solution Consider the center O of the triangle KLM and the circles (OKL), (OML),
(OKM). From the point L we draw a straight line intersecting the circles (OKL),
(OLM) at the points B , C. Linking the point C with M , we find on the other circle
the point A and we see that the points A, K , and B are colinear (see Fig. 6.12).

Since we want

̂A = ̂B = ̂C = 60° with ̂K = ̂L = ̂M = 60° (6.48)

to occur, we get the equality of the triangles:

AKM = KBL = MLC. (6.49)

This is satisfied since

ÂKM + ̂LKB = ̂BLK + ̂LKB = 120°,
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Fig. 6.12 Illustration of
Problem 6.1.10

and so on. Furthermore, if O is the center of the prescribed circle of the triangle
KLM, the circles

(KLM), (KAM), (KBL), and (LCM)

are equal. �

6.1.11 Let ABC be a triangle. Consider the points

K ∈ AB, L ∈ BC, M ∈ AC

such that

KB = LC = MA.

If the triangle KLM is equilateral, prove that the same holds true for the triangle
ABC (see Fig. 6.13).

Solution Suppose that the triangle ABC is not equilateral. Then at least one of its
angles is greater than or equal to 60° and at least another one of them shall be
less than or equal to 60°. Let ̂B > 60° and ̂C < 60°. Consider the center O of the
equilateral triangle KLM. Observe that

̂KOL = L̂OM = M̂OK = 120°.

Consider also the equal circles (KML), (OKM), (OKL), (OLM). Indeed, since

̂KOL = L̂OM = M̂OK = 120°

and

KL = MK = LM,

and the triangle KLM is equilateral, the equality of these circles follows.
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Fig. 6.13 Illustration of Problem 6.1.11

According to what we have already mentioned, the circle (OKL) should meet the
straight semiline LB at a point B ′ (see Fig. 6.12) such that

K̂B′L = 180° − ̂KOL = 180° − 120° = 60°

with ̂B > 60°, and thus LB′ > LB. Similarly, the circle (MOL) should intersect the
straight semiline LC at a point C′ such that LC′ < LC. We observe that

B̂ ′KL = 120° − K̂LB′ = Ĉ′LM

and, of course,

L̂B′K = M̂C′L = 60°

with KL = LM. It follows that the triangles KB′L and MLC′ are equal, and hence
KB′ = LC′. Simultaneously, we have

LC′ < LC = BK < KB′,

and the contradiction is evident (in case ̂B < 120°).
Suppose now that ̂B ≥ 120°. In this case, we see that KL, LM, MK are tangent

to the circles they contact. The point B shall belong either to the minimal circular
segment KWL of chord KL of the circumscribed circle to the triangle KLM, or be
inside the circular segment KWLK.

Let B ′, B ′′ be the intersections of the straight line AB with the circles (KLM) and
(OKM), respectively. The triangle MB′B ′′ is equilateral since

̂B ′ = ̂B ′′ = 60°,

and hence

KB < B ′B ′′ = MB′′

with M̂B′′A = 120° > 90° since ̂A < 60°.
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Fig. 6.14 Illustration of
Problem 6.1.12

Therefore, we get

KB < B ′B ′′ = MB′′ < MA = KB,

which leads to a contradiction. �

6.1.12 Let ABC be an isosceles triangle with ̂A = 100°. Let BL be the bisector of
the angle ÂBC. Prove that

AL + BL = BC.

(Proposed by Andrei Razvan Baleanu [23], Romania)

Solution (by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain) Let D be a
point on BL beyond L such that LD = LA and let E be a point on BC such that LE
bisects the angle ̂BLC.

Because of the fact that ̂ABC = ̂BCA = 40°, we obtain (see Fig. 6.14)

̂ABL = ̂LBE = 20°, ̂BLA = 60°, ̂BLC = 120°,

and

̂BLE = ̂ELC = 1

2
̂BLC = 60° = ̂DLC.

Thus the triangles ABL and EBL are congruent (angle-side-angle), which implies
LA = LE. Therefore, LD = LE. We also have that LC is the bisector of the angle
̂ELD in the isosceles triangle DLE. Hence LC is the perpendicular bisector of the
base DE. Therefore,

̂LCD = ̂ECL = 40°

and

ÊDC = 90° − ̂LCD = 50°.

Hence

B̂DC = ̂BDE + ÊDC = 30° + 50° = 40° + 40° = ̂BCL + ̂LCD = ̂BCD.
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Fig. 6.15 Illustration of
Problem 6.1.13

Thus BCD is an isosceles triangle with the property

BC = BD = BL + LD = BL + LA.

This completes the proof. �

6.1.13 Let ABC be a right triangle with ̂A = 90° and d be a straight line passing
through the incenter of the triangle and intersecting the sides AB and AC at the
points P and Q, respectively. Find the minimum of the quantity AP · AQ.

(Proposed by Dorin Andrica [17], Romania)

Solution (by Athanassios Magkos, Greece) Let I be the incenter of the triangle
ABC. Assume that M , N are the projections of I on AB and AC, respectively (see
Fig. 6.15). We have IM = IN = r . From the similarity of the triangles PMI, INQ,
we obtain

PM · NQ = r2. (6.50)

By r we denote the inradius of the triangle ABC.
It follows that

AP · AQ = (AM + MP)(AN + NQ)

= AM · AN + AM · NQ + MP · AN + MP · NQ

= 2r2 + r(NQ + MP) ≥ 2r2 + 2r
√

MP · NQ

= 2r2 + 2r2 = 4r2. (6.51)

Thus

AP · AQ ≥ 4r2. (6.52)

The above becomes an equality if and only if

MP = NQ ⇔ AP = AQ ⇔ ̂APQ = ̂AQP = 45°. �

6.1.14 Let P be a point in the interior of a circle. Two variable perpendicular lines
through P intersect the circle at the points A and B . Find the geometrical locus of
the midpoint of the line segment AB.

(Proposed by Dorin Andrica [16], Romania)
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Fig. 6.16 Illustration of
Problem 6.1.14

First solution (by G.R.A Problem Solving Group, Roma, Italy) Without loss of gen-
erality, we can assume that

P = t ∈ [0,1]
and consider the circle

C = {

z ∈C : |z| = 1
}

.

Let

A = z = x + iy ∈ C.

Then

B = w = si(z − P) + P ∈ C with some s > 0.

Hence

1 = |z|2 = (t − sy)2 + s2(x − t)2. (6.53)

The midpoint of the straight line segment AB is determined by (see Fig. 6.16)

M = A + B

2
.

We claim that
∣

∣

∣

∣

M − P

2

∣

∣

∣

∣

=
√

2 − |P |2
2

. (6.54)

By (6.53), we have

(

2

∣

∣

∣

∣

M − P

2

∣

∣

∣

∣

)2

= (x − sy)2 + (

s(x − t) + y
)2

= x2 + y2 + 1 − t2 = 2 − t2. (6.55)
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Therefore, the required geometrical locus is a circle with center P
2 and radius

√

2 − |P |2
2

. �

Second solution We could use the fact that the median of a right triangle passing
from its vertex corresponding to the right angle equals the half of its hypotenuse.
Since M is the midpoint of the chord AB, it follows that the straight line OM is
perpendicular to this chord. Hence,

OM2 + MB2 = R2,

so

OM2 + MP2 = R2,

and thus

2MN2 + OP2

2
= R2.

Therefore

MN =
√

2R2 − OP2

2
.

Hence we derive that the point M belongs to a circle with center at the point N and
radius

√

2R2 − OP2

2
. �

6.1.15 Prove that any convex quadrilateral can be dissected into n, n ≥ 6, cyclic
quadrilaterals.

(Proposed by Dorin Andrica [19], Romania)

Solution (by Daniel Lasaosa, Spain) Any convex quadrilateral is dissected into two
triangles by either of its diagonals; any concave quadrilateral is dissected into two
triangles by exactly one of its diagonals; any crossed quadrilateral is already formed
by two triangles joined at one vertex, and where two of the sides of each triangle are
on the straight line containing two of the sides of the other.

In the triangle ABC, let I be the incenter and D, E, F the points where the
incircle touches the sides BC, CA, and AB, respectively. The triangle ABC may be
dissected into three cyclic quadrilaterals AEIF, BFID, CDIE.
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With no loss of generality, assume that the angle ̂C of the triangle ABC is acute.
Consider the circumcenter O of the triangle ABC and take a point O ′ on the perpen-
dicular bisector of AB that is closer to AB than O . The circle with center O ′ through
A,B leaves C outside. Therefore, it must intersect the interior of the segments AC,
BC at the points E, D or the quadrilateral ABDE is cyclic.

Let us write n = 3 + 3u + v, where u ≥ 1 is an integer and v ∈ {0,1,2}. Dissect
any quadrilateral ABCD in two triangles and in the following dissect one of them
into three cyclic quadrilaterals.

If v �= 0, dissect the other triangle into one cyclic quadrilateral and one triangle.
If v = 2, dissect again this latter triangle into one cyclic quadrilateral and one tri-

angle. After having performed this procedure, we have dissected the original quadri-
lateral into 3 + v cyclic quadrilaterals (3,4,5 for v = 0,1,2, respectively) and one
triangle.

Dissect now this triangle into u triangles (for example, by dividing one of its
sides in u equal parts and joining each point of division with the opposite vertex),
and dissect now each one of these u triangles into three cyclic quadrilaterals.

We have thus dissected the original quadrilateral into 3 + v + 3u = n cyclic
quadrilaterals. �

6.1.16 Let ABC be a triangle such that ̂ABC > ̂ACB and let P be an exterior point
in its plane such that

PB

PC
= AB

AC
. (6.56)

Prove that

̂ACB + ̂APB + ̂APC = ̂ABC. (6.57)

(Proposed by Mircea Becheanu [25], Romania)

Solution (by Daniel Lasaosa, Spain) Note that the relation (6.56) defines an Apol-
lonius circle γ with center on the line BC which passes through A and through the
point D, where the internal bisector of the angle ̂A intersects BC, leaving the point
B inside γ and the point C outside γ , since ̂ABC > ̂ACB.

The powers of the points B , C with respect to the circle γ are pB , pC , respec-
tively (see Fig. 6.17). In addition,

pB

pC

= BD

CD
· BD′

CD′ = BA2

CA2
= c2

b2
, (6.58)

where D′ is the point diametrically opposite to D in γ . Assume that T , U are the
second points where PB, PC meet γ (the first one being clearly P in both cases).
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Fig. 6.17 Illustration of Problem 6.1.16

Therefore,

CT

CU
= b · BT

c · CU

= b · pB

c · CU · PB

= b2 · pB

c2 · CU · PC

= b2 · pB

c2 · pC

= 1, (6.59)

or

CT = CU,

and similarly

BT = BU.

Thus BC is the perpendicular bisector of TU, which is therefore symmetric with
respect to BC. Therefore, if P is on the same half plane with A, with respect to the
straight line BC, then

̂APB = ̂APT = 180° − ̂ADT

= 180° − ̂ADB − ̂BDT

= 180° − ̂ADB − B̂DU

= 180° − 2 ̂ADB − ÂDU

= 180° − 2 ̂ADB − ̂APU

= 180° − 2 ̂ADB − ̂APC. (6.60)



120 6 Solutions

Fig. 6.18 Illustration of
Problem 6.1.17

Similarly, we obtain the same result if P is on the opposite half plane. In either case,
we have

̂APB + ̂APC = 180° − 2 ̂ADB

= 180° − 2

(

180° − ̂B − ̂A

2

)

= 2̂B + ̂A − 180°

= ̂B − ̂C (6.61)

= ̂ABC − ̂ACB, (6.62)

hence

̂ACB + ̂APB + ̂APC = ̂ABC.

This completes the proof. �

6.1.17 Prove that if a convex pentagon satisfies the following properties:

1. All its internal angles are equal;
2. The lengths of its sides are rational numbers,

then this is a regular pentagon.
(18th BMO, 2001, Belgrade, Serbia)

Solution The following facts are going to be used (see Fig. 6.18):

• The number sin 18° is irrational.
• A convex pentagon with equal internal angles and more than two sides equal is a

regular pentagon.
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• An isosceles triangle ABC (AB = AC) with ̂A = 36° cannot have all its sides with
lengths rational numbers since this contradicts the fact that sin 18° is an irrational
number.

Let ABCDE be a convex pentagon with

̂A = ̂B = ̂C = ̂D = ̂E = 108°

and with the lengths of its sides given by certain rational numbers. With no loss of
generality, let us assume that

AB ≥ BC, AB > CD, AB > DE, AB > EA.

Consider the regular pentagon ABC1D1E1 (it might be C ≡ C1). Let E1E2 ‖ C1D1.
Hence, if E does not coincide with E1, it follows that

(i) ̂E = ̂E1 = 108°.
(ii) The sides of the isosceles triangle E1EE2 are rational numbers since

E1E2 = E1E = AB − AE

and EE2 is rational (being the difference of two rational numbers).

This is actually a contradiction because of the observation–assumption we have
made (clearly, ÊE1E2 = 108°). Hence,

E = E1 ⇒ D = D1

and

C = C1.

In conclusion, the pentagon ABCDE happens to be a regular one, and this completes
the proof. �

The following lemma deals with the irrationality of the trigonometric number
sin 18°, a fact that we have already used in the preceding problem.

Lemma 6.3 The number sin 18° is irrational.

Proof It holds

sin
(

3 · 18°
) = cos

(

2 · 18°
)

,

and therefore,

4 sin3 18° − 2 sin2 18° − 3 sin 18° + 1 = 0. (6.63)

Let x = sin 18°, then (6.63) assumes the form

4x3 − 2x2 − 3x + 1 = 0, (6.64)
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Fig. 6.19 Illustration of
Problem 6.1.18

and the problem reduces to the study of the existence of a rational solution of (6.64).
Suppose there exist k, l ∈ Z, l �= 0, (k, l) = 1 such that x = k/l satisfies Eq. (6.64).
Hence

4k3 = (

2k3 + 3kl + l2)l,

l3 = (

3l2 + 2kl − 4k2)k.

(6.65)

Using the first relation in (6.65), we deduce

l|4, (6.66)

and thus l ∈ ±{1,2,4}. From the second relation, we get

k = ±1. (6.67)

Consequently, x ∈ ±{1, 1
2 , 1

4 } which are easily rejected as solutions of (6.64). This
completes the proof of the assertion on the irrationality of sin 18°. �

Since we investigated a matter of irrationality of a trigonometric function, it is
useful to state a more general theorem.

Theorem 6.1 The trigonometric functions are irrational at non-zero rational values
of the arguments.

(Cf. I. Niven, Irrational Numbers, The Mathematical Association of America,
Washington, D.C., 1956.)

6.1.18 Let k points be in the interior of a square of side equal to 1. We triangulate
it with vertices these k points and the square vertices. If the area of each triangle is
at most 1

12 , prove that k ≥ 5.
(Proposed by George A. Tsintsifas, Greece)

Solution (by George A. Tsintsifas) Let p be the number of triangles of the triangu-
lation of the unit square (see Fig. 6.19). The sum of the angles of the p triangles is
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equal to

4 · 90° + k · 4 · 90°,

that is,

4 · 90° + k · 4 · 90° = 2p · 90°.

Thus p = 2 + 2k. Now, we have

E1 + E2 + · · · + Ep = 1, (6.68)

where Ei is the area of the ith triangle of the triangulation. According to (6.68), we
get

E1 + E2 + · · · + E2k+2 ≤ (2k + 2) · 1

12
. (6.69)

By (6.68), (6.69), we finally obtain

1 ≤ 2k + 2

12
, (6.70)

or

5 ≤ k. �

Remark 6.1 A triangulation of an n-gon with the points on the perimeter (except
the vertices) and k-internal points is the division of the polygon into triangles with
vertices the n + m + k points.

Remark 6.2 An example which refers to the equality with respect to the inequality
obtained in Problem 6.1.18 is the following. Consider the square ABCD and choose
its center O together with the barycenters G1, G2, G3, G4 of the triangles AOB,
BOC, COD, and DOA, respectively.

6.1.19 Let ABC be an equilateral triangle and D, E, F be points of the sides BC,
CA, and AB, respectively. If the center of the inscribed circle of the triangle DEF is
the center of the triangle ABC, determine what kind of triangle DEF is.

(Proposed by George A. Tsintsifas, Greece)

Solution (by George A. Tsintsifas) We shall prove that the triangle DEF is equilat-
eral using the method of proof by contradiction. Let us assume that the triangle DEF
is not equilateral (see Fig. 6.20). Then, two possibilities may occur:

(a) D̂ ≥ 60°, Ê, F̂ ≤ 60°;
(b) D̂ ≤ 60°, Ê, F̂ ≥ 60°.

First we examine Case (a). On the side EF and internally to the line segment EF, we
can find the points E′, F ′ such that if we draw the tangents to the inscribed circle of
DEF then

Ê′ = F̂ ′ = 60°.
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Fig. 6.20 Illustration of
Problem 6.1.19

Let D′ be the point of intersection of these two tangents. This point is outside the
triangle ABC. Let

IF′ ∩ AB ≡ K, ID′ ∩ BC ≡ L.

It is easy to see that

IK = IL,

IF′ < IK,

ID′ > IL,

and thus we get a contradiction. Similarly, we exclude Case (b), and this completes
the proof. �

6.2 Geometric Problems with More Advanced Theory

6.2.1 Consider a circle C(K, r), a point A on the circle, and a point P outside the
circle. A variable line l passes through the point P and intersects the circle at the
points B and C. Let H be the orthocenter of the triangle ABC. Prove that there exists
a unique point T in the plane of the circle C(K, r) such that the sum

HA2 + HT2

remains constant (independent of the position of the line l).
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Fig. 6.21 Existence: Problem 6.2.1

Solution In the following, we will study the existence as well as the uniqueness of
a point T such that the given hypothesis is satisfied (see Fig. 6.21).

Existence If KK′ ⊥ BC, then it is known that

AH = 2KK′. (6.71)

Bearing in mind that for the creation of the sum HA2 + HT2 it is enough to con-
struct a triangle HAT with

̂H = 90°, (6.72)

we try to construct a triangle HAT similar to KK′P . Thus from the point A we
draw

AT ‖ KP (6.73)

and such that AT = 2KP.
Then the triangles AHT and KK′P are similar because

K̂ ′KP = ̂HAT (6.74)

and

AH

KK′ = AT

KP
= 2. (6.75)

Hence,

̂AHT = K̂K′P = 90°, (6.76)

and therefore

HA2 + HT2 = AT2 = (2 · KP)2 = 4KP2, (6.77)

which is constant and independent of the position of the line l.



126 6 Solutions

Fig. 6.22 Uniqueness:
Problem 6.2.1

Uniqueness Suppose there exists a point T ′ �= T such that (see Fig. 6.22)

HA2 + HT ′2 = c2,

where c is constant, for every position of H (possibly c2 �= KP2). Then the mid-
points M,S of the segments AT , AT ′ respectively define a segment MS of constant
length. Also, the lengths of the segments MH and SH are constant since, by the
first theorem of medians applied to the triangle AHT ′, we have

MH = AT

2
= KP (6.78)

and

2HS2 = c2 = AT ′2

2
. (6.79)

Then the triangle MSH can be constructed with only two possible positions for the
vertex H , which contradicts the fact that H can take an infinite number of positions
depending upon the position of the line l. �

6.2.2 Consider two triangles ABC and A1B1C1 such that

1. The lengths of the sides of the triangle ABC are positive consecutive integers and
the same property holds for the sides of the triangle A1B1C1.

