

LINGUAGENS, CÓDIGOS E SUAS TECNOLOGIAS

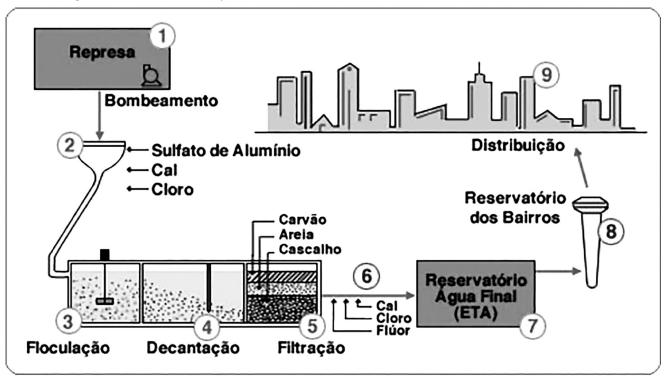
PROFESSOR: GILBERTO AUGUSTO DATA:

ALUNO:

TRATAMENTO DA ÁGUA

Todos nós sabemos que a água é uma substância primordial para a manutenção da vida. Todavia, para que ela seja consumida por nós, é necessário que ela seja potável, isto é, apresente as seguintes características:

- 1. AUSÊNCIA DE IMPUREZAS;
- 2. PRESENÇA DE SAIS MINERAIS;
- 3. AUSÊNCIA DE MICRO-ORGANISMOS;
- 4. PRESENÇA DE FLÚOR.


Um detalhe alarmante é que a água própria para consumo está se tornando um bem cada dia mais escasso. É muito comum vermos nos noticiários que várias regiões não estão tendo mais um fácil acesso a esse valioso recurso. Muitas vezes, as pessoas perguntam-se: por que falta água se temos tantos rios, represas, lagos etc.? A resposta é o baixo nível de consciência das pessoas, de uma forma geral, sobre a questão do desperdício e mau uso da água. Aproximadamente 50% da água das cidades em desenvolvimento é perdida em vazamentos, ligações clandestinas e vandalismo.

É importante saber também que, na verdade, a água de um rio, lago, represa, por exemplo, não pode ser utilizada por um ser humano para a ingestão (beber) porque pode apresentar diversos tipos de impurezas oriundas de ações humanas inconsequentes (resíduos industriais e esgoto). Assim, boa parte da água está poluída em maior ou menor grau.

Em virtude da poluição presente é que se faz necessário o tratamento da água antes de ela ser consumida pela população.

O tratamento da água envolve diversas etapas. São elas:

CAPTAÇÃO

Inicialmente a água é captada de um rio, lago ou represa, por exemplo, por meio de uma adutora (conjunto de tubos), que traz a água para um tanque na estação de tratamento. Ao chegar à estação de tratamento, a água passa por grandes grades, que impedem que materiais grandes continuem na água, como animais mortos.

COAGULAÇÃO OU FLOCULAÇÃO

Neste processo as partículas sólidas se aglomeram em flocos para que sejam removidas mais facilmente. Este processo consiste na formação e precipitação de hidróxido de alumínio (Al₂(OH)₃) que é insolúvel em água e "carrega" as impurezas para o fundo do tanque. Esse composto forma uma substância gelatinosa que favorece a formação de flocos (junção das impurezas na substância gelatinosa).

Primeiramente, o pH da água tem que ser elevado pela adição ou de uma base diretamente, como o Hidróxido de cálcio – Ca(OH)₂, conhecida como "Cal hidratada" ou de um sal básico conhecido como barrilha (carbonato de sódio):

base:

$$Ca(OH)_{2(s)} \rightarrow Ca^{2+}_{(aq)} + 2OH^{-}_{(aq)}$$

sal básico:

$$\begin{split} \text{Na}_2\text{CO}_3(\text{s}) &\to 2 \; \text{Na}^+_{\; (\text{aq})} + \text{CO}_3^{\; 2\text{-}}_{\; (\text{aq})} \\ \text{CO}_3^{\; 2\text{-}}_{\; \; (\text{aq})} + \text{H}_2\text{O}_{(\text{I})} &\to \text{HCO}_3^{\; \text{-}}_{\; \; (\text{aq})} + \text{OH}^\text{-}_{\; \; (\text{aq})} \end{split}$$

Após o ajuste do pH, adiciona-se o sulfato de alumínio $- Al_2(SO_4)_3$, que irá dissolver na água e depois precipitar na forma de hidróxido de alumínio.

dissolução:

$$Al_2(SO_4)_{3(s)} \rightarrow 2 Al^{3+}_{(aq)} + 2 SO_4^{3-}_{(aq)}$$

precipitação:

$$AI^{3+}_{(aq)} + 3 OH^{-}_{(aq)} \rightarrow AI(OH)_{3(s)}$$

DECANTAÇÃO OU SEDIMENTAÇÃO

Após a floculação, a água é direcionada para um novo tanque, onde ela permanecerá em repouso para que os flocos formados sejam decantados (sedimentados) para o fundo do tanque, haja vista que eles são mais densos que a água.

