

Bernoulli Resolve

6V | Volume 6 | Matemática

SUMÁRIO

Frente	Α	Módulo A 21:	Combinações II	3
		Módulo A 22:	Probabilidades I	5
		Módulo A 23:	Probabilidades II	9
		Módulo A 24:	Binômio de Newton	14
_	_			
Frente	В	Módulo B 21:	Progressão Geométrica	17
		Módulo B 22:	Matrizes	21
		Módulo B 23:	Determinantes	25
		Módulo B 24:	Sistemas Lineares	27
Frente	C	Módulo C 21:	Polinômios I	30
		Módulo C 22:	Polinômios II	33
		Módulo C 23:	Equações Polinomiais I	35
		Módulo C 24:	Equações Polinomiais II	37

COMENTÁRIO E RESOLUÇÃO DE QUESTÕES

MÓDULO - A 21

Combinações II

Exercícios de Aprendizagem

Questão 01 - Letra D

Comentário: Os postos de abastecimento podem ser escolhidos de $C_{5,3}=10$ maneiras. Pelo PFC, o percurso inteiro pode ser feito de $4\cdot 10\cdot 3=120$ maneiras.

Questão 02 - Letra C

Comentário: A patrulha é formada por 1 sargento, 1 cabo e 4 soldados escolhidos entre dois, três e doze indivíduos, respectivamente. Assim, temos:

respectivamente. Assim, temos:
$$\underbrace{C_{2,1}}_{1 \text{ sargento}} \cdot \underbrace{C_{3,1}}_{1 \text{ cabo}} \cdot \underbrace{C_{12,4}}_{4 \text{ soldados}} = \frac{2!}{1! \cdot 1!} \cdot \frac{3!}{2! \cdot 1!} \cdot \frac{12!}{8! \cdot 4!} = 2\,970$$

diferentes patrulhas.

Questão 03 - Letra B

Comentário:

1) Caso seja escolhido um bairro na margem de oito bairros:

$$C_{8,1} \cdot C_{5,3} = \frac{8!}{7! \cdot 1!} \cdot \frac{5!}{2! \cdot 3!} = 80$$

 Caso sejam escolhidos três bairros na margem de oito bairros:

$$C_{8,3} \cdot C_{5,1} = \frac{8!}{5! \cdot 3!} \cdot \frac{5!}{4! \cdot 1!} = 280$$

Total = 80 + 280 = 360

Questão 04 - Letra A

Comentário: Como serão escolhidos 15 homens, devem ser escolhidas 21 - 15 = 6 mulheres. A escolha dos homens pode ser feita de C_{30}^{15} maneiras distintas; a escolha das mulheres de C_{20}^{6} modos diferentes, por sua vez. Pelo PFC, o júri pode ser formado de C_{30}^{15} . C_{20}^{6} maneiras distintas.

Questão 05 - Letra B

Comentário: Caso Magali escolha um sorvete com **p** bolas, sendo **p** igual a 1, 2 ou 3, há $C_{6, p}$ combinações diferentes de sabores a serem escolhidas. Assim, no total, Magali poderá montar seu sorvete de $C_{6, 1} + C_{6, 2} + C_{6, 3} = 6 + 15 + 20 = 41$ maneiras diferentes.

Questão 06

Comentário:

A) Devem ser escolhidas 2 mulheres dentre 5, o que pode ser feito de $C_{5,\,2}$ maneiras. Analogamente, há $C_{5,\,2}$ maneiras de se escolher os homens. Pelo PFC, há $C_{5,\,2}$. $C_{5,\,2}=10\cdot 10=100$ maneiras de formar comissões com dois homens e duas mulheres.

B) No total, podem ser formadas $C_{10, 4} = 210$ comissões. Destas, $C_{5, 4} = 5$ não contém nenhuma mulher. Logo, pelo Princípio da Inclusão-Exclusão, existem 210 - 5 = 205 comissões que podem ser formadas com pelo menos uma mulher.

Questão 07 - Letra C

Comentário: Há $C_{6,4} = \frac{6!}{4! \cdot 2!}$ modos de selecionar 4 químicos;

 $C_{3, 1} = 3$ modos de selecionar 1 engenheiro ambiental e $C_{4, 2} = \frac{4!}{2! 2!}$ modos de selecionar 2 engenheiros de produção.

Portanto, pelo Princípio Fundamental da Contagem, podemos formar uma equipe de $\frac{6!}{4! \cdot 2!} \cdot 3 \cdot \frac{4!}{2! \cdot 2!} = 6! \cdot \frac{3}{2 \cdot 2 \cdot 2} = 6! \cdot \frac{3}{8}$ maneiras.

Questão 08 - Letra B

Comentário: Sabendo que a placa do país **X** é composta por 3 letras e 3 algarismos em qualquer ordem, temos $\frac{6!}{3! \cdot 3!} = 20$ possíveis maneiras de ordenar letras e algarismos previamente escolhidos. Além disso, existem $26^3 \cdot 10^3$ maneiras de escolher letras e algarismos. Logo, **n** é tal que:

$$n = 20.26.26.26.10.10.10 = 2.26^3.10^4$$

Para o país **Y**, a condição é que o bloco das 3 letras esteja à esquerda do bloco dos 4 algarismos. O processo aqui é apenas de escolha de letras e algarismos, de tal forma que **p** vale:

$$p = 26.26.26.10.10.10.10$$

Logo,
$$\frac{n}{p} = \frac{2 \cdot 26^3 \cdot 10^4}{26^3 \cdot 10^4} = 2.$$

Exercícios Propostos

Questão 01 - Letra D

Comentário: Há $C_{10,p}$ comissões distintas de $\bf p$ pessoas dentre 10. Logo, como se deseja que $\bf p$ varie de 2 a 5, o número total de comissões é $C_{10,2} + C_{10,3} + C_{10,4} + C_{10,5} = 45 + 120 + 210 + 252 = 627.$

Questão 02 - Letra C

Comentário: Considere um grupo com \mathbf{p} garotos e \mathbf{p} garotas. A escolha dos \mathbf{p} garotos pode ser feita de $C_{4, p}$ maneiras, assim como a escolha das \mathbf{p} garotas (perceba que há 4 garotas e 4 garotos na tirinha).

Pelo PFC, a escolha dos **p** garotos e **p** garotas pode ser feita de $C_{4, p}$, $C_{4, p}$ maneiras. Como **p** varia de 1 a 4, o valor de **n** pedido é tal que:

$$n = (C_{4, 1})^2 + (C_{4, 2})^2 + (C_{4, 3})^2 + (C_{4, 4})^2 \Rightarrow$$

$$n = 16 + 36 + 16 + 1 = 69$$

Ouestão 03 - Letra E

Comentário: Como há uma restrição ao se fazer a escolha do chocolate, deve-se dividir o problema em dois casos, correspondendo à escolha ou não do chocolate. Pelo PFC:

Sem chocolate: Como se retirou uma opção do primeiro grupo, há $C_{3,2}$. $C_{5,2}$. $C_{6,2}$ = 3 . 10 . 15 = 450 maneiras de se escolher a refeição sem chocolate.

Com chocolate: Devemos escolher mais um alimento dentre os três que restam no primeiro grupo. Ademais, do segundo grupo, deve-se escolher chá necessariamente e a escolha se restringe a mais um elemento dentre os quatro restantes. Logo, isso pode ser feito de $C_{3,1}.C_{4,1}.C_{6,2} = 3 . 4 . 15 = 180$ maneiras. Há, portanto, 450 + 180 = 630 tipos distintos de merenda.

Questão 04 - Letra B

Comentário: Sabendo que o apostador foi contemplado com a Sena, vamos agora considerar as Quinas. Temos que, dos 20 números escolhidos, 6 foram sorteados e 14, não. Então, para cada jogo com exatamente 5 números premiados (Quina), temos 14 opções para o sexto número.

Escolhendo jogos de 5 números na cartela premiada:

$$C_{6.5} = 6$$
 opções

Logo, ele conseguirá $14 \cdot 6 = 84$ apostas.

Questão 05 - Letra C

Comentário: Para que a soma de três números seja ímpar, temos apenas duas opções: dois números pares e um número ímpar ou os três números ímpares. No conjunto de 1 a 15, temos 8 números ímpares e 7 números pares. Assim, para cada caso, temos as seguintes quantidades de grupos:

1. Dois números pares e um número ímpar:

$$\begin{pmatrix} 7 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 1 \end{pmatrix} = \frac{7!}{2! \cdot 5!} \cdot 8 = 168$$

 $\begin{pmatrix} 7 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 1 \end{pmatrix} = \frac{7!}{2! \cdot 5!} \cdot 8 = 168.$ 2. Três números ímpares: $\begin{pmatrix} 8 \\ 3 \end{pmatrix} = \frac{8!}{3! \cdot 5!} = 56.$

Portanto, o número de grupos em que a soma dos termos é impar é 168 + 56 = 224.

Questão 06 - Letra C

Comentário: Existem $C_{6,3} = 20$ maneiras de se formarem grupos de trabalhos distintos. Existem 8! = 40 320 anagramas a serem escritos. Logo, nas condições do enunciado, em cada um dos vinte turnos, devem ser escritos $\frac{40\,320}{20} = 2\,016$ anagramas distintos.

Questão 07

Comentário:

- A) Perceba que, no grupo de amigos, há ao todo 5 homens e 4 mulheres. Logo, pelo PFC, a escolha de 3 homens e 3 mulheres pode ser feita de $C_{5,3}$. $C_{4,3} = 10$. 4 = 40 maneiras.
- B) João tem $C_{3,2} = 3$ maneiras de escolher 2 amigos homens e $C_{3.1}$ = 3 maneiras de escolher 1 amigo homem. Analogamente, há $C_{2,2} = 1$ maneira de ele escolher 2 amigas mulheres e $C_{2,1} = 2$ maneiras de escolher

uma amiga mulher. Para Maria, os quatro valores anteriores são, respectivamente, $C_{2,2} = 1$, $C_{2,1} = 2$, $C_{2,2} = 1 e C_{2,1} = 2$. Logo, o número de casos pedidos $\acute{e} C_{3,2} \cdot C_{2,1} \cdot C_{2,2} \cdot C_{2,1} + C_{3,1} \cdot C_{2,2} \cdot C_{2,1} \cdot C_{2,2} = 12 + 6 = 18,$ correspondentes aos casos em que João e Maria, respectivamente, escolhem dois amigos homens.

Ouestão 08 - Letra C

Comentário: O sabor de sorvete pode ser escolhido de $C_{v,1} = x$ maneiras diferentes. Para **p** sabores de cobertura (p = 2 ou p = 3 no caso em tela), podem ser escolhidas C, combinações de coberturas. Pelo PFC e pelos dados do enunciado, tem-se:

$$C_{x,1}.C_{y,2} = x.\frac{y(y-1)}{2} = 150$$
 (I)
 $C_{x,1}.C_{y,3} = x.\frac{y(y-1)(y-2)}{6} = 200$ (II)

Dividindo (II) por (I), chega-se a $y - 2 = 4 \Rightarrow y = 6$.

