Círculo trigonométrico

Também é conhecido por ciclo trigonométrico ou circunferência trigonométrica.

Uma volta completa:

Em graus = 360° Em radianos = 2π rad

Se um ângulo passar de 360°, devemos ver o quanto ele passou para saber qual ângulo será congruente a ele.

Ex₁: ângulo de 510°

$$510^{\circ} - 360^{\circ} = 150^{\circ}$$

Ex₂: ângulo de 900°

$$900 - 360 = 540^{\circ}$$

$$540 - 360 = 180^{\circ}$$

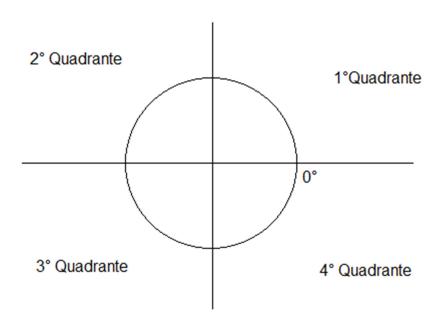
Para converter de graus para radianos ou vice-versa: devemos montar uma regra de três. Exemplo: Quantos graus correspondem $\frac{\pi}{4}$ rad?

$$360 = 2 \pi$$

$$2 \pi x = \frac{360\pi}{4}$$

$$2x = 90$$

$$x = 45^{\circ}$$



1° Q: 0° até 90°

2° Q: 90° até 180°

3° Q: 180° até 270°

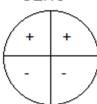
4° Q: 270° até 360°

Redução ao primeiro quadrante:

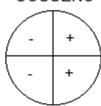
2° quadrante: 180° - ângulo dado 3° quadrante: 180° + ângulo dado 4° quadrante: 360° - ângulo dado

Sinais:

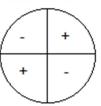
SENO



COSSENO



TANGENTE



Exercícios:

- 1. Reduzindo-se ao primeiro quadrante um arco de medida 2240°, obtém-se um arco, cuja medida, em radianos, é:
- a) $\frac{\pi}{3}$
- b) $\frac{2\pi}{3}$
- c) $\frac{4\pi}{9}$
- d) $\frac{3\pi}{4}$
- e) $\frac{6\pi}{2}$

Resolução:

Nosso primeiro passo será descobrir qual o côngruo de 2240°, ou seja, o arco que corresponde a mesma medida em graus após todas as voltas completas que um arco pode ter (Por exemplo 10° é côngruo de 370° pois ele passa em exatamente 10° após dar sua volta completa, assim como 50° é côngruo de 770 pois ele tem exatamente 50° a mais depois de dar duas voltas completas)

2240 = 360 . 6 + 80, ou seja, dá 6 voltas completas e sobram 80°, então podemos assumir que 80° é côngruo de 2240°.

Agora é só passar para radianos, para isto, podemos multiplicar por $\frac{2\pi}{360}$ ou simplificando a fração $\frac{\pi}{180}$

Logo teremos: 80 . $\frac{\pi}{180} = \frac{80\pi}{180}$

$$\frac{80\pi}{180} = \frac{4\pi}{9}$$

(Alternativa C)

2. se $\cos \alpha = \frac{-\sqrt{3}}{2}$ e α é um arco cujo a extremidade pertence ao 2° quadrante, então α pode ser $\frac{\pi}{6}$ rad.

- a) 7
- b) 17
- c) 27
- d) 37

Resolução:

A questão nos mostra que o arco está presente no segundo quadrante, porém $\frac{\pi}{6}$ está presente no primeiro. Sendo assim, precisamos encontrar seu simétrico no segundo quadrante.