FILTRAÇÃO

Após a decantação, a água atravessa um grande filtro formado por areia, carvão ativado e cascalho. Nessa etapa, as impurezas que não aderiram aos flocos ficam retidas no filtro, além de a água sofrer uma desodorização pela presença do carvão ativado.

FLUORETAÇÃO

Nessa etapa, é adicionada à água uma quantidade de ácido com flúor, o Ácido Fluossilícico (H₂SiF₆), para auxiliar na redução de cáries na população.

CLORAÇÃO

Além da adição de Flúor, o Cloro também é adicionado à água, na forma de sal – Hipoclorito de sódio (NaClO) ou do Cloro molecular (Cl₂), com o objetivo de eliminar os micro-organismos presentes.

Na água, o cloro age de duas formas principais:

- como desinfetante, destruindo ou inativando os micro-organismos patogênicos, algas e bactérias de vida livre;
- **3** como oxidante de compostos orgânicos e inorgânicos presentes.

Quando o cloro é adicionado a uma água isenta de impurezas, ocorre a seguinte reação:

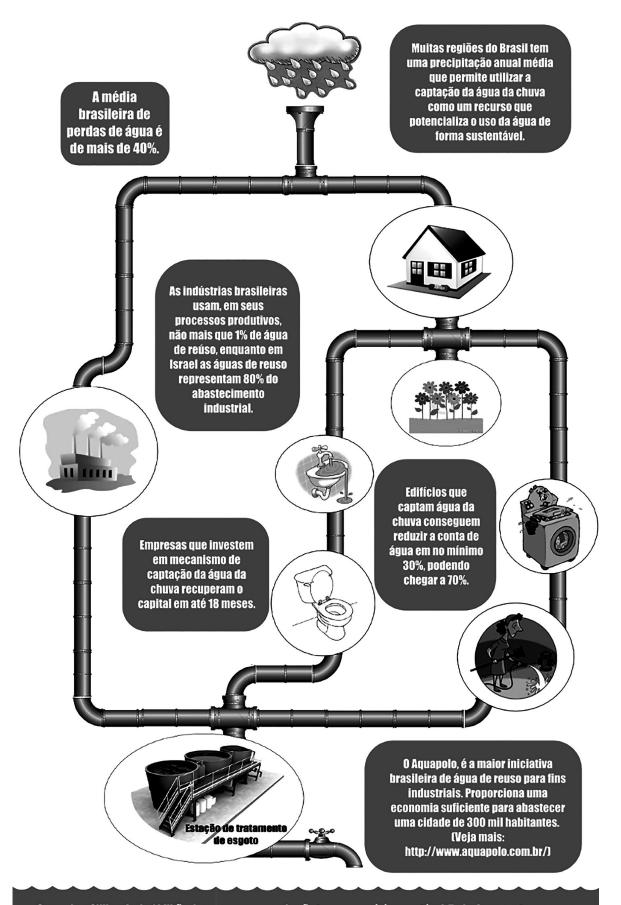
$$Cl_2(g) + 2H_2O(1) = HCIO(aq) + H_3O^+(aq) + CI^-(aq)$$

Dependendo do pH da água, o ácido hipocloroso (HClO) se ioniza, formando o íon hipoclorito (ClO⁻), segundo a reação a seguir:

$$HCIO(aq) + H2O(I) \Rightarrow H3O+(aq) + CIO-(aq)$$

Ambos os compostos possuem ação desinfetante e oxidante; porém, o ácido hipocloroso é mais eficiente do que o íon hipoclorito na destruição dos microrganismos em geral.

CORREÇÃO DO PH OU ACIDEZ DA ÁGUA


Nessa etapa, é adicionada à água hidróxido de cálcio para diminuir a acidez do meio.

ARMAZENAMENTO

Por fim, a água é armazenada em um reservatório e distribuída para as residências.

O tratamento da água é a principal forma de prevenir doenças como a leptospirose, a cólera e diversas outras que ameaçam a saúde humana. Entretanto, e infelizmente, mais de 1 bilhão de pessoas não têm acesso à água potável no mundo, seja por morarem em regiões secas ou por causa da poluição. Ocasionando a morte de cerca de 1,8 milhões de crianças no mundo todo por causa de doenças como a diarreia, provocadas pelo consumo de água contaminada e más condições de saneamento.

Reuso da água: um caminho para sustentabilidade

Segundo a ONU mais de 1 bilhão de pessoas no mundo não tem acesso à água potável. Todavia, quem tem acesso nem sempre faz uso deste recurso de forma sustentável ou racional. A diminuição de perdas físicas, como vazamento e evaporação, a educação ambiental da população, a captação da água da chuva nas cidades e o incentivo ao reuso da água são indispensáveis para uma gestão consciente.