2. The triangle ABC has an angle that is twice the measure of one of its other angles
and the same property holds for the triangle A1B1C1.

Compare the areas of the triangles ABC and A1B1C1.

Solution Let the triangle ABC have sides

AC = b,

AB = c = b + 1,
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BC = a = b − 1,

where b is a positive integer. We observe that

b − 1 > 0, (6.80)

which is equivalent to

b > 1, (6.81)

and that

̂CAB < ̂ABC < ̂BCA. (6.82)

Let x be the length of the projection of the side AC onto AB, let y be the length of
the projection of the side BC onto CA, and z be the length of the projection of AB
onto BC. By using the standard formulas

hk = 2

k

√

s(s − a)(s − b)(s − c),

where k ∈ {a, b, c}, for the computation of the lengths of the heights of a triangle
ABC with BC = a, CA = b, and AB = c, we obtain

√

s(s − a)(s − b)(s − c) = b

4

√

3
(

b2 − 4
)

,

hence

x2 = b2 − 3b2(b2 − 4)

4(b + 1)2
,

and thus

x = b

2
+ 3b

2b + 1
. (6.83)

Also,

y2 = (b − 1)2 − 3(b2 − 4)

4
,

and thus

y = |b − 4|
2

. (6.84)

Finally,

z2 = (b + 1)2 − 3b2(b2 − 4)

4(b − 1)2
,
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and thus

z = b2 + 2

2(b − 1)
, (6.85)

where AC = b, AB = b + 1, and BC = b − 1.
Therefore, the numbers x, y, z are rational. Now, the quantity x/b is decreasing

with respect to b. Therefore, when b increases, the angle ̂CAB increases, as well.
From relation (6.82) we infer that

̂CAB ≤ 45° (6.86)

because

̂CBA > 45°.

Thus

1

2
+ 3

2(b + 1)
<

√
2

2
,

that is,

b > 3
√

2 + 2.

Then we have

|z|
b − 1

<

√
2

2
, (6.87)

and thus

̂ABC > 45°. (6.88)

Hence

̂BCA < 90°. (6.89)

This case is therefore rejected since it does not allow one angle to be twice as large
as another. Therefore, b ≤ 6, and thus b ∈ {2,3,4,5,6}. Suppose that one of the
following cases holds true:

̂BCA = 2 ̂CAB, (6.90)

or

̂BCA = 2 ̂ABC, (6.91)

or

̂ABC = 2 ̂CAB. (6.92)
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Here, in order to simplify the computations, we use the law of cosines and we have
that

cos ̂CAB =
√

1 + cos ̂BCA

2
(6.93)

in the case of (6.90).
In the case of (6.91), we get

cos ̂ABC =
√

1 + cos ̂BCA

2
, (6.94)

and finally in the case of (6.92), we obtain

cos ̂CAB =
√

1 + cos ̂ABC

2
. (6.95)

As we have already seen by virtue of the relations (6.83), (6.84), and (6.85), the
above cosines are rational numbers. Therefore, the quantities

(1 + cos ̂ABC)/2 and (1 + cos ̂BCA)/2

are perfect squares of fractions.
If b = 2, then

cos ̂BCA = −1, (6.96)

which is impossible. In the respective cases for b = 3,4,5,6, we have

1 + cos ̂ABC

2
= 27

32
,

4

5
,

25

32
,

27

35
, (6.97)

respectively, and thus

1 + cos ̂BCA

2
= 3

8
,

1

2
,

9

16
,

3

5
, (6.98)

respectively. Only in the case when b = 5 we have

cos ̂CAB = 3

4
, (6.99)

which means that

̂BCA = 2 ̂CAB (6.100)

and therefore b = 5, c = 6, and a = 4.
We have reached the conclusion that there is a unique triangle with side lengths

consecutive integers and such that one of its angles is twice as large as another of
its angles. Therefore, the triangles ABC and A1B1C1 are equal, and therefore have
equal areas. �
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Proposition 6.1 In a triangle ABC inscribed in a circle (O,R), the center I of the
inscribed circle in the triangle ABC is determined by the intersection of the circle
(D,DB), where D is the midpoint of the arc defined by the points B,C such that the
vertex A does not belong to this arc.

Proof Let I be the intersection point of the bisectors of the triangle ABC (i.e., I

is the center of the inscribed circle), the bisector of the angle ̂A passes through the
midpoint of the arc BC, with A not belonging to this arc. Then

̂IBD = ̂B

2
+ D̂BC = ̂B

2
+ ̂A

2
= ̂BID, (6.101)

which implies that DI = DB. Similarly, we get DI = DC.
For the converse, let us denote by I the common point of the bisector of the angle

̂A with the circle (D,DB), where DB = DC. Let D be the midpoint of the arc BC
such that A is not in this arc. Then

̂IBC = ̂IDC

2
= ̂B

2
, (6.102)

since the half-line BI coincides with the bisector of the angle ̂B .
Similarly, we can verify that the half-line CI is the bisector of the angle ̂C. Hence,

the point I is actually the point of intersection of the bisectors of the triangle ABC,
that is, the center of the circle inscribed in the triangle ABC. �

6.2.3 Let a triangle ABC be given. Investigate the possibility of determining a point
M in the interior of ABC such that if D, E, Z are the projections of M to the sides
AB, BC, CA, respectively, then the relations

AD

m
= BE

n
= CZ

l
(6.103)

should hold, if m, n and l are lengths of given line segments.

Solution With no loss of generality, we may assume that m < a, n < c, and l < b,
where a, b, c are the lengths of the sides BC, CA, and AB of the triangle ABC. We
proceed by using the method of Proof by Analysis (see Fig. 6.23). Let M be a point
in the interior of the triangle ABC having the desired properties. We observe that

AD

m
= BE

n
⇔ mBE + nDB = cn. (6.104)

On the half-line BA, we take the line segment BH = n, and on the half-line BC, the
point Q such that BQ = m. We consider the parallelogram HBQB′. We are going to
use the following lemma:

Lemma 6.4 Let ABCD be a parallelogram and let a circle passing through its ver-
tex A meet the sides AB, AD at the points Z, E and the diagonal AC at the point H .
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Fig. 6.23 Illustration of Problem 6.2.3

Fig. 6.24 Illustration of
Problem 6.2.3 (Lemma 6.4)

Then the following relation holds (see Fig. 6.24):

AB · AZ + AD · AE = AH · AC. (6.105)

Let S be the projection of the point M to the diagonal BB′. It is a fact that the
points B , E, S, M , D are homocyclic and belong to a circle of diameter BM since

M̂EB = ̂MSB = B̂DM = 90°.

Based on Lemma 6.4 and (6.105), we deduce

BD · BH + BE · BQ = BS · BB′ = c · n ⇒ BS = c · n
BB′ . (6.106)

The relation (6.106) implies that S is a fixed point and that the point M belongs to
the perpendicular to the constant line BB′ at its point S. These facts are valid with
respect to the diagonal BB′. If we apply the same method for the corresponding
diagonal CC′, we obtain that the point M belongs to another line. The intersection
of these lines determines the point M . We have thus proved that such a point M

actually exists.
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Remark We can consider m < a, n < c, and l < b since by (6.104) a real number
t ∈R can be determined in such a way that the line segments satisfy the relations

m1 = tm, n1 = tn and l1 = t l, with tm < a, that is, t <
a

m
,

t · n < c, that is, t <
c

n
, and t · l < b, that is, t <

b

l
.

By an application of the Ptolemy’s Theorem to the inscribed quadrilateral AEHZ,
we get

AE · HZ + AZ · EH = AH · EZ.

Note that ̂ZHE = 180°− ̂A and ̂EZH = ̂EAH. Therefore, the triangles HZE and ADC
are similar. Consequently,

CB

ZH
= AD

HZ
= AB

EH
= AC

EZ
.

Thus

AE · HZ · AD

HZ
+ AZ · EH · AB

EH
= AH · EZ · AC

EZ
.

Therefore,

AE · AD + AZ · AB = AH · AC,

that is,

AB · AZ + AD · AE = AH · AC. �

Remark The relation

AB · AZ + AD · AE = AH · AC

can be proved by using the inner product of vectors. It is enough to consider the
point F antidiametrical to the point A and to observe that

AB · AZ + AD · AE = −→
AB · −→AZ + −→

AD · −→AE

with

−→
AB · −→AZ + −→

AD · −→AE = −→
AB · −→AF + −→

AD · −→AF

= (
−→
AB + −→

AD) · −→AF

= −→
AC · −→AF.
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Fig. 6.25 Illustration of
Problem 6.2.4

Hence

AB · AZ + AD · AE = −→
AC · −→AF

= −→
AC · −→AH,

and thus

AB · AZ + AD · AE = AC · AH. �

6.2.4 Let ̂xOy be a right angle and on the side Ox fix two points A,B with OA <

OB. On the side Oy, we consider two moving points C, D such that OD < OC
with CD/DO = m/n, where m,n are given positive integers. If M is the point of
intersection of AC and BD, determine the position of M under the assumption that
the angle D̂MA attains its minimum.

Solution It should be enough to determine the maximum attained by the angle ÂMB.
Using the theorem of Menelaus, we have (see Fig. 6.25)

CD

CO
· OA

AB
· BM

MD
= 1,

which implies

BM

MD
= (m + n)AB

m · OA
= BE

EO
, (6.107)

where E ∈ Ox with ME⊥Ox.
However, by the theorem of Thales, we also have

BM

MD
= BE

EO
, (6.108)
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and thus

BE

EO
= (m + n)AB

m · OA
. (6.109)

This relation implies that the perpendicular straight line ME to the side Ox at the
point E is constant. It follows that the point M ∈ ε such that ÂMB attains a max-
imum occurs when the prescribed circle of the triangle MAB obtains its minimal
radius, that is, when passing through the points A and B , and is tangential to the
line ε at a point M . This point M is completely determined (and thus constructed)
from the relation

EM2 = EA · EB.

This is known as the Apollonius’ construction. �

Note 1 The problem of the determination of the point M on the line ε such that
the line segment AB forms an angle ÂMB that becomes maximum, when the points
A,B belong to the same half-plane determined by the straight line ε, is traditionally
called the statue problem.

6.2.5 Given ̂xOy = 60°, we consider the points A, B moving on the sides Ox and
Oy, respectively, so that the length of the line segment AB is preserved subject to the
assumption that the triangle OAB is not an obtuse triangle. Let D, E, Z be the feet
of the heights OD, AE, and BZ of the triangle OAB to AB, BO, and OA, respectively.
Compute the maximal value of the sum

√
DE + √

EZ + √
ZD.

Solution By assumption, the length of the straight line segment AB is constant and
also the angle ̂xOy = 60° is constant, therefore the circle determined by the triangle
OAB is of constant radius R since the isosceles triangle KAB has its basis AB of
constant length and its angle ̂AKB = 120°, when the point K is the center of the
circle (OAB) (see Fig. 6.26). We observe that for the areas of the triangles, one has

SOAB = SOZKE + SADKZ + SDBEK .

Hence, recalling that OK = AK = BK = R, we obtain

SOAB = ZE · R
2

+ ZD · R
2

+ DE · R
2

. (6.110)

By (6.110) and the Cauchy–Schwarz–Buniakowski inequality, we deduce

(
√

DE + √
EZ + √

ZD)2 ≤
[(

1√
R

)2

+
(

1√
R

)2

+
(

1√
R

)2]

· [(√ZE · R)2 + (
√

ZD · R)2 + (
√

DE · R)2]
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Fig. 6.26 Illustration of Problem 6.2.5

= 3

2
· 2SOAB ≤ 3

√
3R2

4
. (6.111)

Thus, the maximal value of the sum

√
DE + √

EZ + √
ZD

is equal to

3

√

R
√

3

2
,

which is achieved for OA = OB.

Remark 6.3 Study the same problem in the case ̂xOy �= 60°. �
(Open problem.)

6.2.6 Let O be a given point outside a given circle of center C. Let OPQ be any
secant of the circle passing through O and R be a point on PQ such that

OP

QO
= PR

RQ
.

Find the geometrical locus of the point R.
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Fig. 6.27 Illustration of
Problem 6.2.6

Solution Let OA, OB be tangents of the circle at the points A and B , respectively.
Let D = AB ∩ OC and M = PQ ∩ AB. Extend QD to meet the circle at the point E.
Since the points O , B , C, A are concyclic and the points A, E, B and Q are also
concyclic, we obtain

OD · DC = AD · DB = ED · DQ, (6.112)

and thus the points O , Q, C, E are concyclic (see Fig. 6.27). Therefore, we have

ĈOQ = Q̂EC = ÊQC = ĈOE, (6.113)

and so P,E are mirror images with respect to the straight line OC. Therefore,

P̂DO = ÊDO, (6.114)

that is, OD is the bisector of the external angle of P̂DQ of the triangle PDQ. Hence
we have

PD

DQ
= PM

MQ
. (6.115)

Combining the above relations, we deduce

OP

OQ
= PM

MQ
, (6.116)

and therefore M = R. Hence, the geometrical locus of R is the straight line segment
AB. �

6.2.7 Prove that in each triangle the following equality holds:

1

r

(

b2

rb
+ c2

rc

)

− a2

rbrc
= 4

(

R

ra
+ 1

)

, (6.117)
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where s is the semiperimeter of the triangle, S is the area enclosed by the triangle,
a, b, c are the sides of the triangle, R is the radius of the circumscribed circle, r is
the corresponding radius of the inscribed circle, and ra , rb , rc are the radii of the
corresponding exscribed circles of the triangle.

(Proposed by Dorin Andrica, Romania and Khoa Lu Nguyen [14], USA)

Solution (by Prithwijit De, Calcutta, India) We have

ra = S

s − a
, rb = S

s − b
, rc = S

s − c
, r = S

s
, R = abc

4S
.

(6.118)

Thus, we obtain (see Fig. 6.28)

1

r

(

b2

rb
+ c2

rc

)

− a2

rbrc

= b2s(s − b) + c2s(s − c) − a2(s − b)(s − c)

S2

= (b2 + c2 − a2)s2 − s(b + c)(b2 − bc + c2) + a2(b + c)s − a2bc

S2

= s(b2 + c2 − a2)(s − b − c) + bc((b + c)s − a2)

S2

= 2a2(b2 + c2 + bc) − a4 − (b4 + c4 − 2b2c2) + 2abc(b + c) − 4a2bc

4S2

= 2(a2b2 + b2c2 + c2a2) − a4 − b4 − c4 + 2abc(b + c − a)

4S2

= 16S2 + 4abc(s − a)

4S2
= 4 + 4SR(s − a)

S2

= 4

(

R

ra
+ 1

)

. (6.119)

This completes the proof. �

6.2.8 Let A1A2A3A4A5 be a convex planar pentagon and let X ∈ A1A2, Y ∈
A2A3, Z ∈ A3A4, U ∈ A4A5, and V ∈ A5A1 be points such that A1Z, A2U , A3V ,
A4X, A5Y intersect at the point P . Prove that

A1X

A2X
· A2Y

A3Y
· A3Z

A4Z
· A4U

A5U
· A5V

A1V
= 1. (6.120)

(Proposed by Ivan Borsenko [26], USA)



138 6 Solutions

Fig. 6.28 Illustration of
Problem 6.2.7

Fig. 6.29 Illustration of
Problem 6.2.8

Solution (by Ercole Suppa, Italy) We shall make use of the following (see Fig. 6.29)

Lemma 6.5 If P is a point on the side BC of a triangle ABC then

PB

PC
= AB

AC
· sin ̂PAB

sin ̂PAC
. (6.121)
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Fig. 6.30 Illustration of
Problem 6.2.9

Let us denote

Â1PX = Â4PZ = α,

X̂PA2 = ÛPA4 = β,

Â2PY = Â5PU = γ,

ŶPA3 = V̂PA5 = δ,

and

Â3PZ = Â1PV = ε.

From the above Lemma 6.5 applied to the triangles A1PA2, A2PA3, A3PA4, A4PA5,
and A5PA1, we obtain

A1X

A2X
· A2Y

A3Y
· A3Z

A4Z
· A4U

A5U
· A5V

A1V
= sinα

sinβ
· sinγ

sin δ
· sinα

sinβ
· sin ε

sinα
· sinβ

sinγ
· sin δ

sin ε

= 1, (6.122)

and thus (6.120) is proved. �

6.2.9 Given an angle ̂xOy and a point S in its interior, consider a straight line passing
through S and intersecting the sides Ox, Oy at the points A and B , respectively.
Determine the position of AB so that the product OA · OB attains its minimum.

Solution Let D, C be points on the sides Ox, Oy, respectively, such that the straight
line SD is parallel to the straight line Oy and the straight line SC is parallel to the
straight line Ox. It follows that the straight line segments OD = b and OC = a are
constant (see Fig. 6.30).
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The problem can be formulated equivalently as follows:

Determine the position of AB so that the product

a

OA
· b

OB

becomes maximum.

From the similarity of the triangles OAB, CSB, it follows that

a

OA
= BS

BA
, (6.123)

and from the similarity of the triangles OAB and DAS, we get

b

OB
= AS

BA
. (6.124)

Adding (6.123) and (6.124), we obtain

a

OA
+ b

OB
= 1. (6.125)

It is a fact that when the sum of two positive real numbers is constant, their product
attains its maximal value when the numbers are equal. Therefore,

a

OA
= b

OB
.

This means that the straight lines AB and DC are parallel. �

6.2.10 Let the incircle of a triangle ABC touch the sides BC, CA, AB at the points
D, E, F , respectively. Let K be a point on the side BC and M be the point on the
line segment AK such that AM = AE = AF. Denote by L and N the incenters of the
triangles ABK and ACK, respectively. Prove that K is the foot of the altitude from
A if and only if DLMN is a square.

(Proposed by Bogdan Enescu [41], Romania)

Solution (by Ercole Suppa, Teramo, Italy) We will first prove the following two
lemmas (see Fig. 6.31):

Lemma 6.6 The points D,K lie on the circle with diameter LN.

Proof Without loss of generality, let c < b. Assume I is the incenter of the triangle
ABC and U , V are the points where the circles (L), (N) touch the side BC. Let r ,
r1, r2 be the inradii of the circles (I ), (L), (N) as shown in the figure. Let a = BC,
b = CA, c = AB, m = BK, n = KC, x = AK.

Because of the fact that L, N are the incenters of the triangles ABK and ACK,
we get

̂LKN = ̂LKA + ÂKN = 1

2
( ̂BKA + ̂AKC) = 90°. (6.126)
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Fig. 6.31 Illustration of
Problem 6.2.10

To prove that L̂DN = 90°, it is sufficient to show that

LD2 + DN2 = LN2. (6.127)

From the theorem of Pythagoras, we obtain

LD2 = r2
1 + UD2, (6.128)

ND2 = r2
2 + DV2, (6.129)

LN2 = UV2 + (r1 − r2)
2

= UD2 + DV2 + 2UD · DV + r2
1 + r2

2 − 2r1r2. (6.130)

To prove (6.127), it is sufficient to show that

UD · DV = r1r2.