Ouestão 09 - Letra E

Comentário: Dos peixes do tanque, 40% . 15 = 6 são carpas. Há $C_{64} = 15$ maneiras de escolher-se 4 carpas dentre as seis; logo, 15 - 6 = 9 peixes são de outras espécies. O número de combinações de 6 peixes distintos dentre esses 9 é dada por $C_{q,6} = 84$. Assim, o número de maneiras de pescar-se 4 carpas e 6 peixes de outras espécies, num total de 10 é, pelo PFC, $C_{64} \cdot C_{96} = 15 \cdot 84 = 1260.$

Questão 10 - Letra B

Comentário: Cada bola pode ser entregue a um dos dois sujeitos. Ou seja, há duas realizações possíveis para o evento "entregar uma bola determinada". Como são 5 bolas a serem entregues, pelo PFC, essa distribuição pode ser feita de $2^5 = 32$ maneiras. Porém, em duas dessas 32 distribuições, um dos indivíduos não recebe nenhuma bola. Logo, o número de maneiras pedido é 30. Pode-se pensar esse problema também por combinação. Perceba que, se fixamos o número de bolas **p** a serem entregues a um dos sujeitos, a distribuição pode ser feita de

$$\sum_{p=1}^{4} C_{5,p} = \sum_{p=0}^{5} C_{5,p} - (C_{5,0} + C_{5,5}) = 2^{5} - (C_{5,0} + C_{5,5}) = 30 \text{ maneiras.}$$

Questão 11 - Letra D

Comentário: Resolvendo a questão pelo Princípio da Inclusão--Exclusão, José participa se, e somente se, Amanda participar. Desse modo, podem ser formadas $C_{8,2} + C_{8,4} = 28 + 70 = 98$ comissões, correspondentes aos casos em que José e Amanda fazem e não fazem parte da comissão, respectivamente. Destas comissões, devem ser retiradas aquelas formadas por Márcia e Sandro, simultaneamente. Estas equivalem a $C_{6,0} + C_{6,2} = 16$, correspondentes aos casos em que José e Amanda fazem e não fazem parte da comissão, respectivamente. Logo, existem 98 - 16 = 82 comissões obedecendo a essas condições.

Ouestão 12 - Letra E

Comentário: Como é preciso formar um grupo de 3 estudantes de cada professor, sendo 3 homens e 3 mulheres, vamos analisar cada caso:

3 alunos de X e 3 alunas de Y

$$C_{43} \cdot C_{43} = 4 \cdot 4 = 16$$

3 alunos de Y e 3 alunas de X

$$C_{3,3} \cdot C_{3,3} = 1 \cdot 1 = 1$$

2 alunos de X e 1 aluno de Y e 1 aluna de X e 2 alunas de Y

$$C_{4,2} \cdot C_{3,1} \cdot C_{3,1} \cdot C_{4,2} = \frac{4!}{2!2!} \cdot 3 \cdot 3 \cdot \frac{4!}{2!2!} = 6 \cdot 3 \cdot 3 \cdot 6 = 324$$

1 aluno de X e 2 alunos de Y e 2 alunas de X e 1 aluna de Y

$$C_{4,1} \cdot C_{3,2} \cdot C_{3,2} \cdot C_{4,1} = 4 \cdot 3 \cdot 3 \cdot 4 = 144$$

Portanto, o número máximo de formas distintas de se compor o grupo é 16 + 1 + 324 + 144 = 485.

Questão 13 - Letra B

Comentário: Sejam n homens e (37 – n) mulheres, o total de apertos de mão será:

$$\underbrace{2.C_{n,2}}_{\text{Apertos entre}} + \underbrace{C_{n,1}.C_{37-n,1}}_{\text{Apertos entre}} = 720 \Rightarrow$$

$$\underbrace{Apertos entre}_{\text{1 homem e 1 mulher}} = 720 \Rightarrow$$

$$2 \cdot \frac{n!}{(n-2)! \cdot 2!} + \frac{n!}{(n-1)! \cdot 1!} \cdot \frac{(37-n)!}{(37-n-1)! \cdot 1} \Rightarrow$$

$$\frac{n.(n-1).(n-2)!}{(n-2)!} + \frac{n(n-1)!}{(n-1)!} \cdot \frac{(37-n).(36-n)!}{(36-n)!} \Rightarrow$$

$$n^2 - n - n^2 + 37n = 720 \Rightarrow 36n = 720 \Rightarrow n = 20$$

Portanto, havia 37 - 20 = 17 mulheres.

Seção Enem

Questão 01 - Letra A

Eixo cognitivo: III

Competência de área: 1

Habilidade: 3

Comentário: Podem ser formados $C_{10,2} = \frac{10!}{8!2!}$ jogos de exibição distintos, escolhendo-se dois jogadores dentre os dez possíveis. Desse jogos, $C_{4,2} = \frac{4!}{2!2!}$ são jogados por dois jogadores canhotos. Assim, pelo Princípio da Inclusão-Exclusão, há $\frac{10!}{2!8!} - \frac{4!}{2!2!}$ possibilidades de escolha de tenistas.

Questão 02 - Letra A

Eixo cognitivo: V

Competência de área: 5

Habilidade: 23

Comentário: Há 9 poltronas disponíveis no voo. Precisamos, incialmente, escolher 7 lugares para os membros da família se acomodarem. Isso pode ser feito de $C_{9,\,\,7}$ maneiras. Para cada uma dessas possibilidades, podemos permutar todos os membros da família (7! maneiras). Assim, o número de formas distintas de se acomodar a família nesse voo será:

$$C_{9,7} \cdot 7! = \frac{9!}{7!2!} \cdot 7! = \frac{9!}{2!}$$

Questão 03 - Letra A

Eixo cognitivo: II

Competência de área: 1

Habilidade: 2

Comentário: Para escolher os contêineres, há $C_{5,2}$. $C_{4,2}$. $C_{3,2}$ = 180 maneiras. Para ordená-los, há $(P_2)^3$. P_3 = 48 maneiras. Assim, o número total de maneiras é igual a 180 . 48 = 8 640.

Questão 04 - Letra B

Eixo cognitivo: II

Competência de área: 1

Habilidade: 2

Comentário: Do total de equipes possíveis, devemos retirar aquelas nas quais não há nenhum físico, bem como aquelas nas quais não há nenhum geólogo. É mister ressaltar que as equipes que contêm apenas biólogos foram retiradas duas vezes. Temos:

$$C_{20,5} - C_{12,5} - C_{15,5} + C_{7,5} = \frac{20!}{15! \cdot 5!} - \frac{12!}{7! \cdot 5!} - \frac{15!}{10! \cdot 5!} + \frac{7!}{2! \cdot 5!} = 11730$$

maneiras distintas de se formar tal equipe.

MÓDULO - A 22

Probabilidades I

Exercícios de Aprendizagem

Questão 01 - Letra D

Comentário: Ao lançar duas vezes um dado não tendencioso, temos as seguintes possibilidades de o maior valor obtido ser menor que 3: (1, 2), (2, 1), (1, 1) e (2, 2). Como no lançamento de dois dados há $6 \cdot 6 = 36$ possibilidades possíveis, temos

que a probabilidade pedida será de $\frac{4}{36} = \frac{1}{9}$.

Questão 02 - Letra B

Comentário: O espaço amostral é 6 . 6 = 36. Destes, deseja-se contabilizar os eventos (resultados dos lançamentos dos dados) correspondentes à soma das faces de cima dos dados ser igual a 10. Os eventos que satisfazem a essa restrição são (4; 6), (5; 5) e (6; 4). Logo, a probabilidade pedida é de $\frac{3}{36} = \frac{1}{12}$.

Ouestão 03 - Letra A

Comentário: Como as duas mulheres devem pertencer ao trio, temos de escolher apenas um homem dentre os três disponíveis; assim, temos $C_{3,\ 1}$ maneiras de escolher um homem; logo, 3 trios que contêm um homem e duas mulheres. Temos que o total de grupos de três pessoas é $C_{5,3}=10$. Assim,

a probabilidade pedida é $\frac{3}{10}$.

Questão 04 - Letra E

Comentário: Podem-se formar $C_{6,3} = 20$ grupos, sem nenhuma restrição; porém, o grupo deve conter um engenheiro e dois matemáticos. Assim, escolhe-se um engenheiro entre os dois disponíveis e escolhem-se dois matemáticos entre os quatro; logo:

$$C_{2,1}$$
 . $C_{4,2}$ = 2.6 = 12

Portanto, a probabilidade de se escolher um engenheiro e dois matemáticos será de $\frac{12}{20} = \frac{6}{10} = 0,60 = 60\%$.

Questão 05 - Letra A

Comentário: Escolhendo um número de cada conjunto, temos $C_{4,1}.C_{3,1}=4.3=12$ somas possíveis. Para que a soma seja ímpar, é necessário somar um número par e um ímpar, logo: Número ímpar (A) e número par (B): $C_{2,1}.C_{2,1}=2.2=4$

Número par (A) e número ímpar (B): $C_{2,1}.C_{1,1} = 2.1 = 2$

Assim, a probabilidade da soma dos números escolhidos ser ímpar será de $\frac{4+2}{12} = \frac{6}{12} = \frac{1}{2}$.

Questão 06 - Letra B

Comentário: Pessoas com fatores de risco: 20% de 300 = 60.

$$P = \frac{C_{60,2}}{C_{300,2}} = \frac{\frac{60.59}{2}}{\frac{300.299}{2}} = \frac{30.59}{150.299} = \frac{59}{1495}$$

Questão 07 - Letra E

Comentário: A quantidade de maneiras de retirarmos duas meias sem restrição é $C_{20,2}=190$, e a quantidade de maneiras de retirarmos uma meia de cada cor sem reposição é $8 \cdot 12=96$. Assim, a probabilidade de retirarmos duas meias de cores diferentes é de $\frac{96}{190}=\frac{48}{95}$.

Questão 08 - Letra B

Comentário: Temos que o número de combinações possíveis é $10 \cdot 10 \cdot 10 = 1 \cdot 000$. A quantidade de senhas formadas com três números primos é igual a $4 \cdot 4 \cdot 4 = 64$; logo, a probabilidade de acertar uma senha formada por esses números é de $\frac{64}{1000} = \frac{6,4}{100} = 6,4\%$.

Exercícios Propostos

Questão 01

Comentário:

A) Temos um total de 11 alunos n\u00e3o fluentes em franc\u00e9s. Assim:

$$C_{11, 2} = \frac{11!}{2! \cdot 9!} = \frac{11 \cdot 10 \cdot 9!}{2! \cdot 9!} = \frac{11 \cdot 10}{2} = 55$$
 grupos

- B) Temos um total de 8 alunos fluentes em inglês. Analisaremos cada caso de sortear dois alunos em que pelo menos 1 é fluente em inglês:
 - 1° Caso: Sortear dois alunos e os dois serem fluentes em inglês.

$$P_1 = \frac{8}{16} \cdot \frac{7}{15} = \frac{7}{30}$$

2° Caso: Sortear dois alunos e apenas o primeiro ser fluente em inglês.

$$P_2 = \frac{8}{16} \cdot \frac{8}{15} = \frac{4}{15}$$

3° Caso: Sortear dois alunos e apenas o segundo ser fluente em inglês.

$$P_3 = \frac{8}{16} \cdot \frac{8}{15} = \frac{4}{15}$$

Logo, a probabilidade total é

$$P = \frac{7}{30} + \frac{4}{15} + \frac{4}{15} = \frac{7 + 8 + 8}{30} = \frac{23}{30}$$

Questão 02 - Letra A

Comentário: Seja o número de elementos do espaço amostral E dado por n(E). Temos n(E) = 36.

Seja **A** o evento "obter dois números consecutivos, cuja soma é um número primo". Temos:

$$A = \left\{ \underbrace{(1,2),(2,1)}_{soma=3},\underbrace{(2,3),(3,2)}_{soma=5},\underbrace{(3,4),(4,3)}_{soma=7},\underbrace{(5,6),(6,5)}_{soma=11} \right\}$$

$$n(A) = 8$$

$$P(A) = \frac{n(A)}{n(E)} = \frac{8}{36} = \frac{2}{9}$$

Ouestão 03 - Letra D

Comentário: Perceba que a média aritmética de 8 e 31 é 19,5. Logo, se, e somente se, o apresentador retirar um cartão de numeração menor ou igual a 19, Ana ganha (não há possibilidade de empate). Logo, como 8 já foi retirado, a probabilidade associada à vitória de Ana é $\frac{18}{48}$ = 37,5%.