Para um ângulo qualquer α presente no primeiro quadrante, seu simétrico no segundo quadrante será π - α , sendo assim teremos:

$$\pi - \frac{\pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6}$$

$$\frac{6\pi}{6} - \frac{\pi}{6} = \frac{5\pi}{6}$$

Então temos que $\frac{5\pi}{6} = \frac{-\sqrt{3}}{2}$ então α poderá ser $\frac{5\pi}{6}$ e todos os seus côngruos (côngruos são ângulos cujos arcos representam as mesmas medidas, ou seja, a diferença entre eles devem ser de exatamente 360° ou 2π quando a unidade de medida usado for em radianos)

Um dos côngruos de $\frac{5\pi}{6}$ será:

$$\frac{5\pi}{6} + 2\pi = \frac{5\pi}{6} + \frac{12\pi}{6}$$

$$\frac{5\pi}{6} + \frac{12\pi}{6} = \frac{17\pi}{6}$$

(Alternativa B)

3. No ciclo trigonométrico 440° pertence a qual quadrante?

- a) 1° quadrante
- b) 2° quadrante
- c) 3° quadrante
- d) 4° quadrante

Resolução:

Nosso primeiro passo será descobrir qual o côngruo de 440°, ou seja, o arco que corresponde a mesma medida em graus após todas as voltas completas que um arco pode ter (Por exemplo 10° é côngruo de 370° pois ele passa em exatamente 10° após dar sua volta completa, assim como 50° é côngruo de 770 pois ele tem exatamente 50° a mais depois de dar duas voltas completas)

440 = 360 + 80°, ou seja, o arco dá uma volta completa e sobram 80° então podemos assumir que 80° é côngruo de 440°

Como bem sabemos um círculo possui 360° e é dividido entre 4 quadrantes iguais, logo teremos que:

 $\frac{360}{4}$ = 90, então cada quadrante possui 90°.

- 1° quadrante de 0° a 90°
- 2° quadrante de 90 a 180°
- 3° quadrante de 180 a 270°
- 4° quadrante de 270 a 360°

Como sobraram 80°, significa que ele estará presente no 1° quadrante

(Alternativa A)

4. se $0^{\circ} \le x \le 90^{\circ}$ e se sen $4x = -\frac{\sqrt{3}}{2}$, um dos possíveis valores de x é:

- a) 30°
- b) 45°
- c) 75°
- d) 85°

Resolução:

Como bem sabemos, no círculo trigonométrico o seno é positivo no primeiro e no segundo quadrante, como o valor do sen4x é um número negativo, sabemos que o mesmo tem de estar entre o terceiro e o quarto quadrante.

Temos que sen60° = $\frac{\sqrt{3}}{2}$, então devemos encontrar seus côngruos. Para isto, devemos manter em mente que um número qualquer possui seus côngruos nos quatro quadrantes, e podemos identificá-los da seguinte forma:

- 1 quadrante = α
- 2 quadrante = $180^{\circ} \alpha$
- 3 quadrante = $180^{\circ} + \alpha$
- 4 quadrante = $360^{\circ} \alpha$

Como já sabemos que no primeiro quadrante será sen60°, teremos:

1 quadrante =
$$60^{\circ} = \frac{\sqrt{3}}{2}$$

2 quadrante =
$$180 - 60 = 120^{\circ} = \frac{\sqrt{3}}{2}$$

3 quadrante = $180 + 60 = 240^{\circ} = \frac{\sqrt{3}}{2}$

4 quadrante =
$$360 - 60 = 300^{\circ} = -\frac{\sqrt{3}}{2}$$

para chegarmos ao nosso resultado de $4x = -\frac{\sqrt{3}}{2}$ temos duas possibilidades, são estas 240° e 300°

para 240°

4x = 240

$$X = \frac{240}{4}$$

$$X = 60^{\circ}$$

Ou

Para 300°

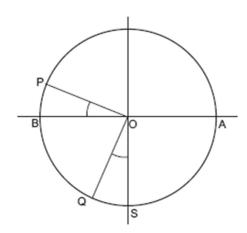
$$4x = 300$$

$$X = \frac{300}{4}$$

$$X = 75^{\circ}$$

(Alternativa C)

5.



No ciclo trigonométrico de centro O, representado na figura, os ângulos PÔB e QÔS são congruentes, e o arco AP, tomado no sentido anti-horário, mede 164°. Reduzindo-se o arco AQ ao primeiro quadrante, o valor encontrado será igual a

- a) 16°
- b) 24°
- c) 64°
- d) 74°
- e) 86°

Resolução:

A questão nos diz que o arco AP mede 164°, e podemos ver que AP + PB = 180°, pois é a metade de uma volta completa na circunferência.

```
Logo, 164 + PB = 180
PB = 180 – 164
PB = 16°, como a questão nos diz que PÔB e QÔS são congruentes, seus arcos também serão
PB = QS
QS = 16°
```