We have

UD = BD − BU = a + c − b

2
− m + c − x

2
= a + x − b − m

2
, (6.131)

DV = DC − CV = a + b − c

2
− n + b − x

2
= a + x − c − n

2
. (6.132)

By (6.131) and (6.132), and by setting n = a − m, we get

UD · DV = (x + a − b − m)(x − c + m)

4
. (6.133)

From the similarity of the triangles BUL, BDI, and CVN, CDI, we deduce

LU

ID
= BU

BD
⇒ r1 = r · c + m − x

a + c − b
, (6.134)
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NV

ID
= CV

CD
⇒ r2 = r · b + n − x

a + b − c
. (6.135)

From the above equalities and since

r2 = (b + c − a)(a + c − b)(a + b − c)

4(a + b + c)

(it is left as an exercise to the reader), by setting n = a − m, we derive

r1r2 = (b + c − a)(a + b − m − x)(c + m − x)

4(a + b + c)
. (6.136)

By applying (6.133) and (6.136), we get

UD · DV − r1r2 = ax2 − ac2 + a2m − b2m + c2m − am2

2(a + b + c)
. (6.137)

From Stewart’s theorem, we obtain

x2 = mb2 + (a − m)c2 − am(a − m)

a
. (6.138)

By substituting x2 from (6.138) into (6.137) and carrying out the calculations (it is
left as an exercise to the reader), we obtain

UD · DV − r1r2 = (c2 − am)(m + n − a)

2(a + b + c)
= 0. (6.139)

Therefore,

LD2 + DN2 = LN2,

and this completes the proof of the lemma. �

Lemma 6.7 Let M be the second intersection point of AK with the circle γ circum-
scribed to the quadrilateral DKNL. Then DM⊥LN and

AM = AE = AF.

Proof Assume that the incircle of the triangle ABK intersects the side AB at the
point F ′. According to Lemma 6.6, the center of γ is the midpoint of LN, and
therefore the point M lies on the external tangent to the circles (L), (N). Therefore,
it follows that DM⊥LN, and thus

AM = AF′ − UD = AF′ − (BD − BU)

= c + x − m

2
− a + c − b

2
+ c + m − x

2

= b + c − a

2
= AF. (6.140)



6.2 Geometric Problems with More Advanced Theory 143

Fig. 6.32 Illustration of
Problem 6.2.11

This completes the proof of Lemma 6.7. �

Using Lemmas 6.6 and 6.7, it follows that

• DLMN is cyclic;
• L̂DN = L̂MN = 90°;
• DM⊥LN.

Hence the quadrilateral DLMN is a square if and only if MD is a diameter of the
circumcircle of DLMN, that is, M̂KD = 90°. Thus AK⊥BC. �

6.2.11 Let ABCD be a square of center O . The parallel through O to AD intersects
AB and CD at the points M and N , respectively, and a parallel to AB intersects the
diagonal AC at the point P . Prove that

OP4 +
(

MN

2

)4

= MP2 · NP2. (6.141)

(Proposed by Titu Andreescu [7], USA)

Solution (by Christopher Wiriawan, Indonesia) Let Q be the intersection of the
straight line MN and the parallel ε to AB passing through P . Let R be the foot
of the perpendicular from P to AB. Then QN = RB because of the fact that (see
Fig. 6.32)

QN = FC = FP = BR,

and thus, by Pythagoras’ theorem, we deduce

OP4 +
(

MN

2

)4

= (

OQ2 + QP2)2 +
(

MN

2

)4

=
((

MN

2
− QN

)2

+
(

MN

2
− RB

)2)2

+
(

MN

2

)4

. (6.142)
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This is equivalent to

(

2

(

MN

2
− QN

)2)2

+
(

MN

2

)4

= 4

(

MN

2
− QN

)4

+
(

MN

2

)4

. (6.143)

It suffices to prove that the above expression is equal to the right-hand side of
(6.141). By applying again Pythagoras’ theorem, we have

NP2 = QN2 + QP2 = QN2 +
(

MN

2
− QN

)2

= 2QN2 − MN · QN +
(

MN

2

)2

. (6.144)

Also

MP2 = QP2 + MQ2 =
(

MN

2
− QN

)2

+ (MN − QN)2

= 5

(

MN

2

)2

− 3MN · QN + 2QN2. (6.145)

Hence

NP2 · MP2 =
(

2QN2 − MN · QN +
(

MN

2

)2)

·
(

5

(

MN

2

)2

− 3MN · QN + 2QN2
)

. (6.146)

This is equivalent to

4QN4 = 16QN3
(

MN

2

)

+ 24QN2
(

MN

2

)2

− 16QN

(

MN

2

)3

+ 4

(

MN

2

)4

+
(

MN

2

)4

, (6.147)

that is,

4

(

MN

2
− QN

)4

+
(

MN

2

)4

.

This completes the proof. �

Second solution Denote OM = a and OQ = x, then we deduce that

OP = x
√

2, MP2 = (a + x)2 + x2, NP2 = (a − x)2 + x2.
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Fig. 6.33 Illustration of
Problem 6.2.12

Therefore,

MP2 · NP2 = (

2x2 + a2 + 2ax
)(

2x2 + a2 − 2ax
)

= (

2x2 + a2)2 − 4a2x2

= 4x2 + a4

= OP4 +
(

MN

2

)4

. �

6.2.12 Let O , I , H be the circumcenter, the incenter and the orthocenter of the
triangle ABC, respectively, and let D be a point in the interior of ABC such that

BC · DA = CA · DB = AB · DC.

Prove that the points A, B , D, O , I , H are concyclic if and only if ̂C = 60°.
(Proposed by T. Andreescu (USA), D. Andrica and C. Barbu [8] (Romania))

Solution (by Daniel Lasaosa, Spain) Let U , V , W be the projections of the point
D onto BC, CA, AB. Then, it can be proved that UVW is an equilateral triangle and
indeed it holds (see Fig. 6.33)

̂ADB = ̂C = 60°.
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Because of the fact that

ÂWD = ̂AVD = 90°,

the quadrilateral AVDW is cyclic with diameter DA, or

V W = AD sin ̂A = BC · AD

2R

and by cyclic permutation of A, B , C this quantity is equal to UV ·WD. Furthermore,

ÂDW = ÂVW = 180° − ̂A − ÂWV,

as well as

̂ADB = ÂDW + B̂DW = 360° − ̂A − ̂B − ÂWV − B̂WU = ̂C + 60°. (6.148)

The point D is called the first isodynamic point. It is inside the triangle ABC if and
only if no angle of the triangle ABC exceeds 120°.

We have

̂AIB = 90° + 1

2
̂C

and

̂AHB = 180° − ̂C.

If ABC is an obtuse triangle at C, then O , C are on opposite sides of the side AB
and

̂AOB = 360° − 2̂C.

However, if ABC is not an obtuse triangle at C, then O , C are on the same side of
the side AB and

̂AOB = 2̂C.

Therefore, A, B , O , I are cocyclic if and only if the triangle ABC is acute at C,
otherwise we would need

̂AOB + ̂AIB = 180°,

or equivalently,

270° = 3

2
̂C,

that is, ̂C = 180°, which is absurd since ABC would be degenerate and O , I could
not be defined.

Thus we can assume that the triangle ̂ABC has an acute angle at the vertex C.
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Fig. 6.34 Illustration of
Problem 6.2.13

If the triangle ABC is acute at C, then A, B and any two of the points D, O , I ,
H are concyclic if and only if the corresponding pair from the following four angles
are equal, that is,

̂AIB = 90 + ̂C

2
, ̂AHB = 180° − ̂C,

̂AOB = 2̂C, ̂ADB = ̂C + 60°,

(6.149)

that is, if and only if ̂C = 60°. This completes the proof. �

6.2.13 Let H be the orthocenter of an acute triangle ABC and let A′, B ′, C′ be
the midpoints of the sides BC, CA, AB, respectively. Denote by A1 and A2 the
intersections of the circle (A′,A′H) with the side BC. In the same way, we define
the points B1,B2 and C1,C2, respectively. Prove that the points A1, A2, B1, B2, C1,
C2 are cocyclic.

(Proposed by Catalin Barbu [24], Romania)

Solution (by Michel Bataille, France) The power of A1 with respect to the pre-
scribed circumcircle (O,R) of the triangle ABC is (see Fig. 6.34)

OA2
1 − R2 = (

A1A
′
1

)2 − BC2

4
. (6.150)

If K1 is the orthogonal projection of C onto the side AB, we get

B̂CK1 = 90° − ̂B.
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From the law of cosines applied to the triangle CHA′, we obtain

A′H 2 = A′C2 + CH2 − 2A′C · CH cos
(

90° − ̂B
)

= BC2

4
+ 4

(

OC′)2 − 2BC · OC′ sin B̂. (6.151)

We have used the property

CH = 2OC′.

Since

OC′ = R cos ̂C

(̂C is acute) and

BC = 2R sinA, A′H = A1A
′,

the relations (6.150) and (6.151) yield

OA2
1 = R2 + 4R2 cos ̂C(cos ̂C − sin ̂A sin ̂B). (6.152)

But,

cos ̂C − sin ̂A sin ̂B = − cos(A + B) − sinA sinB = − cosA cosB.

Thus

OA2
1 = R2(1 − 4 cosA cosB cosC). (6.153)

Due to the symmetry of the result, we note that

OA1 = OA2 = OB1 = OB2 = OC1 = OC2.

Hence A1, A2, B1, B2, C1, C2 are all concyclic (with center O). �

6.2.14 Let ABC be a triangle with midpoints Ma , Mb , Mc of the sides BC, AC, AB,
respectively. Let also X,Y,Z be the points of tangency of the incircle of the triangle
MaMbMc with MbMc, McMa and MaMb .

(a) Prove that the straight lines AX, BY , CZ are concurrent at some point P .
(b) If A1, B1, C1 are points of the sides BC, AC, AB, respectively, such that the

straight lines AA1, BB1, CC1 are concurrent at the point P , then the perimeter
of the triangle A1B1C1 is greater than or equal to the semi-perimeter of the
triangle ABC.

(Proposed by Roberto Bosch Cabrera [34], Cuba)
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Fig. 6.35 Illustration of
Problem 6.2.14

Solution (by Daniel Lasaosa, Spain) (a) By Thales’ theorem and because of the fact
that McMb ‖ BC, we get (see Fig. 6.35)

BA1

A1C
= McX

XMb

.

It can be easily proved that

McX = MbMc + McMa − MaMb

2
= a + b − c

4
(6.154)

and

XMb = MaMb + MbMc − McMa

2
= a + c − b

4
, (6.155)

or
BA1

A1C
= a + b − c

c + a − b
,

and similarly for its cyclic permutations. Applying the reciprocal of the Menelaus’
theorem, we deduce that AX, BY , CZ meet at a point P . Since A1 may be identified
as the point where the side BC touches the excircle which touches the side BC and
the extensions of the sides AB and AC, and similarly for B1 and C1, then the point
P where AX, BY , CZ intersect is the Nagel’s point of the triangle ABC.

(b) By the cosine law and Heron’s formula for the area of the triangle ABC, we
obtain

B1C
2
1 = AB2

1 + AC2
1 − 2AC1 · AB1 cos ̂A

= (a + b − c)2

4
+ (a + c − b)2

4

− (a + b − c)(a + c − b)(b2 + c2 − a2)

4bc

= a2(1 − sinB sinC). (6.156)
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Similarly, we get the formulas which correspond to its cyclic permutations.
However,

2 sinB sinC = cos(B − C) − cos(B + C)

≤ 1 + cosA

= 2 − 2 sin2 A

2
(6.157)

and

B1C1 ≥ a sin
A

2
. (6.158)

Hence, it suffices to prove that

a

a + b + c
sin

A

2
+ b

a + b + c
sin

B

2
+ c

a + b + c
sin

C

2
≥ 1

2
. (6.159)

Because of the fact that

b + c = 2R cos
A

2
cos

B − C

2
≤ 2R cos

A

2
, (6.160)

by multiplying by sin2 A
2 , we obtain

(b + c) sin2 A

2
≤ a sin

A

2
. (6.161)

Therefore,
∑

cyclic

(b + c) sin2
(

A

2

)

≤
∑

cyclic

a sin
A

2
, (6.162)

but

∑

cyclic

(b + c) sin2
(

A

2

)

= 1

2

∑

cyclic

(b + c)(1 − cosA)

= 2s − 1

2

∑

cyclic

(b + c) cosA

= 2s − 1

2

∑

cyclic

(b + c + a) cosA + 1

2

∑

cyclic

a cosA

= 2s − s
∑

cyclic

cosA + 1

2

∑

cyclic

a cosA

= 2s − s

(

1 + r

R

)

+ 1

2

2sr

R
= s. (6.163)
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Fig. 6.36 Illustration of Problem 6.2.15

Therefore,

∑

cyclic

B1C1 ≥
∑

cyclic

a sin
A

2
≥ s. (6.164)

�

6.2.15 Let Ia be the excenter corresponding to the side BC of a triangle ABC. Let
A′, B ′, C′ be the tangency points of the excircle of center Ia with the sides BC, CA,
and AB, respectively. Prove that the circumcircles of the triangles AIaA

′, BIaB
′,

CIaC
′ have a common point, different from Ia , situated on the line GaIa , where Ga

is the centroid of the triangle A′B ′C′.
(Proposed by Dorin Andrica [20], Romania)

Solution (by Michel Bataille, France) Let γ be the excircle of the triangle ABC
corresponding to the side BC. Since IaA

′ = IaC
′ and BA′ = BC′, the line IaB is the

perpendicular bisector of A′C′ and intersects A′C′ at its midpoint B1 (see Fig. 6.36).
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Since A′C′ is the polar of B with respect to γ , the inversion in the circle γ exchanges
B1 and B .

Since B ′ is invariant under this inversion, the circumcircle of the triangle IaBB′
inverts into the median B ′B1 of the triangle A′B ′C′. It also holds true that the cir-
cumcircles of the triangles IaAA′ and IaCC′ invert into the medians A′A1 and C′C1,
respectively.

Therefore, all three circumcircles pass through the point Ia and through the in-
verse of Ga since Ga lies on the three medians A′A1, B ′B1, and C′C1.

The second result follows from the fact that the inverse of Ga is on the line
passing through the points Ia and Ga .

Second solution Let E′ be the midpoint of C′A′. We have BA′⊥IaA
′, while

BIa⊥A′C′ where A′E′ = C′E′ by symmetry around the external bisector of an-
gle ̂B .

Thus, the triangles BE′A′, A′E′Ia are similar. Hence

A′E′ · C′E′ = (

A′E′)2 = BE′ · IaE
′,

and the median B ′E′ is the radical axis of the circumcircles of the triangles A′B ′C′
and BIaB

′. Similarly, the median C′F ′, where F ′ is the midpoint of A′B ′, is the
radical axis of the circumcircles of the triangles A′B ′C′ and CIaC

′.
The point Ga where the medians A′D′, B ′E′ and C′F ′ meet has the same power

with respect to the four circumcircles. Let now the second point P where IaGa

meets the circumcircle of AIaA
′. Since IaGa is the radical axis of the circumcircles

of AIaA
′ and BIaB

′, because Ia , Ga have the same power with respect to both, the
point P also has the same power with respect to both circles. However, since it is
on the circumcircle of the triangle AIaA

′, it is also on the circumcircle of BIaB
′.

Similarly, it is also on the circumcircle of the triangle CIaC
′. This completes the

proof. �

6.2.16 Let C1, C2, C3 be concentric circles with center point P and radii R1 = 1,
R2 = 2, and R3 = 3, respectively. Consider a triangle ABC with A ∈ C1, B ∈ C2,
and C ∈ C3. Prove that

maxSABC < 5,

where maxSABC denotes the greatest possible area attained by the triangle ABC.
(Proposed by Roberto Bosch Carbera [35], Cuba)

Solution (by Roberto Bosch Carbera) Let A, B be the points such that the area of
the triangle ABC becomes maximum, hc be the length of the altitude from C, and
Pc the foot of the altitude from the point P onto the side AB. It follows that (see
Fig. 6.37)

hc ≤ PC + PPc.

The equality holds if and only if the points C, P , Pc are collinear with P inside
the segment CPc . Now, PC = 3 and PPc is fixed for given points A, B , or the
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Fig. 6.37 Illustration of
Problem 6.2.16

area becomes maximum when P is inside the segment CPC , which is perpendicular
to AB.

By cyclic symmetry, the point P is the orthocenter of the triangle ABC and it is
inside the triangle ABC or the triangle ABC is acute.

It can be easily proved that if P is the orthocenter of an acute triangle ABC, we
have

PA = 2R cos ̂A, (6.165)

PB = 2R cos ̂B, (6.166)

PC = 2R cos ̂C, (6.167)

where R is the circumradius of the triangle ABC. Since PC = 3, by using (6.167),
we get

3 = 2R cos ̂C

and thus

3R = 2R2 cos ̂C

= 2R2 sin ̂A sin ̂B − 2R2 cos ̂A cos ̂B

=
√

4R2 − 1
√

R2 − 1 − 1, (6.168)

or

4R3 − 14R − 6 = 0,

so

2R3 = 7R + 3.
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Additionally, using the formula

a2b2c2 = (

4R2 − 1
) · (4R2 − 4

) · (4R2 − 9
)

= 4
(

24R3 + 49R2 − 9
)

, (6.169)

we obtain

S2 = a2b2c2

16R2
= 6R + 49

4
− 9

4R2
. (6.170)

If S ≥ 5, then

24R3 + 49R2 − 9 ≥ 100R2,

and taking into account that

2R3 = 7R + 3,

we obtain

17R2 − 28R − 9 ≤ 0,

so

R ≤ 14 + √
349

17
< 2.

But if R ≤ 2, then

4R3 − 14R − 6 ≤ 16R − 14R − 6 ≤ −2, (6.171)

which is a contradiction. Therefore, the area of the triangle ABC must be smaller
than 5. �

6.2.17 Consider an angle ̂xOy = 60° and two points A,B moving on the sides
Ox, Oy, respectively, so that AB = a, where a is a given straight line segment. Let
AD,BE be the angle bisectors of ̂A, ̂B in the triangle OAB. Determine the position
for which the product

AEm · BDn

attains its maximum value, when m, n are positive rational numbers expressing the
lengths of two straight line segments.

Solution Analysis. Let us assume that this maximizing position does exist (see
Fig. 6.38). We observe that

̂EIA = ̂BID = ̂A

2
+ ̂B

2
= 180° − 60°

2
= 60°. (6.172)
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Fig. 6.38 Illustration of
Problem 6.2.17

Consider the bisector IC of the angle ̂AIB = 180° − 60° = 120°. We obtain

̂EIA = ̂AIC = ̂CIB = ̂BID = 60°. (6.173)

The triangles EAI and ACI are equal since AI is their common side and

̂CAI = ̂IAE, ̂EIA = ̂AIC = 60°.