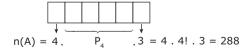
Questão 04 - Letra A

Comentário: Como há 16 peças pretas, a quantidade de maneiras de se escolherem duas peças pretas quaisquer será igual a $C_{16,\,2}=120$; porém, a quantidade de maneiras de se escolherem dois peões pretos será $C_{8,\,2}=28$. Logo, a probabilidade pedida é $\frac{28}{120}=\frac{7}{30}$.

Questão 05 - Letra B

Comentário: O número de elementos do espaço amostral é dado por n(E) = 6! = 720.

Evento A: A primeira e a última letras são consoantes.



$$P(A) = \frac{n(A)}{n(E)} = \frac{288}{720} = \frac{2}{5}$$

Questão 06 - Letra D

Comentário: Denote por \mathbf{x} o número de hóspedes do hotel. 60% de x = 0.6x são brasileiros e, espera-se, falam português. Há, por outro lado, x - 0.6x = 0.4x estrangeiros. Assim, têm-se 70% . 0.4x = 0.28x de ingleses e 30% . 0.4x = 0.12x de franceses. Como 50% dos ingleses falam português,

50% . 0.28x = 0.14x ingleses falam português. Como 25% dos franceses falam português, 25% . 0.12x = 0.03x falam português. Logo, no hotel, há 0.6x + 0.14x + 0.03x = 0.77x falantes de português, o que equivale a 77% dos hóspedes.

Ouestão 07 - Letra A

Comentário: Existem $C_{10,3}$ maneiras de se retirarem 3 bolinhas dentre 10 e $C_{3,3}$ maneiras de se retirarem 3 bolinhas de 200 g. Assim, a probabilidade **P** procurada é:

$$P = \frac{C_{3,3}}{C_{10,3}} = \frac{1}{120}$$

Questão 08 - Letra A

Comentário: A palavra HOSPITAL possui 8! anagramas. Para determinar a quantidade de anagramas que começam e terminam com consoantes, devemos escolher qual será a primeira e qual será a última consoante; logo, temos 5 possibilidades para a primeira consoante e 4 para a última, e o restante das letras permutamos entre si, ou seja, 5.4.6!. Assim, temos que a probabilidade de o anagrama começar e terminar com consoante será de $\frac{5.4.6!}{8!} = \frac{5.4.6!}{8.7.6!} = \frac{20}{56} = \frac{5}{14}$.

Questão 09 - Letra A

Comentário: Perceba que existem 6 . 2 = 12 eventos possíveis no espaço amostral do lançamento conjunto da moeda e do dado. Como se deseja que a média entre o número obtido da face do dado e o da face da moeda esteja entre 2 e 4, a soma desses números deve estar entre 4 e 8. Caso saia 3 na moeda e um número entre 2 e 4 no dado, essa restrição está satisfeita. Caso saia 6 na moeda e 1 no dado, a restrição também se satisfaz. Logo, existem 3 + 1 = 4 eventos que satisfazem a restrição num espaço amostral de 12 eventos, o que confere a este evento uma probabilidade de $\frac{4}{12} = \frac{1}{2}$.

Questão 10 - Letra B

Comentário: A quantidade de maneiras diferentes de se entregar as 3 medalhas (ouro, prata e bronze) entre os 20 corredores é dada por $C_{20,3}$. Já em cada uma das equipes A, B e C temos $C_{9,3}$, $C_{5,3}$ e $C_{6,3}$ maneiras, respectivamente.

Logo, a probabilidade percentual de as 3 medalhas serem entregues a uma mesma equipe é dada por:

$$P = \frac{C_{9,3} + C_{5,3} + C_{6,3}}{C_{20,3}} = \frac{84 + 10 + 20}{1140} = \frac{1}{10}.100\% = 10\%$$

A alternativa B é correta, pois 10 ∈ [10, 12[.

Questão 11 - Letra A

Comentário: Observando que de 11 a 19 existem cinco números ímpares e quatro números pares, segue que o primeiro e o último cartão devem ser, necessariamente, ímpares. Desse modo, existem 5! modos de dispor os cartões ímpares e 4! modos de dispor os cartões pares.

Portanto, como existem 9! maneiras de empilhar os nove cartões aleatoriamente, a probabilidade pedida é:

$$\frac{5!.4!}{9!} = \frac{5!.4.3.2}{9.8.7.6.5!} = \frac{1}{126}$$

Questão 12 - Letra D

Comentário: Sendo \mathbf{x} o número de respostas incorretas de Paulo, o número de respostas corretas é (30 - x). Como se ganha 3 pontos a cada resposta correta, Paulo ganhou 3(30 - x). Como se perde 5 pontos a cada resposta errada, Paulo perdeu 5x pontos, num saldo de 50 pontos. Logo:

$$3(30 - x) - 5x = 50$$

8x = 40

x = 5

A probabilidade pedida, sabendo que Paulo errou 5 perguntas

de 30, é
$$\frac{5}{30} = \frac{1}{6}$$
.

Ouestão 13 - Letra C

Comentário: Existem 7 cartas de ouros nesse baralho, sendo que duas estão na mão de Luís. Assim, há 5 cartas de ouros entre as 23 que ficaram no baralho. Existem $C_{23,\,3}$ combinações de cartas entre as que ficaram no baralho e $C_{5,\,3}$ de cartas apenas de ouros. Assim, a probabilidade **P** procurada é:

$$P = \frac{C_{5,3}}{C_{23,3}} = \frac{\frac{5!}{2! \cdot 3!}}{\frac{23!}{20! \cdot 3!}} = \frac{5! \cdot 20! \cdot 3!}{23! \cdot 2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3}{23 \cdot 22 \cdot 21} = \frac{10}{1771}$$

Questão 14 - Letra D

Comentário: O número de maneiras com que as cinco pessoas podem ocupar a mesa é igual a (5-1)!=4!=24. Como a mesa é circular, elas podem ocupá-la obedecendo a ordem crescente de idades no sentido horário e anti-horário, ou seja, 2 maneiras possíveis; assim, a probabilidade pedida é $\frac{2}{24} = \frac{1}{12}$.

Questão 15 - Letra E

Comentário: Temos 12 possíveis valores para **a** e 9 possíveis valores para **b**. O número de frações possíveis é 12 . 9 = 108. O denominador deverá ser par, então o numerador deverá ser ímpar para que a fração seja irredutível. Temos, então, as seguintes possibilidades:

Denominador	Numeradores possíveis
44	13, 15, 17, 19, 21
46	11, 13, 15, 17, 19, 21
48	11, 13, 17, 19
50	11, 13, 17, 19, 21

Logo, temos 20 frações que atendem às condições do enunciado e a probabilidade pedida é $P = \frac{20}{108} = \frac{5}{27}$.

Ouestão 16

Comentário:

A) $x + (x + 1) + (x + 2) + (x + 3) = 50 \Rightarrow 4x = 44 \Rightarrow x = 11$

B) Temos:

i) 11 bolas brancas, numeradas de 1 a 11.

ii) 12 bolas azuis, numeradas de 1 a 12.

iii) 13 bolas amarelas, numeradas de 1 a 13.

iv) 14 bolas verdes, numeradas de 1 a 14.

Sejam os seguintes eventos:

Evento A: Retirar uma bola azul.

Evento B: Retirar uma bola com o número 12.

$$n(A) = 12, n(B) = 3 e n(A \cap B) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow$$

$$P(A \cup B) = \frac{12}{50} + \frac{3}{50} - \frac{1}{50} = \frac{7}{25}$$

Seção Enem

Questão 01 - Letra D

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Após a colocação da 1^a peça, sobram $(n^2 - 1)$ casas. Excluindo a casa em que foi colocada a 1^a peça, sobram (2n - 2) casas na linha e coluna da peça.

Assim:

$$\begin{aligned} \frac{2n-2}{n^2-1} < \frac{1}{5} & \Rightarrow \\ n^2-1 > 10n-10 & \Rightarrow \end{aligned}$$

 $n^2 - 10n + 9 > 0$

Cuja solução é n < 1 ou n > 9.

Como n \geq 2, logo a dimensão mínima que o *designer* deve adotar para esse tabuleiro é de 10×10 .

Questão 02 - Letra D

Eixo cognitivo: V

Competência de área: 7

Habilidade: 30

Comentário: Como a probabilidade de a pessoa escolhida ser uma criança é igual a dois terços, o número \mathbf{x} de crianças que participa do projeto será tal que:

$$\frac{x}{10 + 5 + x} = \frac{2}{3} \Rightarrow 3x = 30 + 2x \Rightarrow x = 30.$$

Questão 03 - Letra C

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Temos, no total, 100 senhas possíveis. De 1 a 20 são 20 senhas; portanto, a probabilidade pedida será $\frac{20}{100}$.

Ouestão 04 - Letra E

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28 Comentário:

Modo I:

A probabilidade é dada por:

$$P(I) = \frac{C_{199,2}}{C_{200,3}} = \frac{3}{200}$$
Total de trios

Modo II:

A probabilidade é dada por:

$$P(II) = \frac{1}{20} \cdot \frac{\sum_{\substack{\text{order a equipes} \\ \text{order o a dieta}}}^{\text{trios de equipes que}}}{\sum_{\substack{\text{Trios de equipes}}}^{\text{trios de equipes}}} = \frac{1}{20} \cdot \frac{3}{10} = \frac{3}{200}$$

Modo III:

A probabilidade é dada por:

$$P(III) = \frac{C_{19,2}}{C_{20,3}} \cdot \frac{E_{\text{guipe que}}}{10} = \frac{3}{20} \cdot \frac{1}{10} = \frac{3}{200}$$

$$\frac{1}{10} = \frac{3}{200}$$
Total de trius de equipes

$$P(I) = P(II) = P(III)$$

Ouestão 05 - Letra D

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Como a pessoa escolhida ao acaso está entre as que opinaram, a probabilidade pedida é dada por:

$$\frac{12\%}{\frac{52\% + 15\% + 12\%}{100\% - 21\% \text{ (não opinaram)}}} = \frac{12\%}{79\%} \cong 0.15$$

Questão 06 - Letra D

Eixo cognitivo: V

Competência de área: 7

Habilidade: 30

Comentário: Listando os resultados possíveis para José, Paulo e Antônio, temos:

José (soma 7) = (1, 6); (2, 5); (3, 4); (4, 3); (5, 1); (6, 1); = 6 possibilidades

Paulo (soma 4) = (1, 3); (2, 2); (3, 1); = 3 possibilidades

Antônio (soma 8) = (2, 6); (3, 5); (4, 4); (5, 3); (6, 2); = 5 possibilidades

Ouestão 07 - Letra D

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Como a temperatura ideal está entre 2 °C e 4 °C,

apenas a peixaria V satisfaz essa condição.

Portanto, a probabilidade pedida é igual a $\frac{1}{5}$.

Ouestão 08 - Letra A

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: A classificação dos times foi a seguinte:

	2004	2005
1º colocado	В	С
2º colocado	D	В
3º colocado	С	А
4º colocado	Α	D

Observe que não há possibilidade de um time ter obtido a mesma classificação.

Questão 09 - Letra D

Eixo cognitivo: IV

Competência de área: 7

Habilidade: 29

Comentário: O número de elementos do espaço amostral

Temos os seguintes eventos:

A: camisa $6 = \{(1, 5), (5, 1), (2, 4), (4, 2), (3, 3)\} \Rightarrow n(A) = 5$

B: camisa 2 = $\{(1, 1)\} \Rightarrow n(B) = 1$

C: camisa $12 = \{(6, 6)\} \Rightarrow n(C) = 1$

 $P(A) = \frac{5}{36}, P(B) = \frac{1}{36} e P(C) = \frac{1}{36}$

Observe que P(A) > P(B) + P(C).