Como devemos reduzir ao primeiro quadrante, devemos considerar que:

 $AQ = 90^{\circ}$ - 16° , que é a quantidade de graus total de um quadrante menos o valor do ângulo QÔS

```
AQ = 74^{\circ}
```

(Alternativa D)

6. O valor do sen de 1270 é igual a:

```
a) -\cos 10
```

- b) sen 30
- c) sen 10
- $d) \cos 30$

Resolução:

Para que possamos encontrar o valor do sen de 1270, devemos descobrir seu côngruo, e para isto devemos ter em mente que 1270 = 360 . 3 + 190, ou seja, 1270 da três voltas completas no circulo trigonométrico e sobram 190°

Agora que encontramos o côngruo, devemos descobrir quais são seus simétricos, tendo em vista que 190 está no terceiro quadrante, para isso teremos:

```
1 quadrante = \alpha
2 quadrante = 180 - \alpha
3 quadrante = 180 + \alpha
4 quadrante = 360 - \alpha
```

Como anteriormente dito, sabemos que 190° está presente no 3° quadrante, então:

```
180 + \alpha = 190

\alpha = 190 - 180

\alpha = 10^{\circ}
```

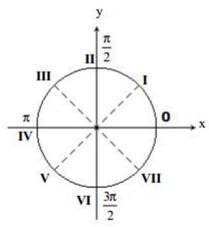
Porem os senos são positivos no 1º e 2º quadrante e negativos quando estão no 3º e 4º quadrante, sendo assim

```
Sen de 1270 = - sen 10
```

(Alternativa C)

7. Os termos da sequência de números em progressão aritmética $\frac{\pi}{3}$, $\frac{7\pi}{12}$, $\frac{5\pi}{6}$... correspondem as medidas em radianos de arcos, que podem ser representados na circunferência trigonométrica abaixo.

Os pontos identificados por **0** a **VII** representam as medidas de arcos que dividem a circunferência trigonométrica em 8 partes iguais, medidas no sentido anti-horário, a partir de 0.



Nessas condições, o arco correspondente ao **13º termo** da sequência, igualmente medido no sentido anti-horário e a partir de **0**, tem sua extremidade situada entre os pontos

- a) l e ll
- b) II e III
- c) IV e V
- d) V e VI
- e) VII e 0

Resolução:

Como bem sabemos, Progressão aritmética é um termo usado para uma sequência de números que possuem a mesma diferença de valor entre eles (ex: 2, 4, 6... Tem uma diferença exata de 2 unidades entre cada um de seus valores, ou então $\frac{6}{10}$, $\frac{10}{10}$, $\frac{14}{10}$, possuem uma diferença de exatamente $\frac{4}{10}$ em cada um de seus valores)

Sendo assim, o primeiro passo será identificar qual a progressão utilizada

Temos 3 valores diferentes, são eles:

 $\frac{\pi}{3}$, $\frac{7\pi}{12}$ $e^{\frac{5\pi}{6}}$ agora deixaremos tudo sobre o mesmo denominador para descobrir a progressão aritmética existente

$$\frac{\pi}{3} = \frac{4\pi}{12}$$

$$\frac{5\pi}{6} = \frac{10\pi}{12}$$

Então

 $\frac{4\pi}{12}$, $\frac{7\pi}{12}$ e $\frac{10}{12}$, logo podemos facilmente entender que a progressão utilizada é de $\frac{3\pi}{12}$

Como já possuímos 3 termos, precisamos descobrir 10 termos a frente para chegarmos ao 13°, para isto multiplicaremos a progressão aritmética por 10, que é a quantidade de vezes que ela seria aplicada até encontrarmos nosso resultado e somaremos o resultado ao 3° termo

$$\frac{10\pi}{12}$$
 + 10 . $\frac{3\pi}{12}$

$$\frac{10\pi}{12} + \frac{30\pi}{12} = \frac{40}{12}$$

$$\frac{40\pi}{12} = \frac{20\pi}{6} = \frac{10\pi}{3} \cong 3,33\pi$$

Como uma volta completa é igual a 2 π radianos, 1,33 π é côngruo de 3,33 π

A circunferência está dividida em 8 partes exatamente iguais, e como sabemos, uma volta completa em radianos é igual a 2π radianos, dividindo este valor por 8, saberemos quanto corresponde em Radianos cada ponto