Thus

AE = AC.

In a similar manner, we prove that

BD = BC,

and thus

AE + BD = AC + CB = a, (6.174)

where a is a constant.
It is a well known fact that, if for the positive real numbers

xi > 0, i = 1, . . . ,m

we have
m

∑

i=1

xi = c,
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Fig. 6.39 Illustration of Problem 6.2.17

for a given constant c ∈ R
+, then their product

m
∏

i=1

x
ρi

i ,

ρi ∈Q, attains its maximum value if

x1

ρ1
= x2

ρ2
= · · · = xm

ρm

= c

ρ1 + · · · + ρm

.

Therefore, in our case

AE

m
= BD

n
= a

m + n
or

AC

m
= BD

n
= a

m + n
. (6.175)

Construction–Synthesis. Consider a straight line segment A1B1 = a. We can de-
termine points C1, F1 of the straight line segment A1B1 with C1 in the interior of
the line segment A1B1 and F1 in its exterior such that (see Fig. 6.39)

A1C1

C1B1
= F1A1

F1B1
= m

n
= I1A1

I1B1
. (6.176)

That is, the points C1,F1 are harmonic conjugates to the points A1,B1 with ratio
m
n

. Thus we can find the Apollonius circle e1. We proceed by determining the arc
f1 such that its points see the line segment A1B1 under an angle of 120°. Let I1
be the intersection of f1 with e1. Consider a circle with center I1 and radius I1C1.
Let D1 be the intersection of this last circle with the straight line A1E1 and E1 its
intersection with the straight line B1I1.

Now, suppose that the intersection of the straight lines A1E1 and B1D1 is the
point O1. In this way, we take a point A belonging to the side Ox of the initial
angle ̂xOy, such that OA = O1A1 and on the side Oy we take a point B1 so that
OB = O1B1. This determines exactly the desired position. �
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Fig. 6.40 Illustration of Problem 6.2.18

Note 2 Constructively, the same occurs on the other half plane that is determined by
the straight line AB. However, because of the symmetry, the same result is recovered.

Hence, the position of the straight line segment AB can be constructed so that the
product AEm · BDn attains its maximal value.

6.2.18 Let ̂xOy = 90° and points A ∈ Ox, B ∈ Oy (with A �= O , B �= O), so that
the condition

OA + OB = 2λ

holds, where λ > 0 is a given positive number. Prove that there exists a unique point
T �= O such that

SOATB = λ2, (6.177)

independently of the position of the straight line segment AB.

Solution On the straight line Ox, we choose a point B ′ so that AB′ = OB. Let Oδ

be the bisector of the angle ̂xOy. Consider the circle circumscribed to the triangle
OAB intersecting the bisector at the point T (see Fig. 6.40).

It is evident that T̂AT1 = T̂BT2 (since the quadrilateral OATB is inscribed) and
TA = TB because T ∈ Oδ where T1 and T2 are the projections of T onto Ox, Oy,
respectively. It follows that the triangles OTB and ATB′ are equal.

As a consequence, the equality TO = TB′ should hold and the point T should be-
long to the perpendicular bisector of OB′ = 2λ which, in its turn, is constant. Thus,
we obtain that T is the intersection of the bisector Oδ with the perpendicular bisec-
tor OB′. Consequently, the square OT1TT2 has been constructed with side length λ
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and this actually means that

SOATB = SOAT + SOBT = λ · (OA + OB)

2
= λ2. (6.178)

Thus the existence of the point T has been proved.
As far as the uniqueness of the existence is concerned, we proceed by contradic-

tion. Suppose that there exists another point T ′ �= T such that the conditions

OA + OB = 2λ,

ST ′OAB = λ2

are satisfied. Then

STAB = ST ′AB,

and thus

TT ′ ‖ AB.

Hence, the last parallelism condition must be valid for any choice of position for the
line segment AB. This leads to a contradiction. �

6.2.19 Let a given quadrilateral A′B ′C′D′ be inscribed in a circle (O,R). Consider
a straight line y intersecting the straight lines A′D′, B ′C′, B ′A′, and D′C′, at the
points A, A1, B , B1, respectively, and also the circle (O,R) at the points M , M1.
Prove that

√

MA · MA1 · MB · MB1 + √

M1A · M1A1 · M1B · M1B1

= √

(MA · MA1 + M1A · M1A1) · (MB · MB1 + M1B · M1B1). (6.179)

Solution According to the Cauchy–Schwarz–Buniakowski inequality, we have

(

n
∑

i=1

x2
i

)

·
(

n
∑

i=1

y2
i

)

≥
(

n
∑

i=1

xi · yi

)2

. (6.180)

The equality occurs if and only if

x1

y1
= x2

y2
= · · · = xn

yn

.

Applying inequality (6.180) in (6.179) for the case of equality, it should be enough
to prove that

MA · MA1

MB · MB1
= M1A · M1B

M1B · M1B1
. (6.181)
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Fig. 6.41 Illustration of Problem 6.2.19

Consider MD⊥A′B ′, MC⊥A′D′, MC1⊥B ′C′, MD1⊥D′C′ (Fig. 6.41). In order to
prove the equality (6.181), it is enough to verify that for a given direction of the
straight line y, the ratio

MA · MA1

MB · MB1

is constant for any position of the line y. Let

MA = k1 · MC, MB = k2 · MD,

MA1 = l1 · MC1, MB1 = l2 · MD1,
(6.182)

where k1, k2, l1, l2 are constant positive numbers and the ratio

MA · MA1

MB · MB1

becomes

MA · MA1

MB · MB1
= k1k2

l1l2
· MC

MD
· MC1

MD1
= k1k2

l1l2
, (6.183)

where the term
MC

MD
· MC1

MD1
= 1,

since the triangles MCD, MC1D1 are similar and

MC

MD
= MD1

MC1
.

Indeed, the similarity of the triangles MCD, MC1D1 can be verified as follows.
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The quadrilateral MCA′D is inscribed, since

̂D + ̂C = 90° + 90° = 180°.

The same holds true for the quadrilateral MD1C
′C because

̂D1 + ̂C1 = 180°.

Furthermore, the relations

M̂DC = M̂A′C = M̂C′D′ = M̂C1D1

hold true.
The relation (6.183) is derived by observing that the straight line y preserves

its direction and thus the right triangles MAC, MBD, MA1C1, and MB1D1 do pre-
serve their angles for this particular direction. Hence, each one remains similar with
respect to itself or, equivalently, they are representatives of cosine of constant an-
gles. �

6.2.20 Let ABC be a triangle with ̂BCA = 90° and let D be the foot of the altitude
from the vertex C. Let X be a point in the interior of the segment CD. Let K be the
point on the segment AX, such that BK = BC. Similarly, let L be the point on the
segment BX such that AL = AC. Let M be the point of intersection of AL and BK.
Show that MK = ML.

(53rd IMO, 2012, Mar del Plata, Argentina)

Solution Consider the circles C1(B,BC), C2(A,AC), and C(F,FK), where the cir-
cle C has its center on BK and it is internally tangential to the other two circles C1,
C2 at K and L1, respectively. The radial axes of the three circles will be intersected
at a point of altitude CD. Let T be that point (see Fig. 6.42). We have X ≡ CD∩AK.

Let the circle (T ,TK), where TK = TL1, intersects C2 at a point I . The point B

belongs to the radial axis L1I , since the triangle is a right one at the vertex C and
BC = BK.

Similarly, the straight line AK is the radial axis of the circles C1, (T ,TK). Thus,
because of the uniqueness of the points, we deduce that

L1 ≡ L ⇒ F ≡ M.

This completes the proof. �

Remark 6.4 The point X is the radial center of the three circles C1, C2 and (T ,TK).

6.2.21 Let AB be a straight line segment and C be a point in its interior. Let
C1(D, r), C2(K,R) be two circles passing through A, B and intersecting each other
orthogonally. If the straight line DC intersects the circle C2 at the point M compute
the supremum of x ∈R, where

x = SMAC

denotes the area of the triangle MAC.
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Fig. 6.42 Illustration of Problem 6.2.20

Solution Since the two circles C1, C2 are orthogonal, it follows that (see Fig. 6.43)

̂KAD = D̂BK = 90°.

It is a well known fact that the angle inscribed in a circle is equal to the angle formed
by the corresponding chord and the tangent line at the edge of the chord. Thus

M̂BA = M̂AD.

Similarly, we get that B̂AM = D̂BM. Let the points A′, B ′, be the projections of A,
B , respectively on the straight line DC, then

SMBC

SMDA
= BB′ · MC

AA′ · DM
= BM · BC

AM · AD
. (6.184)

This is true because of the fact that the ratio of the areas of two triangles having one
angle in common is equal to the fraction of the product of the sides that contain this
angle. Similarly, we obtain

SMBD

SMAC
= BB′ · DM

AA′ · MC
= BM · BD

AC · AM
. (6.185)
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Fig. 6.43 Illustration of Problem 6.2.21

By (6.184) and (6.185), we obtain

B ′B2

A′A2
= BC

AC
·
(

BM

AM

)2

, (6.186)

where

BB′

AA′ = BC

AC

(since the right triangles ACA′, BCB′ are similar to each other), and consequently,

MB2

MA2
= BC

AC
.

Thus

MB

MA
=

√

BC

AC
. (6.187)
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By (6.184), we obtain that the geometric locus of the point M is the arc GE (in
the anticlockwise direction) of a circumference q with diameter EF, where G is the
point of intersection of the perpendicular at the point B and of the straight line AB
with the circle q . Additionally, it is symmetric with respect to the straight line AB,
where E is a point in the interior of AB and F (in the exterior of AB, are the feet of
the inner and of the outer bisector of the angle ÂMB, respectively, on the line AB)

are harmonic conjugates of the points A, B with ratio
√

BC
AC , that is,

MB

MA
= BE

EA
= FB

FA
=

√

BC

AC
= m

n
, (6.188)

with

m = √
BC, n = √

AC.

It follows that

GB2 = BE · BF.

Hence

GB = √
BE · BF, (6.189)

since the angle ̂EGB = 90°, where H is the foot of the projection of the point M on
the straight line AB. However, it is a known fact that

EB = m · BA

m + n
, FB = m · BA

|m − n| . (6.190)

Hence

GB = m · BA
√|m2 − n2| , (6.191)

and therefore

x <
AB2 · m

2
√|m2 − n2| . (6.192)

The justification that the supremum is given by the quantity

AB2 · m
2
√|m2 − n2|

yields from the following reasoning.
The set of points of the arc (G,E) of the semicircumference q , generated by the

anticlockwise motion of the point G on the circle, has the following property:
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For any point X of the arc (G,E), there exists a point T of (G,X) such that

̂TBA < 90°.

Simultaneously, when the point M tends to coincide with the point G, then the
straight line DA tends to coincide with the straight line ε1⊥AB and the straight line
DA tends to coincide with the straight line ε2⊥AB. This is actually the case when
the triangle DAB degenerates. �

6.2.22 Let ABCWD be a pentagon inscribed in a circle of center O . Suppose that
the center O is located in the common part of the triangles ACD and BCW , where
the point W is the intersection of the height of the triangle ACD, passing through
the vertex A, with the circle. Let E be the intersection point of the straight line OK
with the straight line AW , where K is the midpoint of the side AD. Suppose that
the diagonal BW passes through the point E. Let Q be the common point of the
diagonal BW with the straight line OK , such that ZQ ‖ AW and Z be the point of
intersection of the diagonals AC and BW . Compute the sum

̂CDB + ̂CBA.

Solution We start by proving the following:

Lemma 6.8 Let ABC be an acute triangle inscribed in a circle (O,R). Consider
its heights AD, BF and its orthocenter H . Let

E ≡ AD ∩ (O,R), K ≡ BF ∩ (O,R).

Then, there exists a point N �= K which belongs to the minor arc AC such that

LM = MN with M ≡ BN ∩ AC and L ≡ BN ∩ AE

if and only if

̂EAN = 90◦.

Proof of the Lemma Assume S is a point of the chord AN such that HS ‖ BN and
P ≡ HS ∩ AM. We have HP = PS. By using the congruence theorem, and also since
HF = FK (this is true because the symmetrical points of the orthocenter of a triangle
with respect to its sides are points on the circumscribed circle of the triangle) (see
Fig. 6.44), we get

FP ‖ KS, ̂HKS = 90° and ̂ASH = ̂ANB = ̂AKB, (6.193)

which implies that the quadrilateral AHSK can be inscribed in a circle and thus

̂HAS = 90°.
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Fig. 6.44 Lemma 6.8

Consider now the point N to be the antidiametrical of E. Then ĤAN = 90°. We
observe that the parallel to AC passing through the point K meets the straight line
AN at the point S. Hence

̂ASH = ÂKH = ̂ANB,

and therefore,

HS ‖ LN implies LM = MN.

This proves the assertion of Lemma 6.8. �

We have (see Fig. 6.45)

̂EAC = ̂ECA = ÊHD = ÊDH,

̂QZE = ̂ZEA = 2 ̂EAC = 2ÊHD,

therefore

̂ZHQ = ẐQH

and

ĤQE = 90°.
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Fig. 6.45 Illustration of
Problem 6.2.22

Hence

HZ = ZE.

By applying (6.193), it follows that the point E has to be the common point of the
heights of the triangle. In this case, the triangle has to be isosceles with BA = BC.
Hence

̂CDB + ̂CBA = 180° − ÂDC + ÂDC = 180°. (6.194)

�

6.2.23 On the straight line ε consider the collinear points A, B , C and let AB > BC.
Construct the semicircumferences (O1), (O2) with diameters AB, BC, respectively,
and let D, E be their intersection points with the semicircle (O) having as diameter
the line segment O1O2. Define the points

D′ ≡ (O1) ∩ DE, E′ ≡ (O2) ∩ DE.

Prove that the points

P ≡ AD′ ∩ CE′, Q ≡ AD ∩ CE

and the midpoint M of the straight line segment AC are collinear.
(Proposed by Kostas Vittas, Greece)

Solution (by S.E. Louridas) The quadrilateral BEQD is inscribed in a circle of di-
ameter QB and center K (see Fig. 6.46). Consider

QQ′⊥DE, KK′⊥ED, BB′⊥ED.
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Fig. 6.46 Illustration of Problem 6.2.23

Therefore,

DK′ = K ′E and DQ′ = EB′. (6.195)

If CC′⊥DE, then from the trapezoid BB′C′C, we deduce

O2O
′
2⊥DE,

and thus

B ′E = E′C′ = Q′D. (6.196)

Similarly, we get

AA′⊥DE,

and hence

A′D′ = Q′E.

Thus

A′Q′ = Q′C′. (6.197)

Therefore, the straight line Q′Q passes through the midpoint M of the straight line

segment AC with Q̂MB = B̂K′E. This is true since form the trapezoid O1O
′
1O

′
2O2
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we have

O1O
′
1⊥DE,

hence

O ′
1D = EO′

2,

and thus

DD′ = EE′ (6.198)

(where O is the midpoint of DE). It follows that

K ′E · K ′E′ = K ′D · K ′D′, (6.199)

which implies that BK′ is a common tangent (radical axis). Thus, the triangles PAC,
BDE are similar.

Furthermore,

̂BED = ̂PCA, ̂BDE = ̂PAB.

Since PM is a median of the triangle PAC, it follows that

P̂MC = B̂K′E,

with

Q̂MB = B̂K′E,

from which we get

Q̂MB = P̂MC.

The linear segment QM is perpendicular to DE, K ′B is perpendicular to MB and
thus an inscribed quadrilateral is obtained. It follows that the point Q belongs to the
straight line PM.

The straight line segment BK′ is a median of the triangle BE′D′ which is similar
to the triangle QAC with QM being its median. Hence

Q̂MC = B̂K′E. �

6.2.24 Let ̂xOy be an angle and A, B points in the interior of ̂xOy. Investigate the
problem of the constructibility of a point C ∈ Ox such that

OD · OE = OC2 − CD2, (6.200)

where

D ≡ CA ∩ Oy and E ≡ CB ∩ Oy.
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Solution We observe that for (6.200) to be valid, it should hold

OC > CD ⇒ ĈOD < 90°. (6.201)

With no loss of generality, we can assume that OA < OB.
Suppose that such a point C does exist. Consider the circle with center C and

radius CD intersecting the straight semiline Oy at the point E′. Then

OD · OE = OC2 − CD2,

and thus

E ≡ E′. (6.202)

Therefore, what we are looking for is a point C ∈ Ox such that the triangle CDE is
isosceles. Subject to the above, we are trying to find a way to apply the power of a
point method.

Let a = ̂xOy and A′ be the symmetric of A with respect to Ox. Hence

ĈDE = a + ÔCD = π − D̂CE

2
.

Thus

2a + 2ÔCD = π − D̂CE,

and therefore

2ÔCD + D̂CE = π − 2a. (6.203)

Hence, the point C belongs to a constant arc, due to the fact that the points A′ and
B are fixed and

Â′CB = π − 2a.

It follows that the point C is constructible in the case

̂xOy <
π

2
. �

6.2.25 Let ABC be a triangle satisfying the following property: There exists an
interior point L such that

̂LBA = ̂LCA = 2̂B + 2̂C − 270°.

Let B ′, C′ be the symmetric of the points B and C with respect to the straight lines
AC and AB, respectively. Prove that

AL⊥C′B ′.
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Fig. 6.47 Lemma 6.9

Solution We shall make use of the following auxiliary lemma:

Lemma 6.9 Let ABC be a triangle and K be the center of the circumscribed cir-
cle γ . Let P be a point of the arc BC of a circle which contains K . If

̂PBC = π − 2̂B and ̂PCB = π − 2̂C,

then

̂BPC = π − 2̂A.

Let T be the foot T of the altitude AT . Then

BP − PC = TC − TB. (6.204)

Proof of the Lemma We base our study on Fig. 6.47. We start by pointing out that
the points K,B,P,C are concyclic. This fact leads to the conclusion that the points
A,K,P are collinear. Indeed,

̂PKC = ̂PBC = π − 2̂B,

and thus

̂PKC = 2 ̂KCA. (6.205)
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Therefore, the collinearity follows. Let us assume that

G ∈ BC, BT = TG.

Then we obtain

̂AGC = ̂ABP and AG = AB.

Additionally, assume that D belongs to the arc BP and PC = PD.
Then

P̂DC = ̂A,

and thus the points A, B , C, D are concyclic. Hence

̂ADB = ̂C

and

BP − PC = BP − PD = BD.

From the equality of the triangles ABD, AGC, we deduce that the assertion of the
lemma holds true since the equality yields BD = GC.

Going back to the main problem, let AT be the height of our triangle and K the
center of its circumscribed circle. Then S has to be the center of the circle (KBC).
It is enough to prove that

(

AC′)2 − (

AB′)2 = (

LC′)2 − (

LB′)2
.

Equivalently, it is enough to prove that
(

AC
)2 − (

AB
)2 = [(

LC′)2 − R2] − [(

LB′)2 − R2].

