

Movimentos uniformes e uniformemente variados

Prof. Toni Burgatto *Aula 01*

SUMÁRIO

ntrodução	3
. Análises gráficas	4
1.1. Velocidade escalar média	4
1.2. Aceleração escalar média	5
1.3. Variação do espaço no gráfico v × t	5
1.4. Variação da velocidade escalar no gráfico a × t	6
1.5. Gráficos no MU	7
1.6. Gráficos no MRUV	9
P. Movimento circular	17
2.1. Grandezas angulares	17
2.2. Movimento circular uniforme (MCU)	19
2.3. Movimento circular uniformemente variado (MCUV)	23
2.4. Transmissão de movimento circular	25
3. Lista de exercícios	28
l. Gabarito sem comentários	48
5. lista de exercícios comentada	49
5. Considerações finais da aula	86
7. Referências bibliográficas	87
B. Versão da aula	88

Introdução

Nesta aula iniciaremos do Movimento Uniforme (MU), Movimento Uniformemente Variado (MUV), Movimento Circular Uniforme (MCU), Movimento Circular Uniformemente Variado (MCUV). Além disso, faremos análises gráficas dos movimentos.

O Colégio Naval adora cobrar os temas dessa aula e gosta de questões bem teóricas, com algumas contas. Preste muita atenção em análises gráficas.

Fique à vontade para tirar dúvidas comigo no fórum de dúvidas ou se preferir:

1. Análises gráficas

Inicialmente, vamos estudar os conceitos envolvendo os gráficos de $s \times t$, $v \times t$ e $a \times t$, com foco no significado da reta tangente em cada gráfico. Em seguida, vamos estudar as relações das áreas dos gráficos.

Não podemos confundir o gráfico com a trajetória. A curva de um gráfico é apenas um conjunto de valores definidos por uma relação matemática entre duas variáveis. Por outro lado, trajetória é o conjunto de posições do móvel que são ocupadas pelo móvel.

1.1. Velocidade escalar média

Vamos relembrar a definição matemática de velocidade escalar média:

$$v_m = \frac{\Delta s}{\Delta t}$$

Assim, dado um movimento qualquer de um corpo, não precisamos especificar o tipo do movimento, podemos escrever a curva do espaço pelo tempo e a partir de dois pontos determinar a velocidade escalar média pelo gráfico:

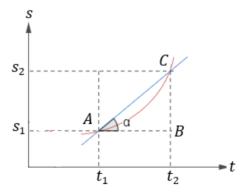


Figura 1: Cálculo da velocidade média a partir do gráfico sxt.

De acordo com o gráfico, podemos calcular $tg\alpha$ no triângulo ABC:

$$tg\alpha = \frac{BC}{AB} = \frac{s_2 - s_1}{t_2 - t_1}$$
$$\therefore tg\alpha_{=}^{N} v_m$$

Assim, podemos concluir que dado o gráfico do espaço pelo tempo ($s \times t$), podemos obter a velocidade escalar média entre dois pontos calculando a tangente do ângulo formado pela reta que liga os pontos e a horizontal, independente de qual seja o tipo do movimento do corpo.

1.2. Aceleração escalar média

Devido as semelhanças nas definições, a análise gráfica da aceleração escalar média é análoga a velocidade escalar média (sempre tome cuidado com os eixos dos gráficos e tome cuidado para não confundir e calcular errado).

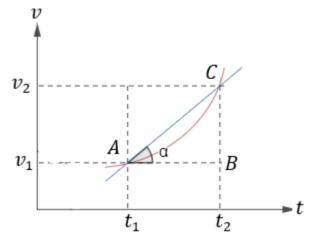


Figura 2: Representação da aceleração média no gráfico vxt.

Assim, no gráfico da $v \times t$, podemos calcular a aceleração escalar média entre dois pontos (A e C), por:

$$a_m = \frac{v_2 - v_1}{t_2 - t_1}$$

Mas, $tg\alpha$ é dada por: $tg\alpha = \frac{BC}{AB} = \frac{v_2 - v_1}{t_2 - t_1}$

Portanto, concluímos que:

$$a_m = tg\alpha$$

Novamente, se desejamos calcular a aceleração escalar média entre dois instantes de um movimento qualquer, é necessário conhecer o valor da tangente do ângulo formado entre a reta que liga os pontos do gráfico (no nosso caso A e C) e o eixo dos tempos.

1.3. Variação do espaço no gráfico v imes t

Vamos utilizar o gráfico do MU para ilustrar o resultado do cálculo da área no gráfico $v \times t$.

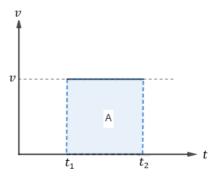


Figura 3: Cálculo da variação do espaço a partir do gráfico vxt.

Sabemos que:

$$v = v_m = \frac{\Delta s}{\Delta t}$$

De outra forma:

$$\Delta s = v. \Delta t.$$

Calculando a área do gráfico de $v \times t$, para o caso do MU, encontramos que:

$$A = v.(t_2 - t_1)$$

Como $\Delta t = t_2 - t_1$, podemos afirmar que a área é numericamente igual a variação do espaço:

$$\Delta s \stackrel{N}{=} A$$

Embora mostremos para um caso particular de movimento, o resultado é valido para qualquer movimento. Infelizmente, para demonstrar este fato com rigor matemático é necessário recursos do Cálculo Diferencial Integral que não são os objetivos desse curso.

1.4. Variação da velocidade escalar no gráfico a imes t

De forma análoga aos resultados obtidos para a variação do espaço, vamos mostrar a representação da área no gráfico $a \times t$, especificando para o MRUV, onde a aceleração escalar é constante.

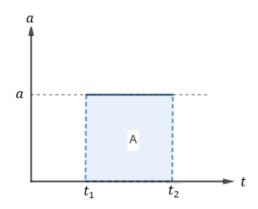


Figura 4: Cálculo da variação da velocidade a partir do gráfico axt.

Pela teoria de MRUV, sabemos que:

$$a = \frac{\Delta v}{\Delta t}$$

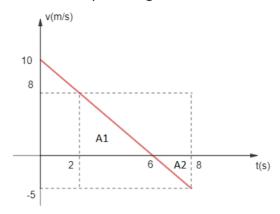
Ou ainda $\Delta v = a$. Δt .

Quando calculamos a área delimitada pela região azul do gráfico logo acima, concluímos que:

$$A = a. (t_2 - t_1) = a. \Delta t$$
$$\therefore \Delta v \stackrel{N}{=} A$$

No caso de a curva da aceleração não ser constante, serão necessários outros métodos para obtenção da área. Para o caso de a aceleração variar linearmente com o tempo, a velocidade pode ser determinada pela área, com os auxílios da geometria plana. Para outras curvas, apenas com Cálculo para determinar a área embaixo da curva.

Observação: se ao construir o gráfico de $v \times t$ a área estiver abaixo do eixo dos tempos, a variação de espaço é igual a área, entretanto, coloca-se o sinal negativo. Contudo, quando se deseja o deslocamento total do móvel, utilizamos os módulos das variações de espaço. Isso é valido para o caso do gráfico de $a \times t$, conforme o exemplo a seguir:



Calcule a variação de espaço e o deslocamento de 2 a 8 segundos.

Para calcular a variação de espaço e o deslocamento de 2 a 8 segundos, precisamos calcular as áreas de cada intervalo.

Entre 2 e 6 segundos:

$$A_1 = \frac{8.(6-2)}{2} = 16$$

Entre 6 e 8 segundos:

$$A_2 = \frac{8.(8-6)}{2} = 8$$

Logo, a variação de espaço do móvel foi de:

$$\Delta s = \Delta s_1 + \Delta s_2 = 16 + (-8) = 8 m.$$

Para determinar o deslocamento, devemos somar os módulos de cada deslocamento:

$$d = |\Delta s_1| + |\Delta s_2| = 16 + 8 = 24 m.$$

No momento em que o móvel passa pelo eixo dos tempos (no nosso exemplo $t=6\,s$), sua velocidade altera o sentido, isto é, houve inversão no sentido do movimento.

Após esses conceitos iniciais, podemos estudar os gráficos do MRUV.

1.5. Gráficos no MU

1.5.1. $s \times t$

Da teoria, sabemos que a função horária do espaço é dada por:

$$s = s_0 + v.t$$

Trata-se de uma função do primeiro grau, portanto uma reta, onde o coeficiente linear é s_0 e o coeficiente angular é v.

Como o coeficiente angular é igual a v e, pela teoria da equação da reta sabemos que o coeficiente angular é igual a tangente do ângulo de inclinação da reta com o eixo horizontal, portanto, temos que v = v = v.

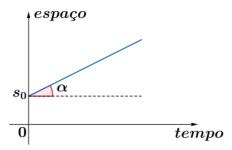


Figura 5: Gráfico de sxt, para v > 0.

Para v>0, temos o movimento progressivo e a função é crescente, pois coeficiente angular é positivo, então temos os seguintes gráficos possíveis:

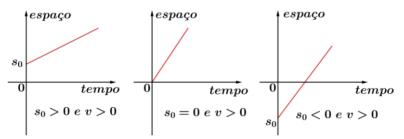


Figura 6: Gráficos de sxt no MU para v > 0.

Para v < 0, temos o movimento retrógrado, e a função é decrescente, pois o coeficiente angular é negativo, então temos os seguintes gráficos possíveis:

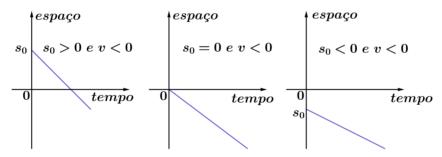


Figura 7: Gráficos de sxt no MU para v < 0.

1.5.2. $v \times t$

Devido ao fato de a velocidade ser constante nesse movimento, temos que o gráfico da velocidade pelo tempo sempre será uma reta paralela ao eixo do tempo.

Para o caso de movimento progressivo, isto é, v>0, a reta paralela está acima do eixo do tempo.

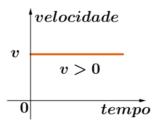


Figura 8: Gráfico de vxt no MU para v>0.

Para o caso de movimento retrógrado, ou seja, v < 0, a reta paralela está abaixo do eixo do tempo.

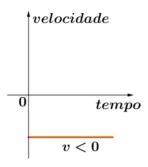


Figura 9: Gráfico de vxt no MU para v<0.

Como a aceleração escalar linear é nula no MRU, então a reta da função horária da aceleração é nula, isto é, uma reta que coincidente com o eixo do tempo, independentemente de ser progressivo ou retrógrado.

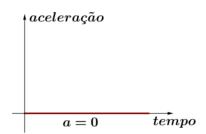


Figura 10: Gráfico de axt no MU.

1.6. Gráficos no MRUV

1.6.1. $s \times t$

Como visto anteriormente, a função horária do espaço é dada por:

$$s = s_0 + v_0.t + \frac{a.t^2}{2}$$

Em que a, v_0 e s_0 são constantes.

De acordo com a teoria de função do segundo grau, sabemos que a função s(t) é uma parábola cuja concavidade depende do valor de a.

1) Caso a > 0:

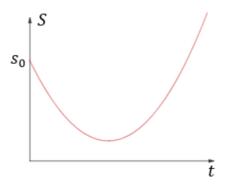


Figura 11: Gráfico de sxt no MUV, com a<0.

Para ilustrar, tomamos que $s_0 > 0$ mas o espaço inicial poderia ser menor que zero, apenas estaria deslocada para baixo a curva, sem afetar os resultados teóricos aqui obtidos.

No caso de a aceleração escalar positiva, o vértice da parábola representa o espaço mínimo (s_V) alcançado pelo móvel no correspondente instante de tempo (t_V) . Notamos que:

• De 0 a t_V : o espaço do móvel decresce, a inclinação da reta tangente nesse intervalo é negativa, isto é, a velocidade é negativa. Entretanto, a>0 para todo movimento. Como a.v<0, implica movimento retardado. Logo, o módulo da velocidade diminui com o tempo, como esperado uma vez uma vez que a inclinação é negativa e está tendendo a zero. Quando chegamos no instante t_V , a reta tangente no gráfico neste ponto é horizontal, paralela ao eixo dos tempos, isto é, sua inclinação é nula. Portanto, a velocidade nesse ponto é nula. Após este instante, o móvel muda de sentido e seu espaço começa a crescer e a

inclinação é positiva, portanto, temos v > 0 e a > 0, característica de movimento acelerado.

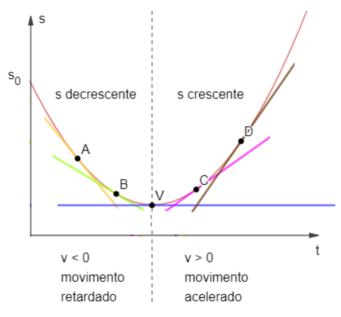


Figura 12: Gráfico de sxt no MUV, com a > 0, mostrando as fases do movimento.

2) Caso a < 0:

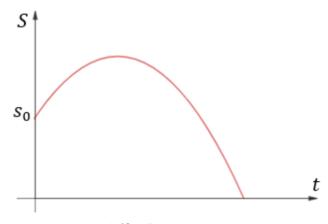


Figura 13: Gráfico de sxt no MUV, com a < 0.

Novamente, pegamos o caso de $s_0>0$, mas os resultados são validos para qualquer espaço inicial.

Para o caso de a<0, temos que o gráfico acima representa uma parábola com concavidade para baixo, mostrando que o móvel atinge um espaço máximo no vértice da parábola, quando atinge o instante $t_{\rm V}$.

Notamos que o espaço é crescente até o instante t_V , isto é, velocidade positiva nesse intervalo de tempo e, como v>0 e a<0, trata-se de um movimento retardado, ou seja, o módulo da velocidade diminui, como visto também pelo fato da inclinação da reta tangente diminuir a medida que nos aproximamos de t_V .

No instante t_V a velocidade é nula, característica de mudança de sentido. Para $t>t_V$, o espaço do móvel começa a decrescer, o que significa velocidade negativa. Então, trata-se de um movimento acelerado, pois, a<0 e v<0 (a.v<0). Assim, podemos afirmar que o módulo da velocidade está aumentando, o que também é visto pelo fato de a inclinação da reta tangente estar aumentando, em módulo, com o passar do tempo.

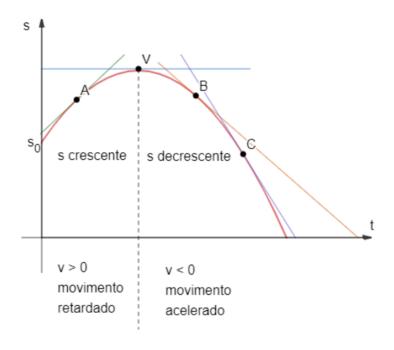


Figura 14: Gráfico de sxt no MUV, com a < 0, mostrando as fases do movimento.

Sendo assim, concluímos que em ambos os casos para $t < t_V$ teremos movimento retardado e para $t > t_V$ teremos movimento acelerado.

Além disso, podemos observar toda vez que a reta tangente é paralela ao eixo dos tempos, a velocidade naquele instante é nula. Isto é valido não só para o MUV, mas para todo movimento variado.

1.6.2. $v \times t$

Para o MUV, sabemos que a função horária da velocidade é dada por:

$$v = v_0 + a.t$$

Com v_0 e a são valores constantes.

Sabemos que essa função é uma reta, onde:

 v_0 : coeficiente linear

a: coeficiente angular

1) Caso a > 0:

Trata-se de uma função do primeiro grau crescente, cujo gráfico é dado por:

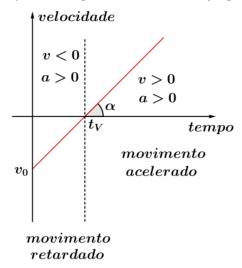


Figura 15: Gráfico de vxt no MUV, com a > 0, mostrando as fases do movimento.