Questão 10 - Letra E

Eixo cognitivo: IV

Competência de área: 7

Habilidade: 29

Comentário: O total de filhos é igual a 7 . 1 + 6 . 2 + 2 . 3 = 25, sendo 7 filhos únicos. Portanto, a probabilidade de a criança ser filho(a) único(a) é igual a $\frac{7}{25}$.

Ouestão 11 - Letra B

Eixo cognitivo: V

Competência de área: 7

Habilidade: 30

Comentário: A soma das áreas de alcance das antenas A e B equivale à área de um semicírculo de raio 10 km. Assim. temos:

$$\frac{\pi.10^2}{2} = \frac{100\pi}{2} = 50\pi \text{ km}^2$$

A probabilidade é igual a $P = \frac{50\pi}{628} \cong \frac{50 \cdot 3,14}{628} \cong 0,25 \cong 25\%$.

Questão 12 - Letra C

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: O total de bolas é igual a 7. Existem 2 bolas na linha 4 e 2 bolas na linha 5. Portanto, as linhas 1, 2 e 3 possuem 1 bola cada. A probabilidade pedida é dada por:

$$P = \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{2} = \frac{4}{216} = \frac{1}{54}$$

MÓDULO - A 23

Probabilidades II

Exercícios de Aprendizagem

Questão 01 - Letra D

Comentário: Para sair Rei apenas na segunda retirada, não pode sair Rei na primeira; logo, a probabilidade é de

$$\frac{3}{5} \cdot \frac{2}{4} = \frac{6}{20} = \frac{3}{10}$$

Questão 02 - Letra C

Comentário: A probabilidade de sair um número par é $\frac{3}{6} = \frac{1}{2}$ e a probabilidade de sair face coroa é $\frac{1}{2}$. Portanto, como os eventos são independentes, a probabilidade pedida é dada por: $\frac{1}{3} \cdot \frac{1}{3} = \frac{1}{4} = 0,25$.

Questão 03 - Letra D

Comentário: Como um dos entrevistados não vota em B, o espaço amostral fica reduzido a 100% – 40% = 60% dos eleitores. Portanto, a probabilidade de se votar em branco, dado que não se votou em B, é dada por:

$$P = \frac{20\%}{60\%} = \frac{1}{3}$$

Ouestão 04 - Letra D

Comentário: Ao se definir o espaço amostral, usa-se a seguinte notação:

H: Homem e M: Mulher

O espaço amostral é dado por:

$$E = \{(H, H, H), (H, H, M), (H, M, H), (H, M, M), (M, H, H), \\ (M, H, M), (M, M, H), (M, M, M)\}$$

$$n(E) = 8$$

Seja A o evento "pelo menos um filho é homem". Observe que n(A) = 7. Logo:

$$P(A) = {n(A) \over n(E)} = {7 \over 8} = 0,875 = 87,5\%$$

Questão 05 - Letra B

Comentário: Se \mathbf{x} é o número de funcionários, então 0,25x contraíram a gripe. Logo, 0,80 . 0,25x = 0,20x contraíram gripe e tiveram febre.

Funcionários que apresentaram febre por outros motivos: $0.08 \cdot 0.75x = 0.06x$.

Funcionários com febre: 0.20x + 0.06x = 0.26x.

Portanto, a probabilidade de os funcionários terem apresentado febre é:

$$P = \frac{0,26x}{x} = 26\%$$

Observação: Para atender ao gabarito oficial, a solução leva em consideração 8% dos funcionários que não apresentaram a gripe.

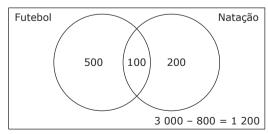
Questão 06 - Letra C

Comentário: Considerando somente as mulheres, temos que a probabilidade de uma delas preferir o prato típico doce será de:

$$\frac{60}{60+40} = \frac{60}{100} = 60\% = 0,60$$

Questão 07 - Letra D

Comentário: Observe o Diagrama de Venn a seguir.



Selecionando um participante de futebol, temos que a probabilidade de ele também praticar natação é de $\frac{100}{600} = \frac{1}{6}$.

Questão 08 - Letra C

Comentário: Observe a tabela a seguir que representa os resultados possíveis do lançamento de dois dados:

(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

Com base na tabela, os números 3 e 4 aparecem duas vezes simultaneamente; sendo assim, a probabilidade de isso ocorrer será, entre as condições estabelecidas, $\frac{2}{20} = \frac{1}{10}$.

Exercícios Propostos

Ouestão 01 - Letra B

Comentário: O passageiro pode ser inspecionado na primeira inspeção ou não. Logo, a probabilidade de ele ser inspecionado na primeira é $\frac{3}{5}$. Na segunda inspeção, a chance de ele ser inspecionado sem ter sido inspecionado na primeira $\left(\frac{2}{5}\right)$ é de $\frac{2}{5} \cdot \frac{1}{4} = \frac{2}{20} = \frac{1}{10}$

Logo, a probabilidade de ele ser inspecionado pelo menos uma $\text{vez} \not\in \frac{3}{5} + \frac{1}{10} = \frac{6}{10} + \frac{1}{10} = \frac{7}{10}$.

Questão 02 - Letra D

Comentário: Consultam a Internet 125 + 375 + 150 = 650 jovens, dos quais 125 + 375 = 500 são homens. Perceba que o enunciado pergunta a probabilidade de que um entrevistado seja homem e utilize a Internet. Pelas definições de probabilidade condicional e probabilidade simples, temos

que a probabilidade **p** procurada é de $p = \frac{\frac{500}{1000}}{\frac{650}{1000}} = \frac{10}{13} \cong 77\%$, ou seja, 60% .

Questão 03 - Letra A

Comentário: A probabilidade de retirar sucessivamente dois livros de ficção dentre todos os disponíveis será igual a $\frac{10}{22} \cdot \frac{9}{21} = \frac{90}{462} = \frac{15}{77}$.

Questão 04 - Letra A

Comentário: Sendo P(C) a probabilidade de um indivíduo ser cego, P(M) a probabilidade de ser mudo, temos que a probabilidade de um indivíduo ser cego ou mudo será de:

$$P(C \cup M) = P(C) + P(M) - P(C \cap M) \Rightarrow$$

$$P(C \cup M) = \frac{85}{10000} + \frac{50}{10000} - \frac{6}{1000} \Rightarrow$$

$$P(C \cup M) = \frac{129}{10000} = 0,0129$$

Ouestão 05 - Letra D

Comentário: Como os eventos **A** e **B** são independentes, temos que $P(A \cap B) = P(A).P(B)$, e da união de **A** com **B**, temos que $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, logo:

$$P(A \cup B) = P(A) + P(B) - \underbrace{P(A \cap B)}_{P(A),P(B)} \Rightarrow$$

$$P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B) \Rightarrow$$

$$0.8 = 0.4 + P(B) - 0.4. P(B) \Rightarrow$$

$$0.8 - 0.4 = 0.6 P(B) \Rightarrow$$

$$0,4 = 0,6 \text{ P(B)} \Rightarrow \text{P(B)} = \frac{0,4}{0.6} = \frac{2}{3}$$

Questão 06 - Letra A

Comentário: Primeiramente, perceba que $\frac{1}{3}$.60 000 = 20 000 domicílios não têm acesso a nenhum dos dois recursos. Sendo \mathbf{x} o número de domicílios que têm os dois recursos, (25 000 - x) têm apenas acesso à TV a cabo e (35 000 - x) apenas à Internet. Como 60 000 - 20 000 = 40 000 domicílios têm acesso aos recursos, temos que (x) + (25 000 - x) + (35 000 - x) = 40 000 e x = 20 000.

Logo, $35\ 000$ – $20\ 000$ = $15\ 000$ domicílios têm acesso apenas à Internet, e a probabilidade de escolha associada é de $\frac{15\ 000}{60\ 000} = \frac{1}{4}$.

Questão 07 - Letra B

Comentário: A probabilidade de vencer a primeira e a segunda prova é de 0,60 = 60%, então, sendo P(A) a probabilidade de vencer a prova do nado livre e P(B) a de vencer a do nado borboleta, e como os eventos são independentes, temos:

$$P(A). P(B) = 0.60 \Rightarrow$$

$$P(A).0,70 = 0,60 \Rightarrow$$

$$P(A) = \frac{0,60}{0.70} \cong 0,86$$

Logo, a probabilidade pedida é 86%.

Questão 08 - Letra C

Comentário: A questão explora a definição matemática de probabilidade condicional. Defina como o evento $A = \{x \text{ \'e fumante}\}\$ e o evento $B = \{x \text{ \'e mulher}\}\$, sendo \mathbf{x} uma pessoa entrevistada. Como, dentre os fumantes, 44% são mulheres – ou seja, a probabilidade condicional de \mathbf{x} ser mulher dado que $\mathbf{\acute{e}}$ fumante $\mathbf{\acute{e}}$ 0,44 –, temos que $\mathbf{P}(B|A) = 0,44$.

Pela definição de probabilidade condicional, $P(B|A) = \frac{P(B \cap A)}{P(A)}$.

Também temos que P(A) = 0,17. Perceba que o enunciado pede $P(B \cap A)$, logo:

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \ \Rightarrow 0,44 = \frac{P(B \cap A)}{0,17} \ \Rightarrow P(B \cap A) = 0,075$$

Questão 09 - Letra E

Comentário: Sejam P(c) e P(k) as probabilidades de se obter cara c e coroa d, respectivamente. Temos P(c) = 4.P(k). Mas

$$P(c) + P(k) = 1 \Rightarrow 4.P(k) + P(k) = 1 \Rightarrow P(k) = \frac{1}{5}$$

Em 2 lançamentos, temos: $P = \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{25} \Rightarrow P = 0.04$.

Ouestão 10 - Letra A

Comentário: Para determinar a probabilidade de acertar no mínimo uma questão, podemos subtrair da probabilidade total o caso em que todas as questões estão incorretas. Temos que a probabilidade de marcar uma questão errada é de $\frac{3}{4}$, pois temos três alternativas incorretas entre as quatro disponíveis; logo, a probabilidade de acertar pelo menos uma questão será de $1 - \left(\frac{3}{4}\right)^7 = 1 - \frac{2 \, 187}{16 \, 384} = 1 - 0,1334 \cong 0,87$, que corresponde

Questão 11 - Letra C

a aproximadamente 87%.

Comentário: Se a probabilidade de o produto A estar a dez ou mais dias do vencimento do prazo de validade é de 95%, a probabilidade de que um produto A escolhido esteja a menos de dez dias do vencimento do prazo de validade é de 1-0.95=0.05. Analogamente, a probabilidade de que um produto B escolhido esteja a menos de dez dias do vencimento do prazo de validade é de 1-0.98=0.02.

Portanto, a probabilidade de que ambos os produtos escolhidos estejam a menos de dez dias do vencimento do prazo de validade é de $0.05 \cdot 0.02 = 0.001 = 0.1\%$.

Questão 12 - Letra A

Comentário: A probabilidade de acertar a questão marcando uma alternativa ao acaso é $\frac{1}{4}$ e a de errar é $1 - \frac{1}{4} = \frac{3}{4}$.

Tomando as respostas de dois alunos quaisquer da turma, temos os seguintes casos favoráveis:

- Um aluno está entre os 20% que marcaram a opção correta, e o outro está entre os 80% que marcaram a resposta errada ao acaso.
- II. Os dois alunos estão entre os 80% que marcaram a resposta ao acaso, tendo um deles acertado a questão e o outro, errado.

Logo, a probabilidade de I ocorrer é:

$$0,2.0,8.\frac{3}{4}+0.8.\frac{3}{4}.0,2=0.24$$

enquanto a probabilidade de II ocorrer é:

$$0.8.\frac{1}{4}.0.8.\frac{3}{4}+0.8.\frac{3}{4}.0.8.\frac{1}{4}=0.24$$

Portanto, a probabilidade pedida é igual a 0.24 + 0.24 = 0.48.

Ouestão 13 - Letra A

Comentário: Denote pelo par ordenado (x, y) a realização dos lançamentos dos dois dados. Caso obtenha números distintos nos dados, o peão encerrará sobre a casa da bomba, caso x + y = 6, $x \neq y$, ou seja, para as realizações (1, 5), (2, 4), (4, 2) e (5, 1).

Isso ocorre com probabilidade de $\frac{4}{36} = \frac{1}{9}$. Por outro lado, caso

 \mathbf{x} seja igual a \mathbf{y} , o lançamento será repetido. O peão acabará sobre a casa da bomba nas seguintes sequências de realizações: $(1, 1) \in (1, 3)$ ou $(1, 1) \in (3, 1)$ ou $(1, 1) \in (2, 2)$ ou $(2, 2) \in (1, 1)$.

A probabilidade conjunta desses eventos é de $\frac{4}{36.36} = \frac{1}{324}$. Logo, a probabilidade pedida é $\frac{1}{324} + \frac{1}{9} = \frac{37}{324}$.

Questão 14 - Letra A

Comentário: Perceba que o espaço amostral é composto de $(1 + 4 + x).(1 + 4 + x) = (x + 5)^2$ elementos. Os eventos desejados são, pelo PFC, $1 \cdot 1 + 4 \cdot 4 + x \cdot x = x^2 + 17$. Pela definição de probabilidade e tomados os dados do enunciado, temos:

$$\frac{x^2 + 17}{(x+5)^2} = \frac{1}{2} \implies 2x^2 + 34 = x^2 + 10x + 25 \implies x^2 - 10x + 9 = 0 \implies x \in \{1, 9\}$$

Como x > 2, x = 9.

Questão 15 - Letra B

Comentário: Seja **x** o número de bolas vermelhas adicionadas na caixa. O número de combinações diferentes de 2 bolas entre as $6 + x \notin C_{(6+x), 2'}$ que é o tamanho do espaço amostral. O número de combinações de duas bolas azuis é $C_{6, 2} = 15$. Pela definição de probabilidade:

$$\frac{15}{C_{(x+6),2}} = \frac{1}{3}$$

$$45 = C_{(x+6), 2}$$

$$45 = \frac{(x+6)!}{(x+4)! \cdot 2!} = \frac{(x+6)(x+5)}{2} \Rightarrow$$

$$(x+5)(x+6) = 90$$

$$x^2 + 11x - 60 = 0$$

Perceba que essa equação tem x = 4 como única solução positiva.

Questão 16 - Letra C

Comentário: Denote por **A** o evento no qual o quarto é pintado de branco, **B** o evento de o bebê ser um menino e **C** o evento de ser uma menina. Sabe-se que P(A|B) = 0.3 e P(A|C) = 0.4: também se sabe que P(B) = P(C) = 0.5. Portanto, da definição de probabilidade condicional, temos:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = 0.5 \cdot 0.3 = 0.15$$

$$P(A|C) = \frac{P(A \, \cap \, C)}{P(C)} \ \Rightarrow P(A \, \cap \, C) = 0,5 \ . \ 0,4 = 0,20$$

$$P(A) = P(A \cap B) + P(A \cap C) = 0.35$$

O último resultado segue da Lei da probabilidade total, que pode ser aplicada já que **B** e **C** particionam o espaço amostral.

Ouestão 17

Comentário:

A) Acrescentando-se \mathbf{x} bolas azuis na urna, haverá 3+5+x=8+x bolas no total. Para que a probabilidade de se retirar uma bola azul seja $\frac{2}{3}$, \mathbf{x} tem que satisfazer, pela definição de probabilidade:

$$\frac{x}{x+8} = \frac{2}{3} \implies x = 16$$

B) Considerando as duas retiradas como eventos independentes: Probabilidade de retirar duas bolas pretas:

$$\left(\frac{1}{x+5}\right)\left(\frac{1}{x+5}\right) = \frac{1}{(x+5)^2}$$

Probabilidade de retirar duas bolas brancas:

$$\left(\frac{4}{x+5}\right)\left(\frac{4}{x+5}\right) = \frac{16}{(x+5)^2}$$

Probabilidade de retirar duas bolas pretas:

$$\left(\frac{x}{x+5}\right)\left(\frac{x}{x+5}\right) = \frac{x^2}{(x+5)^2}$$

Como os eventos são disjuntos, a probabilidade de união é igual à soma das probabilidades de cada evento. Logo:

$$\frac{1}{(x+5)^2} + \frac{16}{(x+5)^2} + \frac{x^2}{(x+5)^2} = \frac{1}{2}$$
$$\frac{17+x^2}{(x+5)^2} = \frac{1}{2}$$
$$x^2 + 10x + 25 = 2x^2 + 34$$
$$x^2 - 10x + 9 = 0$$

Resolvendo a equação, temos que x = 1 ou x = 9.

Seção Enem

Questão 01 - Letra E

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário:
Opção 1:
$$P_{Preta \ e \ Preta} = \frac{Z^1}{6} \cdot \frac{1}{5} = \frac{1}{15}$$

Opção 2:
$$P_{Preta \, e \, Preta} = \frac{3^{1}}{10^{1}} \cdot \frac{2^{1}}{9} - \frac{1}{15}$$

Opção 3:
$$P_{\text{preta e Preta}} = \frac{1}{2} \cdot \frac{3}{7} \cdot \frac{\cancel{2}}{6} + \frac{1}{\cancel{2}} \cdot \frac{\cancel{2}}{7} \cdot \frac{1}{6}$$
$$= \frac{3}{42} + \frac{1}{42} = \frac{4}{42} = \frac{2}{21}$$

Opção 4:
$$P_{Preta \ e \ Preta} = \frac{1}{2} \cdot \frac{2}{5} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{3}{5} \cdot \frac{2}{4}$$
$$= \frac{1}{20} + \frac{3}{20} = \frac{4}{20} = \frac{1}{5}$$

Opção 5:
$$P_{\text{Preta e Preta}} = \frac{1}{Z_1} \cdot \frac{A^2}{7} \cdot \frac{3}{6} + \frac{1}{Z_1} \cdot \frac{3}{7} \cdot \frac{Z_1}{6}$$
$$= \frac{6}{42} + \frac{3}{42} = \frac{9}{42} = \frac{3}{14}$$

Como = $\frac{3}{14} > \frac{1}{5} > \frac{2}{21} > \frac{1}{15}$, a pessoa deverá escolher a opção 5.

Ouestão 02 - Letra A

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Independentemente da ordem, busca-se a probabilidade de que a pessoa visualize 9 semáforos vermelhos e apenas 1 verde. Sendo assim,

$$\mathsf{P} = \left(\begin{array}{c} 10 \\ 1 \end{array} \right) \cdot \left(\frac{2}{3} \right)^1 \cdot \left(\frac{1}{3} \right)^9 \Rightarrow \mathsf{P} = \frac{10.9!}{9!} \cdot \frac{2}{3} \cdot \frac{1}{3^9} \Rightarrow \mathsf{P} = \frac{10 \cdot 2}{3^{10}}.$$

Questão 03 - Letra C

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: A probabilidade de atrasar é dada pela soma das probabilidades de atraso caso chova e caso não chova. No dia em que há 30% de probabilidade de chover, a probabilidade de não chover é de 70%. Assim,

 $P(atrasar) = 0.30 . 0.50 + 0.70 . 0.25 \Rightarrow$

P(atrasar) = 0,325.

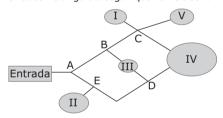
Questão 04 - Letra C

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Observe a figura a seguir que nomeia as ramificações:



Para chegar de A até IV sem retornos ou sem passar por outras áreas, há dois caminhos possíveis, que são A-B-C-IV ou A-E-D-IV. A probabilidade de ele tomar o primeiro caminho é de

 $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{12}$. Já para o segundo caminho, a probabilidade é

de $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$. Logo, a probabilidade pedida é de $\frac{1}{8} + \frac{1}{12} = \frac{5}{24}$.

Questão 05 - Letra B

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Seja **A** o evento A = {ambos estarão mortos daqui a 50 anos}. Deseja-se saber $P(A^c) = 1 - P(A)$. A probabilidade de que o homem esteja morto daqui a 50 anos é 1 - 0.2 = 0.8. Para a mulher, este valor é 1 - 0.3 = 0.7. Logo, $P(A) = 0.7 \cdot 0.8 = 0.56$ – considerando as mortes de cada um como eventos independentes – e $P(A^c) = 1 - 0.56 = 0.44 = 44\%$.

Ouestão 06 - Letra C

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: O valor retirado será maior ou igual a 55 reais caso sejam tiradas duas notas de 50 ou uma nota de 50 e uma de 20, ou uma nota de 50 e outra de 5 reais. Perceba que o espaço amostral é composto de 4 . 4 = 16 elementos. A primeira opção pode ser feita de 2 . 2 = 4 maneiras, a segunda de $2! \cdot 2 \cdot 1 = 4$ maneiras e a terceira de $2! \cdot 2 \cdot 1 = 4$ maneiras. Logo, há 12 eventos desejados. Pela definição de probabilidade, a probabilidade pedida é de $\frac{12}{16} = \frac{3}{4}$.

Questão 07 - Letra B

Comentário: O teste terminará na quinta pergunta, quando a resposta desta for errada e houver exatamente uma resposta errada entre as 4 primeiras questões, sendo que esses dois eventos são independentes. A probabilidade do primeiro evento é de 0,2 e a do segundo evento é modelada por uma distribuição binomial, de tal forma que a probabilidade **P** procurada é:

 $P = (0,2).C_{4,1}.(0,2).(0,8)^3 = 0,08192$

Ouestão 08 - Letra A

Eixo cognitivo: III

Competência de área: 7

Habilidade: 28

Comentário: Pelo Princípio Multiplicativo aplicado à frequência relativa de cada um dos grupos, temos:

$$\frac{\cancel{30}}{\cancel{100}} \cdot \frac{\cancel{20}}{\cancel{120}} = \frac{1}{20}$$

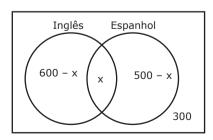
Questão 09 - Letra A

Eixo cognitivo: III

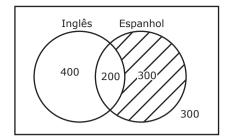
Competência de área: 7

Habilidade: 28

Comentário: Considere os diagramas a seguir:



Como o total de alunos é 1 200, temos: $(600-x)+(500-x)+x+300=1\ 200\Rightarrow x=200$ Substituindo o valor de $\bf x$ no diagrama:



Sabendo-se que o aluno escolhido não fala inglês, a probabilidade de que esse aluno fale espanhol é dada por:

$$P = \frac{300}{600} = \frac{1}{2}$$

Questão 10 - Letra D

Eixo cognitivo: III Competência de área: 7

Habilidade: 28

Comentário: Como a funcionária escolhida tem calçado maior que 36,0, o espaço amostral fica reduzido. Portanto, o espaço amostral E é dado por:

$$E = 3 + 10 + 1 = 14$$

Seja $\bf A$ o evento "tamanho do calçado igual a 38,0", observe que $n(\bf A)=10$. Logo:

$$P(A) = \frac{n(A)}{n(E)} = \frac{10}{14} = \frac{5}{7}$$

MÓDULO - A 24

Binômio de Newton

Exercícios de Aprendizagem

Questão 01 - Letra B

Comentário: O termo geral T é dado por:

$$T = \begin{pmatrix} 7 \\ p \end{pmatrix} \cdot x^{7-p} \cdot \left(\frac{1}{x}\right)^p = \begin{pmatrix} 7 \\ p \end{pmatrix} \cdot x^{7-2p}$$

Como 7 – $2p = 1 \Rightarrow p = 3$

Substituindo na expressão, temos:

$$\binom{7}{3}$$
. $x = \frac{7!}{4! \cdot 3!}$. $x = 35x$

O coeficiente é igual a 35.