However,

TC2 − BC2 = BC(BC + CP) − BC(BC + CP)

= BC · BP − BC · CP,

and thus

BP − PC = TC − TB.

The above relation is true in virtue of Lemma 6.9 (see Fig. 6.48). This completes
the proof. �

6.2.26 Let AB = a be a straight line segment. On its extension towards the point
B , consider a point C such that BC = b. With diameter the straight line segments
AB and AC we construct two semicircumferences on the same side of the straight
line AC. The perpendicular bisector to the straight line segment BC intersects the
exterior semicircumference at a point E. Prove or disprove the following assertion 1
and solve problem 2:
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Fig. 6.48 Illustration of Problem 6.2.25

1. There exists a circle inscribed in the curved triangle ABEA.
2. If K is the center of the previously inscribed circle and M is the point of intersec-

tion of the straight line BK with the semicircumference of diameter AC, compute
the area of the domain that is bounded from the semicircumference of diameter
AC and the perimeter of the triangle MAC.

Solution Let us consider the perpendicular to AC passing through the point B and
intersecting the semicircumference (D,R) of diameter AC at the point M (see
Fig. 6.49). Let (O,ρ) be the circle of center belonging to the straight line segment
BM, externally tangential to the semicircle of diameter AB and internally tangential
to the semicircle (D,R). This is a classic Apollonius construction.

Furthermore, let us assume that (K, k) is the new circle (we are actually investi-
gating its existence). Let BF be the tangent to the semicircle (K, k). We are going
to prove that the triangles KBF and EHC are similar if H is the midpoint of BC and
E is a point in the semicircle (D,R) with EH⊥BC. Indeed, the following relations
hold true

KB2 = (R − k)2 − (2ρ − R)2 = k2 + 4ρR − 2kR − 4ρ2, (6.206)

KB2 = (ρ + k)2 − ρ2 = 2ρk + k2, (6.207)
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Fig. 6.49 Illustration of
Problem 6.2.26

and thus
(

KB

k

)2

= 2ρ

k
+ 1. (6.208)

The relations (6.206), (6.208) yield

k = 2ρ(R − ρ)

R + ρ
,

and by (6.207), we obtain

(

KB

k

)2

= 2R

R − ρ
(6.209)

with
(

EC

CH

)2

= 2R · CH

CH2
= 2R

R + ρ
. (6.210)

Finally, from (6.209) and (6.210) we derive

KB

KF
= EC

CH
,

thus

ECH ∼ KBF,

and therefore the triangles

FKB, FBH, and FCH

are equal. By the relation (6.208), we obtain that the straight line segment BF passes
through the point E, and thus

MB2 = ab ⇒ MB = √
ab.
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Fig. 6.50 Illustration of
Problem 6.2.27

Therefore,

SMAC = (a + b)
√

ab

2
. (6.211)

Hence for the area S we have

S = π(a + b)2

2
− (a + b)

√
ab

2
. (6.212)

�

6.2.27 Let ABC be a triangle with AB ≥ BC. Consider the point M on the side
BC and the isosceles triangle KAM with KA = KM. Let the angle ÂKM be given
such that the points K , B are in different sides of the straight line AM satisfying the
condition

360° − 2̂B > ÂKM > 2̂C.

The circle (K,KA) intersects the sides AB, AC at the points D and E, respectively.
Find the position of the point M ∈ BC so that the area of the quadrilateral ADME
attains its maximum value.

Solution Using the inequality

360° − 2̂B > ÂKM,

we get

M̂DA > ̂B, (6.213)

and similarly, using the inequality ÂEM > ̂C, we deduce (see Fig. 6.50)

B̂DM > ̂A. (6.214)
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The inequalities (6.213) and (6.214) guarantee that D, E are interior points of the
sides AC and AB, respectively. The angle ÂKM is by assumption of fixed measure,
hence the inscribed quadrilateral (cyclic) ADME has angles which preserve their
measure and consequently the triangles DMB and EMC preserve the measure of
their angles. The triangle ABC is fixed; therefore, the area of the quadrilateral ADME
attains its maximal value if and only if the sum S where

S = SBDM + SCEM

attains its minimal value.
We have

2S = BM · DD1 + MC · EE1,

where DD1⊥BC and EE1⊥BC. Since the triangles BMD and EMC preserve their
angles (they remain similar to themselves during the procedure) there exist positive
constants k, l such that

DD1 = k · BM = k · x
and

EE1 = l · MC = l · y,

with BM = x and MC = y. Hence,

2S = k · x2 + l · y2, (6.215)

under the constraint x +y = a, where a denotes the length of the side BC. It follows
that (6.215) assumes the form

(k + l)x2 − 2alx + la2 − 2S = 0. (6.216)

Equation (6.216) admits a real solution if and only if

S ≥ kla2

2(k + l)
, (6.217)

and thus the minimum of the quantity 2S is achieved for

Smin = kla2

2(k + l)
.

In this case, it holds

x = ak

k + l
, y = al

k + l
.

Therefore, the point M ∈ BC is the point that divides the side BC in ratio l/k. �
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6.2.28 Let ABCD be a cyclic quadrilateral, AC = e and BD = f . Let us denote
by ra , rb , rc, rd the radii of the incircles of the triangles BCD, CDA, DAB, ABC,
respectively. Prove the following equality

e · ra · rc = f · rb · rd . (6.218)

(Proposed by Nicuşor Minculete and Cătălin Barbu, Romania)

Solution (by N. Minculete and C. Barbu) In any triangle ABC, we have

r = b + c − a

2
tan

A

2
,

where a, b, c are the lengths of the sides BC,CA,AB and r is the inradius of the
triangle ABC. We apply this relation to the triangles BCD and ABD, and we get

ra = b + c − f

2
tan

C

2
, rc = a + d − f

2
tan

A

2
.

But

tan
A

2
tan

C

2
= 1

because A + C = π . Therefore, we obtain

4rarc = ab + cd + ac + bd − f (a + b + c + d) + f 2.

But, from Ptolemy’s first theorem, we have

ef = ac + bd.

Thus, we obtain

4rarc = ab + cd + f (e + f − a − b − c − d).

Multiplying by e, we obtain

4erarc = e(ab + cd) + ef (e + f − a − b − c − d).

Similarly, we can deduce that

4f rbrd = f (ad + bc) + ef (e + f − a − b − c − d).

Combining the above relations with Ptolemy’s second theorem, we obtain

e

f
= ad + bc

ab + cd
,

from which the desired result follows. �
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6.2.29 Prove that for any triangle the following equality holds

−a2

r
+ b2

rc
+ c2

rb
= 4R − 4ra, (6.219)

where a, b, c are the sides of the triangle, R is the radius of the circumscribed circle,
r is the corresponding radius of the inscribed circle and ra, rb, rc are the radii of the
corresponding exscribed circles of the triangle.

(Proposed by Nicuşor Minculete and Cătălin Barbu, Romania)

Solution (by N. Minculete and C. Barbu) For any triangle, we have:

ra = S

s − a
, rb = S

s − b
, rc = S

s − c
, r = S

s
,

abc = 4RS,

b2 + c2 − a2 = 2bc cosA,

sin
A

2
=

√

(s − b)(s − c)

bc
,

where S is the area of the triangle and s is the semiperimeter of the triangle.
It follows that

−a2

r
+ b2

rc
+ c2

rb
= 1

S

(−a2s + b2(s − c) + c2(s − b)
)

= 1

S

(

s
(

b2 + c2 − a2) − bc(b + c)
)

= 1

S
(2sbc cosA − 2bcs + abc)

= 1

S

(

abc + 2sbc(cosA − 1)
)

= 1

S

(

4RS − 2bcs · 2 sin2 A

2

)

= 1

S

(

4RS − 4s(s − a)(s − b)(s − c)

s − a

)

= 1

S
(4RS − 4Sra) = 4R − 4ra,

and this completes the proof. �

6.2.30 For the triangle ABC let (x, y)ABC denote the straight line intersecting the
union of the straight line segments AB and BC at the point X and the straight line
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segment AC at the point Y in such a way that the following relation holds

˜AX

AB + BC
= AY

AC
= xAB + yBC

(x + y)(AB + BC)
,

where ˜AX is either the length of the line segment AX, in case X lies between the
points A, B , or the sum of the lengths of the straight line segments AB and BX
if the point X lies between B and C. Prove that the three straight lines (x, y)ABC ,
(x, y)BCA, and (x, y)CBA concur at a point which divides the straight line segment NI
in a ratio x : y, where N is the Nagel’s point and I the incenter of the triangle ABC.

(Proposed by Todor Yalamov, Sofia University, Bulgaria)

Solution (by Peter Y. Woo, California, USA and extension by the editor of Crux
Mathematicorum) As usual, we consider

a = BC, b = CA, c = AB,

and

s = a + b + c

2
.

Let

t = x

x + y
,

so

1 − t = y

x + y
,

and the ratio we are interested in becomes a function of t , that is,

f (t) = tc + (1 − t)a

a + c
= ˜AXt

a + c
= AY t

b
,

where Xt is the point of the union AB∪BC and Yt is the point of AC that correspond
to the parameter t . Based on the assumption, we have

(x, y)ABC = XtYt .

Of course, if a = c, the function f (t) is constant and (x, y)ABC is the straight line
NI for all the x, y. This is compatible with what we want to prove, unless

a = b = c,

that is, when the triangle ABC is equilateral. In this case,

N ≡ I

(which implies that the straight line NI does not exist) and our three straight lines
meet at this point. So, let us assume that a �= c, then the function f (t) is non-
constant and the straight lines NI and (x, y)ABC intersect. We shall see that (x, y)ABC



6.2 Geometric Problems with More Advanced Theory 179

is a straight line of the family of the straight lines which are parallel to the angle
bisecant of the angle B̂ (where B is the middle vertex to the subtenant) and that
divides the straight line segment to the ratio

t

1 − t
= x

y
.

This is a consequence of the fact that (x, y)ABC and (x, y)CBA are representing the
same straight line, so (x, y)CBA is the third straight line. For the problem that con-
cerns us and under the hypothesis 0 ≤ t ≤ 1, we observe in particular:

AY1 = b · f (1) = bc

a + c
, CY1 = b − AY1 = ab

a + c
,

where Y1 is the foot of the angle bisecant of the angle ̂CBA (since this divides the
side AC in ratio c : a),

AY0 = bf (0) = ab

a + c
, CY0 = bc

a + c
,

X1 = B,

since

f (1) = c

a + c
= AX1

a + c
,

˜AX0 = (a + c)f (0) = a,

and c ≥ a, X0 lies on the straight line AB (where CX0 = c and BX0 = c − a) other-
wise, when a ≥ c the point X0 lies on the straight line segment BC (where CX0 = c

and BX0 = a − c).
It follows that the straight line X1Y1 bisects the angle ̂CBA, therefore passes

from the incenter I . We are going to prove that the straight line X0Y0 passes from
N Nagel’s point (see Fig. 6.51). In order to determine N we use the points P , Q, R

where the exscribed circles are intersecting the sides BC, CA and AB of the triangle
ABC, where

BR = CQ = s − a, AR = CP = s − b, AQ = BP = s − c.

The Nagel’s point is defined as the common point of AP, BQ and CR. By applying
Menelaus’ theorem, with bisecant NCR, to the triangle BQA, we deduce that

BN

NQ
= CA

QC
· RB

AR

= b

s − a
· s − a

s − b
= b

s − b
. (6.220)
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Fig. 6.51 Illustration of
Problem 6.2.30

Let

N ′ = X0Y0 ∩ BQ.

We want to show that N ′ ≡ N . At this point we will need the length

QY0 = |AY0 − AQ|

=
∣

∣

∣

∣

ab

a + c
− (s − c)

∣

∣

∣

∣

= |a − c|(s − b)

a + c
. (6.221)

When c > a, we apply Menelaus’ theorem with bisecant N ′Y0X0 for the triangle
BQA and obtain

BN′

N ′Q
= Y0A

QY0
· X0B

AX0
= ab

a + c
· a + c

(c − a)(s − b)
· c − a

a
= b

s − b
. (6.222)

If a > c, we apply Menelaus’ theorem with bisecant N ′Y0X0 for the triangle BCQ
to get

BN′

N ′Q
= Y0C

QY0
· X0B

CX0

= bc

a + c
· a + c

(a − c)(s − b)
· a − c

c
= b

s − b
. (6.223)

In both cases, the term BN′
N ′Q is equal to the value of the term BN

NQ appearing in
Eq. (6.220). From this fact we conclude that N ≡ N ′, and X0Y0 intersects IN at
the point N , as it is desired (see Fig. 6.52).
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Fig. 6.52 Illustration of
Problem 6.2.30

It remains to observe that X0Y0 ‖ X1Y1, where c > a (this happens when X0 lies
on AB)

AX0

AX1
= a

c
= ab

a + c
· bc

a + c
= AY0

AY1
, (6.224)

when a > c (and X0 lies on BC)

CX0

CX1
= c

a
= bc

a + c
· ab

a + c
= CY0

CY1
. (6.225)

Finally, since Xt divides the line segment X0X1 in a fractional expression

t

1 − t
,

and because of the fact that Yt divides Y0Y1 in the same fraction, the line segment
XtYt is parallel to both X0Y0 and X1Y1 for all t’s. It follows that XtYt intersects the
segment IN at the point which divides NI in the same ratio

t

1 − t
= x

y
.

This completes the proof. �

6.2.31 Let T be the Torricelli’s point of the convex polygon A1A2 . . .An and (d)

a straight line such that T ∈ (d) and Ak /∈ (d), where k = 1,2, . . . , n. If we denote
by B1,B2, . . . ,Bn the projections of the vertices A1,A2, . . . ,An on the line (d),
respectively, prove that

n
∑

k=1

−→
TBk

TAk

= −→
0 .

(Proposed by Mihály Bencze, Braşov, Romania)

Solution Let d ≡ (0x), T ≡ (0x) ∩ (0y), Ak ≡ (xk, yk) and Bk ≡ (xk,0), where
k = 1,2, . . . , n.
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If we denote by M the point (x,0), then we can write

f (x) =
n

∑

k=1

MAk =
n

∑

k=1

√

(x − xk)2 + y2
k .

Since T is a Torricelli’s point, it follows that f (x) attains its minimal value at

f (0) =
n

∑

k=1

√

x2
k + y2

k =
n

∑

k=1

TAk.

It is evident that the function f :R → R is continuous and differentiable.
We have

f (0) =
n

∑

k=1

TAk ≤
n

∑

k=1

MAk = f (x),

for every x ∈R. Therefore, from Fermat’s theorem we obtain f ′(0) = 0, that is,

n
∑

k=1

xk
√

x2
k + y2

k

= 0.

But

xk = ‖−→
TBk‖ and TAk =

√

x2
k + y2

k .

Thus
n

∑

k=1

−→
TBk

TAk

= −→
0 . �

6.2.32 Let ABCD be a quadrilateral. We denote by E the midpoint of the side AB,
F the centroid of the triangle ABC, K the centroid of the triangle BCD, and G the
centroid of the given quadrilateral. For all points M of the plane of the quadrilateral,
different from A, E, F , G, prove the following inequality

6MB

MA · ME
+ 2MC

ME · MF
+ MD

MF · MG
≥ 5MK

MA · MG
.

(Proposed by Mihály Bencze, Braşov, Romania)

Solution We have

z2

z1(z1 + z2)
= 1

z1
− 1

z1 + z2
,

z3

(z1 + z2)(z1 + z2 + z3)
= 1

z1 + z2
− 1

z1 + z2 + z3
,
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z4

(z1 + z2 + z3)(z1 + z2 + z3 + z4)
= 1

z1 + z2 + z3
− 1

z1 + z2 + z3 + z4
.

Adding the above identities, we obtain

z2

z1(z1 + z2)
+ z3

(z1 + z2)(z1 + z2 + z3)

+ z4

(z1 + z2 + z3)(z1 + z2 + z3 + z4)
= z2 + z3 + z4

z1(z1 + z2 + z3 + z4)
.

It follows that

|z2 + z3 + z4|
|z1||z1 + z2 + z3 + z4| ≤ |z2|

|z1||z1 + z3|
+ |z3|

|z1 + z2||z1 + z2 + z3|
+ |z4|

|z1 + z2 + z3||z1 + z2 + z3 + z4| .

If A(a), B(b), C(c), D(d), E((a + b)/2), F((a + b + c)/3), K((b + c + d)/3),
G((a + b + c + d)/4), M(z), z1 = z − a, z2 = z − b, z3 = z − c, and z4 = z − d ,
then we get

3|z − b+c+d
3 |

4|z − a||z − a+b+c+d
4 | ≤ |z − b|

2|z − a||z − a+b
2 | + |z − c|

2|z − a+b
2 | · 3|z − a+b+c

3 |

+ |z − d|
3|z − a+b+c

3 | · 4|z − a+b+c+d
4 | ,

or

6MB

MA · ME
+ 2MC

ME · MF
+ MD

MF · MG
≥ 5MK

MA · MG
. �

6.2.33 Let the angle ̂xOy be given and let A be a point in its interior. Construct a
triangle ABC with B ∈ Ox, C ∈ Oy, ̂BAC = ω̂ such that AB · AC = k2, where k is
the length of a given straight line segment and ω̂ is a given angle.

Proof We will solve the problem in two steps. We will first provide an analysis and
then we will proceed with the construction of the triangle ABC subject to the given
conditions.

Analysis. Consider AB ≤ AC. Let us assume that the required triangle has been
constructed. The fact that the product AB · AC is constant does really help us to
prove that in due motion the angle ̂A remains constant (in measure). Therefore, if
we consider a point D ∈ AC such that the equality AD = AB holds, the isosceles
triangle ABD remains similar to itself, which means it preserves its angles. This
property is useful for the determination of a certain motion of D. This motion is
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Fig. 6.53 Illustration of Problem 6.2.33

generated from the motion of the point C along the constant straight line Oy (see
Fig. 6.53).

We consider the circumscribed circle of the triangle ABD. If this circle has a
common point E with the straight semiline Ox then from the isosceles triangle ABD
we deduce

̂AEB = ̂ADB = 90° − ω̂

2
. (6.226)

Then, the point E is a constant point on Ox. But since

D̂EO = ω̂, (6.227)

it follows that the point D is moving on a constant straight semiline t , where t

is passing through the point E and forms an angle ω̂ with Ox. Let us denote this
straight semiline by Et. Furthermore, by the assumption we made, we get

AD · AC = AB · AC = k2,

and thus the point D has to belong, apart from the semiline Et, to the inverse figure
of the Oy axis with the inversion with center A and power k2. In this way, we have
determined the point D, and consequently also the point C, as the intersection of
two constant lines.
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Fig. 6.54 Illustration of Problem 6.2.34

Construction. We define the point E ∈ Ox such that

̂AEx = 90° − ω̂

2
(6.228)

and we form the angle

̂xEt = 180° − ω̂.