Analisando o gráfico acima, podemos ver que para $0 < t < t_V$, a velocidade é negativa. Logo, como a > 0, trata-se de um movimento retardado, pois temos que a. v < 0.

Para $t=t_V$, temos que a velocidade do móvel é nula (mudança de sentido). A partir deste instante, a velocidade é positiva. Logo, como a>0, trata-se de um movimento acelerado, pois temos que a.v>0.

Vale lembrar que a aceleração é numericamente igual a tangente de alfa $(a_{=}^{N}tg\alpha)$.

2) Caso a < 0:

Trata-se de uma função do primeiro grau decrescente, cujo gráfico é dado por:

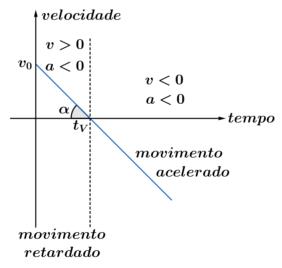


Figura 16: Gráfico de vxt no MUV, com a < 0, mostrando as fases do movimento.

Analisando o gráfico acima, podemos ver que para $0 < t < t_V$, a velocidade é positiva. Logo, como a < 0, trata-se de um movimento retardado, pois temos que a. v < 0.

Para $t=t_V$, temos que a velocidade do móvel é nula (mudança de sentido). A partir deste instante, a velocidade é negativa. Logo, como a<0, trata-se de um movimento acelerado, pois temos que a.v>0.

Vale lembrar que a aceleração é numericamente igual a tangente de alfa $(a_{=}^{N}tg\alpha)$.

Neste caso, embora a tangente de alfa ser positiva, a aceleração escalar é negativa, pois tratase de uma reta decrescente (o cálculo da tangente é apenas para determinação do módulo).

1.6.3 $a \times t$

No MRUV, sabemos que a aceleração é constante, portanto, existe dois gráficos para a aceleração:

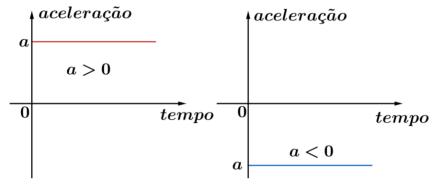
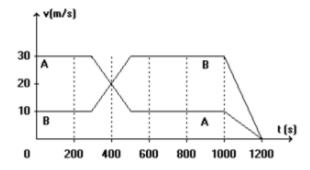


Figura 17: Gráficos de axt no MUV.

Observação: se a aceleração é nula, então não estamos no MRUV, trata-se de um movimento retilíneo uniforme.

1)

Dois veículos A e B deslocam-se em trajetórias retilíneas e paralelas uma à outra. No instante t = 0 s eles se encontram lado a lado. O gráfico adiante representa as velocidades dos dois veículos, em função do tempo, a partir desse instante e durante os 1200 s seguintes. Os dois veículos estarão novamente lado a lado, pela primeira vez, no instante?



Comentários:

Pelo gráfico de $v \times t$ temos que a área abaixo da curva com eixo do tempo é numericamente igual ao espaço, dessa forma precisamos pegar um instante onde temos certeza de que a área será a mesma para A e para B.

Como a figura tem uma certa simetria, isto ocorre quando $t=800\ s.$

2)

A figura representa o gráfico posição-tempo do movimento de um corpo lançado verticalmente para cima com velocidade inicial v_0 , na superfície de um planeta.



Qual o valor:

- a) da aceleração da gravidade na superfície do planeta?
- b) da velocidade inicial v_0 ?

Comentários:

Pelo gráfico da questão, podemos encontrar a função horária do espaço:

$$s(t) = s_0 + v_0 \cdot t + \frac{a \cdot t^2}{2}$$

Como o gráfico da posição pelo tempo sai da origem, dizemos que seu espaço inicial é nulo, isto é, $s_0=0$.

Além disso, consideremos nossa orientação de trajetória para cima.

Agora, vamos utilizar nossos conhecimentos de função do segundo grau e determinar os coeficientes v_0 e a. Para isto, vamos utilizar a forma fatorada da função do segundo grau:

$$s_{grafico}(t) = \alpha(t - r_1)(t - r_2)$$

Em que r_1 e r_2 são as raízes da função, no nosso caso: $r_1=0$ e $r_2=6$. Logo:

$$s_{grafico}(t) = \alpha.t.(t-6)$$

Basta agora substituir em ponto bem determinado:

$$s_{grafico}(3) = \alpha.3.(3-6) = 9 \Rightarrow \alpha = -1 \, m/s^2$$

Note que a < 0, como esperado, pois, a função do segundo grau tem concavidade para baixo. Logo, a função do espaço pelo tempo para este móvel é:

$$s_{qrafico}(t) = -1.t(t-6) = 6.t - 1.t^2$$

Fazendo comparação entre:

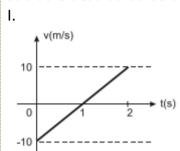
$$s(t) = s_0 + v_0.t + \frac{a.t^2}{2} e s_{grafico}(t) = 6.t - 1.t^2$$

Logo:

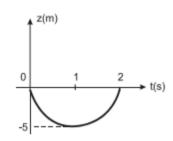
$$s_0 = 0$$
, $v_0 = 6 m/s$ e $a = -2 m/s^2$

3)

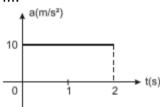
Enquanto espera o ônibus, um garoto fica brincando com a sua bola de tênis, lançando-a com a mão para cima e pegando-a de volta no mesmo ponto do lançamento. Ele consegue lançar a bola para cima, completamente na vertical, com uma velocidade em módulo de $10\ m/s$. A partir dessas informações, entre os gráficos a seguir identifique os que podem representar o movimento de subida e descida da bola:



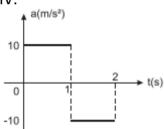
II.



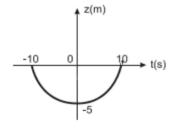
III.



IV.



٧.



Comentários:

Nessa questão vamos adotar o sentido da trajetória para baixo, para mostrar que os resultados independem da orientação, apenas alteram os sinais das grandezas.

Pelas condições enunciado, podemos dizer que a origem do espaço está no ponto de lançamento da bola e, ainda, a velocidade inicial da bolinha tem módulo igual a 10 m/s. Portanto, de acordo com a origem adotada, teremos que:

$$v_0 = -10 \ m/s$$

Então, pela equação horária da velocidade, podemos determinar o tempo até a bolinha parar (movimento retardado), isto é, atingir a altura máxima e, depois, inverter o sentido (movimento acelerado).

$$v = v_0 + a.t$$

$$v = -10 + 10.t$$

$$0 = -10 + 10.t \Rightarrow t = \frac{10}{10} = 1 s$$

Logo, o gráfico da figura I representa corretamente a função horária da velocidade.

Para determinar a função horária do espaço, podemos calcular a área do gráfico $v \times t$, ou simplesmente integrar a função v(t). No nosso curso vamos sempre procurar métodos sem utilizar Cálculo para sempre estimular o cérebro a resolver pelos assuntos do ensino médio.

Área do gráfico $v \times t$, até um instante t:

$$\frac{\Delta s}{\Delta t} = \frac{v_1 + v_0}{2} \Rightarrow \Delta s = \frac{-10 + 10.t - 10}{2}.t$$
$$\Rightarrow \Delta s = -10.t + 5.t^2$$

Considerando o espaço inicial igual a zero:

$$s = -10.t + 5.t^2$$

O gráfico da segunda figura está acordo com esta função horária.

De acordo com a função horária da velocidade, temos que a aceleração é de 10m/s² constante. Portanto, a terceira figura também está correta.

O que exclui a figura IV. Além disso, de acordo com a função horaria do espaço, podemos excluir também a figura V.

2. Movimento circular

Até aqui descrevemos movimentos por intermédio de grandezas escalares lineares, onde as grandezas eram definidas em relação a medidas de comprimentos. A partir de agora, vamos introduzir o conceito de grandeza escalar circular (espaço angular, velocidade escalar angular e aceleração escalar angular), tomando como medidas ângulos na circunferência.

2.1. Grandezas angulares

Considere uma partícula realizando um movimento circular da figura.

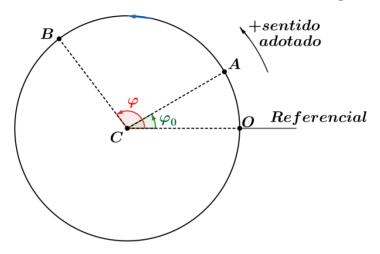


Figura 18: Representação de grandezas angulares.

Na figura acima, A é a posição inicial da partícula e B é a posição final da partícula. Considere a origem O e adota-se o sentido anti-horário como positivo, dizemos que:

 s_0 : espaço inicial s: espaço final

Devido a trajetória ser circular, podemos escrever a posição inicial e final do ponto material utilizando ângulos:

 φ_0 : espaço angular inicial φ : espaço angular final

Vale lembrar a relação da geometria plana para ângulos em radianos:

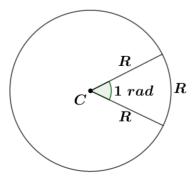


Figura 19: Definição de radianos.

Então, estabelecemos uma relação entre ângulo central e comprimento do arco de circunferência:

Ângulo		Arco
1 rad	-	R
α	-	S

Logo:

$$1. s = \alpha. R$$

$$\therefore s = \alpha . R$$

Atenção: ângulo α em radianos. Além disso, como a definição de radianos envolve a divisão entre duas grandezas de distâncias, radianos se torna essencialmente adimensional.

Assim, podemos escrever a variação angular da partícula, como:

$$\Delta \varphi = \varphi - \varphi_0$$

Dessa forma, define-se velocidade angular média como a razão entre a variação do espaço angular e a variação do tempo correspondente:

$$\omega_m = \frac{\Delta \varphi}{\Delta t}$$

Como os espaços angulares são expressos em radianos e o tempo em segundos, a unidade de velocidade angular é expressa em radianos por segundo (rad/s).

Semelhante a definição de aceleração escalar média, define-se aceleração angular média como a razão entre a variação da velocidade angular e o intervalo de tempo correspondente:

$$\gamma_m = \frac{\Delta\omega}{\Delta t}$$

Como a velocidade angular é expressa em rad/s e o tempo em segundos, a unidade de aceleração angular é rad/s^2 .

Pela geometria plana, podemos escrever algumas relações entre as grandezas escalares lineares e as grandezas angulares:

Relação de ângulo com comprimento de arcos na circunferência:

$$\boxed{\varphi_0 = \frac{s_0}{R}} \qquad \boxed{\varphi = \frac{s}{R}} \qquad \boxed{\Delta \varphi = \frac{\Delta s}{R}}$$

o Relação ente velocidade linear média e velocidade angular média:

$$\omega_m = \frac{\Delta \varphi}{\Delta t} = \frac{\frac{\Delta s}{R}}{\frac{\Delta t}{\Delta t}} = \frac{1}{R} \cdot \frac{\Delta s}{\Delta t} = \frac{1}{R} \cdot v_m$$

$$\therefore \omega_m = \frac{v_m}{R}$$

Para velocidades instantâneas, também vale a relação:

$$\omega = \frac{v}{R}$$
 ou $v = \omega . R$

o Relação entre aceleração linear média e aceleração angular média:

$$\gamma_m = \frac{\Delta\omega}{\Delta t} = \frac{\frac{\Delta v}{R}}{\frac{\Delta t}{\Delta t}} = \frac{1}{R} \cdot \frac{\Delta v}{\Delta t} = \frac{1}{R} \cdot a_m$$
$$\therefore \boxed{\gamma_m = \frac{a_m}{R}}$$

Para acelerações instantâneas, também vale a relação:

$$\gamma = \frac{a}{R} \text{ ou } a = \gamma.R$$

4)

A hélice de um ventilado está girando com velocidade angular de 10 rad/s, quando uma pessoa desliga o ventilador e a hélice para em 10 s. Determine:

- a) a aceleração angular média do ventilador entre o instante em que foi desligado até a hélice parar totalmente;
- b) a aceleração linear média dos pontos que distam 0,20 m do eixo de rotação, nesse mesmo intervalo de tempo.

Comentários:

a)

Pelas condições do problema, temos que a velocidade angular inicial é 10 rad/s e a velocidade angular final é zero.

Logo:

$$\gamma_m = \frac{\Delta\omega}{\Delta t} = \frac{0 - 10}{10 - 0}$$

$$\Rightarrow \boxed{\gamma_m = -1,0 \ rad/s^2}$$

b)

A aceleração linear média pode ser calculada pela relação:

$$a_m = \gamma_m \cdot R$$

$$a_m = (-1,0) \cdot 0,2$$

$$\Rightarrow \boxed{a_m = -0,20 \ m/s^2}$$

2.2. Movimento circular uniforme (MCU)

Chamamos de MCU o movimento realizado por um ponto material percorrendo uma circunferência de raio R em movimento uniforme, isto é, o ponto material varre ângulos iguais em intervalos de tempos iguais. Dessa forma, dizemos que o **MCU** é **periódico**, pois, a cada volta completada pelo móvel, as características do movimento se repetem em intervalos de tempo iguais.

2.2.1. Período e frequência

Define-se período, representado pela letra T como sendo o intervalo de tempo mínimo para o movimento repetir-se, com as mesmas características.

Por exemplo: no MCU, período é o intervalo de tempo que o ponto material leva para percorrer uma volta completa. Ou seja, se ele leva 0,5 s para realizar uma volta no MCU, seu período é dado por: $T=0.5\ s.$

De forma correlacionada, define-se *frequência* como sendo o número de vezes que o movimento se repete na unidade de tempo. Ou seja:

$$f = \frac{n}{\Lambda t}$$

Em que n número de repetições e Δt intervalo de tempo considerado.

Para o MCU, f é o número de voltas (ou ciclos) que o ponto material realiza na unidade de tempo. Por exemplo: se uma partícula completa 5 voltas em 10 segundos, então, sua frequência será:

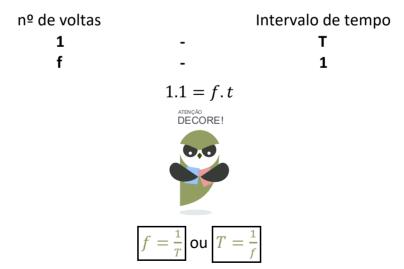
$$f = \frac{5}{10} = 0.5 \ ciclos/s$$

A unidade de ciclos/s recebe o nome de hertz, denotada por Hz. Esta é a unidade de frequência no SI.

Logo, dizemos que nossa frequência do exemplo é de 0,5 Hz.

Em alguns lugares aparece o termo "cada volta" é chamado de rotação. Por isso encontramos em alguns lugares o termo rps (rotações por segundo), outro nome para unidade hertz.

Diante da definição de período e de frequência, podemos encontrar uma relação entre as duas grandezas, por uma regra de três simples e direta:



Essa relação é extremamente importante no estudo de movimentos periódicos.