Questão 02 - Letra B

Comentário: $(x^2 + 3x - 3)^{50}$

Basta fazermos x = 1 para obter a soma dos coeficientes do polinômio.

Temos que:

$$(1^2 + 3 \cdot 1 - 3)^{50} = 1$$

Ouestão 03 - Letra C

Comentário: Se desenvolvendo o binômio, obtemos um polinômio de 16 termos, então o expoente do binômio é igual a 15. Logo, $3n = 15 \Rightarrow n = 5$.

Ouestão 04 - Letra A

Comentário: Pode ser provado por indução, utilizando-se a Pelação de Stiffel que $\sum_{n=0}^{\infty} \binom{n}{n} = 2^n$. Logo $2^n - 256 - 2^8$ e n - 8

Relação de Stiffel, que $\sum_{p=0}^{n} \binom{n}{p} = 2^{n}$. Logo, $2^{n} = 256 = 2^{8}$ e n = 8.

Questão 05 - Letra D

Comentário: Sendo a o coeficiente pedido, temos que:

$$a = 1^3 \cdot 3^2 \cdot C_{5,3} = 90$$

Ouestão 06 - Letra A

Comentário: Dois binomiais $\begin{pmatrix} a \\ b \end{pmatrix} e \begin{pmatrix} c \\ d \end{pmatrix}$ são complementares se, e somente se, b + d = a = c. Aplicando essas condições ao caso do enunciado, temos x + 3y = 11 e y + 4x = 11. Isolando-se **x** na primeira equação e substituindo-o na segunda, temos y + 4(11 - 3y) = 11 e y = 3. Logo, x = 2. O binomial pedido vale $\begin{pmatrix} 11 \\ 8 \end{pmatrix} = \frac{11 \cdot 10 \cdot 9}{3 \cdot 2 \cdot 1} = 165$.

Ouestão 07 - Letra C

Comentário: Pela definição e pela relação dada no enunciado,

$$\begin{pmatrix} n \\ k+1 \end{pmatrix} = 3 \begin{pmatrix} n \\ k \end{pmatrix} \Rightarrow$$

$$\frac{n!}{(k+1)!(n-k-1)!} = 3 \cdot \frac{n!}{k!(n-k)!} \Rightarrow$$

$$\frac{1}{3} = \frac{(k+1)!(n-k-1)!}{k!(n-k)!} = \frac{(k+1)!}{k!} \cdot \frac{(n-k-1)!}{(n-k)!} = \frac{k+1}{n-k} \Rightarrow$$

$$n-k = 3k+3 \Rightarrow$$

$$n = 4k+3$$

Questão 08 - Letra D

Comentário: Denote por **a** o coeficiente procurado. Perceba que o termo em x^3 . $(2x + 1)^{10}$ tem o mesmo coeficiente do termo em x^2 de $(2x + 1)^{10}$. Achando tal termo, temos:

$$a = C_{10/2}.(2)^2.1^8 = 180$$

Exercícios Propostos

Questão 01 - Letra A

Comentário: O termo geral T do binômio (x + a)¹¹ é dado por:

$$T = {11 \choose p} x^{11-p} . a^p = 1386x^5$$

Temos que:

$$11 - p = 5 \Rightarrow p = 6 \Rightarrow {11 \choose 6}.x^5.a^6 = 1386x^5 \Rightarrow$$

$$\frac{11!}{5!.6!}.x^5.a^6 = 1386x^5 \Rightarrow 462.a^6 = 1386 \Rightarrow a = \sqrt[6]{3}$$

Questão 02 - Letra D

Comentário: O termo geral é dado por:

$$T = {8 \choose p}.(2x)^{8-p}.(-1)^p$$

i) Terceiro termo: p = 2

$$T_{3} = \begin{pmatrix} 8 \\ 2 \end{pmatrix} \cdot (2x)^{8-2} \cdot (-1)^{2} \Rightarrow$$

$$T_{3} = \frac{8!}{6! \cdot 2!} \cdot (2x)^{6} \Rightarrow$$

$$T_{3} = 1792x^{6}$$

ii) Quarto termo: p = 3

$$T_4 = \begin{pmatrix} 8 \\ 3 \end{pmatrix} . (2x)^{8-3} . (-1)^3 \Rightarrow$$

$$T_4 = \frac{8!}{5! . 3!} . (2x)^5 . (-1) \Rightarrow$$

$$T_4 = -1.792x^5$$

Portanto,
$$\frac{T_4}{T_3} = \frac{-1792x^5}{1792x^6} = -\frac{1}{x}$$
.

Ouestão 03 - Letra C

Comentário: Pela definição:

$$\begin{pmatrix} x \\ 2 \end{pmatrix} = \frac{x!}{2!(x-2)!} = \frac{x(x-1)[(x-2)!]}{2!(x-2)!} = \frac{x^2 - x}{2}$$
$$\begin{pmatrix} x+1 \\ 2 \end{pmatrix} = \frac{(x+1)!}{2!(x-1)!} = \frac{x(x+1)[(x-1)!]}{2!(x-1)!} = \frac{x^2 + x}{2}$$
$$\begin{pmatrix} x \\ 2 \end{pmatrix} + \begin{pmatrix} x+1 \\ 2 \end{pmatrix} = \frac{x^2 - x}{2} + \frac{x^2 + x}{2} = x^2$$

Questão 04 - Letra C

Comentário: O termo geral é dado por:

$$T = \begin{pmatrix} 100 \\ P \end{pmatrix} . x^{100 - p} . (-1)^{p}$$

i) Segundo termo: p = 1

$$T_2 = \begin{pmatrix} 100\\1 \end{pmatrix} . x^{100-1} . (-1)^1 \Rightarrow T_2 = -100x^{99}$$

ii) Quarto termo: p = 3

$$T_{4} = \begin{pmatrix} 100 \\ 3 \end{pmatrix} . x^{100-3} . (-1)^{3} \Rightarrow$$

$$T_{4} = \frac{100!}{97! . 3!} . x^{97} . (-1) \Rightarrow$$

$$T_4 = -161700x^{97}$$

Soma dos coeficientes: -100 - 161700 = -161800

Questão 05 - Letra C

Comentário: Seja x_{i+1} o (i + 1)-ésimo da expansão binomial.

Assim:

$$X_{i+1} = (3x)^{i} \cdot \left(-\frac{2}{x}\right)^{4-i} = 3^{i} \cdot (-2)^{(4-i)} \cdot x^{(2i-4)} \cdot C_{4,i}$$

Para o termo independente, o expoente é zero, logo, 2i - 4 = 0 e i = 2. Assim, o termo independente vale $(-2)^2 \cdot 3^2 \cdot C_{4,2} = 216$.

Questão 06 - Letra B

Comentário: Quando o expoente de \mathbf{x} é 36, \mathbf{x}^3 está elevado à 12^a potência. Logo, \mathbf{y}^{-2} estará elevado à $24 - 12 = 12^a$ potência, e o grau de \mathbf{y} será (-2).12 = -24.

Questão 07 - Letra D

Comentário: O quinto termo será tal que:

$$\left(\frac{x^2}{2}\right)^3 \cdot \left(\frac{A}{x}\right)^4 \cdot C_{7,3} = \frac{x^6}{8} \cdot \frac{A^4}{x^4} \cdot 35 = \frac{35A^4}{8} \cdot x^2 \implies B = 2$$

$$\frac{35A^4}{8} = \frac{70}{81} \implies A^4 = \frac{16}{81} \implies A = \pm \frac{2}{3} \implies$$

$$A + B = \pm \frac{2}{3} + 2 \implies A + B \in \left\{\frac{4}{3}, \frac{8}{3}\right\}$$

Questão 08 - Letra C

 $\label{eq:comentario:} \mbox{ Perceba que o número contido na i-ésima coluna}$ e j-ésima linha é $C_{j,i}=\frac{j!}{i!(j-i)!}$.

Logo, o número localizado na linha 15 e coluna 13 é o $C_{15,13} = \frac{15!}{13!2!} = 105.$

Questão 09 - Letra B

Comentário: Perceba que o termo independente é o quinto da expansão binomial (já que os graus em \mathbf{x} são 1 e -1; logo, serão cancelados quando ambos os termos tiverem elevados à quarta potência). Logo, sendo \mathbf{a} o coeficiente do termo independente, temos que a = 2^4 . 1^4 . $C_{8,4}$ = 16 . 70 = 1 120, cuja soma de algarismos é 4.

Questão 10 - Letra B

Comentário: Pela definição:

$$\begin{pmatrix} x+2 \\ 2 \end{pmatrix} = \frac{(x+2)(x+1)}{2}$$

$$\begin{pmatrix} 3x+1 \\ 1 \end{pmatrix} = 3x+1$$

$$\begin{pmatrix} x+2 \\ 2 \end{pmatrix} = \begin{pmatrix} 3x+1 \\ 1 \end{pmatrix} \implies \frac{(x+2)(x+1)}{2} = 3x+1$$

$$6x + 2 = x^2 + 3x + 2$$

$$x^2 = 3x$$

$$x \in \{0, 3\}$$

No entanto, se x=0, o binomial $\begin{pmatrix} 2x-1\\2 \end{pmatrix}$ tem um termo negativo, o que fere as condições de domínio. Logo, x=3 e $\begin{pmatrix} 2x-1\\2 \end{pmatrix} = \begin{pmatrix} 5\\2 \end{pmatrix} = \frac{5\cdot 4}{2} = 10$.

Questão 11 - Letra B

Comentário: O termo geral do binômio é dado por:

$$\begin{split} T_{p+1} &= \binom{n}{p} \cdot \left(\frac{2}{x^2}\right)^{n-p} \cdot x^p = \\ \binom{n}{p} \cdot \frac{2^{n-p}}{x^{2n-2p}} \cdot x^p &= \binom{n}{p} \cdot 2^{n-p} \cdot x^{3p-2n} \end{split}$$

Sabendo que o termo independente de \mathbf{x} é o sétimo, segue que p = 6 e, assim:

$$T_{6+1} = {n \choose 6}.2^{n-6}.x^{18-2n}.$$

Daí, impondo 18 - 2n = 0, concluímos que n = 9 e, portanto:

$$T_7 = \begin{pmatrix} 9 \\ 6 \end{pmatrix} \cdot 2^{9-6} = \frac{9!}{6! \cdot 3!} \cdot 2^3 = \frac{9 \cdot 8 \cdot 7}{3 \cdot 2} \cdot 8 = 672$$

Questão 12 - Letra B

Comentário: Como a expansão possui 9 termos, n = 9 - 1 = 8. Tome o (i + 1)-ésimo termo desta expansão. Assim:

$$x_{i} = (2x^{2})^{i} \left(\frac{1}{x}\right)^{8-i} \cdot C_{8,i} = 2^{i} \cdot C_{8,i} \cdot x^{3i-8}$$

Como se deseja que o termo seja de grau 7, 3i -8 = 7 e i = 5, logo, o coeficiente de x^7 é 2^5 . $C_{8,5} = 16 \cdot 2 \cdot 56 = 112 \cdot 16$ e $c = 16 \cdot 2 \cdot 56 = 112 \cdot 16$

Questão 13 - Letra E

Comentário: Pelo Teorema Binomial, temos:

$$\frac{T_1}{T_2} = \frac{C_{6,3}.(0,56)^3.(0,44)^3}{C_{6,3}.(0,56)^2.(0,44)^4} = \frac{20}{15}.\frac{0,56}{0,44} \cong 1,70$$

Questão 14 - Letra C

Ouestão 15 - Letra E

Comentário: Abrindo-se os termos da soma:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{1999 \cdot 2000} =$$

$$\left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{1998} - \frac{1}{1999}\right) + \left(\frac{1}{1999} - \frac{1}{2000}\right) =$$

$$1 - \frac{1}{2000} = 0,9995 = 9,995 \cdot 10^{-1}$$

Perceba que apenas o primeiro e o último termos da expansão não são cancelados.