 $\frac{2\pi}{8} = \frac{\pi}{4} = 0.25 \,\pi$, então temos 8 pontos igualmente espaçados por $0.25 \,\pi$ ao redor da circunferência. Dividindo 1.33π por 0.25π , teremos entre quais pontos está o 13° termo

 $\frac{1,33 \pi}{0,25 \pi}$ = 5,32, ou seja, o 13° termo está presente entre os pontos V e VI

(Alternativa D)

8. No ciclo trigonométrico os valores de x, tais que $\cos x \le \frac{1}{2}$, são:

a)
$$\{x \in R \mid \frac{\pi}{3} < x < \frac{5\pi}{3}\}$$

b)
$$\{x \in R \mid \frac{\pi}{3} \le x \le \frac{5\pi}{3} \}$$

c)
$$\{x \in R \mid \frac{\pi}{6} \le x < \frac{11}{6} \}$$

d)
$$\{x \in R \mid 0 \le x \le \frac{\pi}{6}; ou \frac{7\pi}{6} \le x \le 2\pi$$

Resolução:

Sabemos que $\cos 60^{\circ} = \frac{1}{2}$, nosso primeiro passo então será descobrir quanto vale o $\cos 60^{\circ}$ em radianos, para isso devemos ter em mente que o circulo trigonométrico vai de 0 a 2π , sendo assim teremos:

$$2\pi = 360$$

$$X = 60$$

$$120\pi = 360x$$

$$X = \frac{120\pi}{360} = \frac{\pi}{3}$$

Então X pode estar entre $\frac{\pi}{3}$ até seu simétrico no quarto quadrante que será:

$$2\pi - \frac{\pi}{3} = \frac{6\pi}{3} - \frac{\pi}{3}$$

$$\frac{6\pi}{3} - \frac{\pi}{3} = \frac{5\pi}{3}$$

Logo temos que $X \in R \mid \frac{\pi}{3} \le x \le \frac{5\pi}{3}$ (Alternativa B)

9. Considere as afirmações a seguir:

I. $\tan 92^{\circ} = -\tan 88^{\circ}$

II. tan 178° = tan 88°

III. tan 268° = tan 88°

IV. tan 272° = -tan 88°

Quais estão corretas?

- a) I, III
- b) III, IV
- c) I, II, IV
- d) I, III, IV
- e) II, III, IV

Resolução:

Para resolver esta questão devemos ter em mente primeiro que a tangente sempre será positiva quando pertencer ao 1° ou ao 3° quadrante, e a mesma será sempre negativa quando pertencer ao 2° ou 4° quadrante

Sendo assim, para saber se são igual, basta reduzir os valores para o primeiro quadrante tan 92° = –tan 88°

Sabemos que 92° está no segundo quadrante, logo será negativo

Para reduzir ao primeiro quadrante, devemos subtrair 92 de 180 pois só pertence ao primeiro quadrante quando possui até no máximo 90°

180 – 92 = tan 88°, como estava no segundo quadrante, (- tan 88°), logo a primeira afirmativa está correta

tan 178° = tan 88°

Sabemos que 178° está no segundo quadrante, logo será negativo

Para reduzir ao primeiro quadrante, devemos subtrair 178 de 180 pois só pertence ao primeiro quadrante quando possui até no máximo 90°

180 – 178 = tang 2°, como estava no segundo quadrante, (- tang 2), logo a segunda afirmativa está incorreta

tan 268° = tan 88°

Sabemos que 268° está no terceiro quadrante, logo será positivo

Para reduzir ao primeiro quadrante, devemos subtrair 180 de 268 pois só pertence ao primeiro quadrante quando possui até no máximo 90°

268 – 180 = tan 88° Como estava no terceiro quadrante, (+ tan 88), logo a terceira afirmativa está correta

```
tan 272° = -tan 88°
```

Sabemos que 272° está no quarto quadrante, logo será negativo

Para reduzir ao primeiro quadrante, devemos subtrair 272 de 360, pois só pertence ao primeiro quadrante quando possui até no máximo 90°

 $360 - 272 = \tan 88^{\circ}$ Como estava no quarto quadrante, (- $\tan 88^{\circ}$), logo a quarta afirmativa está correta