No exemplo anterior, para uma frequência de 0.5 Hz, o período é de:

$$T = \frac{1}{0.5} = 2 s.$$

Apesar da unidade de frequência ser hertz (Hz), é comum aparecer a unidade rotações por minuto (rpm). A relação entre as unidades é dada por:

$$1rpm = 1 \frac{rota \tilde{sao}}{minuto} = 1 \frac{rota \tilde{sao}}{60 s} = \frac{1}{60} Hz$$

$$Hz \xrightarrow{\overset{\times 60}{\longrightarrow} rpm}_{rpm \xrightarrow{\dot{sao}} Hz}$$

Com isso, podemos relacionar período e frequência com as velocidades do ponto material no MCU. Para uma volta completa, o espaço angular do móvel foi de 2π e o intervalo de tempo corresponde ao período T. Logo:

$$\Delta \varphi = 2\pi \,\mathrm{e}\,\Delta t = T$$

Portanto, podemos escrever a velocidade angular em função do período ou em função da frequência:

$$\omega = \frac{2\pi}{T} \text{ ou } \omega = 2\pi f$$

Como $v = \omega$. R, podemos escrever a velocidade linear como:

$$v = \frac{2\pi R}{T}$$
 ou $\omega = 2\pi f R$

2.2.2. Função horária do espaço angular

Considere um móvel realizando um MCU, no sentido anti-horário, como visto abaixo:

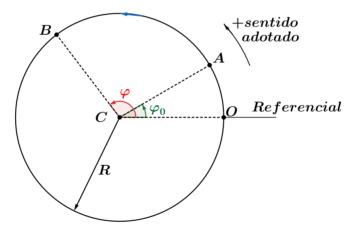


Figura 20: Representação de uma partícula realizando um MCU entre A e B.

Como característica deste movimento, a velocidade escalar linear é constante, portanto, como $\omega_m=\frac{v_m}{R}$, concluímos que a velocidade escalar angular também é constante, logo:

$$\omega = \omega_m \Rightarrow \boxed{\omega = \frac{\Delta \varphi}{\Delta t}}$$

Se no instante t_0 (início do movimento) o ponto material está no espaço angular φ_0 e, em um instante qualquer t, o ponto material tem espaço angular φ , então:

$$\Delta \varphi = \varphi - \varphi_0 \in \Delta t = t - t_0$$

Portanto:

$$\omega = \frac{\varphi - \varphi_0}{t - t_0} \Rightarrow \boxed{\varphi = \varphi_0 + \omega(t - t_0)}$$

Para simplificar a expressão, vamos começar a contabilizar o início do movimento na origem dos tempos, isto é, $t_0=0$, temos que:

$$\varphi = \varphi_0 + \omega.t$$

Como esperado, a função horária do espaço angular no MCU é uma expressão do primeiro grau em t, onde:

- o φ_0 é o espaço angular inicial quando t=0.
- \circ ω é a velocidade escalar angular instantânea ($\omega \neq 0$).
- $\circ \varphi_0$ e ω são valores constantes.

De imediato, como $\omega_m=\omega$, dizemos que a velocidade escalar angular não varia, ou seja, dizemos que neste movimento não existe aceleração escalar angular ($\gamma=0$).

Outra forma de obter a função horária do espaço angular é dividir a função horária do espaço linear pelo raio da circunferência onde o móvel descreve o MCU:

$$s = s_0 + v.t \xrightarrow{\div R} \frac{s}{R} = \frac{s_0}{R} + \frac{v}{R}.t \Rightarrow \boxed{\varphi = \varphi_0 + \omega.t}$$

ESCLARECENDO!

5)

Um corpo em movimento circular tem frequência de 500 rpm. Se a trajetória tem 20 cm de raio, calcule:

- a) a frequência em hertz.
- b) o período em segundos.
- c) a velocidade angular.
- d) a velocidade linear.

Comentários:

a)

Basta transformar a unidade da frequência:

$$f = \frac{500}{60} = \frac{25}{3} = 8,33 \, Hz$$

b)

O período é o inverso da frequência:

$$T = \frac{1}{f} = \frac{3}{25} = 0.12 \, s$$

c)

Podemos calcular a velocidade angular a partir da frequência:

$$\omega = 2\pi f = 2\pi \cdot \frac{25}{3} = \frac{50\pi}{3} \ rad/s$$

d)

Para chegarmos à velocidade linear, basta lembrarmos da relação entre as velocidades:

$$v = \omega . r = \frac{50\pi}{3} . 20 = \frac{1000\pi}{3} cm/s$$

6)

Dois carros percorrem uma circunferência de raio R no mesmo sentido e com módulos de velocidades constantes v_1 e v_2 , com $v_2 > v_1$. No instante inicial, $t_0 = 0$, os dois carros estão no mesmo ponto. Determine o instante em que ocorre o próximo encontro.

Comentários:

Vamos adotar como origem dos espaços o ponto onde $t_0=0$. Dessa forma, temos que $s_{0_1}=s_{0_2}$.

No ponto de encontro, o mais rápido terá andado uma volta de vantagem sobre o mais lento:

$$s_{2} = s_{1} + 2\pi.R$$

$$v_{2}.t_{E} = v_{1}.t_{E} + 2\pi.R$$

$$\therefore t_{E} = \frac{2\pi.R}{v_{2} - v_{1}}$$

2.3. Movimento circular uniformemente variado (MCUV)

O movimento circular uniformemente variado tem como característica a aceleração angular instantânea coincidir com a aceleração angular média:

$$\gamma = \gamma_m$$

Para um móvel realizando um movimento circular, conforme a figura x, podemos escrever as equações do móvel da seguinte forma:

$$s = s_0 + v_0 \cdot t + \frac{a \cdot t^2}{2}$$

$$v = v_0 + a \cdot t$$

$$v^2 = v_0^2 + 2 \cdot a \cdot \Delta s$$

$$A + sentido$$

$$adotado$$

$$Referencial$$

Figura 21: Representação de uma partícula realizando um MCUV entre os pontos A e B.

Como visto anteriormente, podemos pegar cada expressão e dividir pelo raio da circunferência descrita pelo móvel:

$$\frac{s}{R} = \frac{s_0}{R} + \frac{v_0}{R} \cdot t + \frac{1}{2} \cdot \frac{a}{R} \cdot t^2 \Rightarrow \boxed{\varphi = \varphi_0 + \omega_0 \cdot t + \frac{\gamma \cdot t^2}{2}}$$

$$\frac{v}{R} = \frac{v_0}{R} + \frac{a}{R} \cdot t \Rightarrow \boxed{\omega = \omega_0 + \gamma \cdot t}$$

$$\frac{v^2}{R^2} = \frac{v_0^2}{R^2} + 2 \cdot \frac{a}{R} \cdot \frac{\Delta s}{R} \Rightarrow \boxed{\omega^2 = \omega_0^2 + 2 \cdot \gamma \cdot \Delta \varphi}$$

$$\boxed{\gamma = \frac{a}{R} \text{ ou } \boxed{a = \gamma \cdot R}}$$

Como podemos notar, o MCUV é movimento não periódico, pois a aceleração linear não-nula, por isso, cada volta é realizada em um intervalo de tempo diferente da outra, não sendo possível definir período ou frequência para esse movimento.

Para análise de gráficos, a teoria abordada no MU pode ser aplicada ao MCU, enquanto a teoria abordada no MUV pode ser aplicada ao MCUV, pois, devido as características dos movimentos circulares, basta apenas dividir a grandeza escalar linear pelo raio da circunferência para chegar à grandeza escalar angular. Portanto, basta substituir s por φ , v por ω e a por γ .

7)

Um móvel descrevendo um MCUV tem velocidade angular igual a $10~\pi~rad/s$ em t=0 e velocidade angular igual a $24~\pi~rad/s$, em um intervalo de tempo igual a 7 segundos. Calcule:

- a) a aceleração angular;
- b) a função horária da velocidade angular;
- c) quantas voltas o móvel executa nesse Δt .

Comentários:

a)

Utilizando a definição de aceleração angular média, pois no MCUV, $\gamma=\gamma_m$, temos que:

$$\gamma = \frac{\Delta v}{\Delta t} = \frac{24\pi - 10\pi}{7 - 0} = 2\pi \, rad/s^2$$

b)

A função horária da velocidade angular é dada por:

$$\omega = \omega_0 + \gamma. t$$

$$\omega = 10\pi + 2\pi. t$$

c)

Vamos calcular o espaço descrito pelo móvel, utilizando a equação de Torricelli:

$$\omega^2 = \omega_0^2 + 2.\gamma.\Delta\varphi$$

$$\Delta \varphi = \frac{(\omega - \omega_0)(\omega + \omega_0)}{2. \gamma} \Rightarrow \Delta \varphi = 119\pi$$

A cada 2π ele realiza uma volta, então, em $119\pi=118\pi+\pi=59\cdot 2\pi+\pi$ Logo o móvel dá 59 voltas mais meia volta.

2.4. Transmissão de movimento circular

2.4.1. Correia comum a duas rodas ou por contato direto.

É comum utilizar a transmissão de movimentos para fins de amplificar ou reduzir uma grandeza física. O exemplo mais comum nas nossas vidas está em uma bicicleta, onde o ciclista estabelece uma velocidade na correia dos pedais, que é transmitida por uma corrente para a correia da roda de trás. Podemos representar essa transmissão pela figura abaixo:

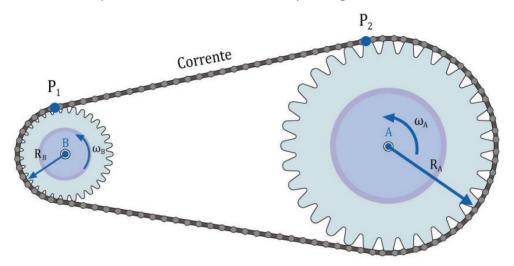


Figura 22: Transmissão de movimento entre duas coroas ligadas por uma corrente.

Se não existe escorregamento entre a corrente e as coroas, podemos dizer que a velocidade linear das duas coroas é igual a velocidade da corrente, ou seja, a velocidade linear é a mesma em qualquer ponto da corrente. Portanto:

$$v_{P_1} = v_{P_2}$$

Dessa forma, podemos encontrar uma relação para as velocidades angulares e as frequências para este conjunto:

$$v_{P_1} = v_{P_2} \Rightarrow \boxed{\omega_B \cdot R_B = \omega_A \cdot R_A}$$

Como $\omega = 2\pi f$, então:

$$2\pi f_B \cdot R_B = 2\pi f_A \cdot R_A \Rightarrow \boxed{f_B \cdot R_B = f_A \cdot R_A}$$

Assim, podemos concluir que se $R_A > R_B$, então $\omega_A < \omega_B$ e $f_A < f_B$.

De forma análoga, podemos chegar as mesmas conclusões para o caso das coroas (ou engrenagem) em contato direto:

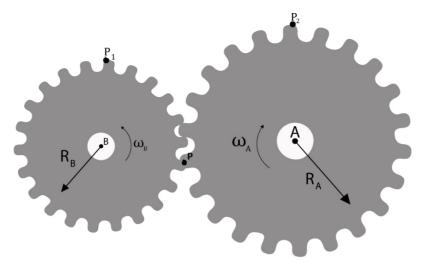


Figura 23: Representação de duas coroas em contato direto.

Caso não haja escorregamento e como as duas coroas se encontram em um ponto em comum, a velocidade linear das duas coroas deve ser a mesma:

$$v_P = v_{P_1} = v_{P_2}$$

Então:

$$\omega_B \cdot R_B = \omega_A \cdot R_A$$
 e $f_B \cdot R_B = f_A \cdot R_A$

Novamente, podemos concluir que se $R_A > R_B$, então: $\omega_A < \omega_B$ e $f_A < f_B$.

Caso o móvel esteja realizando um MCUV:

$$a_A = a_B \mathbf{e} \mathbf{v}_A \cdot R_A = \gamma_B \cdot R_B$$

2.4.2. Engrenagens com mesmo eixo de rotação

Considerando a transmissão entre duas engrenagens ligadas por um mesmo eixo, como na figura a seguir:

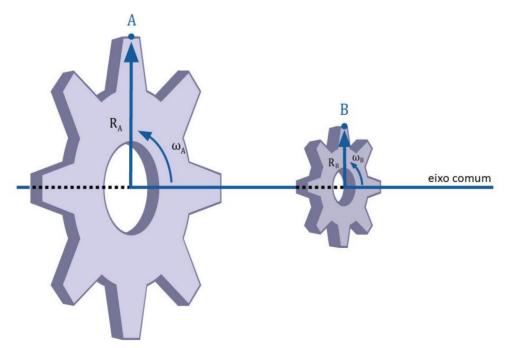


Figura 24: Representação de duas engrenagens com o mesmo eixo de rotação.

Nesse caso, podemos ver que está amarrada a variação angular de cada coroa, isto é, se pegarmos um ponto na coroa B, sua projeção na coroa A terá a mesma variação angular. Dessa forma, podemos deduzir que:

$$\Delta \varphi_B = \Delta \varphi_A$$

Assim, as velocidades angulares e as frequências serão as mesmas:

$$\Delta \varphi_A = \Delta \varphi_B \Rightarrow \omega_A \cdot \Delta t = \omega_B \cdot \Delta t \Rightarrow \omega_A = \omega_B$$

Como
$$\omega=2\pi f$$
, temos que: $\omega_A=\omega_B\Rightarrow 2\pi f_A=2\pi f_B\Rightarrow \boxed{f_A=f_B}$

Para velocidades lineares, encontramos que:

$$\omega_A = \omega_B \Rightarrow \boxed{\frac{v_A}{R_A} = \frac{v_B}{R_B}}$$

Concluímos que se $R_A > R_B$, então: $v_A > v_B$.

Caso o móvel esteja realizando um MCUV: $\overline{\gamma_A = \gamma_B}$ e $\frac{a_A}{R_A} = \frac{a_B}{R_B}$

Até aqui, deduzimos todas as equações para o caso de transmissão no MCU. Entretanto, toda análise feita é válida para qualquer tipo de movimento circular.

8)

Dois discos fixados a um mesmo eixo, que gira com frequência igual a f. A distância entre os discos é d. Um projétil é disparado, em uma linha paralela ao eixo, com uma velocidade v_p , perfurando os dois discos de tal forma que o ângulo formado pelo eixo comum com o furo do primeiro disco e o plano formado pelo eixo comum com o furo do segundo disco é $\Delta \varphi$. Calcule a velocidade do projétil.

Comentários:

Inicialmente, vamos calcular o tempo que o projétil gasta para percorrer a distância entre os dois discos:

$$\Delta t = \frac{d}{v_p}$$

Nesse intervalo de tempo, o eixo teve uma variação angular de φ , logo:

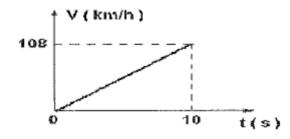
$$\omega = \frac{\Delta \varphi}{\Delta t} \Rightarrow 2\pi f = \frac{\varphi}{\Delta t} \Rightarrow 2\pi f = \frac{\varphi}{\frac{d}{v_p}}$$

$$\Rightarrow v_p = \frac{2\pi f d}{\varphi}$$

3. Lista de exercícios

1. (CN - 2016)

Durante um teste de desempenho, um carro de massa 1200 kg alterou sua velocidade conforme mostra o gráfico abaixo.

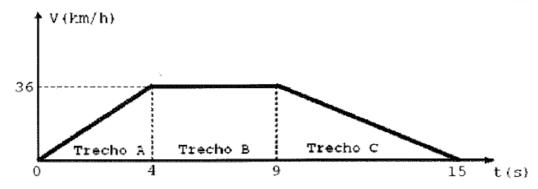


Considerando que o teste foi executado em uma pista retilínea, pode-se afirmar que a força resultante que atuou sobre o carro ($F=m\cdot a$) foi de

- a) 1200 N
- b) 2400 N
- c) 3600 N
- d) 4800 N
- e) 6000 N

2. (CN - 2010/modificada)

Um treinador marcou três trechos numa pista de atletismo com o objetivo de selecionar, entre os seus atletas amadores, aqueles que fariam parte da sua equipe de corridas de curta distância. Após tabular os dados, o treinador elaborou um gráfico, abaixo mostrado, do desempenho de um dos escolhidos, cuja massa é de 60 kg e que estava entre os que foram mais rápidos.

