

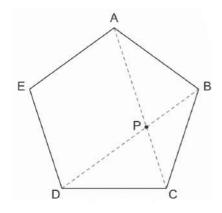
SUPER AULA DE GEOMETRIA PLANA (PARTE 1)

Questão 1 – Ângulos internos e externos de um polígono

(Ufrgs) Um desenhista foi interrompido durante a realização de um trabalho, e seu desenho ficou como na figura abaixo.

Se o desenho estivesse completo, ele seria um polígono regular composto por triângulos equiláteros não sobrepostos, com dois de seus vértices sobre um círculo, e formando um ângulo de 40°, como indicado na figura. Quando a figura estiver completa, o número de triângulos equiláteros com dois de seus vértices sobre o círculo é

- a) 10.
- b) 12.
- c) 14.
- d) 16.
- e) 18.


Questão 2 – Ângulos internos em um polígono

(Uece) No quadrilátero XYZW as medidas dos ângulos internos Z e W são respectivamente 128 graus e 76 graus. Se as bissetrizes dos ângulos internos X e Y cortam-se no ponto O, pode-se afirmar corretamente que a medida do ângulo $X \hat{O} Y$ é igual a

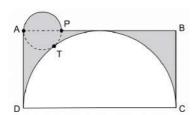
- a) I56 graus.
- b) 78 graus.
- c) 204 graus.
- d) IO2 graus.

Questão 3 - Ângulos internos em um polígono / semelhança de triângulos / equação do segundo grau

(Epcar) A figura a seguir é um pentágono regular de lado 2 cm.

Os triângulos DBC e BCP são semelhantes. A medida de \overline{AC} , uma das diagonais do pentágono regular, em cm, é igual a

a)
$$1 + \sqrt{5}$$


b)
$$-1 + \sqrt{5}$$

c)
$$2 + \frac{\sqrt{5}}{2}$$

d)
$$2\sqrt{5} - 1$$

Questão 4 – Área de figuras planas / relações métricas no triângulo retângulo / circunferência e círculo

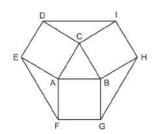
(Fgv) A figura representa uma semicircunferência de diâmetro \overline{CD} , perfeitamente inscrita no retângulo ABCD. Sabe-se que P é um ponto de \overline{AB} , e que \overline{AP} é diâmetro da circunferência que tangencia a semicircunferência maior em T.

Se CD = 8 cm, a área sombreada na figura é, em cm², igual a

a)
$$\frac{64-15\pi}{2}$$

b)
$$32 - 8\pi$$

$$\left(\frac{64-15\pi}{4}\right)$$


d)
$$32 - 9\pi$$

e]
$$16 - 4\pi$$

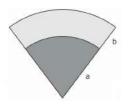
Questão 5 — Área de figuras planas / triângulo equilátero / área do triângulo / quadrado

(Fuvest) Na figura, o triângulo ABC é equilátero de lado 1, e ACDE, AFGB e BHIC são quadrados. A área do polígono DEFGHI vale

3

a)
$$1 + \sqrt{3}$$

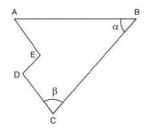
d)
$$3 + 2\sqrt{3}$$


b)
$$2 + \sqrt{3}$$

e)
$$3 + 3\sqrt{3}$$

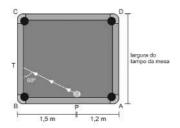
c)
$$3 + \sqrt{3}$$

Questão 6 - Área de figuras planas / setor circular / circunferência e círculo / coroa circular


(Unicamp) A figura abaixo exibe um setor circular dividido em duas regiões de mesma área. A razão a/b é iqual a

- a) $\sqrt{3} + 1$.
- b) $\sqrt{2} + 1$.
- c) $\sqrt{3}$.
- d) $\sqrt{2}$.

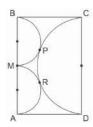
Questão 7 — Razões trigonométricas no triângulo retângulo / paralelismo


(Fuvest) Na figura, tem-se \overline{AE} paralelo a \overline{CD} , \overline{BC} , paralelo a \overline{DE} , AE=2, $\alpha=45^\circ$, $\beta=75^\circ$. Nessas condições, a distância do ponto E ao segmento \overline{AB} é igual a

- a) $\sqrt{3}$
- b) $\sqrt{2}$
- $\text{c]}\,\frac{\sqrt{3}}{2}$
- d) $\frac{\sqrt{2}}{2}$
- $e]\frac{\sqrt{2}}{4}$

Questão 8 — Razões trigonométricas no triângulo retângulo / paralelismo

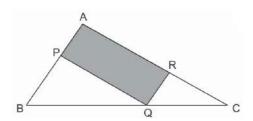
(Unesp) A figura representa a vista superior do tampo plano e horizontal de uma mesa de bilhar retangular ABCD, com caçapas em A, B, C e D. O ponto P, localizado em AB, representa a posição de uma bola de bilhar, sendo $\overline{PB} = 1,5$ m e $\overline{PA} = 1,2$ m. Após uma tacada na bola, ela se desloca em linha reta colidindo com BC no ponto T, sendo a medida do ângulo $P\widehat{T}B$ igual 60°. Após essa colisão, a bola segue, em trajetória reta, diretamente até a caçapa D.



Nas condições descritas e adotando $\sqrt{3}\cong 1{,}73$, a largura do tampo da mesa, em metros, é próxima de

- a) 2,42. d) 2,00
- b) 2,08. e) 2,56
- c) 2,28.

Questão 9 — Relações métricas no triângulo retângulo / área de figuras planas / circunferência e círculo


(Fac. Albert Einstein) Na figura abaixo, ABCD é um retângulo tal que BC = 6 cm e M é ponto médio do lado AB. Se os semicírculos no interior do retângulo são dois a dois tangentes entre si, nos pontos M, P e R, então a área de ABCD, em centímetros quadrados, é

- al $36\sqrt{3}$
- c) $18\sqrt{3}$
- b) $36\sqrt{2}$
- d) $18\sqrt{2}$

Questão 10 — Semelhança de triângulos / área de figuras planas / área semelhantes

(Epcar) Considere, no triângulo ABC abaixo, os pontos $P \in \overline{AB}$, $Q \in \overline{BC}$, $R \in \overline{AC}$ e os segmentos \overline{PQ} e \overline{QR} paralelos, respectivamente, a \overline{AC} e \overline{AB} .

Sabendo que $\overline{BQ}=3$ cm, $\overline{QC}=1$ cm, e que a área do triângulo ABC é 8 cm², então a área do paralelogramo hachurado, em cm², é igual a

- a) 2
- b) 3
- c) 4
- d) 5

Anotações: