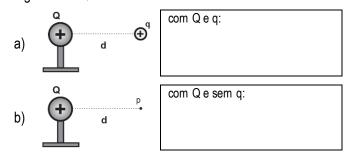
FOLHA 07 — FÍSICA FRENTE 2 — AULAS 13 E 14 (MED I — PÁG. 493)

EXT — SEMANA 07 — Campo Elétrico

Prof. Eduardo Lessi

TRILHA DE ESTUDOS: (Dias nublados guardam o Sol!)				
Semana 07: Campo elétrico				
No livro Física - Volume 1, Frente 2, Capítulo 2.				
Ler as páginas 160 e 166 (vale a pena)				
Observar os passos dos exercícios RESOLVIDOS 8, 9, 10 e 11.				
Fazer, seguindo a ordem sugerida (mesmo):				
Treino Nível I:	Treino Nível II:			
Revisando: 6, 7 e 8.	Proposto: 39, 41, 42, 40, 46.			
Proposto: 33, 35, 44, 45, 48, 34,	Complementar: 29, 31, 34, 37, 40,			
36, 38.	41, 43.			
Complementar: 27 30 36 42				

1. CONCEITO DE CAMPO ELÉTRICO:


Nível I + II: 2ª fase com física.

Nível I: pré-requisito mínimo para seguir o curso e 1ªs fases;

Campo elétrico é uma
causada na região ao redor de uma
, devido a sua própria presença neste espaço

2. IDEIA:

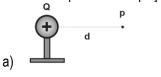
Observe a figura abaixo que mostra a região no entorno da carga "fonte" Q:

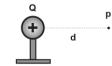
Assim, podemos entender que:

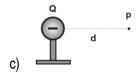
3. DEFINIÇÃO DE CAMPO ELÉTRICO:

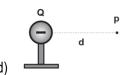
4. PROPORÇÕES "E versus d":

Observando as equações anteriores, vemos que o campo elétrico ao redor de "Q" é inversamente proporcional com o da distância.

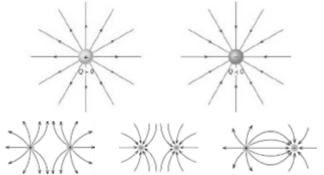

Assim:		
d	Ε	E∱
d	Е	
d	Е	
d	Е	→ d


5. ANÁLISE VETORIAL:

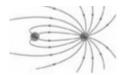

Como a torça elétrica () e o campo elétrico () são
grandezas		que se relacior	nam pela
expressão		, logo:	
a) se a carga posicionados com	_for	então sentido vetorial;	ficam
b) se a carga posicionados com se	_for ntidos	então	ficam


6. CASOS:

Utilizando as regras acima, vamos descobrir o vetor campo elétrico nos pontos do espaço.

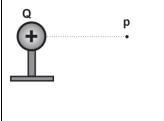

7. CONCLUSÕES:

Observando os vetores campo elétrico dos casos anteriores, podemos concluir que:

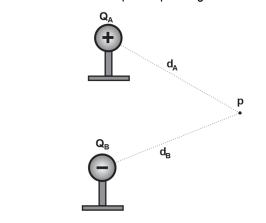

O campo para uma Q+ é representado por vetores que	O campo para uma Q— é representado por vetores que

8. AS LINHAS DE CAMPO (______)

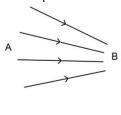
São linhas que representam o comportamento do campo elétrico no espaço de forma qualitativa e quantitativa. Observe.



A partir de observações de linhas de força, são postuladas as seguintes propriedades:

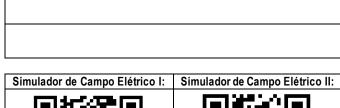

- I. Para uma carga fonte positiva, a linha de força tem origem no ponto onde está a carga e tende ao infinito. Para uma carga fonte negativa, a linha de força tem origem no infinito e tende a chegar ao ponto node a carga se encontra.
- II. As linhas de força nunca se cruzam.
- III. A densidade de linhas de força em uma certa região é proporcional à intensidade do campo elétrico nessa região.
- IV. A quantidade de linhas de força em uma representação é proporcional à intensidade, em módulo, da carga fonte.
- V. O vetor campo elétrico em um ponto no espaço é tangenciando a linha de força que passa por esse ponto e tem o mesmo sentido dela.

Atividade 01: (Vunesp - adaptado) Sabendo que a carga abaixo vale $Q=6\mu C$, represente e calcule o campo elétrico no ponto "p" que está a 3 cm de Q. Dado: $K_{v\'acuo}=9.10^9$ $N.m^2/C^2$.


Atividade 02: (Unesp - adaptado) Represente o campo elétrico resultante no ponto "p" da figura abaixo:

Atividade 03: (Fuvest - adaptado) Sabendo que o campo elétrico abaixo tem valor de 200 N/C no ponto "p", calcule e represente a força que uma carga de prova de —3 mC sofre ao ser colocada nele:

Atividade 04: (Ueg - adaptado) Na figura com LF's abaixo, identifique onde o campo elétrico é mais intenso: A ou B?



Atividade 05: Faça o exercício 02 da página 494 da apostila MED I.

Atividade 06: Faça o exercício 04 da página 495 da apostila MED I.

Atividade 07: Faça o exercício 05 da página 495 da apostila MED I.

ANOTAÇÕES:

Suporte para Estudantes:

Em caso de dúvidas entre em nosso grupo de

discussão: https://t.me/aulasdefisica

Esse grupo surgiu no isolamento e alunos veteranos tiram dúvidas de a

Curiosidades e dicas de FÍSICA:

Instagram: <u>@prof edulessi</u> O insta não é para dúvidas, ok?

ATENÇÃO, ESTE PLANTÃO É UM ATENDIMENTO PESSOAL DO PROFESSOR. NÃO É O PLANTÃO OFICIAL DA ESCOLA.