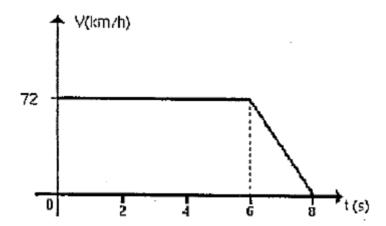


Sobre esse gráfico foram feitas as seguintes afirmativas:

- I No trecho A, o atleta executou um MRUV com aceleração escalar média de 2,5 m/s².
- II O trecho B foi realizado em MRU e a distância percorrida foi de 50 m.
- III A velocidade média do atleta foi de 24 km/h.
- a) apenas a I.
- b) apenas a II.
- c) apenas a III.
- d) apenas I e III.
- e) todas estão corretas.

3. (CN - 2007/modificada)

Observe a figura a seguir.



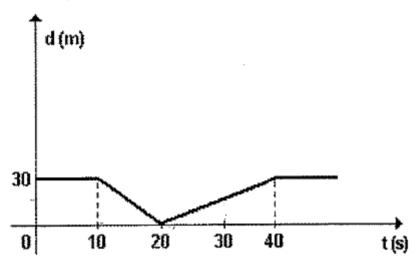
O gráfico acima mostra a velocidade de um carro de 900 kg deslocando-se por uma estrada em linha reta. Dentro dele, um passageiro aciona um cronômetro e, logo depois, aos 6 segundos, percebe que o motorista pisou no freio e parou o carro, quando o cronômetro marcava 8 s. neste caso, desprezando-se a resistência do ar, é correto afirmar que o deslocamento do carro e a velocidade média do carro, nas unidades do SI, valem, respectivamente:

- a) 140 e 17,5
- b) 160 e 35
- c) 120 e 35

- d) 140 e 35
- e) 180 e 17,5

4. (CN - 2006)

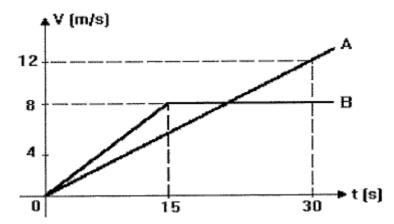
Observe o gráfico:



Analisando-se o deslocamento de um carro, numa trajetória, apresentado no gráfico acima, é correto afirmar que

- a) o movimento do carro é a favor da trajetória entre 10 s e 20 s.
- b) o carro possui velocidade constante e positiva entre 0 s e 10 s.
- c) o carro possui movimento uniformemente variado entre 10 s e 20 s.
- d) no instante 20 s, o carro está parado.
- e) o carro tem movimento retilíneo e uniforme entre 20 s e 40 s.

5. (CN - 2004)

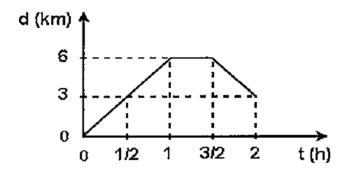


O gráfico acima representa o movimento de dois móveis A e B a partir de t=0. Considerando que os móveis encontravam-se, inicialmente, na mesma posição, pode-se afirmar que após 30 s, a distância em metros, que os separa vale

- a) 180
- b) 120
- c) 100
- d) 60
- e) 0

6. (EAM - 2017)

O gráfico abaixo representa uma caminhada feita por uma pessoa durante a sua atividade física diária.



Sobre essa atividade, analise as afirmativas a seguir e assinale a opção correta.

- I A pessoa caminhou, sem parar, por 2 horas.
- II A distância total percorrida foi de 9 km.
- III O movimento foi uniforme na ida e na volta.
- IV Na volta, o módulo da velocidade média foi de 6 km/h.
- V Nesse trajeto, a pessoa ficou em repouso por 20 min.
- a) apenas as afirmações I e II estão corretas.
- b) apenas as afirmações I e IV estão corretas.
- c) apenas as afirmações I, II e III estão corretas.
- d) apenas as afirmações III, IV e V estão corretas.
- e) apenas as afirmações II, III e IV estão corretas.

7. (EAM - 2012)

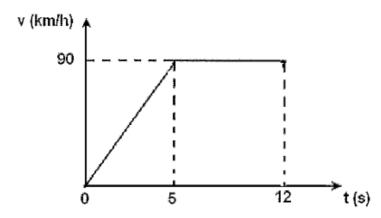
Um navio, ao sair do repouso, conseguiu atingir uma velocidade de 23 nós (aproximadamente 12 m/s), num intervalo de tempo de 2 min. A aceleração média desse navio foi de

- a) $0,1 \text{ m/s}^2$
- b) 0,2 m/s²
- c) 0.3 m/s^2
- d) 0.4 m/s^2

e) 0,5 m/s²

8. (EAM - 2011)

Durante a apresentação para uma revista especializada, um carro de 1200 kg acelerou nua pista retilínea e obteve o resultado mostrado no gráfico abaixo:



É correto afirmar que a força média em newtons ($F=m\cdot a$), transmitida pelo motor às rodas entre os instantes 0 s e 5 s, foi de

- a) 1200
- b) 2400
- c) 3600
- d) 4800
- e) 6000

9. (EAM - 2010)

O gráfico abaixo mostra a evolução da velocidade do guepardo durante a caça.



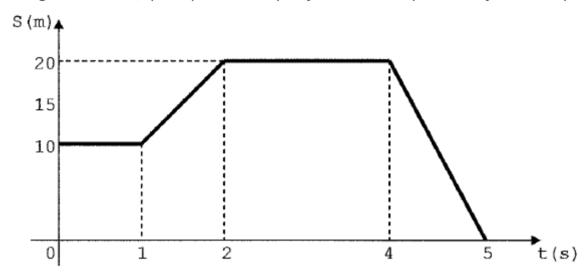
Analisando o gráfico, é possível concluir que a aceleração escalar média do guepardo tem o valor de

- a) 2 m/s²
- b) 5 m/s²

- c) 7 m/s²
- d) 10 m/s²
- e) 12 m/s²

10. (EAM - 2009)

Observe o gráfico abaixo, que representa as posições de um corpo em função do tempo.



É correto afirmar que o corpo está em movimento

- a) permanente no intervalo 0 s e 5s.
- b) nos intervalos de 1 s a 2 s e de 4 a 5 s.
- c) nos intervalos de 0 s a 1 s e de 2 s a 4 s.
- d) retilíneo e uniforme nos intervalos de 0 s a 1 s e de 2 s a 4 s.
- e) retilíneo uniformemente variado nos intervalos de 1 s a 2 s e de 4 s a 5 s.

11. (EAM - 2007)

Um submarino submerso detecta um navio a uma distância de 1500 m e dispõe de um torpedo que se desloca com velocidade constante de 15 m/s. considerando que o submarino está posicionado na origem de um sistema de referência e que a equação horária do torpedo é s=15t, qual é o tempo necessário para que o torpedo atinja o navio?

- a) 10 segundos.
- b) 15 segundos.
- c) 1 minuto e 20 segundos.
- d) 1 minuto e 40 segundos.
- e) 1 minuto e 50 segundos.

Indo um pouco mais além

12. (EsPCEx - 2019)

Duas polias, A e B, ligadas por uma correia inextensível têm raios $R_A=60\ cm$ e $R_B=20\ cm$, conforme o desenho abaixo. Admitindo que não haja escorregamento da correia e sabendo que a frequência da polia A é $f_A=30\ rpm$, então a frequência da polia B é

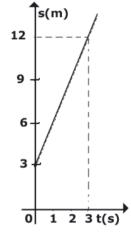
Desenho Ilustrativo-Fora de Escala

- a) 10 rpm
- b) 20 rpm
- c) 80 rpm
- d) 90 rpm
- e) 120 rpm

13. (EsPCEx - 2019)

Considere um objeto que se desloca em movimento retilíneo uniforme durante $10 \, \mathrm{s.} \, \mathrm{O}$ desenho abaixo representa o gráfico do espaço em função do tempo. O espaço do objeto no instante $t=10 \, \mathrm{s.} \, \mathrm{em}$ metros, é

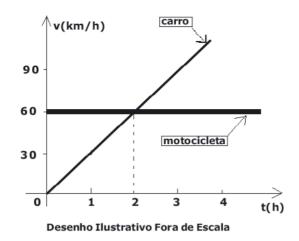
- a) 25 m.
- b) 30 m.
- c) 33 m.
- d) 36 m.
- e) 40 m.



Desenho Ilustrativo - Fora de Escala

14. (EsPCEx - 2018)

O gráfico abaixo está associado ao movimento de uma motocicleta e de um carro que se deslocam ao longo de uma estrada retilínea. Em t=0 ambos se encontram no quilômetro 0 (zero) dessa estrada.



Com relação a esse gráfico, são feitas as seguintes afirmações:

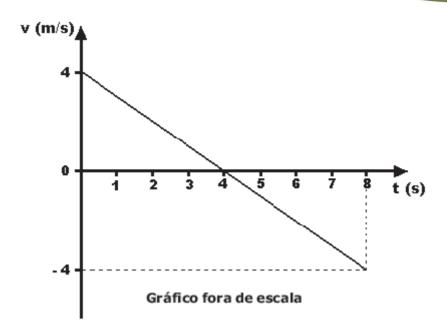
- I. a motocicleta percorre a estrada em movimento uniformemente retardado.
- II. entre os instantes 0 h e 2 h, o carro e a motocicleta percorrem, respectivamente, uma distância de 60 km e 120 km.
- III. a velocidade do carro aumenta 30 km/h a cada hora.
- IV. o carro e a motocicleta volta a estar na mesma posição no instante $t=2\ h.$

Das afirmações acima está(ão) correta(s) apenas a(s).

- a) IV.
- b) II, III e IV.
- c) I, III e IV.
- d) II e III.
- e) I e III.

15. (EsPCEx - 2011)

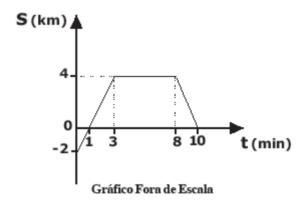
O gráfico abaixo representa a velocidade (v) de uma partícula que se desloca sobre uma reta em função do tempo (t). O deslocamento da partícula, no intervalo de 0 s a 8 s, foi de:



- a) -32 m.
- b) -16 m.
- c) 0 m.
- d) 16 m.
- e) 32 m.

16. (EsPCEx - 2010)

O gráfico abaixo indica a posição (S) em função do tempo (t) para um automóvel em movimento num trecho horizontal e retilíneo de uma rodovia.



Da análise do gráfico, pode-se afirmar que o automóvel

- a) está em repouso, no instante 1 min.
- b) possui velocidade escalar nula, entre os instantes 3 min e 8 min.
- c) sofreu deslocamento de 4 km, entre os instantes 0 e 3 min.
- d) descreve movimento progressivo, entre os instante 1 min e 10 min.
- e) tem a sua posição inicial coincidente com a origem da trajetória.

17. (EsPCEx - 2009)

O gráfico abaixo indica a velocidade escalar em função do tempo de um automóvel que se movimento sobre um trecho horizontal e retilíneo de um rodovia.



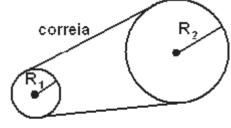
Podemos afirmar que o automóvel,

- a) entre os instantes 0 e 2 min, descreve um movimento uniforme.
- b) entre os instantes 2 min e 5 min, está em repouso.
- c) no instante 5 min, inverte o sentido do seu movimento.
- d) no instante 10 min, encontra-se na mesma posição que estava no instante 0 min.
- e) entre os instantes 5 min e 10 min, tem movimento retardado.

18. (EsPCEx - 2009)

Uma máquina industrial é movida por um motor elétrico que utiliza um conjunto de duas polias, acopladas por uma correia, conforme figura abaixo. A polia de raio $R_1=15\ cm$ está acoplada ao eixo do motor e executa 3000 rotações por minuto. Não ocorre escorregamento no contato da correia com as polias. O número de rotações por minuto, que a polia de raio $R_2=60\ cm$ executa, é de

- a) 250
- b) 500
- c) 750
- d) 1000
- e) 1200



Desenho Ilustrativo

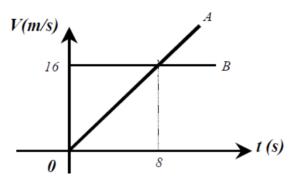
19. (EsPCEx - 2004)

Um móvel movimenta-se sobre uma trajetória retilínea obedecendo à função horária da posição $s=-4+5t-t^2$, onde s é a posição do móvel e t o tempo (todas as grandezas estão no Sistema Internacional de Unidades). O instante, em segundos, em que o móvel inverte o sentido do seu movimento é:

- a) 0
- b) 1
- c) 1,5
- d) 2,5
- e) 4

20. (EsPCEx - 2003)

O gráfico abaixo representa a velocidade (v) em função do tempo (t) dos móveis A e B, que percorrem a mesma trajetória no mesmo sentido e que, no instante inicial (t=0), partem do mesmo ponto.



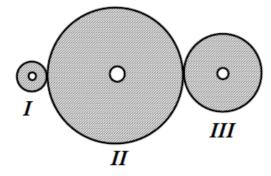
A distância percorrida pelo móvel A será o dobro daquela percorrida pelo móvel B quando o tempo de deslocamento for igual a

- a) 8 s
- b) 16 s
- c) 24 s
- d) 32 s
- e) 40 s

21. (EsPCEx - 2003)

A figura abaixo representa uma associação das engrenagens I, II e III, de raios iguais a 4 cm, 48 cm e 12 cm, respectivamente, que giram em torno de eixos fixos.

FIGURA FORA DE ESCALA

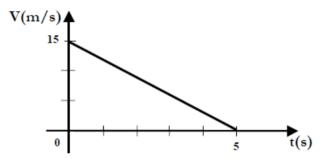


Se a engrenagem III girar com velocidade angular de $5\pi\ rad/s$, a frequência de rotação da engrenagem I valerá

- a) 2,5 Hz
- b) 5,0 Hz
- c) 7,5 Hz
- d) 10,0 Hz
- e) 12,5 Hz

22. (EsPCEx - 2002)

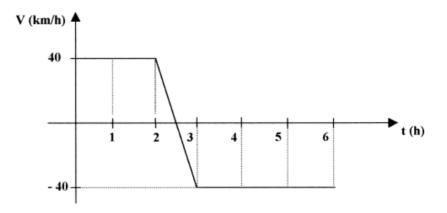
O gráfico abaixo descreve a velocidade V, em função do tempo t, de um móvel que parte da posição inicial 10 m de sua trajetória. A função horária da sua posição, em que o tempo t e a posição S são dados, respectivamente, em segundos e em metros, é



- a) $s = 10 15t + 3t^2/2$
- b) $s = 15 + 10t 5t^2/2$
- c) $s = 10 + 15t 3t^2/2$
- d) $s = 15 10t + 5t^2/2$
- e) $s = 10 + 15t 5t^2/2$

23. (EsPCex – 2000)

O gráfico abaixo representa a velocidade escalar de um ciclista em função do tempo num determinado percurso. Nas quatro horas iniciais do percurso, a velocidade média do ciclista, em km/h, é de



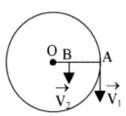
- a) -40
- b) 0
- c) 20/3
- d) 10

e) 30

24. (EsPCEx - 2000)

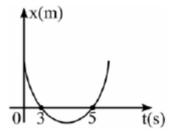
A figura abaixo representa uma polia que gira em torno de seu eixo no ponto O com movimento de rotação uniforme. O módulo da velocidade linear do ponto A é $V_1=50\ cm/s$, e a do ponto B é $V_2=10\ cm/s$. Sabendo que a distância AB é 40 cm, o valor da velocidade angular da polia em rad/s é

- a) 1
- b) 2
- c) 5
- d) 10
- e) 50



25. (EEAR - 2018)

A posição (x) de um móvel em função do tempo (t) é representada pela parábola no gráfico a seguir



Durante todo o movimento o móvel estava sob uma aceleração constante de módulo igual a 2 m/s². A posição inicial desse móvel, em m, era

- a) 0
- b) 2
- c) 15
- d) -8

26. (EEAR - 2018)

Um ponto material descreve um movimento circular uniforme com o módulo da velocidade angular igual a 10 rad/s. Após 100 s, o número de voltas completas percorridas por esse ponto material é

Adote $\pi = 3$.