Questão 16 - Letra D

Comentário: Desenvolvendo o polinômio dado, temos que:

$$p(x) = x^4 + 4x^3 + 6x^2 + 4x + 2017 =$$

$$p(x) = x^4 + 4x^3 + 6x^2 + 4x + 1 + 2016 =$$

$$p(x) = \left(\begin{array}{c} 4 \\ 0 \end{array} \right) . \ x^{4} \ . \ 1^{0} + \left(\begin{array}{c} 4 \\ 1 \end{array} \right) . x^{3} \ . \ 1^{1} + \left(\begin{array}{c} 4 \\ 2 \end{array} \right) . x^{2} \ . \ 1^{2} + \left(\begin{array}{c} 4 \\ 3 \end{array} \right) . x^{1} \ . \ 1^{3} + \left(\begin{array}{c} 4 \\ 4 \end{array} \right) . x^{0} \ . \ 1^{4} + 2 \ 016 = 0$$

$$p(x) = (x + 1)^4 + 2016$$

Portanto, para x = 89, temos:

$$p(89) = (90)^4 + 2016 = 65 640 000 + 2 016 = 65 612 016.$$

Questão 17 - Letra A

Comentário: Denote por **a**, **b** e **c** os coeficientes dos três primeiros termos, em ordem decrescente, da expansão de $\left[x^2 + \frac{1}{2x} \right]^n$.

Pela expansão binomial, pode-se calcular tais coeficientes em função de ${\bf n}$:

$$a = C_{n, 0}.(1)^n = 1$$

b =
$$C_{n,1} \cdot (1)^{n-1} \cdot \frac{1}{2} = \frac{n}{2}$$

c = $C_{n,2} \cdot (1)^{n-2} \cdot \left(\frac{1}{2}\right)^2 = \frac{n(n-1)}{8}$

Como esses termos estão em P.A., **b** é a média aritmética entre **a** e **c**:

$$a = C_{n,0}.(1)^n = 1$$

b =
$$C_{n,1} \cdot (1)^{n-1} \cdot \frac{1}{2} = \frac{n}{2}$$

c = $C_{n,2} \cdot (1)^{n-2} \cdot \left(\frac{1}{2}\right)^2 = \frac{n(n-1)}{8}$

$$b = \frac{a+c}{2} \implies \frac{n}{2} = \frac{1 + \frac{n(n-1)}{8}}{2} \implies$$

$$8n = 8 + n(n - 1)$$

$$n^2 - 9n + 8 = 0$$

$$n \in \{1, 8\}$$

Como n > 2, n = 8.

MÓDULO - B 21

Progressão Geométrica

Exercícios de Aprendizagem

Questão 01 - Letra C

Comentário: A sequência $(10^x, 10^{x+1}, 10^{x+2}, ...)$ pode ser escrita como $(10^x, 10^x.10, 10^x.10^2, ...)$. É fácil perceber que se trata de uma P.G. de razão 10.

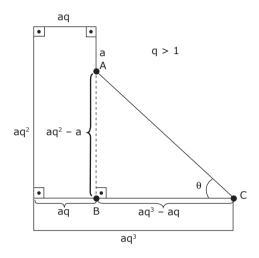
Ouestão 02 - Letra E

Comentário: Perceba que 0,001 = 10^{-3} , 0,000001 = 10^{-6} e 0,000000001 = 10^{-9} . Logo, esses termos (e os subsequentes) formarão uma P.G. infinita de $a_1 = 10^{-3}$ e $q = \frac{10^{-6}}{10^{-3}} = 10^{-3}$. Logo, sua soma **S** é tal que:

$$S = \frac{a_1}{1 - q} = \frac{10^{-3}}{1 - 10^{-3}} = \frac{10^{-3}}{10^{-3} (10^3 - 1)} = \frac{1}{999}$$

Questão 03 - Letra A

Comentário: Considere a figura a seguir.



Δ ABC:

$$\tan \theta = \frac{aq^2 - a}{aq^3 - aq} = \frac{a(q^2 - 1)}{aq(q^2 - 1)} = \frac{1}{q}$$

Questão 04 - Letra D

Comentário: Perceba que o segundo membro da equação do enunciado é a soma de uma P.G. infinita de primeiro termo $a_1 = 12$ e q = 0.8. Como q < 1, a soma converge, e seu valor **D** pode ser descoberto pela fórmula da soma dos termos de uma P.G. infinita:

$$D = \frac{a_1}{1-a} = \frac{12}{1-0.8} = 60 \text{ m}$$

Questão 05 - Letra D

Comentário: Como a área do segundo quadrado da pilha vale \mathbf{q} , seu lado vale $\sqrt{\mathbf{q}}$. Assim, a altura da pilha será dada pela soma \mathbf{S} de uma progressão geométrica infinita de razão $\sqrt{\mathbf{q}}$ e primeiro termo igual a 1. Então, temos:

$$S = \frac{1}{1 - \sqrt{q}} = \frac{1}{1 - \sqrt{q}} \cdot \frac{1 + \sqrt{q}}{1 + \sqrt{q}} = \frac{1 + \sqrt{q}}{1 - q}$$

Questão 06 - Letra B

Comentário: Denote a P.A. por a_n e a P.G. por b_n . A razão de a_n é \mathbf{r} e a razão de b_n é \mathbf{q} . Pela propriedade da média aritmética na P.A., temos:

$$A = \frac{3+B}{2} \implies B = 2A - 3$$

Substituindo na P.G. e aplicando a propriedade da média qeométrica, tem-se:

$$A - 6 = \sqrt{3(2A - 3)} \implies A^2 - 12A + 36 = 6A - 9 \implies$$

 $A^2 - 18A + 45 = 0 \implies A = 15$

Questão 07 - Letra B

Comentário: Se (a, b, c) é uma progressão geométrica de razão 3, então (a, b, c) = (a, 3a, 9a).

Por outro lado, de acordo com o enunciado, temos que (a, 3a, 9a – 8) é uma progressão aritmética. Logo, sabendo que, em uma P.A., o termo central é a média aritmética dos extremos, temos que:

$$3a = \frac{a + (9a - 8)}{2} \Rightarrow 5a - 4 = 3a \Rightarrow a = 2$$

Portanto, a soma pedida é:

$$a + 3a + (9a - 8) = 13a - 8 = 13 \cdot 2 - 8 = 18$$

Questão 08 - Letra D

Comentário: Como os triângulos são semelhantes e a razão entre as alturas de dois triângulos consecutivos é $\frac{1}{2}$, esta será a razão entre os perímetros de dois triângulos consecutivos. Os perímetros dos triângulos, a partir do maior, formam uma

P.G. de primeiro termo 1, razão $\frac{1}{2}$ e 4 termos. A soma **S** pedida é:

$$S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{15}{8}$$
.

Exercícios Propostos

Questão 01 - Letra A

Comentário: Pelas informações do enunciado, temos que:

$$a_2 = b_3 = a_1 + 3$$

$$a_{10} = b_5 = a_1 + 27$$

$$a_{42} = b_7 = a_1 + 123$$

Como, em uma P.G. o produto dos termos equidistantes dos extremos é igual ao produto dos extremos, temos que:

$$(b_5)^2 = b_3 \cdot b_7 \Rightarrow (a_1 + 27)^2 = (a_1 + 3) \cdot (a_1 + 123) \Rightarrow a_1 = 5$$

Assim, temos as progressões: P.A.(5, 8, 11, 14, ...) e P.G.(2, 4, 8, 16, ...). Portanto, $b_4 - a_4 = 16 - 14 = 2$.

Ouestão 02 - Letra C

Comentário: Os comprimentos das ramificações, em metros, constituem a progressão geométrica $\left(1,\frac{1}{2},\frac{1}{2^2},\ldots\right)$ cujo primeiro termo é 1 e cuja a razão vale $\frac{1}{2}$. Queremos calcular

a soma dos dez primeiros termos dessa sequência, ou seja:

$$S_{10} = a_1 \cdot \frac{1 - q^{10}}{1 - q} = 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{2^{10}}}{\frac{1}{2}} = 2\left(1 - \frac{1}{2^{10}}\right)$$

Ouestão 03 - Letra C

Comentário: $a_1 + a_2 + a_3 = 88$ (I)

 $(a_1 - 2, a_2, a_3)$ é uma P.G. de razão 6.

$$a_2 = (a_1 - 2)6 = 6a_1 - 12 \Rightarrow a_2 = 6a_1 - 12$$

$$a_3 = (a_1 - 2)36 = 36a_1 - 72 \Rightarrow a_3 = 36a_1 - 72$$

Logo, de (I) temos:

$$a_1 + (6a_1 - 12) + (36a_1 - 72) = 88 \Rightarrow$$

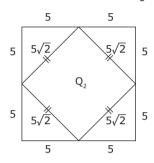
$$a_1 = 4$$

Então, temos que:

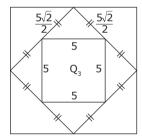
$$a_3 = 12 e a_3 = 72$$

Questão 04 - Letra C

Comentário: Considere a figura a seguir.



Área de Q_3 : $(5\sqrt{2})^2 = 50$



Área de Q_3 : $5^2 = 25$

A sequência correspondente às áreas dos quadrados é dada por

 $\left(100, 50, 25, \frac{25}{2}, \ldots\right)$, ou seja, uma P.G. infinita de primeiro tempo 100 e razão $\frac{1}{2}$. Sua soma S_x será:

$$S_{\infty} = \frac{a_1}{1 - q} = \frac{100}{1 - \frac{1}{2}} = \frac{100}{\frac{1}{2}} = 200 \text{ m}^2$$

Questão 05 - Letra C

Comentário: As medidas dos lados desses quadrados serão dadas por:

$$\ell_{\scriptscriptstyle 1}=1,\,\ell_{\scriptscriptstyle 2}=2\,\,.\,\,1=2,\,\ell_{\scriptscriptstyle 3}=2\,\,.\,\,2=4,\,\ldots$$

Assim, a área desses quadrados será dada por:

$$A_1 = 1^2 = 1$$

$$A_2 = 2^2 = 4$$

$$A_3 = 4^2 = 16$$

Portanto, a soma S_{100} da área desses quadrados será dada pela soma de uma progressão geométrica de razão 4 e primeiro termo igual a 1:

$$S_{100} = \frac{1(4^{100} - 1)}{4 - 1} = \frac{1}{3}(4^{100} - 1)$$

Ouestão 06 - Letra B

Comentário: Como a razão da P.A. é **r**, podemos escrevê-la da seguinte forma: (3, 3 + r, 3 + 2r, ...). E como a razão da P.G.

é **q**, podemos escrevê-la da seguinte forma: $\left(\frac{3}{q^3}, \frac{3}{q^2}, \frac{3}{q}, 3\right)$.

Como
$$a_3 = b_3 e r = 3q$$
, temos:

$$3+2r=\frac{3}{q} \Rightarrow 3+2.3q=\frac{3}{q} \Rightarrow$$

$$3q + 6q^2 = 3 \implies 2q^2 + q - 1 = 0 \implies$$

$$q = -1$$
 ou $q = \frac{1}{2}$

O valor de q = -1 não convém, portanto q = $\frac{1}{2}$ e r = $\frac{3}{2}$. Assim:

P.A.:
$$\left(3, \frac{9}{2}, 6, \frac{15}{2}, 9, \frac{21}{2}, 12, \ldots\right)$$

Portanto, $b_2 = a_7 = 12$.