Let us draw AZ such that AZ⊥Oy and on the straight semiline AZ we construct a
point H such that

AZ · AH = AD · AC = AB · AC = k2. (6.229)

Hence, the intersection of the circle of diameter AH with the straight semiline Et
determines the point D. We can construct the point B ∈ Ox such that

̂BAD = ω̂,

and the point C is determined as the intersection of the straight lines AD and Oy.
The triangle we have thus constructed satisfies the given requirements. �

6.2.34 Let a triangle ABC with BC = a, AC = b, AB = c and a point D in the
interior of the side BC be given. Let E be the harmonic conjugate of D with re-
spect to the points B and C. Determine the geometrical locus of the center of the
circumferences DEA when D is moving along the side BC.

Analysis Let D be any point in side BC, different from the midpoint of the side BC
and let E be its harmonic conjugate. Let N be the center of the circumference ADE.
This is obviously a point belonging to the geometrical locus under investigation. Let
S be the other point of intersection of the circumference ADE with the median AM
of the triangle ABC (see Fig. 6.54).
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Using the power of a point with respect to a circle, we obtain

MA · MS = MD · ME. (6.230)

A necessary and sufficient condition for the points D, E to be harmonic conjugates
of B , C, when M is the midpoint of BC, is

MD · ME = MB2. (6.231)

However,

MB = a

2
,

where a = BC and thus

MD · ME = a2

4
. (6.232)

Using (6.231) and (6.232), we obtain

MS · MA = a2

4
,

that is,

MS = a2

4MA
, (6.233)

which is a constant.

Because of the fact that the point M is constant, it follows that the point S has
constant position as well. Since the point A is given, it is evident that the point N

should belong to the perpendicular bisector TT ′ of the straight line segment AS.

Construction of the geometrical locus We determine a point S in the median AM

of the triangle ABC such that

MS · MA =
(

a

2

)2

. (6.234)

We draw the perpendicular at the point B and we then determine the perpendicular
bisector of the side AB. Let L be the point of intersection of the these two straight
lines. With center at the point L and radius LA, where LA = LB, we draw a circle.
The intersection of this circle with the median AM is the point S. Thus the point S

is constructed. Therefore, the perpendicular bisector of the straight line segment AS

is the geometrical locus of the point N .

Proof Let N be any point of the straight line that has been constructed. With center
at the point N and radius NA we draw the circumference which passes through the
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point S and intersects the straight line BC at the points D, E. The point D is an
internal point of the straight line segment BC and the point E is an external point of
BC. The relation

MB2 = MS · MA = MD · ME

holds true. This provides a necessary and sufficient condition for the points B , C,
D, and E to be harmonic conjugates.

Remark 6.5 A necessary and sufficient condition for the four points B , C, D, E to
form a harmonic quadruple is the following:

2

BC
= 1

CE
+ 1

CD
. (6.235)

We can thus conclude that the harmonic conjugate of the midpoint is a point at
infinity. It follows that the straight line TT ′ is the required geometrical locus. It is
evident that the geometrical locus depends on the position of the point S. Therefore,
we distinguish the following cases:

• If AM > BC/2, then S is in the interior of the triangle.
• If AM < BC/2, then S is in the exterior of the triangle.
• If AM = BC/2, then S ≡ A. �

6.3 Geometric Inequalities

6.3.1 Consider the triangle ABC and let H1,H2,H3 be the intersection points of
the altitudes AA1, BB1, CC1, with the circumscribed circle of the triangle ABC,
respectively. Show that

H2H
2
3

BC2
+ H3H

2
1

CA2
+ H1H

2
2

AB2
≥ 3. (6.236)

First solution We know that the symmetrical points of the orthocenter H of the tri-
angle ABC with respect to the straight lines BC, CA, AB are the points H1,H2,H3,
respectively, which belong to the circumscribed circle of the triangle ABC (see
Fig. 6.55). Thus

H2H3 = 2B1C1, (6.237)

H3H1 = 2C1A1, (6.238)

H1H2 = 2B1A1. (6.239)

It is enough to show that

B1C
2
1

BC2
+ C1A

2
1

CA2
+ A1B

2
1

AB2
≥ 3

4
. (6.240)
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Fig. 6.55 Illustration of
Problem 6.3.1

It follows that if ̂A ≤ 90°, then

AB1 = AC2 + AB2 − BC2

2AC
, (6.241)

and if ̂A > 90°, then

AB1 = BC2 − AC2 − AB2

2AC
. (6.242)

Therefore,

AB1 = ±AC2 + AB2 − BC2

2AC
. (6.243)

Since the triangles AB1C1 and ABC are similar, we have

B1C1

BC
= AB1

AB
, (6.244)

and thus

B1C
2
1

BC2
= AB2

1

AB2
= (AC2 + AB2 − BC2)2

4AC2 · AB2
. (6.245)

Similarly, we obtain

A1C
2
1

CA2
= (AB2 + BC2 − AC2)2

4AB2 · BC2
, (6.246)

and

A1B
2
1

AB2
= (BC2 + AC2 − AB2)2

4BC2 · AC2
. (6.247)
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Therefore, it is enough to show that

BC2 · (AC2 + AB2 − BC2)2

4AB2 · BC2 · CA2
+ AC2 · (AB2 + BC2 − AC2)2

4AB2 · BC2 · CA2

+ AB2 · (BC2 + AC2 − AB2)2

4AB2 · BC2 · CA2
≥ 3

4
. (6.248)

Without loss of generality, we consider BC ≥ AC ≥ AB. It can easily be seen (and is
left as an exercise to the reader) that

BC2 · (BC2 − AC2) · (BC2 − AB2)

+ AC2 · (AC2 − AB2) · (AC2 − BC2)

+ AB2 · (AB2 − BC2) · (AB2 − AC2) ≥ 0. (6.249)

We have

BC2 · (BC2 − AC2) · (BC2 − AB2)

+ AC2 · (AC2 − AB2) · (AC2 − BC2)

+ AB2 · (AB2 − BC2) · (AB2 − AC2)

≥ 3BC2 · AC2 · AB2, (6.250)

or

BC2 · (AC2 + AB2 − BC2)2

4AB2 · BC2 · CA2

+ AC2 · (AB2 + BC2 − AC2)2

4AB2 · BC2 · CA2

+ AB2 · (BC2 + AC2 − AB2)2

4AB2 · BC2 · CA2
≥ 3

4
, (6.251)

which is actually (6.236).

Second solution (by Nicuşor Minculete and Cătălin Barbu) Since

Ĥ3AB = 90° − ̂B, Ĥ2AC = 90° − ̂C,

we deduce that

Ĥ3AH2 = 2Â.

Therefore, we have

H2H3 = 2R sin ̂A = 2a cos Â.
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Fig. 6.56 Illustration of
Problem 6.3.2

The inequality (6.248) becomes

cos2
̂A + cos2

̂B + cos2
̂C ≥ 3

4
, (6.252)

which is equivalent to

∑

cycl

cos2
̂A = 3 −

∑

cycl

sin2
̂A = 3 − a2 + b2 + c2

4R2
≥ 3

4
, (6.253)

so

9R2 ≥ a2 + b2 + c2,

which is true because

R2 − a2 + b2 + c2

9
= OG2 ≥ 0,

where O is the center of the circumscribed circle of the triangle ABC and G is the
centroid of the triangle ABC. �

6.3.2 Let ABC be a triangle with AB = c, BC = a and CA = b, and let da, db, dc be
its internal angle bisectors. Show that

1

da

+ 1

db

+ 1

dc

>
1

a
+ 1

b
+ 1

c
. (6.254)

First solution Let M be an interior point of BC and consider a point D in the plane
of the triangle ABC such that (see Fig. 6.56)

̂BAD = M̂AC and ̂ABD = ÂMC. (6.255)
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Because of the fact that

ÂMC > ̂B, (6.256)

the side BD lies outside of the triangle AMC. Since the triangles ABD and AMC are
similar, we have

AB

AM
= BD

MC
. (6.257)

Thus

AB · MC = AM · BD. (6.258)

We also obtain

AB

AM
= AD

AC
. (6.259)

Since

B̂AM = ̂DAC (6.260)

and because of (6.259), the triangles ABM and ADC are similar. Thus

AM

AC
= MB

DC
,

which implies that

AC · MB = DC · AM. (6.261)

Therefore,

AB · MC + AC · MB = AM(BD + DC), (6.262)

and hence

AB · MC + AC · MB > AM · BC. (6.263)

If AM is the bisector da , then

BM = ac

b + c
(6.264)

and

MC = ab

b + c
. (6.265)

Thus

abc

b + c
+ abc

b + c
> a · da, (6.266)
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and therefore

da <
2bc

b + c
. (6.267)

This implies that

1

da

>
b + c

2bc
, (6.268)

and so

1

da

>
1

2

(

1

b
+ 1

c

)

. (6.269)

Similarly, we have

1

db

>
1

2

(

1

a
+ 1

c

)

(6.270)

and

1

dc

>
1

2

(

1

a
+ 1

b

)

. (6.271)

Adding inequalities (6.269), (6.270), and (6.271), we obtain

1

da

+ 1

db

+ 1

dc

>
1

2
· 2

(

1

a
+ 1

b
+ 1

c

)

, (6.272)

which implies

1

da

+ 1

db

+ 1

dc

>
1

a
+ 1

b
+ 1

c
. (6.273)

�

Second solution (by Nicuşor Minculete and Cătălin Barbu) Let AD be the internal
angle bisector, where D ∈ BC. We apply Stewart’s theorem and we obtain

AD2 · BC + BD · DC · BC = AB2 · DC + AC2 · BD.

It is easy to see that

AD = da, BD = ac

b + c
, DC = ab

b + c
,

where BC = a, AC = b, and AB = c.
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Therefore, we obtain

aAD2 + a3bc

(b + c)2
= abc2

b + c
+ ab2c

b + c
= abc,

which implies the equality

AD2 = bc

(b + c)2

[

(b + c)2 − a2]

= bc

(b + c)2
(2bc cosA + 2bc)

= 2b2c2

(b + c)2
(cosA + 1)

= 4b2c2

(b + c)2
cos2 Â

2
.

It follows that

da = 2bc

b + c
cos

A

2
<

2bc

b + c
, (6.274)

which implies the inequality

1

da

>
1

2

(

1

b
+ 1

c

)

.

In the analogous way, we deduce the inequalities

1

db

>
1

2

(

1

a
+ 1

c

)

and

1

dc

>
1

2

(

1

b
+ 1

a

)

.

Combining we obtain the statement

1

da

+ 1

db

+ 1

dc

>
1

a
+ 1

b
+ 1

c
. �

6.3.3 Let ABC be a triangle with ̂C > 10° and ̂B = ̂C + 10°. Consider a point E

on AB such that ̂ACE = 10° and let D be a point on AC such that ̂DBA = 15°. Let
Z �= A be a point of intersection of the circumscribed circles of the triangles ABD
and AEC. Show that

̂ZBA > ̂ZCA.
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Fig. 6.57 Illustration of Problem 6.3.3

Solution We initially show that BD < CE (see Fig. 6.57).
Since

̂B > ̂C, (6.275)

we have

AC > AB. (6.276)

Also,

B̂DC = ̂A + ̂DBA = ̂A + 15° (6.277)

and

̂CEB = ̂A + 10°. (6.278)

From (6.277) and (6.278), we conclude that

B̂DC > ̂CEB. (6.279)

Therefore, the circle circumscribed to the triangle DBC intersects EC at a point H

between E and C and thus

EC > HC. (6.280)

We have

ĤBC = ĤBD + D̂BC = ĤCD + D̂BC

= 10° + ̂B − ̂DBA = 10° + ̂C + 10° − 15° (6.281)

= ̂C + 5° > ̂C. (6.282)

Therefore,

ĤBC > ̂C, (6.283)

and thus

HC > BD. (6.284)
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Fig. 6.58 Illustration of
Problem 6.3.3

From Eqs. (6.282) and (6.284), it follows that

BD < EC. (6.285)

The arc that subtends an angle of 180° − ̂A corresponding to the chord DB is a set
of points lying on a different half-plane than A with respect to BD. Thus, the arc lies
inside the angle ̂A. Also, the arc that subtends an angle of 180° − ̂A corresponding
to the chord CE is a set of points that lie on a different half-plane than A with respect
to CE. So, it also lies inside the angle ̂A. This means that the points B and C lie
on opposite sides of the line containing the common chord AZ (see Fig. 6.58) and
furthermore the point B lies outside the disk C2, whereas the vertex C lies inside
the disk C1. Thus, from ̂BAD = ̂EAC and BD < EC, we see that the radius of C1 is
smaller than the radius of C2. Therefore,

̂ZBA > ̂ZCA. (6.286)

Comment If Z belongs to BC then

̂ZBA = ̂B and ̂ZCA = ̂C, (6.287)

with ̂B > ̂C by hypothesis. �

6.3.4 Let ABC be a triangle of area S and D,E,F be points on the lines
BC, CA, and AB, respectively. Suppose that the perpendicular lines at the points
D,E,F to the lines BC, CA, and AB, respectively, intersect the circumcircle of
ABC at the pairs of points (D1,D2), (E1,E2), and (F1,F2), respectively. Prove
that

|D1B · D1C − D2B · D2C|
+ |E1C · E1A − E2C · E2A| + |F1A · F1B − F2A · F2B| > 4S.
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Fig. 6.59 Illustration of
Problem 6.3.4

Solution We start with the following (see Fig. 6.59)

Lemma 6.10 Suppose AB and D1D2 are perpendicular chords in a circle of cen-
ter O . Then

|SD1AB − SABD2 | = 2SAOB. (6.288)

Proof Let D′
1 be the reflection of D1 across AB. Then

B̂AD′
1 = B̂AD1 (6.289)

= D̂1D2B

= 90° − ÂBD2. (6.290)

Hence

AD′
1 ⊥ BD2. (6.291)

If BB′ is the diameter of the circle, we infer that

B ′D2 ‖ AD′
1 and AB′ ‖ D1D2. (6.292)

Thus the quadrilateral AB′D2D
′
1 is a parallelogram and

D′
1D2 = AB′ = 2OO′, (6.293)
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where O ′ is the projection of O on AB. Consequently,

SABD2 − SABD1 = AB · D′
1D2

2
= 2 · SAOB, (6.294)

as desired. �

Now, apply the lemma successively for the pairs of perpendicular chords BC ⊥
D1D2, CA ⊥ E1E2, and AB ⊥ F1F2. It follows that

|D1B · D1C − D2B · D2C|
≥ |D1B · D1C − D2B · D2C| · | sin ̂BAC|
= |D1B · D1C · sin ̂BAC − D2B · D2C · sin ̂BAC|
= 2 · |SBCD1 − SBCD2 |,

since

̂BAC = B̂D1C = 180° − B̂D2C,

which implies that

sin ̂BAC = sin B̂D1C = sin B̂D2C.

Therefore,

|D1B · D1C − D2B · D2C| ≥ 4SBOC. (6.295)

Similarly,

|E1C · E1A − E2C · E2A| ≥ 4SAOC (6.296)

and

|F1A · F1B − F2A · F2B| ≥ 4SAOB. (6.297)

Adding inequalities (6.295), (6.296) and (6.297) implies the desired result since the
equality holds only if

sin ̂BAC = sin ̂CBA = sin ̂ACB = 1, (6.298)

which is impossible. �

6.3.5 Let ABC be an equilateral triangle and D, E be points on its sides AB and
AC, respectively. Let F,G be points on the segments AE and AD, respectively, such
that the lines DF and EG bisect the angles ̂EDA and ̂AED, respectively. Prove that

SDEF + SDEG ≤ SABC. (6.299)

When does the equality hold?
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Fig. 6.60 Illustration of
Problem 6.3.5

Solution We have

̂BAC = 60°. (6.300)

This implies that the angle ̂DIE is known, where I is the point of intersection of the
bisectors DF and EG. We obtain (see Fig. 6.60)

̂DIE = 120°,

since

̂DIE = 180° − ̂EDA

2
− ̂AED

2

= 180° − ̂EDA + ̂AED

2

= 180° − 120°

2
= 120°.

Hence,

̂GID = ̂EIF = 60°,

which implies that when IH bisects the angle ̂DIE = 120°, and we have

GDI = IDH and IEF = IEH.

Therefore,

SDEF + SDEG = 3SIDE. (6.301)
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We shall show that

3SIDE ≤ SABC. (6.302)

If DE moves in such a way that its length remains constant, then the position of
DE for which we obtain the maximum area SIDE , occurs when the segment DE is
parallel to the base BC.

This is the case because the motion, just described, creates the triangles IDE
when DE has constant position and constant length and the points I move on the arc
whose points are the vertices of 120° angles subtending the chord DE. The position
that gives the maximum area SIDE of the triangle IDE is when I takes the place of
the midpoint of this arc, and therefore when the triangle ADE becomes equilateral.
If O is the circumcenter of the triangle ABC, then the triangles IDE and OBC are
similar and

DE ≤ BC. (6.303)

Hence

SIDE ≤ SOBC,

and therefore

3SIDE ≤ SOBC.

Thus

SADE ≤ SABC,

where equality holds in the case when the point D coincides with the point B and
the point E coincides with the point C. �

6.3.6 Let PQR be a triangle. Prove that

1

y + z − x
+ 1

z + x − y
+ 1

x + y − z
≥ 1

x
+ 1

y
+ 1

z
, (6.304)

where

x =
√

3
√

QR2 + 5
√

QR2, y =
√

3
√

PR2 + 5
√

PR2 and z =
√

3
√

PQ2 + 5
√

PQ2.

Solution The proof is based on the following two lemmas:

Lemma 6.11 Let a = BC, b = AC, c = AB be the lengths of the sides of a triangle
ABC. Then n

√
a,

n
√

b, n
√

c are also lengths of the sides of a triangle.

Indeed, since a, b, c are the lengths of the sides of a triangle, it holds:

a + b > c, a + c > b, and b + c > a.
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However,

n
√

a + n
√

b > n
√

c ⇔ a + b + M > c,

where

M = (

n
√

a + n
√

b
)n − (a + b)

and similarly for b, c, a and c, a, b.

Lemma 6.12 Let a, b, c and k, l, m be lengths of the sides of certain triangles.
Then,

√

a2 + k2,
√

b2 + l2,
√

c2 + m2

are also lengths of the sides of a triangle.

Proof Assume that
√

a2 + k2,
√

b2 + l2,
√

c2 + m2

are the lengths of the sides of a triangle. Then
√

a2 + k2 +
√

b2 + l2 >
√

c2 + m2

if and only if

a2 + k2 + b2 + l2 + 2
√

(

a2 + k2
)(

b2 + l2
)

> c2 + m2.

Indeed, using the Cauchy–Schwarz–Buniakowski inequality, we get

a2 + k2 + b2 + l2 + 2
√

(

a2 + k2
)(

b2 + l2
) ≥ a2 + k2 + b2 + l2 + 2(ab + kl)

= (a + b)2 + (k + l)2

> c2 + m2.