- a) 150
- b) 166

- c) 300
- d) 333

27. (EEAR - 2018)

Considere as seguintes afirmações sobre o movimento circular uniforme (MCU):

- I possui velocidade angular constante.
- II possui velocidade tangencial constante em módulo, mas com direção e sentido variáveis.
- III a velocidade angular é inversamente proporcional à frequência do movimento.
- IV possui aceleração radial, com sentido orientado para o centro da trajetória.

Das afirmações anteriores, são corretas:

- a) le ll
- b) II e III
- c) I, II e IV
- d) todas

28. (EEAR - 2016)

Uma hélice de avião gira a 2800 rpm. Qual a frequência (f) de rotação da hélice, em unidades do Sistema Internacional (SI)? Adote $\pi \cong 3$.

- a) 16,7
- b) 26,7
- c) 36,7
- d) 46,7

29. (EEAR - 2016)

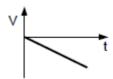
Duas polias estão acopladas por uma correia que não desliza. Sabendo-se que o raio da polia menor é de 20 cm e sua frequência de rotação f_1 é de 3600 rpm, qual é a frequência de rotação f_2 da polia maior, em rpm, cujo raio vale 50 cm?

- a) 9000
- b) 7200
- c) 1440
- d) 720

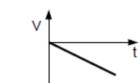
30. (EEAR – 2016)

Uma bomba é abandonada a uma altura de 8 km em relação ao solo. Considerando-se a ação do ar desprezível e fixando-se a origem do sistema de referências no solo, assinale a alternativa correspondente ao conjunto de gráficos que representa qualitativamente a velocidade (V) e a aceleração (a) da bomba, ambas em função do tempo.

a)

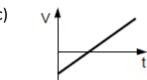


b)



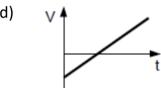
a

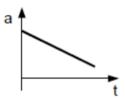
c)



а

d)





31. (EEAR - 2015)

Calcule a velocidade tangencial, em km/h, do movimento de translação do planeta Terra em torno do Sol. Para esse cálculo considere:

- 1. que a luz do Sol leva 8 minutos para chegar até a Terra.
- 2. a velocidade da luz no vácuo igual a $3 \cdot 10^8 \ m/s$.
- 3. as dimensões da Terra e do Sol devem ser desprezadas.
- 4. o raio do movimento circular da Terra em torno do Sol como a distância que a luz percorre em 8 minutos.
- 5. o movimento da Terra em torno do Sol como sendo um Movimento Circular Uniforme (MCU).
- 6. o valor de $\pi = 3$.
- 7. μ ano = 360 dias.
- a) 10.000
- b) 24.000
- c) 36.000

d) 100.000

32. (EEAR - 2014)

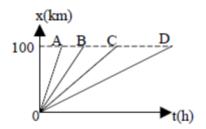
Numa pista circular de 100 m de diâmetro um corredor A, mantendo o módulo da velocidade tangencial constante de valor igual 6 m/s, corre durante 5 min, completando várias voltas. Para que um corredor B, correndo nesta mesma pista, saindo do mesmo ponto e durante o mesmo tempo, consiga completar duas voltas a mais que o corredor A é necessário que este mantenha uma velocidade tangencial de módulo constante e igual a ______ m/s.

Adote: $\pi = 3.0$.

- a) 8
- b) 9
- c) 10
- d) 12

33. (EEAR - 2013)

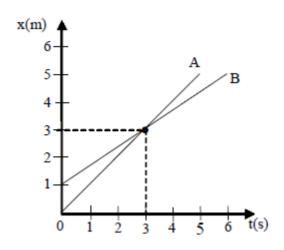
Admita que o consumo de combustível de um carro é diretamente proporcional à velocidade média do mesmo durante o trajeto. Observando o gráfico da posição (x) em função do tempo (t), entre os veículos A, B, C e D o que apresenta maior consumo entre as posições 0 e 100 km é:



- a) A
- b) B
- c) C
- d) D

34. (EEAR - 2013)

Dois pontos materiais A e B têm seus movimentos retilíneos uniformes descritos no gráfico, da posição (x) em função do tempo (t), a seguir. A razão entre o módulo da velocidade de B e o módulo da velocidade de A é



- a) 1/2
- b) 1/3
- c) 2/3
- d) 3/2

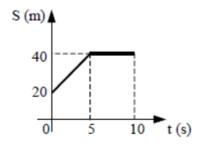
35. (EEAR - 2011)

Devido ao mau tempo sobre o aeroporto, uma aeronave começa a executar um movimento circular uniforme sobre a pista, mantendo uma altitude constante de 1000 m. Sabendo que a aeronave possui velocidade linear de 500 km/h e que executará o movimento sob um raio de 5 km, qual será o tempo gasto, em h, para que essa aeronave complete uma volta.

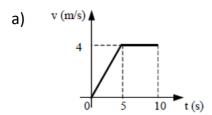
- a) $\pi/50$.
- b) $\pi/100$.
- c) 10π .
- d) 50π .

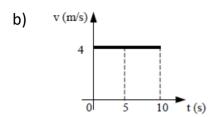
36. (EEAR - 2010)

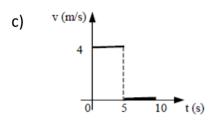
No gráfico mostram-se as posições de um móvel em função do tempo.

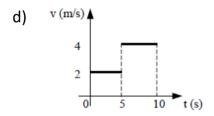


Das alternativas abaixo, assinale a que apresenta o gráfico da velocidade em função do tempo, para o movimento do móvel descrito no gráfico anterior.









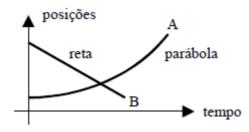
37. (EEAR – 2010)

Para explicar como os aviões voam, costuma-se representar o ar por pequenos cubos que deslizam sobre a superfície da asa. Considerando que um desses cubos tenha a direção do seu movimento alterada sob as mesma condições de um movimento circular uniforme (MCU), pode-se afirmar corretamente que a aceleração ______ do "cubo" é ______ quanto maior for o módulo da velocidade tangencial do "cubo".

- a) tangencial, maior.
- b) tangencial, menor.
- c) centrípeta, menor.
- d) centrípeta, maior.

38. (EEAR - 2009)

Dois ciclistas, A e B, deslocam-se simultaneamente numa mesma estrada, ambos em movimento retilíneo, conforme representado no gráfico (posição X tempo) abaixo.



Os movimentos dos ciclistas A e B, respectivamente, são classificados como:

- a) uniforme e acelerado.
- b) uniforme e retardado.
- c) acelerado e uniforme.
- d) acelerado e retardado.

39. (EEAR - 2008)

A função horária $x=12-8t+t^2$, onde t (instantes de tempo em segundos) e x (posição em metros) medidos sobre a trajetória, é usada para o estudo de um movimento. Determine o intervalo de tempo em que as posições do móvel são negativas.

- a) entre 0 e 2 s.
- b) entre 1 s e 2 s.
- c) entre 2 s e 6 s.
- d) entre 6 s e 10 s.

40. (EEAR - 2007)

No movimento circular uniforme a velocidade angular (ω) não depende

- a) do raio da circunferência.
- b) da sua frequência.
- c) do seu período.
- d) do tempo gasto para completar uma volta.

41. (EEAR - 2007)

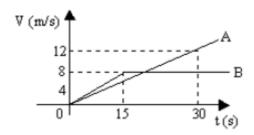
Um móvel ao percorrer uma trajetória retilínea obedece a seguinte função horária: $s(t) = -4 + 16t - 2t^2$ (no SI). Em que instante, em segundos, o móvel inverte o sentido do movimento?

- a) 2
- b) 4
- c) 8

d)
$$4 + \sqrt{56}$$

42. (EEAR - 2006)

Dois móveis partem simultaneamente de um mesma posição e suas velocidade estão representadas no gráfico. A diferença entre as distâncias percorridas pelos dois móveis, no instante 30 s, é igual a



- a) 180.
- b) 120.
- c) zero.
- d) 300.

4. Gabarito sem comentários

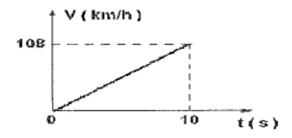
- 1) C
- 2) E
- 3) A
- 4) E
- 5) E
- 6) E
- 7) A
- 8) E
- 9) D
- 10)B
- 11)D
- 12)D
- 13)C
- 14) D
- 15)C
- 16)B
- 17)E
- 18)C
- 19) D
- 20)D
- 21) C

- 22) C
- 23) D
- 24) A
- 25) C
- 26) B
- 27) C 28) D
- 29) C
- 30) B
- 31) D
- 32) A
- 33) A
- 34) C
- 35) A
- 36) C
- 37) D
- 38) C
- 39) C
- 40) A
- 41) B
- 42) C

5. lista de exercícios comentada

1. (CN - 2016)

Durante um teste de desempenho, um carro de massa 1200 kg alterou sua velocidade conforme mostra o gráfico abaixo.



Considerando que o teste foi executado em uma pista retilínea, pode-se afirmar que a força resultante que atuou sobre o carro ($F=m\cdot a$) foi de

- a) 1200 N
- b) 2400 N
- c) 3600 N
- d) 4800 N
- e) 6000 N

Comentários:

No gráfico $v \times t$, a aceleração é numericamente igual a inclinação da reta mostrada. Note que a velocidade está em km/h e o tempo em segundos. Portanto, devemos transformar a velocidade em m/s:

$$108 \, km/h = \frac{108}{3.6} \, m/s = 30 \, m/s$$

Logo:

$$a = \frac{\Delta v}{\Delta t} = \frac{30 - 0}{10 - 0} = 3 \text{ m/s}^2$$

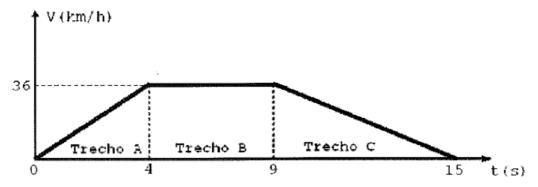
Dessa forma, a força resultante experimentada pelo corpo é de:

$$F = 1200 \cdot 3 = 3600 N$$

Gabarito: C

2. (CN - 2010/modificada)

Um treinador marcou três trechos numa pista de atletismo com o objetivo de selecionar, entre os seus atletas amadores, aqueles que fariam parte da sua equipe de corridas de curta distância. Após tabular os dados, o treinador elaborou um gráfico, abaixo mostrado, do desempenho de um dos escolhidos, cuja massa é de 60 kg e que estava entre os que foram mais rápidos.



Sobre esse gráfico foram feitas as seguintes afirmativas:

I – No trecho A, o atleta executou um MRUV com aceleração escalar média de 2,5 m/s².

II – O trecho B foi realizado em MRU e a distância percorrida foi de 50 m.

III – A velocidade média do atleta foi de 24 km/h.

- a) apenas a I.
- b) apenas a II.
- c) apenas a III.
- d) apenas I e III.
- e) todas estão corretas.

Comentários:

Note que a velocidade está em km/h e o eixo dos tempos está em segundos, então devemos transformar a velocidade para m/s.

$$36 \, km/h = \frac{36}{3,6} \, m/s = 10 \, m/s$$

Agora, podemos julgar os itens:

 I – No trecho A, o módulo da velocidade está variando linearmente com o tempo. Então, podemos ter em A um trecho onde o atleta realiza um MRUV, em que a aceleração é dada por:

$$a = \frac{10 - 0}{4 - 0} = \frac{10}{4} = 2.5 \text{ m/s}^2$$

Portanto, o item I está correto.

II – No trecho B, a velocidade do atleta permaneceu inalterada, ou seja, muito provavelmente, ele descreveu um MRU. Assim, o deslocamento do atleta neste trecho é dado pela área sob a curva:

$$d = 10 \cdot (9 - 4) = 50 m$$

Portanto, o item II está correto.

III – A velocidade média do atleta é dada pela definição:

$$v_m = \frac{\Delta s}{\Delta t}$$

Em que o Δs é dado pela área sob a curva de 0 a 15 s, ou seja:

$$\Delta s = \frac{4 \cdot 10}{2} + 10 \cdot (9 - 4) + \frac{10 \cdot (15 - 9)}{2}$$
$$\Delta s = 20 + 50 + 30 = 100 m$$

Logo:

$$v_m = \frac{100}{15} \ m/s$$

Em km/h, temos:

$$v_m = \frac{100}{15} \cdot 3.6$$

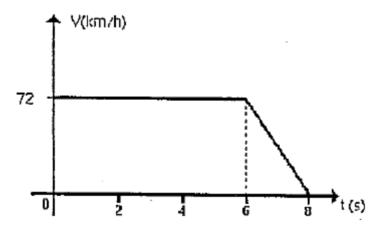
$$v_m = 24 \ km/h$$

Portanto, este item também está correto.

Gabarito: E

3. (CN - 2007/modificada)

Observe a figura a seguir.



O gráfico acima mostra a velocidade de um carro de 900 kg deslocando-se por uma estrada em linha reta. Dentro dele, um passageiro aciona um cronômetro e, logo depois, aos 6 segundos, percebe que o motorista pisou no freio e parou o carro, quando o cronômetro marcava 8 s. neste caso, desprezando-se a resistência do ar, é correto afirmar que o deslocamento do carro e a velocidade média do carro, nas unidades do SI, valem, respectivamente:

- a) 140 e 17,5
- b) 160 e 35
- c) 120 e 35
- d) 140 e 35
- e) 180 e 17,5

O deslocamento do carro é dado pela área sob a curva mostrada, mas note que a velocidade está em km/h e deve ser transformada em m/s (o Colégio Naval adora fazer isso):

$$72 \, km/h = \frac{72}{3.6} \, m/s = 20 \, m/s$$

Logo:

$$d = \frac{(6+8)}{2} \cdot 20$$

$$d = 140 m$$

Por definição, velocidade média é dada por:

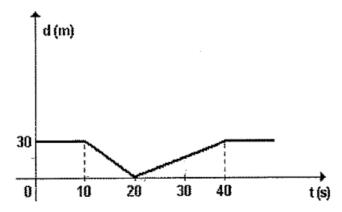
$$v_m = \frac{d}{\Delta t} = \frac{140}{8}$$

$$v_m = 17,5 \ m/s$$

Gabarito: A

4. (CN - 2006)

Observe o gráfico:



Analisando-se o deslocamento de um carro, numa trajetória, apresentado no gráfico acima, é correto afirmar que

- a) o movimento do carro é a favor da trajetória entre 10 s e 20 s.
- b) o carro possui velocidade constante e positiva entre 0 s e 10 s.

- c) o carro possui movimento uniformemente variado entre 10 s e 20 s.
- d) no instante 20 s, o carro está parado.
- e) o carro tem movimento retilíneo e uniforme entre 20 s e 40 s.

a)

Entre 10 s e 20 s, a velocidade é negativa (basta ver a inclinação da reta, que é negativa), portanto, o movimento do carro não é a favor da trajetória. Note que em $t=20\ s$, o deslocamento do carro é nulo.

b)

Entre 0 e 10 s, o deslocamento do carro é o mesmo, ou seja, o carro está parado e a velocidade é nula.

c)

Entre 10 s e 20 s, o espaço varia linearmente com o tempo, ou seja, o movimento é uniforme e não uniformemente variado.

d)

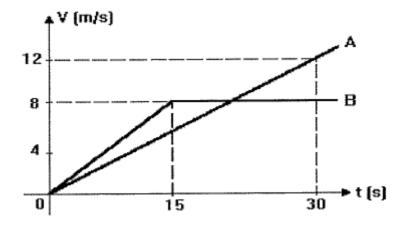
Em $t=20\,s$, o deslocamento do carro é nulo, mas isso não quer dizer que o carro esteja parado.

e)

Entre 20 s e 40 s, o deslocamento do carro varia linearmente com o tempo, característica de um movimento retilíneo e uniforme.