(Alternativa D)

```
10. Se A = tg 120° e B = tg 240°, então:
```

- a)B=A
- b) B = -A
- c) B = 2A
- d) B = -2A

Resolução:

Para que possamos chegar ao nosso resultado devemos descobrir de qual número tg120° e tg240° são simétricos, para isso devemos manter em mente que um número possui simétricos nos quatro quadrantes e podemos identificá-los da seguinte forma:

```
1 quadrante = \alpha
2 quadrante = 180 - \alpha
3 quadrante = 180 + \alpha
4 quadrante = 360 - \alpha
```

Começando por 120º que está no segundo quadrante, teremos:

$$180 - \alpha = 120^{\circ}$$

 $-\alpha = 120 - 180$
 $-\alpha = -60$
 $\alpha = 60$

Para descobrirmos os simétrico de B, teremos:

$$180 + \alpha = 240$$

 $\alpha = 240 - 180$
 $\alpha = 60$

Como podemos observar a cima, 120 e 240 são simétricos e para que possamos estabelecer a relação entre os dois devemos lembrar que a tangente é positiva no 1º e no 3º quadrante e negativa no 2º e 4º quadrante

Como 120º pertence ao segundo quadrante e 240º pertence ao terceiro quadrante, seus sinais serão contrários, logo:

11. O valor da expressão $\frac{sen 30^{\circ} + tg 225^{\circ}}{\cos{\frac{\pi}{2}} - sen (-6^{\circ})}$ é

b)
$$\frac{1}{2}$$

c) -
$$\sqrt{3}$$

$$\dot{d}$$
 $\sqrt{3}$

e) -
$$\frac{1}{2}$$

Resolução

O ângulo (- 60°) significa 60° no sentido horário do circulo trigonométrico. Então, sen (- 60°) = sen 300° = - sen 60°

$$\frac{sen \ 30^{\circ} + tg \ 225^{\circ}}{\cos{\frac{\pi}{2}} - sen \ (-60^{\circ})} = \frac{sen \ 30^{\circ} + tg \ 45^{\circ}}{\cos 90^{\circ} - (-sen \ 60^{\circ})}$$

$$\frac{sen \ 30^{\circ} + tg \ 45^{\circ}}{\cos 90^{\circ} + sen \ 60^{\circ}} = \frac{\frac{1}{2} + 1}{0 + \frac{\sqrt{3}}{2}}$$

$$\frac{\frac{3}{2}}{\frac{\sqrt{3}}{2}} = \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \cdot \frac{3}{\sqrt{3}}$$

Racionalizando

$$\frac{3}{\sqrt{3}}$$
 . $\frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{3} = \sqrt{3}$

(Alternativa D)

12. Assinale a alternativa que corresponde ao valor da expressão:

$$6\cos^2\left(\frac{13\pi}{6}\right) - 4\cos^2\left(\frac{11\pi}{4}\right) + \sin\left(-\frac{7\pi}{6}\right) + tg^2\left(\frac{31\pi}{3}\right)$$

- a) 6
- b) 5 c) $\frac{9}{2}$
- d) $\frac{2}{3}$ e) $\frac{23}{4}$

Resolução

Cada volta no círculo trigonométrico é dada por 2π . Ou seja, o ângulo $\frac{13\pi}{6}$ é o mesmo que 2π $+\frac{\pi}{6}$. Então o valor do cos $\frac{13\pi}{6}$ é mesmo que cos $\frac{\pi}{6}$. Analogamente, temos o mesmo raciocínio pra os outros ângulos.

$$\begin{array}{l} 6 \, \cos^2\left(\frac{13\pi}{6}\right) - 4 \, \cos^2\left(\frac{11\pi}{4}\right) + \, \mathrm{sen}\left(-\frac{7\pi}{6}\right) + \, \mathrm{tg}^2\left(\frac{31\pi}{3}\right) \\ 6 \, \cos^2\left(\frac{\pi}{6}\right) - 4 \, \cos^2\left(\frac{3\pi}{4}\right) + \, \mathrm{sen}\left(-\frac{7\pi}{6}\right) + \, \mathrm{tg}^2\left(\frac{\pi}{3}\right) \\ 6 \, . \, \cos^230^\circ - 4 \, . \, \cos^2135^\circ + \, \mathrm{sen}\left(-210^\circ\right) + \, \mathrm{tg}^2\,60^\circ \\ \mathrm{Sen}\left(-210^\circ\right) = \, \mathrm{sen}\,150^\circ = \, \mathrm{sen}\,30^\circ \end{array}$$

