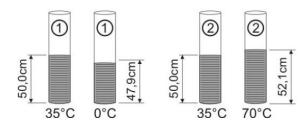
MILITARES

PLATAFORMA PROFESSOR BOARO

LISTA 8 – TERMOLOGIA

Recado para quem gosta de resolver lendo em papel: não imprima esta lista, espere só um pouco! Ela deverá receber mais exercícios nos próximos dias!

EXC671. Mod6.Exc151. (Eear) Roberto, empolgado com as aulas de Física, decide construir um termômetro que trabalhe com uma escala escolhida por ele, a qual chamou de escala R. Para tanto, definiu $-20~^{\circ}R$ como ponto de fusão do gelo e $80~^{\circ}R$ como temperatura de ebulição da água, sendo estes os pontos fixos desta escala. Sendo R a temperatura na escala criada


da água, sendo estes os pontos fixos desta escala. Sendo K a temperatura na escala criada por Roberto e C a temperatura na escala Celsius, e considerando que o experimento seja realizado ao nível do mar, a expressão que relaciona corretamente as duas escalas será:

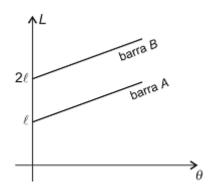
- a) C = R 20
- b) C = R + 20
- c) $C = \frac{R + 20}{2}$
- d) $C = \frac{R-20}{2}$

Resposta:

[B]

EXC672. Mod6.Exc195. (Epcar (Afa)) Considere dois tubos cilíndricos (1 e 2), verticais, idênticos e feitos do mesmo material, contendo um mesmo líquido em equilíbrio até a altura de 50,0 cm, conforme figura a seguir.

As temperaturas nos dois tubos são inicialmente iguais e de valor $35\,^{\circ}$ C. O tubo 1 é resfriado até $0\,^{\circ}$ C, enquanto o tubo 2 é aquecido até $70\,^{\circ}$ C, e a altura do líquido em cada tubo passa a ser o valor indicado na figura. Sabendo-se que o coeficiente de dilatação térmica dos tubos é desprezível quando comparado com o do líquido, o coeficiente de dilatação volumétrica do líquido, considerado constante, é, em $^{\circ}$ C $^{-1}$,


a)
$$1,2 \cdot 10^{-3}$$

- b) $1,6 \cdot 10^{-3}$
- c) $2,4\cdot10^{-3}$
- d) $3,6 \cdot 10^{-3}$

Resposta:

[A]

EXC673. Mod6.Exc198. (Epcar (Afa)) No gráfico a seguir, está representado o comprimento L de duas barras A e B em função da temperatura θ .

Sabendo-se que as retas que representam os comprimentos da barra A e da barra B são paralelas, pode-se afirmar que a razão entre o coeficiente de dilatação linear da barra A e o da barra B é

- a) 0,25.
- b) 0,50.
- c) 1,00.
- d) 2,00.

Resposta:

[D]