Gabarito: E

5. (CN - 2004)



O gráfico acima representa o movimento de dois móveis A e B a partir de t=0. Considerando que os móveis encontravam-se, inicialmente, na mesma posição, pode-se afirmar que após 30 s, a distância em metros, que os separa vale

- a) 180
- b) 120
- c) 100
- d) 60
- e) 0

Comentários:

Se os móveis estão inicialmente juntos, a distância entre eles é determinada pela diferença entre os deslocamento sofrido pelos móveis. Este pode ser calculado pela área sob o gráfico:

$$d_A = \frac{12 \cdot 30}{2} = 180 m$$

$$d_B = \frac{30 - 15 + 30}{2} \cdot 8 = 180 m$$

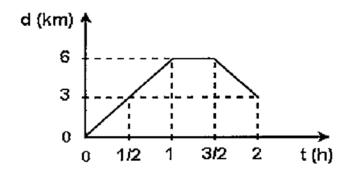
$$d_A = d_B$$

Logo, em $t = 30 \, s$ eles estão novamente juntos.

Gabarito: E

6. (EAM - 2017)

O gráfico abaixo representa uma caminhada feita por uma pessoa durante a sua atividade física diária.



Sobre essa atividade, analise as afirmativas a seguir e assinale a opção correta.

- I A pessoa caminhou, sem parar, por 2 horas.
- II A distância total percorrida foi de 9 km.
- III O movimento foi uniforme na ida e na volta.
- IV Na volta, o módulo da velocidade média foi de 6 km/h.
- V Nesse trajeto, a pessoa ficou em repouso por 20 min.

- a) apenas as afirmações I e II estão corretas.
- b) apenas as afirmações I e IV estão corretas.
- c) apenas as afirmações I, II e III estão corretas.
- d) apenas as afirmações III, IV e V estão corretas.
- e) apenas as afirmações II, III e IV estão corretas.

I – Note que entre 1 e 3/2 h o deslocamento permaneceu constante, ou seja, a pessoa ficou parada, pois neste intervalo de tempo a velocidade é nula.

II – A distância total percorrida foi de 9 km, pois a pessoa caminha até o 6 km, faz uma pausa de meia hora e depois retorna 3 km. Portanto, o distância total percorrida pela pessoa foi de 9 km.

III – Entre 0 e 1 h, o deslocamento varia linearmente com o tempo, característica de um movimento uniforme e entre 3/2 e 2h também. Entre 1 e 3/2 h, o atleta permanece parado. Podemos considerar o movimento uniforme na ida e na volta.

IV – Na volta, o módulo da velocidade é numericamente igual a inclinação da reta. Portanto:

$$|v_m| = \frac{(6-3)}{2 - \frac{3}{2}}$$

$$|v_m| = \frac{\frac{3}{1}}{\frac{1}{2}} = 6 \, km/h$$

V – Nesse trajeto, a pessoa ficou parada de 1 a 3/2 h, portanto, ficou parada por meia hora, isto é, 30 min.

Gabarito: E

7. (EAM - 2012)

Um navio, ao sair do repouso, conseguiu atingir uma velocidade de 23 nós (aproximadamente 12 m/s), num intervalo de tempo de 2 min. A aceleração média desse navio foi de

- a) 0,1 m/s²
- b) 0,2 m/s²
- c) 0,3 m/s²
- d) 0,4 m/s²
- e) 0,5 m/s²

Comentários:

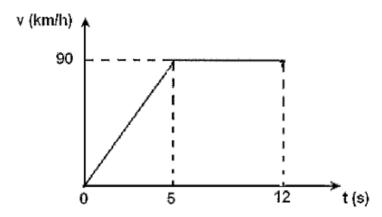
Como 23 nós correspondem a aproximadamente 12 m/s e 2 min são equivalentes a 120 s, temos:

$$a_m = \frac{\Delta v}{\Delta t} = \frac{12}{120} = 0.1 \text{ m/s}^2$$

Gabarito: A

8. (EAM - 2011)

Durante a apresentação para uma revista especializada, um carro de 1200 kg acelerou nua pista retilínea e obteve o resultado mostrado no gráfico abaixo:



É correto afirmar que a força média em newtons ($F=m\cdot a$), transmitida pelo motor às rodas entre os instantes 0 s e 5 s, foi de

- a) 1200
- b) 2400
- c) 3600
- d) 4800
- e) 6000

Comentários:

Note que de acordo com o gráfico, a variação de velocidade apenas entre 0 e 5 segundos, ou seja, é nesse intervalo que existe aceleração, que é calculada por:

$$a_m = \frac{\Delta v}{\Delta t}$$

Repare que a velocidade está em km/h e deve ser transformada para m/s:

$$90 \ km/h = \frac{90}{3.6} \ m/s = 25 \ m/s$$

Portanto:

$$a_m = \frac{25 - 0}{5 - 0} = 5 \ m/s^2$$

Assim, a força média é de:

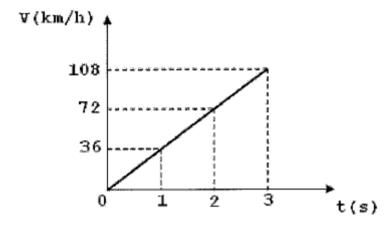
$$F = 1200 \cdot 5$$

$$F = 6000 N$$

Gabarito: E

9. (EAM - 2010)

O gráfico abaixo mostra a evolução da velocidade do guepardo durante a caça.



Analisando o gráfico, é possível concluir que a aceleração escalar média do guepardo tem o valor de

- a) 2 m/s²
- b) 5 m/s²
- c) 7 m/s²
- d) 10 m/s²
- e) 12 m/s²

Comentários:

Note que a velocidade está em km/h e deve ser trabalhada nas unidades do SI (m/s). Portanto:

$$108 \, km/h = \frac{108}{3.6} \, m/s = 30 \, m/s$$

Perceba que poderia trabalhar com qualquer velocidade, pois a inclinação da reta é a mesma. Assim:

$$a_m = \frac{\Delta v}{\Delta t}$$

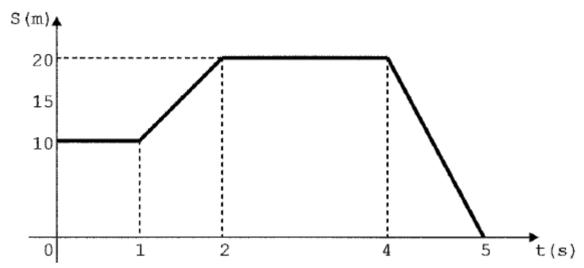
$$a_m = \frac{30}{3}$$

$$a_m = 10 \ m/s^2$$

Gabarito: D

10. (EAM - 2009)

Observe o gráfico abaixo, que representa as posições de um corpo em função do tempo.



É correto afirmar que o corpo está em movimento

- a) permanente no intervalo 0 s e 5s.
- b) nos intervalos de 1 s a 2 s e de 4 a 5 s.
- c) nos intervalos de 0 s a 1 s e de 2 s a 4 s.
- d) retilíneo e uniforme nos intervalos de 0 s a 1 s e de 2 s a 4 s.
- e) retilíneo uniformemente variado nos intervalos de 1 s a 2 s e de 4 s a 5 s.

Comentários:

Neste gráfico do deslocamento pelo tempo, podemos ver que o móvel ficou parado entre 0 e 1 s, e entre 2 e 4 s. Portanto, as alternativas A e C estão incorretas. Nos intervalos de 1 s a 2 e de 4 s e 5 s, temos que o espaço está variando, isto é, o corpo está em movimento. Logo, a alternativa B está correta.

Nos intervalos de 0 s a 1 s e de 2 s a 4 s, o móvel está parado, portanto, não realiza um MRU. Em outras palavras, a alternativa D está incorreta.

Nos intervalos de 1 s a 2 s e de 4 s a 5 s, a posição varia linearmente com o tempo, característica de um movimento uniforme. Portanto, a alternativa E está incorreta.

Gabarito: B

11. (EAM - 2007)

Um submarino submerso detecta um navio a uma distância de 1500 m e dispõe de um torpedo que se desloca com velocidade constante de 15 m/s. considerando que o submarino está

posicionado na origem de um sistema de referência e que a equação horária do torpedo é s=15t, qual é o tempo necessário para que o torpedo atinja o navio?

- a) 10 segundos.
- b) 15 segundos.
- c) 1 minuto e 20 segundos.
- d) 1 minuto e 40 segundos.
- e) 1 minuto e 50 segundos.

Comentários:

Se a velocidade do torpedo é constante e igual a 15 m/s, o tempo para ele percorrer os 1500 m é dado por:

$$\Delta t = \frac{d}{v} = \frac{1500}{15} = 100 \, s$$

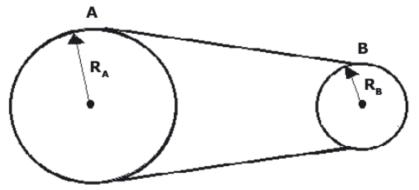
Transformando para minutos, temos que:

$$100 s = 1 \min e 40 segundos$$

Gabarito: D

12. (EsPCEx - 2019)

Duas polias, A e B, ligadas por uma correia inextensível têm raios $R_A=60\ cm$ e $R_B=20\ cm$, conforme o desenho abaixo. Admitindo que não haja escorregamento da correia e sabendo que a frequência da polia A é $f_A=30\ rpm$, então a frequência da polia B é



Desenho Ilustrativo-Fora de Escala

- a) 10 rpm
- b) 20 rpm
- c) 80 rpm
- d) 90 rpm
- e) 120 rpm

Como as polias estão ligadas por um correia comum, a velocidade linear será a mesma nas duas polias:

$$v_A = v_B$$

$$\omega_A R_A = \omega_B R_B$$

$$2\pi f_A R_A = 2\pi f_B R_B$$

$$f_B = \frac{R_A}{R_B} f_B$$

$$f_B = \frac{60}{20} \cdot 30$$

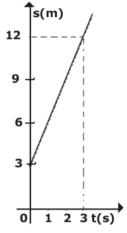
$$f_B = 90 \ rpm$$

Gabarito: D

13. (EsPCEx - 2019)

Considere um objeto que se desloca em movimento retilíneo uniforme durante 10 s. O desenho abaixo representa o gráfico do espaço em função do tempo. O espaço do objeto no instante $t=10\ s$, em metros, é

- a) 25 m.
- b) 30 m.
- c) 33 m.
- d) 36 m.
- e) 40 m.



Desenho Ilustrativo - Fora de Escala

Comentários:

A partir do gráfico do enunciado, podemos determinar a função horária do espaço:

$$s = s_0 + v \cdot t$$

Quando t=0, estamos no espaço inicial que corresponde ao ponto onde a reta intercepta o eixo das coordenadas, isto $\acute{\rm e}$:

$$t = 0 \rightarrow s_0 = 3 m$$

Quando t = 3 s, o móvel está em s = 12 m. Portanto:

$$s(3) = 12$$

$$3 + v \cdot 3 = 12$$

$$v = 3 m/s$$

Logo, a função horária do espaço é dada por:

$$s(t) = 3 + 3t$$

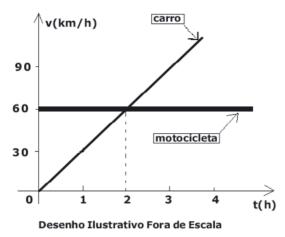
Para t = 10 s, temos:

$$s(10) = 3 + 3 \cdot 10 = 33 m$$

Gabarito: C

14. (EsPCEx - 2018)

O gráfico abaixo está associado ao movimento de uma motocicleta e de um carro que se deslocam ao longo de uma estrada retilínea. Em t=0 ambos se encontram no quilômetro 0 (zero) dessa estrada.



Com relação a esse gráfico, são feitas as seguintes afirmações:

- I. a motocicleta percorre a estrada em movimento uniformemente retardado.
- II. entre os instantes 0 h e 2 h, o carro e a motocicleta percorrem, respectivamente, uma distância de 60 km e 120 km.
- III. a velocidade do carro aumenta 30 km/h a cada hora.
- IV. o carro e a motocicleta volta a estar na mesma posição no instante $t=2\ h.$

Das afirmações acima está(ão) correta(s) apenas a(s).

- a) IV.
- b) II, III e IV.
- c) I, III e IV.
- d) II e III.
- e) le III.

Comentários:

Inicialmente, os dois móveis estão juntos no marco zero da estrada. Sabemos que no gráfico $v \times t$, a área sob a curva corresponde numericamente ao deslocamento do corpo. Diante disso, vamos julgar os itens:

I – a motocicleta percorre todo o movimento com velocidade constante, portanto ele descreve um movimento retilíneo uniforme (a questão diz que a estrada é retilínea). Este item está incorreto.

II – entre 0 h e 2 h as distâncias percorridas pelos moveis são:

$$d_{moto} = 60 \cdot 2 = 120 \ km$$

$$d_{carro} = \frac{60 \cdot 2}{2} = 60 \ km$$

O Item II está correto.

III – quem causa a variação da velocidade é a aceleração. Se olharmos para o gráfico, vemos que a velocidade aumenta de 30 km/h a cada hora.

$$a = \frac{\Delta v}{\Delta t}$$

$$a = \frac{60 - 0}{2 - 0} = 30 \text{ km/h}^2$$

O item III está correto.

 ${\sf IV-em}\ t=2\ h,$ o carro deslocou 60 km e a moto 120 km, como no item ${\sf II},$ portanto, o item ${\sf IV-esta}$ incorreto.

Gabarito: D

15. (EsPCEx - 2011)

O gráfico abaixo representa a velocidade (v) de uma partícula que se desloca sobre uma reta em função do tempo (t). O deslocamento da partícula, no intervalo de 0 s a 8 s, foi de:

- a) -32 m.
- b) -16 m.
- c) 0 m.

- d) 16 m.
- e) $32 \, m$.

Nos primeiros 4 s o deslocamento da partícula é positivo e numericamente igual a área sob a curva. Entretanto, entre 4 s e 8 s, o deslocamento da partícula é negativo e tem o mesmo valor em módulo que o deslocamento entre 0 e 4 s, devido à simetria do gráfico. Portanto, o deslocamento total é nulo. Note que a distância percorrida seria a soma dos módulos dos deslocamentos, isto é:

$$d = \frac{4 \cdot (4 - 0)}{2} + \frac{4 \cdot (8 - 4)}{2}$$
$$\boxed{d = 16 \, m}$$

Mas o enunciado pergunta sobre o deslocamento total:

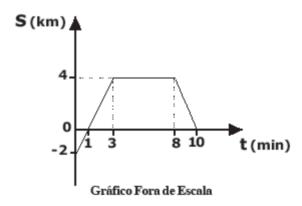
$$\Delta S = \Delta S_1 + \Delta S_2$$
$$\Delta S = 8 + (-8) = 0$$

A EsPCEx quer saber se você sabe bem a diferença entre distância percorrida e deslocamento. Fique atento!

Gabarito: C

16. (EsPCEx - 2010)

O gráfico abaixo indica a posição (S) em função do tempo (t) para um automóvel em movimento num trecho horizontal e retilíneo de uma rodovia.



Da análise do gráfico, pode-se afirmar que o automóvel

- a) está em repouso, no instante 1 min.
- b) possui velocidade escalar nula, entre os instantes 3 min e 8 min.
- c) sofreu deslocamento de 4 km, entre os instantes 0 e 3 min.
- d) descreve movimento progressivo, entre os instante 1 min e 10 min.
- e) tem a sua posição inicial coincidente com a origem da trajetória.