$$6 \cdot \left(\frac{\sqrt{3}}{2}\right)^2 - 4 \cdot \left(\frac{-\sqrt{2}}{2}\right)^2 + \frac{1}{2} + \left(\sqrt{3}\right)^2$$

$$6 \cdot \frac{3}{4} - 4 \cdot \frac{2}{4} + \frac{1}{2} + 3$$

$$\frac{9}{2} - \frac{4}{2} + \frac{1}{2} + \frac{6}{2} = \frac{12}{2} = 6$$

(Alternativa A)

13. O valor de (cos 165° + sen 155° + cos 145 - sen 25° + cos 35° + cos 15°) é

- a) $\sqrt{2}$
- b) 1
- c) 0
- d) 1
- e) $\frac{1}{2}$

Resolução

$$(\cos 165^{\circ} + \sin 155^{\circ} + \cos 145 - \sin 25^{\circ} + \cos 35^{\circ} + \cos 15^{\circ}) = -\cos 15^{\circ} + \sin 25^{\circ} - \cos 35^{\circ} - \sin 25^{\circ} + \cos 35^{\circ} + \cos 15^{\circ} = 0$$

(Alternativa C)

14. O valor de cos (2.280°) é

- a) $\frac{1}{2}$
- b) $\frac{1}{2}$
- c) $\frac{\sqrt{2}}{2}$
- d) $\frac{\sqrt{3}}{2}$ e) $\frac{\sqrt{3}}{2}$

Resolução

Dividindo 2280° por 360° (volta completa), encontramos quociente igual a 6 e resta 120°, ou seja, são seis voltas completas mais 120°. Logo, cos 2280° = cos 120° = $-\frac{1}{2}$ (Alternativa A)

15. O valor numérico da expressão $\frac{\sec 1320^{\circ}}{2} - 2 \cdot \cos \left(\frac{53\pi}{3}\right) + (tg\ 2220^{\circ})^2$ é:

c)
$$\frac{1}{2}$$

e) -
$$\frac{\sqrt{3}}{2}$$

Resolução

Sec 1320° = sec (3 . 360° + 240°) = sec 240° = - sec 60° = - 2

$$\cos\left(\frac{53\pi}{3}\right) = \cos\left(8.2\pi + \frac{5\pi}{3}\right) = \cos\frac{5\pi}{3}$$

$$tg 2220^{\circ} = tg (6.360^{\circ} + 60^{\circ})$$

$$tg 2220^{\circ} = tg 60^{\circ} = \sqrt{3}$$

$$\frac{\sec 1320^{\circ}}{2} - 2 \cdot \cos\left(\frac{53\pi}{3}\right) + (tg\ 2220^{\circ})^{2}$$
$$\frac{-2}{2} - 2 \cdot \frac{1}{2} + (\sqrt{3})^{2} = -1 - 1 + 3 = 1$$

(Alternativa D)

16. Considerando-se o arco trigonométrico $\propto = \frac{23\pi}{3} rad$, assinale a alternativa **falsa**.

a)
$$\propto = 1.380^{\circ}$$

b) ∝ dá três voltas e para no 4° quadrante

c) sen
$$\propto$$
 = - sen 60°

d)
$$\cos \propto = \cos 60^{\circ}$$

e) ∝ dá três voltas e para no 1° quadrante

Resolução

$$\propto = \frac{23\pi}{3} rad$$

$$\propto = \frac{23.180^{\circ}}{3} rad$$

$$\propto = 1380$$
°

Dividindo por 360°, encontraremos quociente 3 e resto igual a 300°. Analisando as alternativas, tem–se que :

- a) Verdadeira pois, ∝ = 1380 °
- b) Verdadeira, pois, já foi verificado que deu três voltas, e 300° está no 4° quadrante

c) sen 1380° = sen 300° = sen (-60°) = - sen 60° =
$$\frac{-\sqrt{3}}{2}$$
 Verdadeira

d)
$$\cos \propto = \cos 300^{\circ} = \cos 60^{\circ} = \frac{1}{2} \text{ Verdadeira}$$

e) Falsa, pois dá 3 voltas e para no 4° quadrante

(Alternativa E)

17. Observe a tabela a seguir, que mostra a relação entre três redes sociais da internet e a quantidade de usuários, em milhões de pessoas, que acessam essas redes na Argentina, Brasil e Chile, segundo dados de junho de 2011.