Similarly, we derive the other two inequalities. �

Since PQ, QR, and RP are the sides of a triangle, it follows, using the above two
lemmas, that x, y, and z are lengths of the sides of a triangle. Hence, there exist
positive real numbers k1, m1, n1 such that

x = k1 + m1, y = m1 + n1, z = k1 + n1

and inequality (6.304) assumes the form

1

k1
+ 1

m1
+ 1

n1
≥ 2

(

1

k1 + m1
+ 1

m1 + n1
+ 1

n1 + k1

)

, (6.305)
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which is easily verified by applying the inequalities

1

k1
+ 1

m1
≥ 4

k1 + m1
,

1

m1
+ 1

n1
≥ 4

m1 + n1
,

1

n1
+ 1

k1
≥ 4

k1 + n1
.

The equality holds true for the case of an equilateral triangle. �

6.3.7 The point O is considered inside the convex quadrilateral ABCD of area S.
Suppose that K , L, M , N are interior points (see Fig. 6.61) of the sides AB, BC,
CD, and DA, respectively. If OKBL and OMDN are parallelograms of areas S1 and
S2, respectively, prove that

√

S1 + √

S2 < 1.25
√

S, (6.306)
√

S1 + √

S2 < C0
√

S, (6.307)

where

C0 = max
0<α<π/4

sin(2α + π
4 )

cosα
.

(Proposed by Nairi Sedrakyan [88], Armenia)

Solution We can assume, without loss of generality, that the points O and D are not
on different sides of the line AC. Assume

SABC = a, SACD = b, SOAC = x,

SOKB = SOBL = SKLB = S1

2
,

and

SOKB

SOAB
· SOBL

SOBC
= KB

AB
· BL

BC
= SKBL

SABC
. (6.308)

Then

S1 = 2SOAB · SOBC

a
.

We also get

S2 = 2SOAD · SOCD

b
.



202 6 Solutions

Fig. 6.61 Illustration of
Problem 6.3.7

Hence

√

S1 + √

S2 ≤ SOAB + SOBC√
2a

+ SOAD + SOCD√
2b

= a + x√
2a

+ b − x√
2b

=
√

a + √
b√

b
−

√
a − √

b√
2ab

x. (6.309)

For a ≥ b, we have

√

S1 + √

S2 ≤
√

a + √
b√

2
≤ √

a + b = √
S.

For a < b, it follows that the point O cannot be outside the parallelogram ABCE,
and thus x ≤ a. Therefore,

√

S1 + √

S2 ≤
√

a + √
b√

2
−

√
a − √

b√
2ab

a = b + √
2ab − a√
2b

. (6.310)

Let

a

b
= tan2 α, α ∈

[

0,
π

4

]

.

Then

b − √
2ab − a√
2b

/
√

a + b = sin(2α + π
4 )

cosα
≤ C0.

Consequently,

√

S1 + √

S2 ≤ b + √
2ab − a√
2b

≤ C0
√

S

when

α ∈
[

π

4
,

sin(2α + π
4 )

cosα
− 1

]

,
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that is, C0 ≥ 1. Thus, in all cases
√

S1 + √

S2 ≤ C0
√

S.

If for the quadrilateral the following condition holds true

AB = BC · AD = CD · SABC

tanα0
,

where

C0 = sin(2α0 + π
4 )

cosα0
,

and ABCO is a parallelogram, then

√

S1 + √

S2 = C0
√

S.

This proves the assertion (6.307).
To prove inequality (6.306), it is sufficient to verify the property that if 0 ≤ α ≤ π

4
then

sin

(

2α + π

4

)

< 1.25 cosα.

Indeed, let φ ∈ [0, π
4 ] and cosφ = 4

5 , then, if 0 ≤ α < φ, it follows that

sin(2α + φ) ≤ 1 = 5

4
cosφ.

Furthermore, if φ ≤ α ≤ π
4 , then

tanφ = 3

4
>

√
2 − 1 = tan

π

8
,

hence

φ >
π

8

and

sin

(

2α + π

4

)

≤ sin

(

2φ + π

4

)

=
√

2

2
· 31

25
<

√
2

2
· 5

4
≤ 1.25 cosα. (6.311)

�

Remark It can be proved that

tanα0 = 3
√√

2 + 1 − 3
√√

2 − 1 = 0.59 . . . , while C0 = 1.11 . . . . (6.312)
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6.3.8 Let ABCD be a quadrilateral with ̂A ≥ 60°. Prove that

AC2 ≤ 2
(

BC2 + CD2), (6.313)

with equality, when AB = AC, BC = CD, and ̂A = 60°.
(Proposed by Titu Andreescu [6], USA)

Solution (by Daniel Lasaosa, Spain) From Ptolemy’s inequality, we have

AC · BD ≤ AB · CD + BC · DA.

The equality is attained if and only if the quadrilateral ABCD is cyclic. Because of
the fact that ̂A > 60° it follows that cosA < 1

2 . However, by the cosine law, we get

BD2 > AB2 + AD2 − AB · AD.

Therefore,

AC <
AB · CD + BC · DA

√

AB2 + AD2 − AB · AD
. (6.314)

It is enough to show that

(AB · CD + BC · DA)2

AB2 + AD2 − AB · AD
≤ 2

(

BC2 + CD2). (6.315)

The inequality (6.315) can be expressed as follows

(

BC2 + CD2)(AB − AD)2 + (AB · BC − CD · DA)2 ≥ 0. (6.316)

This becomes an equality if and only if AB = AD and BC = CD. This completes the
proof. �

6.3.9 Let R and r be the circumradius and the inradius of the triangle ABC with
sides of lengths a, b, c (see Fig. 6.62). Prove that

2 − 2
∑

cycl

(

a

b + c

)2

≤ r

R
. (6.317)

(Proposed by Dorin Andrica [18], Romania)

Solution (by Arkady Alt, California, USA) It is clear that

2 − 2
∑

cycl

(

a

b + c

)2

≤ r

R
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Fig. 6.62 Illustration of
Problem 6.3.9

is equivalent to the following inequality:

6 − 2
∑

cycl

(

a

b + c

)2

≤ 4 + r

R
.

Therefore,

2

(

3 −
∑

cycl

(

a

b + c

)2)

≤ 4 + r

R
,

and hence

2
∑

cycl

(b + c)2 − a2

(b + c)2
≤ 4 + r

R
. (6.318)

Because of the fact that

cosA + cosB + cosC = 1 + r

R

as well as
1

(b + c)2
≤ 1

4bc
,

it follows that
(b + c)2 − a2

2bc
= 1 + cos ̂A.

Thus we obtain

2
∑

cycl

(b + c)2 − a2

(b + c)2
≤

∑

cycl

(b + c)2 − a2

2bc

=
∑

cycl

(1 + cosA)

= 4 + r

R
. (6.319)

�
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Remark 6.6 Suppose that la , lb , lc are the angle bisectors of a triangle ABC. Since

(b + c)2 − a2

(b + c)2
= al2

a

abc

(the proof is left as an exercise to the reader), the inequality (6.319) can be written
in the equivalent form

2
∑

cycl

al2
a

abc
≤ 4 + r

R
,

or

2
∑

cycl

al2
a

4Rrs
≤ 4 + r

R
,

or

al2
a + bl2

b + cl2
c

a + b + c
≤ r(4R + r). (6.320)

Second proof (by Nicuşor Minculete) In the book, N. Minculete, Geometric Equal-
ities and Inequalities in the triangle, Editura Eurocarpatica, Sfârtu Gheorghe, 2003
(in Romanian), the following inequality is proved

a

b + c
≥ sin

A

2
≥

√

2r

R
· a

b + c
. (6.321)

Thus, we deduce

∑

cycl

(

a

b + c

)2

≥
∑

cycl

sin2 A

2
≥ 2r

R

∑

cycl

(

a

b + c

)2

. (6.322)

But

∑

cycl

sin2 A

2
= 1

2

(

3 − (cosA + cosB + cosC)
)

= 1 − r

2R
.

Therefore, we have

∑

cycl

(

a

b + c

)2

≥ 1 − r

2R

≥ 2r

R

∑

cycl

(

a

b + c

)2

.
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Fig. 6.63 Illustration of
Problem 6.3.10

It follows that

5

2
− R

r
≤ 2 − 2

∑

cycl

(

a

b + c

)2

≤ r

R
.

�

6.3.10 Let A1A2 . . .An be a regular n-gon inscribed in a circle of center O and
radius R. Prove that for each point M in the plane of the n-gon the following in-
equality holds

n
∏

k=1

MAk ≤ (

OM2 + R2)n/2
. (6.323)

(Proposed by Dorin Andrica [15], Romania)

Solution (by Samin Riasat, Bangladesh) Let O be the origin in the complex plane.
Without loss of generality, let us assume that R = 1. Assume that (see Fig. 6.63)

ω = exp

(

2πi

n

)

is the nth root of unity, and let the complex numbers ω,ω2, . . . ,ωn, x correspond to
the points A1,A2, . . . ,An, and M , respectively, in the complex plane.

It follows that the inequality (6.323) is equivalent to the inequality

n
∏

k=1

∣

∣x − ωk
∣

∣ ≤
√

(|x|2 + 1
)n

. (6.324)
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Because of the fact that the complex numbers ω,ω2, . . . ,ωn are the roots of the
equation

zn − 1 = 0,

applying the triangle inequality, we get

n
∏

k=1

∣

∣x − ωk
∣

∣ = ∣

∣xn − 1
∣

∣ ≤ |x|n + 1. (6.325)

Therefore, it suffices to prove that

(|x|n + 1
)2 ≤ (|x|2 + 1

)2
,

that is,

2|x|n ≤
n−1
∑

k=1

(

n!
k!(n − k)!

)

|x|2k. (6.326)

This is a consequence of the arithmetic mean—geometric mean inequality (Cauchy’s
inequality) since

n−1
∑

k=1

n!
k!(n − k)! |x|2k ≥ n|x|2 + n|x|2n−2

≥ 2n|x|n ≥ 2|x|n (6.327)

and n ≥ 3. This completes the proof of the claim. �

The equality holds if and only if |x| = 0, that is, when M ≡ O .

Remark 6.7 The reader will find the book of T. Andreescu and D. Andrica [21]
a very useful source for theory and problem-solving using complex numbers.

6.3.11 Let (K1, a), (K2, b), (K3, c), (K4, d) be four cyclic disks of a plane Π ,
having at least one common point. Let I be a point of their intersection. Let also O

be a point in the plane Π such that

min
{

(OA),
(

OA′), (OB),
(

OB′), (OC),
(

OC′), (OD),
(

OD′)} ≥ (OI) + 2
√

2,

(6.328)

where AA′, BB′, CC′, DD′ are the diameters of (K1, a), (K2, b), (K3, c), and
(K4, d), respectively. Prove that
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144 · (a4 + b4 + c4 + d4) · (a8 + b8 + c8 + d8)

≥
[(

ab + cd

2

)2

+
(

ad + bc

2

)2

+
(

ac + bd

2

)2]

· [(a + b) · (c + d) + (a + d) · (b + c) + (a + c) · (b + d)
]

. (6.329)

Under what conditions does the equality in (6.329) hold?

Solution The equality is valid when the diameters of the circles are sides of a square
with length equal to 1 and the intersection point I of its diameters coincides with O .

Let us consider

a1 = 2a, b1 = 2b, c1 = 2c, d1 = 2d.

Hence, in order to prove (6.329), it suffices to verify that

9 · (a4
1 + b4

1 + c4
1 + d4

1

) · (a8
1 + b8

1 + c8
1 + d8

1

)

≥ [

(a1b1 + c1d1)
2 + (a1d1 + b1c1)

2 + (a1c1 + b1d1)
2]

· [(a1 + b1) · (c1 + d1) + (a1 + d1) · (b1 + c1) + (a1 + c1) · (b1 + d1)
]

.

(6.330)

However,

(DI) ≥ ∣

∣(OD) − (OI)
∣

∣ ≥
∣

∣

∣

∣

(OI) +
√

2

2
− (OI)

∣

∣

∣

∣

=
√

2

2
. (6.331)

Therefore,

(DI) ≥
√

2

2
,

(

D′I
) ≥

√
2

2
,

(AI) ≥
√

2

2
,

(

A′I
) ≥

√
2

2
,

(BI) ≥
√

2

2
,

(

B ′I
) ≥

√
2

2
,

(CI) ≥
√

2

2
,

(

C′I
) ≥

√
2

2
.

(6.332)

The triangle IAA′ satisfies the property ̂AIA′ ≥ 90° since the point I is either in
the interior of the cyclic disk or it belongs to the circumference with diameter AA′.
Therefore,

(

AA′)2 ≥ (IA)2 + (

IA′)2
, (6.333)

where (AA′) = a1. Thus, a2
1 ≥ 1.
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Similarly, from the inequalities

b2
1 ≥ 1, c2

1 ≥ 1, d2
1 ≥ 1, (6.334)

it follows that

b1 ≥ 1, c1 ≥ 1, d1 ≥ 1. (6.335)

Thus, we obtain

a4
1 ≥ a2

1, b4
1 ≥ b2

1, c4
1 ≥ c2

1, d4
1 ≥ d2

1 , (6.336)

and

2a1b1c1d1 ≥ a1b1 + c1d1,

2a1b1c1d1 ≥ a1d1 + c1b1,

2a1b1c1d1 ≥ a1c1 + b1d1.

(6.337)

In addition, it follows that

a8
1 + b8

1 + c8
1 + d8

1 ≥ 4 4
√

a8
1 · b8

1 · c8
1 · d8

1 . (6.338)

In order to prove inequality (6.330) it suffices to prove that

3
(

a2
1 + b2

1 + c2
1 + d2

1

) ≥ (a1 + b1)(c1 + d1) + (a1 + d1)(b1 + c1)

+ (a1 + c1)(b1 + d1). (6.339)

However, we have

a2
1 + b2

1 + c2
1 + d2

1 ≥ a1c1 + a1d1 + b1c1 + b1d1 = (a1 + b1)(c1 + d1),

a2
1 + b2

1 + c2
1 + d2

1 ≥ (a1 + c1)(b1 + d1),

a2
1 + b2

1 + c2
1 + d2

1 ≥ (a1 + d1)(b1 + c1).

(6.340)

Adding the above inequalities by parts, we deduce (6.330). �

Remark 6.8 The existence of at least one figure satisfying the requirements of the
problem is a consequence of the following reasoning:

Consider the circle C1 with center I and radius r + 2
√

2, as well as the circle C2

with center I and radius 2r +√
2. If O is an arbitrary point of C1 such that (IO) = r ,

then (AO) ≥ AS with (AS) = (AI) − (IS). Thus

(AI) ≥ 2r + √
2.
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Therefore,

(AS) ≥ 2r + √
2 − r −

√
2

2
,

which implies that

(AS) ≥ r +
√

2

2
,

and thus

(AO) ≥ (IO) +
√

2

2
.

Similarly, one can prove that

(BO) ≥ (IO) +
√

2

2
,

(CO) ≥ (IO) +
√

2

2
,

(DO) ≥ (IO) +
√

2

2
.

Remark 6.9 If a = b = c = d = 1
2 , it follows that the inequality does not hold.

6.3.12 Let a circle (O,R) be given and let a point A be on this circle. Consider
successively the arcs AB, BD, DC such that

arcAB < arc AD < arc AC < 2π.

Using the center K of the arc BD, the center L of BD, and the corresponding radii,
we draw circles that intersect the straight semilines AB, AC at the points Z and E,
respectively (see Fig. 6.64). If

A′ ≡ AL ∩ DC, K ′ ≡ AK ∩ BD,

prove that

3

4
(AB · AZ + AC · AE) < 2R2 + R(AK′ + AL′)

2
+ AB2 + AC2

4
. (6.341)

Is this inequality the best possible?

Solution We are going to use the following

Lemma 6.13 Let the circle (O,R) be given and its points A, K . With center the
point K and radius smaller that the length of the chord AK we draw a circle that
intersects the initial circle at the points B and D. If Z is the intersection point of
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Fig. 6.64 Illustration of
Problem 6.3.12

the straight semiline AB with the circle (K,KD) and H the common point of the
straight semiline AD with the circle (K,KD), then

AZ = AD and AH = AB.

Indeed, since (see Fig. 6.65)

ÂDK + ̂KBA = π,

it follows that

ÂDK + ̂KZB = π,

and thus

ÂDK = ̂AZK with ̂ZAK = ̂KAD.

Hence, the triangles AZK and ADK are equal. Therefore, AZ = AD. Similarly, the
triangles ABK and AHK are equal, and thus AH = AB. The assertion of the lemma
follows. �

Back to the original problem, let A′ be a point of the straight line BD and A′′ a
point of DC. It holds

AA′⊥BD and AA′′⊥DC,
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Fig. 6.65 Illustration of
Problem 6.3.12

and therefore

AA′ ≤ AK′ and AA′′ ≤ AL′. (6.342)

In order to prove (6.341), it should be enough to verify the relation

0 < 8R2 − 2AB · AD − 2AC · AD + AB2 + AC2, (6.343)

or equivalently,

0 < 8R2 − 2AB · AD − 2AC · AD + AB2 + AC2 + 2AD2 − 2AD2. (6.344)

Using (6.342) and the fact that in a triangle ABC the relation

bc = 2Rh

holds true, where R is the radius of the circumcircle and h the height drawn from
the vertex A, it follows that (6.344) yields

0 < 2
(

(2R)2 − AD2) + (AB − AD)2 + (AC − AD)2, (6.345)

which holds true and this completes the proof of the inequality (6.341).

Remark 6.10 Because of the compactness, the inequality (6.341) cannot be im-
proved, otherwise AB and AC would be identical and simultaneously would coincide
with AD. �



Appendix

And since geometry is the right foundation of all painting, I have decided to teach its rudi-
ments and principles to all youngsters eager for art.

Albrecht Dürer (1471–1528)

A.1 The Golden Section

Dirk Jan Struik (1894–2000), Former Professor of Mathematics, Massachusetts In-
stitute of Technology, USA1

A good mathematician, it has been said, must also be something of an artist.
He studies his field, Henri Poincaré, the great French mathematician, has said, not
because it is useful, but because it is beautiful. Whatever truth there may be in
such statements, it is certain that there always have been many connections between
mathematicians and the arts, especially connections with music, architecture and
painting, often based on philosophical considerations as those of Pythagoras and
Plato in Antiquity. Many well-known mathematicians, from Euclid in classical days
to Euler and Sylvester in more recent times, have shown profound interest in music,
an interest also shared by modern mathematicians.

It is not that mathematicians are more likely to be good piano, cello or flute play-
ers than physicians, lawyers or undertakers. It is the theory of music that, ever since
the days of Pythagoras, has drawn mathematical attention to the different harmonics
in the scale and their quantitative relationship. However, in this article, we shall not
deal with this aspect of the relationship of mathematics and the arts, but with another
such relationship, in which architecture and painting are involved. This relationship
is known as the division of a line segment in extreme and mean ratio, a term we
find in Euclid’s “Elements”, written ca 300 BC in Alexandria, the new city on the
Nile Delta founded by Alexander the Great (the Greek term is: άκρos και μέσos

λóγ os).

1Reprinted from Mathematics in education (ed. Th.M. Rassias), University of LaVerne Press, Cal-
ifornia, 1992, pp. 123–131 with the kind permission of the editor.