- a) de acordo com o gráfico, em $t=1\ min$, o móvel tem velocidade diferente de zero, dada pela inclinação da reta no ponto. Logo, a alternativa é falsa.
- b) entre 3 min e 8 min, o espaço do móvel permanece inalterado, isto é, sua velocidade é nula. A alternativa está correta.
- c) entre 0 e 3 min, o carro vai de -2 km para 4 km, ou seja, seu deslocamento é de 6 km. Alternativa incorreta.
- d) entre 1 min e 3 min temos movimento progressivo, mas entre 8 min e 10 min temos um movimento retrógrado. Logo, a alternativa está incorreta.
- e) segundo o gráfico, a posição inicial do móvel é -2 km, diferente da origem da trajetória. Alternativa incorreta.

Gabarito: B

17. (EsPCEx - 2009)

O gráfico abaixo indica a velocidade escalar em função do tempo de um automóvel que se movimento sobre um trecho horizontal e retilíneo de um rodovia.

Podemos afirmar que o automóvel,

- a) entre os instantes 0 e 2 min, descreve um movimento uniforme.
- b) entre os instantes 2 min e 5 min, está em repouso.
- c) no instante 5 min, inverte o sentido do seu movimento.
- d) no instante 10 min, encontra-se na mesma posição que estava no instante 0 min.
- e) entre os instantes 5 min e 10 min, tem movimento retardado.

Comentários:

Primeiramente, tome cuidado pois o eixo do tempo está em minutos e a velocidade está em km/h.

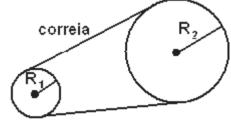
- a) entre 0 e 2 min, a velocidade do móvel aumenta linearmente com o tempo, ou seja, ele descreve um movimento uniformemente variado. Alternativa incorreta.
- b) entre 2 min e 5 min, o móvel possui velocidade constante, ou seja, descreve um movimento uniforme e não está em repouso neste referencial adotado. Alternativa incorreta.
- c) a inversão do sentido de movimento de um corpo é marcado pela anulação da velocidade do corpo, o que não acontece em $t=5\ min$. Neste instante, apenas surge uma aceleração contrária a velocidade e o movimento passa a ser retardado. Alternativa incorreta.
- d) em $t=10\ min$, a velocidade do móvel volta a zerar, mas ele se encontra em uma nova posição. Lembre-se que no gráfico $v\times t$, a área sob a curva é numericamente igual ao deslocamento do corpo. Alternativa incorreta.
- e) como visto na alternativa C, entre 5 min e 10 min o móvel realiza um movimento retardado. Alternativa correta.

Gabarito: E

18. (EsPCEx - 2009)

Uma máquina industrial é movida por um motor elétrico que utiliza um conjunto de duas polias, acopladas por uma correia, conforme figura abaixo. A polia de raio $R_1=15\ cm$ está acoplada ao eixo do motor e executa 3000 rotações por minuto. Não ocorre escorregamento no contato da correia com as polias. O número de rotações por minuto, que a polia de raio $R_2=60\ cm$ executa, é de

- a) 250
- b) 500
- c) 750
- d) 1000
- e) 1200



Desenho Ilustrativo

Comentários:

Como as polias estão ligadas por um correia comum, a velocidade linear será a mesma nas duas polias:

$$v_1 = v_2$$

$$\omega_1 R_1 = \omega_2 R_2$$

$$2\pi f_1 R_1 = 2\pi f_2 R_2$$

$$f_2 = \frac{R_1}{R_2} f_1$$

$$f_2 = \frac{15}{60} \cdot 3000$$

$$\boxed{f_B = 750 \ rpm}$$

Gabarito: C

19. (EsPCEx - 2004)

Um móvel movimenta-se sobre uma trajetória retilínea obedecendo à função horária da posição $s=-4+5t-t^2$, onde s é a posição do móvel e t o tempo (todas as grandezas estão no Sistema Internacional de Unidades). O instante, em segundos, em que o móvel inverte o sentido do seu movimento é:

- a) 0
- b) 1
- c) 1,5
- d) 2,5
- e) 4

Comentários:

A partir da função horária do espaço podemos determinar a função horária da velocidade, fazendo uma comparação entre as expressões:

$$\begin{cases} s = -4 + 5t - t^2 \\ s = s_0 + v_0 t + \frac{at^2}{2} \end{cases}$$

Portanto:

$$s_0 = -4 \, m$$
, $v_0 = 5 \, m/s \, e^{\frac{a}{2}} = -1 \rightarrow a = -2 \, m/s^2$

Logo:

$$v = v_0 + at$$

$$v = 5 - 2t$$

A inversão de sentido é marcada pelo instante em que a velocidade se anula, isto é:

$$v = 0$$

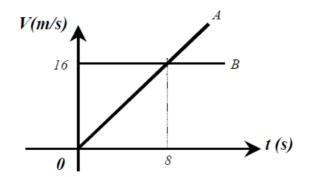
$$5 - 2t = 0$$

$$t = 2,5 s$$

Gabarito: D

20. (EsPCEx - 2003)

O gráfico abaixo representa a velocidade (v) em função do tempo (t) dos móveis A e B, que percorrem a mesma trajetória no mesmo sentido e que, no instante inicial (t=0), partem do mesmo ponto.



A distância percorrida pelo móvel A será o dobro daquela percorrida pelo móvel B quando o tempo de deslocamento for igual a

- a) 8 s
- b) 16 s
- c) 24 s
- d) 32 s
- e) 40 s

Comentários:

Os móveis estão inicialmente juntos e no gráfico da velocidade pelo tempo, sabemos que a área é numericamente igual ao deslocamento do corpo. Portanto, para satisfazer a condição do problema, temos:

$$d_A = 2d_B$$

$$\frac{v_A \cdot t}{2} = 2 \cdot v_B \cdot t$$

$$v_A = 4v_B (eq. 1)$$

De acordo com o gráfico, a velocidade de B é constante e igual a 16 m/s. Além disso, a velocidade de A é varia linearmente com o tempo e é dada por:

$$v = v_0 + at$$

$$v = 0 + at$$

Em t = 8, temos v = 16 m/s. Portanto:

$$16 = a \cdot 8$$

$$a = 2 m/s^2$$

Logo:

$$v_A = 2t$$

Substituindo na equação 1, vem:

$$2t = 4 \cdot 16$$

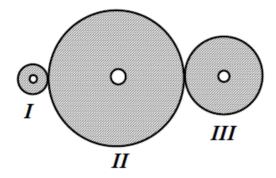
$$t = 32 \, s$$

Gabarito: D

21. (EsPCEx - 2003)

A figura abaixo representa uma associação das engrenagens I, II e III, de raios iguais a 4 cm, 48 cm e 12 cm, respectivamente, que giram em torno de eixos fixos.

FIGURA FORA DE ESCALA



Se a engrenagem III girar com velocidade angular de $5\pi\ rad/s$, a frequência de rotação da engrenagem I valerá

- a) 2,5 Hz
- b) 5,0 Hz
- c) 7,5 Hz
- d) 10,0 Hz
- e) 12,5 Hz

Comentários:

Como as engrenagens estão em contato direto, então as velocidades lineares são iguais:

$$v_I = v_{II}$$
 e $v_{II} = v_{III}$

Portanto:

$$v_{I} = v_{III}$$

$$\omega_{I}R_{I} = \omega_{III}R_{III}$$

$$\omega_{I} = \frac{R_{III}}{R_{I}} \cdot \omega_{III}$$

Substituindo valores:

$$\omega_I = \frac{12}{4} \cdot 5\pi$$

$$\omega_I=15\pi\,rad/s$$

Mas:

$$\omega_{I} = 2\pi f_{I}$$

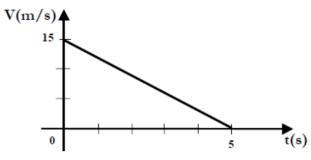
$$15\pi = 2\pi f_{I}$$

$$f_{I} = 7,5 \text{ Hz}$$

Gabarito: C

22. (EsPCEx - 2002)

O gráfico abaixo descreve a velocidade V, em função do tempo t, de um móvel que parte da posição inicial 10 m de sua trajetória. A função horária da sua posição, em que o tempo t e a posição S são dados, respectivamente, em segundos e em metros, é



a)
$$s = 10 - 15t + 3t^2/2$$

b)
$$s = 15 + 10t - 5t^2/2$$

c)
$$s = 10 + 15t - 3t^2/2$$

d)
$$s = 15 - 10t + 5t^2/2$$

e)
$$s = 10 + 15t - 5t^2/2$$

Comentários:

De acordo como o gráfico da velocidade, podemos determinar a função horária da velocidade:

$$v = v_0 + a \cdot t$$

$$v = 15 + a \cdot t$$

Em t = 5 s, temos v = 0. Então:

$$0 = 15 + a \cdot 5$$

$$a = -3 m/s^2$$

Logo:

$$v = 15 - 3t$$

Ou seja, $v_0 = 15 \, m/s$ e $a = -3 \, m/s^2$. Como a posição inicial é de 10 m, então:

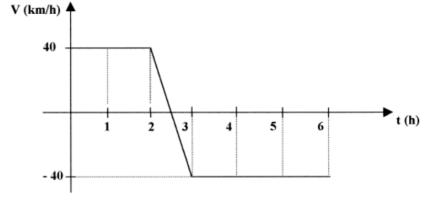
$$s = s_0 + v_0 t + \frac{at^2}{2}$$

$$s = 10 + 15t - 3t^2/2$$

Gabarito: C

23. (EsPCex - 2000)

O gráfico abaixo representa a velocidade escalar de um ciclista em função do tempo num determinado percurso. Nas quatro horas iniciais do percurso, a velocidade média do ciclista, em km/h, é de



- a) -40
- b) 0
- c) 20/3
- d) 10
- e) 30

Comentários:

De acordo com o gráfico, podemos determinar o deslocamento total do corpo:

$$\Delta S = \Delta S_1 + \Delta S_2$$

$$\Delta S = \frac{2 + 2.5}{2} \cdot 40 + \frac{1 + 1.5}{2} \cdot (-40)$$

$$\Delta S = 90 - 50 = 40 \text{ km}$$

Você poderia ver também que a simetria no gráfico, a área de 1 h até 2,5 h corresponde ao mesmo valor que a área de 2,5 h a 4 h, apenas com sinal contrário. Então, o deslocamento é apenas devido à primeira hora de movimento, que corresponde a um deslocamento de 40 km.

Pela definição de velocidade média, temos:

$$v_m = \frac{\Delta S}{\Delta t}$$

$$v_m = \frac{40}{4}$$

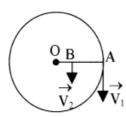
$$v_m = 10 \ km/h$$

Gabarito: D

24. (EsPCEx - 2000)

A figura abaixo representa uma polia que gira em torno de seu eixo no ponto O com movimento de rotação uniforme. O módulo da velocidade linear do ponto A é $V_1=50\ cm/s$, e a do ponto B é $V_2=10\ cm/s$. Sabendo que a distância AB é 40 cm, o valor da velocidade angular da polia em rad/s é

- a) 1
- b) 2
- c) 5
- d) 10
- e) 50



Se a polia move com velocidade angular constante, então:

$$\omega_A = \omega_B$$

$$\frac{V_A}{R_A} = \frac{V_B}{R_B}$$

Pela geometria, temos:

$$\frac{V_A}{R_B + AB} = \frac{V_B}{R_B}$$

$$\frac{R_B + AB}{R_B} = \frac{V_A}{V_B}$$

$$\frac{R_B + 40}{R_B} = \frac{50}{10} = 5$$

$$R_B + 40 = 5R_B$$

$$R_B = 10 \text{ cm}$$

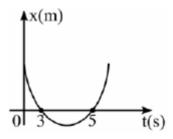
Logo:

$$\omega = \frac{V_B}{R_B} = \frac{10}{10} = 1 \ rad/s$$

Gabarito: A

25. (EEAR - 2018)

A posição (x) de um móvel em função do tempo (t) é representada pela parábola no gráfico a seguir



Durante todo o movimento o móvel estava sob uma aceleração constante de módulo igual a 2 m/s². A posição inicial desse móvel, em m, era

- a) 0
- b) 2
- c) 15
- d) -8

A partir do gráfico podemos determinar a função horária do espaço. Utilizando a forma fatorada, notando que t=3 s e t=5 s são raízes da minha função x(t), então:

$$x(t) = \alpha(t-3)(t-5)$$

$$x(t) = \alpha t^2 - 8\alpha t + 15\alpha$$

Fazendo comparação com a função horária do MRUV, temos:

$$x(t) = \frac{at^2}{2} + v_0 t + x_0$$

Como a aceleração tem módulo igual a 2 m/s², temos:

$$\frac{a}{2} = \alpha$$

$$\frac{2}{2} = \alpha$$

$$\alpha = 1$$

Logo:

$$x_0 = 15\alpha = 15$$

Gabarito: C

26. (EEAR - 2018)

Um ponto material descreve um movimento circular uniforme com o módulo da velocidade angular igual a 10 rad/s. Após 100 s, o número de voltas completas percorridas por esse ponto material é

Adote $\pi = 3$.

- a) 150
- b) 166
- c) 300
- d) 333

Comentários:

Se a velocidade angular é de 10 rad/s, podemos determinar o período do movimento por:

$$T = \frac{2\pi}{\omega}$$

$$T = \frac{2 \cdot 3}{10} = \frac{6}{10} s$$

Então, o número de voltas após 100 s é de:

$$n = \frac{100}{\frac{6}{10}} = \frac{1000}{6}$$
$$n = 166.7$$

Como o número de voltas só pode ser um inteiro, isto é, voltas completas, então o corpo deu 166 voltas e andou 0,7 do tempo da próxima volta.

Gabarito: B

27. (EEAR - 2018)

Considere as seguintes afirmações sobre o movimento circular uniforme (MCU):

I – possui velocidade angular constante.

II – possui velocidade tangencial constante em módulo, mas com direção e sentido variáveis.

III – a velocidade angular é inversamente proporcional à frequência do movimento.

IV – possui aceleração radial, com sentido orientado para o centro da trajetória.

Das afirmações anteriores, são corretas:

- a) I e II
- b) II e III
- c) I, II e IV
- d) todas

Comentários:

I – Correto. No MCU, a velocidade angular é constante.

II – Correto. No MCU, a velocidade tangencial é constante em módulo, pois não temos aceleração tangencial neste tipo de movimento. Por outro lado, temos o vetor velocidade variando de direção e sentido o tempo todo, pois neste movimento ainda temos a aceleração centrípeta.

III – Incorreto. A velocidade angular é diretamente proporcional a frequência angular, de acordo com a expressão:

$$\omega = 2\pi f$$

IV- Correto. De fato, neste movimento, temos a aceleração radial (também chamada de normal ou centrípeta) que aponta para o centro da trajetória.

Gabarito: C

28. (EEAR - 2016)

Uma hélice de avião gira a 2800 rpm. Qual a frequência (f) de rotação da hélice, em unidades do Sistema Internacional (SI)? Adote $\pi\cong 3$.

- a) 16,7
- b) 26,7
- c) 36,7
- d) 46,7

Comentários:

Se a frequência de rotação é de 2800 rpm, isto é 2800 rotações por minuto. Então.

$$2800 \ rpm \equiv \frac{2800}{60} \ Hz = 46,7 \ Hz$$

Gabarito: D

29. (EEAR - 2016)

Duas polias estão acopladas por uma correia que não desliza. Sabendo-se que o raio da polia menor é de 20 cm e sua frequência de rotação f_1 é de 3600 rpm, qual é a frequência de rotação f_2 da polia maior, em rpm, cujo raio vale 50 cm?