Número de usuários de redes sociais em milhões de pessoas

		Argentina	Brasil	Chile
Facebook		11,75	24,5	6,7
Twitter		2,4	12	1,2
Windows profile	Live	3,06	14,6	1,44

Reescrevendo os dados da tabela em forma de matriz, temos:

$$A = \begin{bmatrix} 11,75 & 24,5 & 6,7 \\ 2,4 & 12 & 1,2 \\ 3,06 & 14,6 & 1,44 \end{bmatrix}$$

Considerando que a_{ij} , com $1 \le i \le 3$, $1 \le j \le 3$, são os elementos da matriz A, então $\cos(\frac{a_{22}-a_{21}}{a_{33}}\pi)$ rad vale:

- a) $-\frac{1}{2}$ b) -1
- c) 0
- 4) (
- d) 1 e) $\frac{1}{2}$

Resolução

$$\cos\left(\frac{a_{22-a_{21}}}{a_{33}}\pi\right) = \cos\left(\frac{12-2,4}{1,44}\right)\pi$$

$$\cos\left(\frac{9,60}{1,44}\right)$$

$$\cos\left(\frac{20\pi}{3}\right)$$

$$\cos\left(6\pi + \frac{2\pi}{3}\right)$$

$$\cos\left(\frac{2\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

(Alternativa A)

18. O número

$$N = (3 \cos 180^{\circ} - 4 \sin 210^{\circ} + 2 \tan 35^{\circ}) / (6 \sin^2 45^{\circ})$$

pertence ao intervalo

Resolução

$$N = \frac{3\cos 1 \quad ^{\circ}-4 \, sen 210^{\circ}+2 \, tg 135^{\circ}}{6 \, sen^{2}45^{\circ}}$$

$$N = \frac{3\cos 180^{\circ} - 4 (sen 30^{\circ}) + 2 \cdot (-tg 45^{\circ})}{6 \cdot \left(\frac{\sqrt{2}}{2}\right)^{2}}$$

$$N = \frac{-3 + 2 - 2}{6 \cdot \frac{2}{4}}$$

$$N = \frac{-3+2-2}{6 \cdot \frac{2}{4}}$$

$$N = \frac{-3}{3}$$

$$N = -1$$

Embora o número - 1 tenha aparecido nas alternativas C e D, na alternativa C o intervalo é fechado, enquanto na alternativa D o intervalo é aberto.

(Alternativa C)

19. O valor de y = $\cos 150^{\circ} + \sin 300^{\circ} - \tan 225^{\circ} - \cos 90^{\circ}$ é

a) -
$$\frac{-\sqrt{3}-3}{2}$$

b) -
$$\sqrt{3}$$
 + 1

c) -
$$\sqrt{3}$$
 - 1

d)
$$\sqrt{3} - 1$$

Resolução

$$y = \cos 150^{\circ} + \sin 300^{\circ} - tg 225^{\circ} - \cos 90^{\circ}$$

$$y = -\cos 30^{\circ} - \sin 60^{\circ} - tg45^{\circ} - \cos 90^{\circ}$$

$$y = \frac{-\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - 1 - 0$$

$$Y = \frac{-2\sqrt{3}}{2} - 1$$

$$Y = -\sqrt{3} - 1$$

(Alternativa C)

- 20. Nos X-Games Brasil, em maio de 2004, o skatista brasileiro Sandro Dias, apelidado "Mineirinho", conseguiu realizar a manobra denominada "900", na modalidade skate vertical, tornando-se o segundo atleta no mundo a conseguir esse feito. A denominação "900" refere-se ao número de graus que o atleta gira no ar em torno de seu próprio corpo, que, no caso, corresponde a
- a) uma volta completa.
- b) uma volta e meia.
- c) duas voltas completas.
- d) duas voltas e meia.
- e) cinco voltas completas.

Resolução

 $900 = 2 . 360^{\circ} + 180^{\circ}$ Quer dizer que o atleta girou duas voltas e meia

(Alternativa D)