S.E. Louridas, M.Th. Rassias, Problem-Solving and Selected Topics in
Euclidean Geometry, DOI 10.1007/978-1-4614-7273-5,
© Springer Science+Business Media New York 2013
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Fig. A.1 Golden Section

Fig. A.2 Golden Section

Euclid gives two constructions for it and uses it repeatedly in the Elements, es-
pecially in order to construct a regular pentagon and a regular decagon inscribed
in a circle, this again in connection with the five regular solids, the so-called Pla-
tonic bodies, and especially with the regular dodecahedron and the regular icosahe-
dron. Plato has explained how this extreme and mean ratio could be connected with
philosophical problems, and especially with Plato’s cosmogony, in which the regu-
lar bodies play a fundamental role. The cosmic role of the ratio (or section (τoμή),
as it is sometimes called) made mathematicians in Renaissance days call it Golden
Section and even Divine Proportion. We shall occasionally denote it by G.S.2 The
ratio, G.S., is obtained, as Euclid explains, by taking a line segment AB (Fig. A.1)
and finding a point C between A and B such that (AC > CB):

AC

CB
= AB

AC
(A.1)

in words: the longest part is to the smallest part as the whole segment is to the
longest part. There exists, of course, also another point D between A and B which
determines a G.S., but then AD < DB, see Fig. A.2. In order to understand better
why the G.S. has interested, even excited, so many persons throughout the ages,
mathematicians as well as artists (and even mystics), let us start with the Pythagore-
ans, a philosophical sect in ancient Greece, flowering between ca 500–250 BC and
dating their origin to the sage Pythagoras, mathematician and student of the uni-
verse. Members of this sect believed strongly in the mathematical symbolism both
for scientific and social–ethical reasons. A favorite symbol was the five pointed star
called pentagram (Fig. A.3) obtained by taking a regular pentagon ABCDE and ex-
tending its sides to their intersections PQRST . You can see it also as an overlapping
of five letters A, Greek alpha. Hence the name pentalpha (Fig. A.4) for this figure,
which, incidentally, can be drawn in one stretch without lifting the pencil from the
paper. Why the pentalpha had assumed this favorite, even magical, character is not
quite clear, but it was a figure of interest already long before the Pythagoreans made

2The literature on the Golden Section is large and of varied character. Useful of older literature is
R.C. Archibald, Golden section, The American Mathematical Monthly 25 (1918) 232–235, who
cites Emma C. Ackermann, The American Mathematical Monthly 2 (1985) 260–264, who wrote
this account based on F.C. Pfeiffer, Der Goldene Schnitt, Augsburg, 1885. A newer account with
many details in H.E. Huntley, The divine proportion, Dover, New York, 1970, VII + 181 pp. a book
that calls itself A study in mathematical beauty. See also H.S.M. Coxeter, Introduction to geom-
etry, Wiley, New York/London, 1961, XIV + 443 pp., esp. Chap. 11. A recent, quite technical,
work is R. Herz-Fischer, A mathematical history of division in extreme and mean ratio, University
Press, Waterloo, Ontario, 1987, XVI + 191 pp. Euclid’s Elements can be studied in the English ver-
sion, with ample commentary, by T.L. Health, The thirteen books of Euclid’s elements, Cambridge
University Press, 1956, Dover reprint, 3 volumes.
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Fig. A.3 Pentagram

Fig. A.4 Pentalpha

it a subject of philosophical, even mathematical, interest. We find it, for instance, on
ancient Babylonian drawings, and, for all we know, it may date back to the Stone
Age. Did its likeness to the twinkling stars in heaven have something to do with it?
For the Pythagoreans it was a symbol of health and of recognition; when you saw
a pentagram on a house you could expect hospitality and friendship. Later, in the
European Middle Ages and later, it served as an apotropaion, a means to ward off
danger, or evil. In Central Europe, it was supposed to guard against a female spirit
called Drude, hence its name Drudenfuss (Drude’s feet). Doctor Faust, Goethe’s
drama, had such a figure on the door step of his study but the devil in the shape of
Mephistopheles was still able to trespass because the top of the Drude’s foot pointed
outward was not quite closed.3

3The text of Goethe’s Faust says: Der Drudenfuss auf Eurer Schwelle . . .

Beschaut es recht! es ist nicht gut gezogen . . .

(The Drude’s foot on your doorstep . . . look carefully, it is not drawn correctly.)
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Fig. A.5 Regular Pentagon

So much for the magical properties of the pentagram. It has also interesting math-
ematical properties, as the Pythagoreans, and Euclid with them, were well aware.
Let us take a regular pentagon. The diagonals of this pentagon form again a penta-
gram and in this we can again find a regular pentagon, and so forth.

Moreover, any two diagonals intersect in a G.S. Take, for instance, diagonals
AD and BE, intersecting at the point P (Fig. A.5). Triangles PEA and EDF are both
isosceles and, since their angles are 36°, 72°, and 72°, are similar. Hence (ED = PD)

AD

AE
= AE

AP
,

or

AD

PD
= PD

AP
= τ.

We designate this ratio by τ (some use the letter φ or e), taking AD = 1.
If we have a close look at the triangle DEP, isosceles with top angle at D of

36°, and angles at E and P of 72°, and bisect the angle at E, the bisector hitting
DP at F (Fig. A.6), then we see that the triangle FDE is also isosceles. If we take
EP = 1, then ED = τ , hence F divides DP in the G.S. Here DF = 1, DFP = τ and
τ = 2 cos 36° = 1.618033989 . . . .

Euclid studies this triangle in Book IV , Prop. 10 and uses it to construct a regular
pentagon in a circle. And since the angle at D is 36°, EP is the side of the regular
decagon (polygon of 10 sides) inscribed in a circle with center D and radius DE =
DP. This gives us the possibility of constructing a regular decagon, and hence also
a regular pentagon, in a circle as soon as we know how to divide a line segment
in extreme and mean ratio. Euclid gives two constructions for this purpose, one in
Book II (on area), the other in Book VI (on propositions). We replace them by the
construction of Fig. A.7. Let AB be the line segment to be divided into extreme and
mean ratio. Take GB = AB perpendicular to AB at the point B and let GB be the
diameter of the circle with center C halfway between B and G. Then connect A
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Fig. A.6 Isosceles triangle
with angles 36°, 72°, 72°

Fig. A.7 Construction of the
Golden Section

with C. This line intersects the circle at D (and, continued, also at E). Then, when
the circle with radius AD and center A intersects AB in P , this P provides on AB
the desired ratio (Fig. A.7). Indeed, since DE = AB, AD = AP, we can write

AB2 = AD × AE = AD(AD + AB)

= AD2 + AD × AB

= AP2 + AP × AB. (A.2)

Hence

AB(AB − AP) = AP2 = AB × PB,
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or

AP

PB
= AB

AP
= τ. (A.3)

When GD intersects AB in Q, it also divides AB in the Golden Section. This follows
from the fact that BE is parallel to GD.

Euclid also introduces our ratio in the first propositions opening his Book XIII,
the book dealing with the five regular (Platonic) bodies, the regular tetrahedron, the
hexahedron or cube, the octahedron, the dodecahedron, and the icosahedron. These
last two solids have particular relations with the extreme and mean ratio because
their faces are related to regular pentagons. This was recognized throughout the
ages and especially in Renaissance days, when the Franciscan monk Luca Paccioli
published a book called Divina Proportione, a book in three parts, of which the
first one, written in 1497, deals with the Golden Section, the second book with
architecture, and the third one with the regular solids.4

The book published in 1509 and republished in 1956 has pictures ascribed to
Leonardo da Vinci; the third book is based on a text by the painter–mathematician
Pier della Francesca. Among those great men of the Renaissance who also were
deeply moved by the mathematical and philosophical attraction of the Platonic bod-
ies and, with them the Golden Section, was Kepler. In an often quoted passage, he
claimed:

Geometry has two great treasures, one is the theorem of Pythagoras, the other the division
of a line into extreme and mean ratio. The first we may compare to a measure of gold, the
second we may name a precious jewel.5

Jewels have considerable esthetic appeal. The esthetic value of the Golden Sec-
tion has often been appreciated, from Antiquity to the present time. It has been
believed that a rectangle, formed with sides in Golden Section relationship, hence
(Fig. A.7)

AB

BC
= AB + BC

AB
,

or, when BC = 1, AB = τ , is more agreeable to the eye than any other type of
rectangle. We find this shape in buildings, for instance, those of Antiquity like the
Parthenon and those constructed under Greek inspiration (Fig. A.8); it is also taken
seriously by some modern architects like Le Corbusier.

The Leipzig psychologist, Gustav Theodor Fechner, experimented in the 1870s
with a large number of persons who were asked which type of rectangular frame
was most pleasing to their way of thinking, and it turned out that the 1 : τ frame was
statistically the winner. This was an application of Fechner’s psychophysics, namely

4Luca Paccioli, Divina Proportione, Venice, 1509, republished in Verona 1956. German translation
by C. Winterberg, Vienna, 1889, 1896. Paccioli must have met Leonardo da Vinci at the Milan court
of Ludovico Sforza, to whom his book is dedicated.
5See Archibald, note 1, footnote 2, p. 234.
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Fig. A.8 Parthenon

experimental esthetics. It involved questions about the best shapes of windows, pic-
ture frames, book forms, playing cards, even snuff boxes.6 The same ratio has also
been found pleasing in human and animal bodies, as well in morphology, in general.

So far we have discussed the Golden Section mainly from a geometrical point
of view, following the ancient method of the Greeks. Let us now introduce some
algebra, the type of mathematics introduced and developed in Europe during the
late Middle Ages and Renaissance days under the influence of Islamic mathematics
(as the name algebra, derived from the Arabic, indicates).

Let us take (Fig. A.1) a straight line segment AB = 1, then take AC = x, CB =
1 − x, x > 1 − x. Then

x

1 − x
= 1

x
= τ, (A.4)

or

x2 + x − 1 = 0 and τ 2 − τ − 1 = 0. (A.5)

Hence

x =
√

5 − 1

2
, 1 − x = 3 − √

5

2
, (A.6)

and

τ =
√

5 + 1

2
,

1

τ
=

√
5 − 1

2
= x. (A.7)

We see that

− 1

τ
= −x

6G.F. Fechner, Vorschule der Aesthetik, 1876. Some people prefer the ratio 1√
2

, that of the side to

the diagonal of a square. Hence about 10/14 instead of about 10/16.
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is the other root of the equation with respect to x. We find this value of τ already in
Euclid, but in geometrical form (Book XIII, Prop. 1).

We conclude that

τ = 1.6180339 . . . ,
1

τ
= 0.6180339 . . . = x. (A.8)

We saw already that

τ = 2 cos 36°.

This number τ has many interesting properties, due to Eq. (A.7).
With it we can form a geometrical series

1 + τ + τ 2 + τ 3 + · · · + τn + · · · (A.9)

and replace τ 2 with τ + 1; we obtain

τ 3 = τ(τ + 1) = τ 2 + τ = 1 + 2τ,

τ 4 = τ(1 + 2τ) = 1 + 3τ,

...

(A.10)

Hence the series (A.9) can also be written as

(1 + τ) + (1 + 2τ) + (1 + 3τ) + · · · + (1 + nτ) + · · · (A.11)

which is an arithmetical series. The same holds for −1/τ .
A second, even more interesting property can be observed when we connect τ

with the theory of continued fractions, a theory also dating from Renaissance days,
where we find a book on the subject by P.A. Cataldi (1613). Then, in a book by
A. Girard of 1634 we find a reasoning equivalent to the following:

τ = 1 + 1

τ

= 1 + 1

1 + 1
τ

= 1 + 1

1 + 1
1+ 1

τ

, etc., (A.12)

which gives us τ in the form of a continued fraction:

τ = 1 + 1

1 + 1
1+ 1

τ

, etc. (A.13)
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Such a continued fraction has partial fractions (convergents), such as

1, 1 + 1

1
= 2, 1 + 1

1 + 1
1

= 3

2
, 1 + 1

1 + 1
1+ 1

1

= 5

3
, etc.

We thus obtain the sequence

1, 2,
3

2
,

5

3
,

8

5
,

13

8
,

21

13
,

34

21
,

55

34
,

89

55
,

144

89
, . . . (A.14)

that is,

1, 2, 1.5, 1.66, 1.60, 1.625, 1.6154, 1.6190, 1.6176, . . .

which is a sequence of numbers oscillating around

τ = 1.618033989 . . . ,

coming closer and closer to τ , the difference between them and τ becoming smaller
than any given small number δ, so that τ is the limit (we omit here the exact proof).

The numerators and denominators of the ratios of the sequence (A.14) (we add 1
in front) are of the form

1,1,2,3,5,8,13,21,34,55,89,144,233,377, . . . (A.15)

and are such that each one of them is the sum of the two preceding numbers. If we
write the sequence (A.15) in the form

u1, u2, u3, u4, . . . , un, . . . , (A.16)

we have

u1 = u2 = 1, u3 = 2, u4 = 3, etc.

Then the following recursive relation holds true

un = un−1 + un−2 (A.17)

and the fraction
un+1

un

approaches τ as n increases. This sequence is called a Fibonacci set, after the
merchant–mathematician Leonardo of Pisa, also called Fibonacci (member of the
house of Bonacci). This merchant, on his many travels, picked up much mathe-
matics in Islamic countries, which inspired him to write a book called Liber Abaci
(1202), the first important text on Arabic mathematics in Latin Europe.7 It has many

7The Liber Abaci was published for the first time in 1857 by Prince B. Boncompagni in Rome.
The rabbit problem can be found in pp. 283–284. See, e.g., R.C. Archibald, The American Mathe-
matical Monthly 25 (1918) 235–238.



224

problems with solutions, all in the new at that time decimal position system (the so-
called Hindu–Arabic number system). One of the problems is the following:

A man has a pair of rabbits. We wish to know how many pairs can be bred
from it in one year, if the nature of these rabbits is such that they breed every
month one other pair and begin to breed in the second month after their birth.

Fibonacci then finds: at the beginning 1 pair, after first month 2, after the third
month 3, after the third month 5, etc., after the twelfth month 377. This set is a
Fibonacci set.

These numbers have many interesting properties. For example, there is the equa-
tion

un−1un+1 − u2
n = (−1)n,

found by the Scottish mathematician Robert Simpson8 for several years in a paper
of 1753 dealing with Girard’s remarks of 1634, and the equation

2n
√

5un = (1 + √
5)n − (1 − √

5)n

found by J. P. M. Binet9 in a memoir on linear difference equations, and useful in
showing that

un+1

un

for growing n tends towards τ . Several mathematicians have been—and are—
interested in these numbers that they have been published in The Fibonacci Quar-
terly.

Another case, in which Fibonacci numbers play a role, is that of phyllotaxis, from
phyllon (φύλλoν), leaf, and taxis (τ άξ ιs), arrangement. This is the field that deals
with the way leaves are placed around the stems (or twigs) of plants. It is old, having
had the attention of Greek and Renaissance students as Leonard Fuchs (1452), after
whom the Fuchsia is named. Linnaeus, in the eighteenth century, paid also attention
to this arrangement. But in the 1830s, two German botanists, Karl Schimper and
Alexander Braun, influenced by Pythagorean inspired Naturphilosophie of the Jena
professor Lorenz Oken, found out that growth of the leaves in the stem has a forward
direction in a spiral such that the leaves are arranged in regular cyclic mathematical
patterns, each species having its own. The number of leaves along the spiral (or he-
lix) and the number n of rotations of this spiral between two leaves that are precisely
above each other determines the arrangement of the leaves. If in the n rotations we
meet k leaves, then we speak of an (n,m) phyllotaxis. With, for instance, a beech
we have (1,3), for an apricot (2,5), a pear (3,8) phyllotaxis.

8R. Simson, Philosophical Transactions, 1753.
9J.P.M. Binet, Comptes Rendus Académie Française 17 (1843) 563.
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Schimper found out that these numbers (n,m) form a Fibonacci set:

1,2,3,5,8, . . . , etc.

There are, of course, irregularities, but the rule stands in most cases. Larger num-
bers of the Fibonacci set also occur. The arrangement of florets in a sunflower, on
21 clockwise, 34 counterclockwise spirals, is an example. Another case is that of
the scales of a pineapple.10 There are also relations of the G.S. and the Fibonacci
numbers with the logarithmic spiral, and this again with the shells of a large number
of living creatures, from the very small foraminifera to such a well-known beauty as
the chambered nautilus, of the Indo–Pacific ocean. For this and other applications,
we can refer to Coxeter and D’Arcy Thompson.11

10Oken, in his turn, was influenced by the Naturphilosophie of Schelling. On phyllotaxis see fur-
ther the books mentioned in note 2 by Coxeter, pp. 169–172 and Huntley, pp. 161–164. For the
Schimper–Braun contribution, see A.A. Braun, Dictionary Scientific Biography 2 (1970) 426.
11H.S.M. Coxeter, The golden section, phyllotaxis and Wijthoff’s game, Scripta Mathematica 19
(1953) 139.

D’Arcy Thompson, On growth and form, Cambridge University Press, 1917, 2nd ed., 1942,
pp. 912–933.

N. N. Vorob’ev, Fibonacci numbers, transl. by H. More, Blaisdell, New York, London, 1961.
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Index of Symbols

N: The set of natural numbers 1,2,3, . . . , n, . . .

Z: The set of integers
Z

+: The set of nonnegative integers
Z

−: The set of nonpositive integers
Z

∗: The set of nonzero integers
Q: The set of rational numbers
Q

+: The set of nonnegative rational numbers
Q

−: The set of nonpositive rational numbers
R: The set of real numbers
R

+: The set of nonnegative real numbers
R

−: The set of nonpositive real numbers
C: The set of complex numbers
R

2 = R×R = {(x, y) : x, y ∈ R}
R

3 = R×R×R = {(x, y, z) : x, y, z ∈ R}
E2: The Euclidean plane
E3: The Euclidean 3-dimensional space
π : Ratio of the circumference of circle to diameter, π ∼= 3.14159265358 . . .

e: Base of natural logarithm, e ∼= 2.718281828459 . . .

a ∈ A: a is an element of the set A

a /∈ A: a is not an element of the set A

A ∪ B: Union of two sets A, B

A ∩ B: Intersection of two sets A, B

A × B: Cartesian product of two sets A, B

a ⇒ b: if a then b

a ⇐ b: if b then a

a ⇔ b: a if and only if b

∅: Empty set
A ⊆ B: A is a subset of B

n! = 1 · 2 · 3 · · ·n, where n ∈N

̂ABC: Angle with sides
−→
BA and

−→
BC

l⊥m: Line l perpendicular to line m
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232 Index of Symbols

AB⊥CF: Segment AB is perpendicular to segment CF
�ABC: Triangle ABC
̂ABC ∼= ̂XYZ: ̂ABC is congruent to ̂XYZ
�ABC ∼= �XYZ: �ABC is congruent to �XYZ
�ABC ∼ �XYZ: �ABC is similar to �XYZ
l ‖ m: Line l is parallel to line m

AB ‖ CD: Segment AB is parallel to segment CD
S1 = Inv(O,λ) S2: S1 is the inverse shape of the shape S2 with respect to the pole O

and power λ

�: End of the solution or the proof
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