- a) 9000
- b) 7200
- c) 1440
- d) 720

Comentários:

Neste tipo de acoplamento, sabemos que as velocidades lineares são iguais, portanto:

$$v_1 = v_2$$

$$\omega_1 R_1 = \omega_2 R_2$$

$$2\pi f_1 R_1 = 2\pi f_2 R_2$$

$$f_2 = \frac{R_1}{R_2} \cdot f_1$$

$$f_2 = \frac{20}{50} \cdot 3600$$

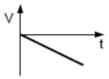
$$f_2 = 1440 \, rpm$$

Gabarito: C

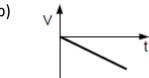
30. (EEAR - 2016)

Uma bomba é abandonada a uma altura de 8 km em relação ao solo. Considerando-se a ação do ar desprezível e fixando-se a origem do sistema de referências no solo, assinale a alternativa correspondente ao conjunto de gráficos que representa qualitativamente a velocidade (V) e a aceleração (a) da bomba, ambas em função do tempo.

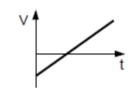
a)

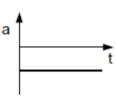


b)

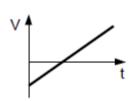


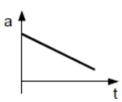
c)





d)





Comentários:

Se o sistema de referência está no solo e orienta para cima, então a aceleração da gravidada, que é constante, está orientada no sentido contrário ao sistema adotado, ou seja, ela é constante e tem valor negativo.

Se a granada é solta, então sua equação de velocidade é dada por:

$$v = v_0 + a_y t$$

$$v = 0 - gt$$

$$v = -gt$$

Assim, a velocidade aumenta em módulo e tem valor sempre negativo. A única alternativa que respeitas as duas condições física é a letra B.

Gabarito: B

31. (EEAR - 2015)

Calcule a velocidade tangencial, em km/h, do movimento de translação do planeta Terra em torno do Sol. Para esse cálculo considere:

- 1. que a luz do Sol leva 8 minutos para chegar até a Terra.
- 2. a velocidade da luz no vácuo igual a $3 \cdot 10^8 \ m/s$.
- 3. as dimensões da Terra e do Sol devem ser desprezadas.
- 4. o raio do movimento circular da Terra em torno do Sol como a distância que a luz percorre em 8 minutos.
- 5. o movimento da Terra em torno do Sol como sendo um Movimento Circular Uniforme (MCU).
- 6. o valor de $\pi = 3$.
- 7. μ ano = 360 dias.
- a) 10.000
- b) 24.000
- c) 36.000
- d) 100.000

Comentários:

Diante das considerações feitas em questão, a velocidade tangencial da terra é dada por:

$$v = \omega \cdot R$$

O raio do movimento circular realizado pela Terra em torno do Sol (considerado em questão) é calculado através do tempo que a luz leva para chegar a Terra:

$$R = c \cdot \Delta t$$

$$R = 3 \cdot 10^8 \cdot 8 \cdot 60$$

$$R = 144 \cdot 10^9 m$$

$$R = 144 \cdot 10^6 km$$

A velocidade angular pode ser determinada a partir do período que a Terra leva para dar uma volta em torno do Sol:

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2 \cdot 3}{360 \cdot 24}$$

Portanto:

$$v = \frac{2 \cdot 3}{360 \cdot 24} \cdot 144 \cdot 10^6$$

 $v = 100.000 \, km/h$

Gabarito: D

32. (EEAR - 2014)

Numa pista circular de 100 m de diâmetro um corredor A, mantendo o módulo da velocidade tangencial constante de valor igual 6 m/s, corre durante 5 min, completando várias voltas. Para que um corredor B, correndo nesta mesma pista, saindo do mesmo ponto e durante o mesmo tempo, consiga completar duas voltas a mais que o corredor A é necessário que este mantenha uma velocidade tangencial de módulo constante e igual a ______ m/s.

Adote: $\pi = 3.0$.

- a) 8
- b) 9
- c) 10
- d) 12

Comentários:

A variação angular de B deve ser a mesma que a de A mais 2 voltas, isto é:

$$\Delta \varphi_B = \Delta \varphi_A + 2 \cdot 2\pi$$

$$\omega_B \cdot \Delta t = \omega_A \cdot \Delta t + 2 \cdot 2\pi$$

$$\frac{v_B}{R} \cdot \Delta t = \frac{v_A}{R_A} \cdot \Delta t + 2 \cdot 2\pi$$

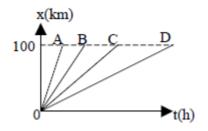
Substituindo valores, temos:

$$\frac{v_B}{50} \cdot (5 \cdot 60) = \frac{6}{50} \cdot (5 \cdot 60) + 2 \cdot 2 \cdot 3$$
$$6v_B = 36 + 12$$
$$v_B = 8 \, m/s$$

Gabarito: A

33. (EEAR - 2013)

Admita que o consumo de combustível de um carro é diretamente proporcional à velocidade média do mesmo durante o trajeto. Observando o gráfico da posição (x) em função do tempo (t), entre os veículos A, B, C e D o que apresenta maior consumo entre as posições 0 e 100 km é:



- a) A
- b) B
- c) C
- d) D

Comentários:

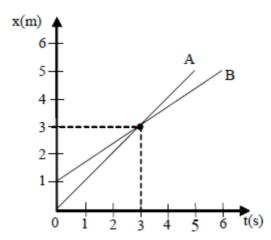
Como o consumo de combustível é diretamente proporcional à velocidade média dos veículos, aquele que possuir maior velocidade média terá o maior consumo. No gráfico do espaço pelo tempo, sabemos que para o caso do espaço variando linearmente com o tempo, a velocidade média é numericamente igual a inclinação da reta.

Portanto, a reta que tiver maior inclinação, terá maior velocidade média, ou seja, terá o maior consumo. Olhando para o gráfico, vemos que o veículo A possui maior inclinação, já que ele chega primeiro na posição $x=100\ km$.

Gabarito: A

34. (EEAR - 2013)

Dois pontos materiais A e B têm seus movimentos retilíneos uniformes descritos no gráfico, da posição (x) em função do tempo (t), a seguir. A razão entre o módulo da velocidade de B e o módulo da velocidade de A é



- a) 1/2
- b) 1/3
- c) 2/3

d) 3/2

Comentários:

De acordo com o gráfico da posição pelo tempo, sabemos que a inclinação é numericamente igual a velocidade. Portanto:

$$v_A = \frac{3-0}{3-0} = 1 \ m/s$$

$$v_B = \frac{3-1}{3-0} = \frac{2}{3} m/s$$

A relação entre as velocidades é de:

$$\frac{v_B}{v_A} = \frac{\frac{2}{3}}{1} = \frac{2}{3}$$

Gabarito: C

35. (EEAR - 2011)

Devido ao mau tempo sobre o aeroporto, uma aeronave começa a executar um movimento circular uniforme sobre a pista, mantendo uma altitude constante de 1000 m. Sabendo que a aeronave possui velocidade linear de 500 km/h e que executará o movimento sob um raio de 5 km, qual será o tempo gasto, em h, para que essa aeronave complete uma volta.

- a) $\pi/50$.
- b) $\pi/100$.
- c) 10π .
- d) 50π .

Comentários:

Se a velocidade linear é de 500 km/h e o raio do movimento circular executado pela aeronave é de 5 km, então a velocidade angular é dada por:

$$\omega = \frac{v}{R} = \frac{500}{5} = 100 \, rad/h$$

Logo, o período é dado por:

$$T = \frac{2\pi}{\omega}$$

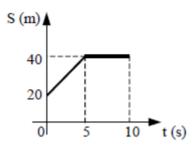
$$T = \frac{2\pi}{100}$$

$$T = \frac{\pi}{50} \ h$$

Gabarito: A

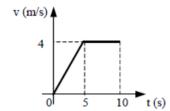
36. (EEAR - 2010)

No gráfico mostram-se as posições de um móvel em função do tempo.

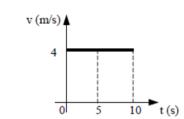


Das alternativas abaixo, assinale a que apresenta o gráfico da velocidade em função do tempo, para o movimento do móvel descrito no gráfico anterior.

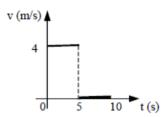
a)

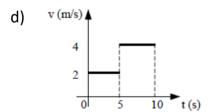


b)



c)





Comentários:

No gráfico $s \times t$, a velocidade é numericamente igual a reta tangente. Portanto, no primeiro intervalo de 0 a 5 s, temos que:

$$v = \frac{40 - 20}{5 - 0} = \frac{20}{5} = 4 \, m/s$$

E de 5 s a 10 s não há variação do espaço, isto é, não há velocidade do corpo. Portanto, o gráfico que representa a velocidade do corpo está melhor representado na alternativa C.

Gabarito: C

37. (EEAR - 2010)

Para explicar como os aviões voam, costuma-se representar o ar por pequenos cubos que deslizam sobre a superfície da asa. Considerando que um desses cubos tenha a direção do seu movimento alterada sob as mesma condições de um movimento circular uniforme (MCU), pode-se afirmar corretamente que a aceleração ______ do "cubo" é _____ quanto maior for o módulo da velocidade tangencial do "cubo".

- a) tangencial, maior.
- b) tangencial, menor.
- c) centrípeta, menor.
- d) centrípeta, maior.

Comentários:

A aceleração centrípeta está relacionada com a velocidade tangencial da seguinte forma:

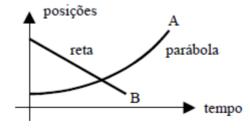
$$a_{cp} = \frac{v^2}{R}$$

Portanto, quanto maior a aceleração centrípeta, maior será a velocidade tangencial. Note que no movimento circular uniforme, a aceleração tangencial é nula e temos apenas a centrípeta alterando a direção e o sentido da velocidade.

Gabarito: D

38. (EEAR - 2009)

Dois ciclistas, A e B, deslocam-se simultaneamente numa mesma estrada, ambos em movimento retilíneo, conforme representado no gráfico (posição X tempo) abaixo.



Os movimentos dos ciclistas A e B, respectivamente, são classificados como:

- a) uniforme e acelerado.
- b) uniforme e retardado.
- c) acelerado e uniforme.

d) acelerado e retardado.

Comentários:

O movimento de A é uma parábola, isto é, movimento uniformemente variado e com concavidade e para cima, ou seja, aceleração positiva. Note que foi representado apenas a parte onde a posição de A aumenta com o tempo, isto é, apenas o movimento acelerado do corpo.

Por outro lado, o gráfico de B é uma reta, caracterizando um movimento uniforme. Como é uma reta decrescente, temos um movimento retrogrado de B.

Assim, a única alternativa correta é a C.

Gabarito: C

39. (EEAR - 2008)

A função horária $x=12-8t+t^2$, onde t (instantes de tempo em segundos) e x (posição em metros) medidos sobre a trajetória, é usada para o estudo de um movimento. Determine o intervalo de tempo em que as posições do móvel são negativas.

- a) entre 0 e 2 s.
- b) entre 1 s e 2 s.
- c) entre 2 s e 6 s.
- d) entre 6 s e 10 s.

Comentários:

Dada a função horária do espaço, temos que determinar os instantes em que x=0:

$$x = 0$$

$$12 - 8t + t^{2} = 0$$

$$t = \frac{-(-8) \pm \sqrt{8^{2} - 4 \cdot 1 \cdot 12}}{2 \cdot 1}$$

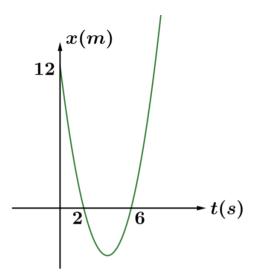
$$t = \frac{8 \pm \sqrt{16}}{2}$$

$$t = \frac{8 \pm 4}{2}$$

$$t_{1} = \frac{8 - 4}{2} = 2 s$$

$$t_{2} = \frac{8 + 4}{2} = 6 s$$

Desenhando a função do segundo grau, temos:



Assim, podemos verificar que o intervalo de tempo onde x < 0 é dado por:

Gabarito: C

40. (EEAR - 2007)

No movimento circular uniforme a velocidade angular (ω) não depende

- a) do raio da circunferência.
- b) da sua frequência.
- c) do seu período.
- d) do tempo gasto para completar uma volta.

Comentários:

A velocidade angular no MCU pode ser calculada como:

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Não depende do raio da circunferência. Lembrando que período é o tempo gasto para dar uma volta completa.

Gabarito: A

41. (EEAR – 2007)

Um móvel ao percorrer uma trajetória retilínea obedece a seguinte função horária: $s(t) = -4 + 16t - 2t^2$ (no SI). Em que instante, em segundos, o móvel inverte o sentido do movimento?

- a) 2
- b) 4

- c) 8
- d) $4 + \sqrt{56}$

Comentários:

Se a função horária é dada por:

$$s(t) = -4 + 16t - 2t^2$$

Comparando com a equação do MRUV, temos:

$$s(t) = s_0 + v_0 t + \frac{at^2}{2}$$

Logo:

$$s_0 = -4 m$$
, $v_0 = 16 m/s$ e $\frac{a}{2} = -2 \rightarrow a = -4 m/s^2$

Diante disso, podemos escrever a função horária da velocidade:

$$v = v_0 + at$$

$$v = 16 - 4t$$

Quando o corpo inverte de sentido, a velocidade do corpo deve ser anular nesse instante. Portanto:

$$v = 0$$

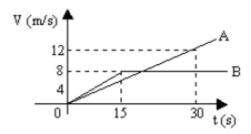
$$16 - 4t = 0$$

$$t = 4 s$$

Gabarito: B

42. (EEAR - 2006)

Dois móveis partem simultaneamente de um mesma posição e suas velocidade estão representadas no gráfico. A diferença entre as distâncias percorridas pelos dois móveis, no instante 30 s, é igual a



- a) 180.
- b) 120.
- c) zero.
- d) 300.

Comentários:

Se os móveis estão inicialmente juntos, a distância entre eles é determinada pela diferença entre os deslocamento sofrido pelos móveis. Este pode ser calculado pela área sob o gráfico:

$$d_A = \frac{12 \cdot 30}{2} = 180 m$$

$$d_B = \frac{30 - 15 + 30}{2} \cdot 8 = 180 m$$

$$d_A = d_B$$

Logo, em $t = 30 \, s$ eles estão novamente juntos.

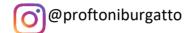
Gabarito: C

6. Considerações finais da aula

Chegamos ao final da nossa segunda aula de cinemática. Falta apenas mais uma aula de cinemática para fecharmos todo o conteúdo abordado no Colégio Naval.

Tente fazer todas as questões da lista sem olhar o gabarito. O caminho para passar no Colégio Naval é difícil, por isso é muito importante fazer as questões e não abandonar nenhuma dúvida.

Conte comigo nessa jornada. Quaisquer dúvidas, críticas ou sugestões entre em contato pelo fórum de dúvidas do Estratégia ou se preferir:



7. Referências bibliográficas

- [1] Calçada, Caio Sérgio. Física Clássica. 1. ed. Saraiva Didáticos, 2012. 576p.
- [2] Bukhovtsev, B.B. Krivtchenkov, V.D. Miakishev, G.Ya. Saraeva, I. M. Problemas Selecionados de Física Elementar. 1 ed. MIR, 1977.518p.
- [3] Brito, Renato. Fundamentos de Mecânica. 2 ed. VestSeller, 2010. 496p.
- [4] Newton, Gualter, Helou. Tópicos de Física. 11ª ed. Saraiva, 1993. 303p.
- [5] Toledo, Nicolau, Ramalho. Os Fundamentos da Física 1. 9ª ed. Moderna. 490p.
- [6] Resnick, Halliday. Fundamentos de Física. 8ª ed. LTC. 349p.

8. Versão da aula

Versão da Aula	Data de atualização
1.0	31/12/2019
1.1	06/01/2020