Questão 07 - Letra E

Comentário: Pela propriedade da média aritmética em uma P.A., temos:

$$a-b = \frac{c + (-6a - c)}{2} \Rightarrow 4a - b = 0 \Rightarrow b = 4a$$
 (I)

Pela propriedade da média geométrica na P.G., temos:

$$b = \sqrt{(5a-b)48} \implies b^2 = 48(5a-b)$$
 (II)

Substituindo (I) em (II):

$$(4a)^2 = 48(5a - 4a) \Rightarrow 16a^2 = 48^a \Rightarrow a = 0 \text{ ou } a = 3$$

Porém, se a = 0, por (I), b = 0, e o problema fica inconsistente.

Logo, a = 3, b = 12, q = $\frac{b}{5a-b} = \frac{12}{3} = 4 \text{ e, como as razões são}$

opostas, a razão da P.A. é -4. Assim, como o segundo termo da P.A. vale a - b = -9, temos -9 - c = -4 e c = -5. Logo, a + b + c = 3 + 12 - 5 = 10.

Questão 08 - Letra B

Comentário: Sejam **a** e **b** os catetos desse triângulo, com a < b, e **c** a hipotenusa, temos:

$$a^2 + b^2 = c^2$$
 (I)

Agora, pelo enunciado, temos:

$$b^2 = a.c$$
 (II)

Substituindo II em I, temos:

$$a^2 + ac = c^2 \Rightarrow$$

$$1 + \frac{c}{a} = \left(\frac{c}{a}\right)^2$$

Note que, sendo q > 0 a razão dessa progressão geométrica, $\frac{c}{a} = q^2$, assim, temos:

$$(q^2)^2 - q^2 - 1 = 0 \Rightarrow$$

$$\Delta = 1 - 4 \cdot 1 \cdot (-1) = 5$$

$$q^2 = \frac{1+\sqrt{5}}{2} \Rightarrow$$

$$q = \sqrt{\frac{1 + \sqrt{5}}{2}}$$

Ouestão 09 - Letra D

Comentário: Escrevendo os termos dessa progressão aritmética, temos:

$$(a_1, a_1 + r, a_1 + 2r, a_1 + 3r, a_1 + 4r, a_1 + 5r, a_1 + 6r)$$

Porém, nos é dada a informação de que temos os seguintes termos em progressão geométrica:

$$(a_1, a_1 + 2r, a_1 + 6r)$$

Com base nisso, temos:

$$(a_1 + 2r)^2 = a_1(a_1 + 6r) \Rightarrow$$

$$\left(a_{1}\right)^{2} + 4a_{1}.r + 4r^{2} = \left(a_{1}\right)^{2} + 6a_{1}.r \Rightarrow$$

$$4r^2 = 2a_1r$$

Como a progressão aritmética é não constante, r \neq 0, temos:

$$4r^{2} = 2a_{1}r \Rightarrow a_{1} = 2r$$

Assim, a progressão aritmética fica da seguinte maneira:

(2r, 3r, 4r, 5r, 6r, 7r, 8r)

A soma é igual a 35r.

Questão 10 - Letra C

Comentário: Perceba que, a cada iteração, o comprimento total da curva é multiplicado por $\frac{4}{3}$. Logo, os comprimentos das curvas formam uma P.G. de primeiro termo igual a 1 e razão $\frac{4}{3}$. Assim, o sexto termo da progressão, a_6 , será tal que:

$$a_6 = a_1.q^5 = 1.\left(\frac{4}{3}\right)^5 = \left(\frac{4}{3}\right)^5.$$

Ouestão 11 - Letra D

Comentário: Perceba que tem-se uma P.G. em que $a_1 = 1$ e q = 2. Temos $a_n = a_1 \cdot q^{(n-1)} = 1 \cdot 2^{(n-1)} = 2^{(n-1)}$. Ademais, $a_{n+1} = a_n \cdot 2 = 2^n$. A soma dos **n** primeiros termos S_n é tal que:

$$S_n = \frac{a_1(q^n - 1)}{q - 1} = \frac{1(2^n - 1)}{2 - 1} = 2^n - 1 = a_{n+1} - 1$$

Questão 12 - Letra E

Comentário: Se o perímetro do triângulo equilátero da etapa 1 vale 3, seu lado vale 1. Se a altura do triângulo da etapa 2 vale metade da altura do triângulo da etapa 1, por semelhança de triângulos, o lado do triângulo da etapa 2 também vale metade do lado do triângulo da etapa 1; analogamente, podemos estender esse padrão para os perímetros. Assim, podemos estabelecer que os perímetros caracterizam uma progressão geométrica de razão $\frac{1}{2}$ e primeiro termo igual a 3. Dessa forma, a soma **S** desses perímetros é dada por:

$$S = \frac{3}{1 - \frac{1}{2}} = \frac{3}{\frac{1}{2}} = 6$$

Questão 13 - Letra D

Comentário: Como o triângulo T_1 é equilátero, ao ligarmos seus pontos médios, cada segmento que determina os lados do triângulo T_2 será uma base média do triângulo T_1 e medirá metade do lado de T_1 . Assim, o lado de cada triângulo formado será igual à metade do lado do triângulo anterior. Portanto, o lado ℓ_n

é dado por uma progressão geométrica de razão $\frac{1}{2}$.

Agora, vamos encontrar primeiro o valor de ℓ_0 :

$$\frac{\left(\ell_{9}\right)^{2}\sqrt{3}}{\cancel{4}} = \frac{25\sqrt{3}}{\cancel{64}} \Rightarrow$$

$$\left(\ell_{9}\right)^{2} = \frac{25}{16} \Rightarrow \ell_{9} = \frac{5}{4}$$

Agora, temos que x é dado por:

$$x.\left(\frac{1}{2}\right)^{g} = \frac{5}{\cancel{4}} \Rightarrow$$

$$\frac{x}{\cancel{64}} = 5 \Rightarrow x = 320$$

Questão 14 - Letra A

Comentário: Suponha por absurdo que a pessoa não tenha apostado no número 1. Assim, o menor número no qual ela pode ter apostado é o 2. Como a razão é inteira e os números são diferentes, ela deve ser no mínimo 2. Com primeiro termo 2 e razão 2, o sexto termo da P.G. será 64, o que é absurdo. Logo, a pessoa apostou no número 1 e usou uma P.G. de razão 2, apostando, portanto, nos números (1, 2, 4, 8, 16, 32).

Questão 15 - Letra E

Comentário: Denote a P.G. referida no enunciado por a_n, tendo razão **q**. Pela fórmula do termo geral de uma P.G., temos:

$$a_{3} = a_{1}q^{2} \Rightarrow 98 = a_{1}.q^{2} \quad (I)$$

$$a_{5} = a_{1}q^{4} \Rightarrow 4802 = a_{1}.q^{4} \quad (II)$$

$$(II): (I) \Rightarrow \frac{4802}{98} = \frac{a_{1}q^{4}}{a_{1}q^{2}} \Rightarrow 49 = q^{2} \Rightarrow q = 7 \Rightarrow$$

$$a_{1} = 2 \Rightarrow a_{2} = 2.7 = 14 \Rightarrow$$

$$x = a_{1} + a_{2} = 16$$

Perceba que se desconsiderou o valor q=-7, pois a P.G. é estritamente crescente. Calculando o logaritmo pedido, temos:

$$\log_8 16 = \log_{2^3} 2^4 = 4 \cdot \frac{1}{3} \log_2 2 = \frac{4}{3}$$

Questão 16 - Letra B

Comentário: Como $x_5 = 24q$, temos $x_6 = 24q^2$. Logo, $24q + 24q^2 = 90$ e $4q^2 + 4q - 15 = 0$. Resolvendo, temos $q = \frac{-4 \pm 16}{8} = 1,5$, já que q > 0. Logo, $x_5 = 24$. 1,5 = 36. Pela fórmula do termo geral, $x_5 = 36 = x_1 \cdot q^4$ e $x_1 = \frac{36}{(1.5)^4} = \frac{64}{9} = 7, \overline{1} > 7,1$, sendo racional.

Ouestão 17

Comentário: Primeiramente, perceba que até o oitavo toque no solo, a bola desce oito vezes e sobe sete. As distâncias percorridas nos movimentos de descida formam uma P.G. de primeiro termo $a_1 = 12$ m e q = 0,5. Analogamente, os deslocamentos de subida formam uma P.G. de primeiro termo $b_1 = 6$ e q = 0,5 (considerando que tais deslocamentos são iguais à distância percorrida no movimento de descida subsequente). A distância total percorrida \mathbf{D} é igual à soma dos oito primeiros termos da P.G a_n , denotada por S_1 , adicionada à soma dos sete primeiros de b_n , denotada por S_2 . Logo:

$$\begin{split} S_1 &= \frac{a_1(q^8-1)}{q-1} = \frac{12.\left(1 - \frac{1}{256}\right)}{1 - \frac{1}{2}} = \frac{\frac{12.255}{256}}{\frac{1}{2}} = \frac{765}{32} \text{m} \\ S_2 &= \frac{b_1(q^7-1)}{q-1} = \frac{6.\left(1 - \frac{1}{128}\right)}{1 - \frac{1}{2}} = \frac{\frac{6.127}{128}}{\frac{1}{2}} = \frac{381}{32} \text{m} \\ d &= S_1 + S_2 = \frac{765}{32} + \frac{381}{32} = \frac{1146}{32} \cong 36 \text{m} \end{split}$$

Seção Enem

Ouestão 01 - Letra E

Eixo cognitivo: III

Competência de área: 1

Habilidade: 3

Comentário: Como são 128 tenistas participantes, na 1ª fase ocorreram 64 jogos. Na 2ª fase, os 64 vencedores da 1ª fase irão realizar 32 jogos, e assim sucessivamente. Logo, temos que o número de partidas decresce segundo uma progressão geométrica de primeiro termo igual a 64 e razão $\frac{1}{2}$.

Dessa forma, o número total de partidas necessárias é

64 + 32 + 16 + 8 + 4 + 2 + 1

Questão 02 - Letra C

Eixo cognitivo: III

Competência de área: 1

Habilidade: 3

Comentário: A massa da mulher informada, a cada mês, segue como uma progressão geométrica de razão igual a 0,97. Portanto, sua massa daqui a dois meses será $a_3 = 100 \cdot 0,97^2 = 94,09 \text{ kg}.$

Questão 03 - Letra C

Eixo cognitivo: III

Competência de área: 1

Habilidade: 3

Comentário: Perceba que as quantidades de visitantes em cada dia formam uma P.G. a_n , com primeiro termo $a_1 = 345$ e q = 3. O número de visitantes no quarto e último dia de evento é a_4 , que, pela fórmula do termo geral da P.G., é tal que $a_4 = a_1.q^3 = 3^3.345$.

MÓDULO - B 22

Matrizes

Exercícios de Aprendizagem

Ouestão 01 - Letra A

Comentário: Aplicando a fórmula dada no enunciado para cada elemento da matriz 2×3 (2 linhas e 3 colunas) e lembrando que

i refere-se à linha e j à coluna:

$$A = \begin{pmatrix} 1^3 - 1^2 & 1^3 - 2^2 & 1^3 - 3^2 \\ 2^3 - 1^2 & 2^3 - 2^2 & 2^3 - 3^2 \end{pmatrix} = \begin{pmatrix} 0 & -3 & -8 \\ 7 & 4 & -1 \end{pmatrix}$$

Questão 02 - Letra D

Comentário:

$$A.B^{t} = \left[\begin{array}{ccc} a & b & 1 \\ -1 & 1 & a \end{array} \right] \cdot \left[\begin{array}{ccc} 1 & 0 \\ -1 & 1 \\ 0 & 0 \end{array} \right] = \left[\begin{array}{ccc} a-b & b \\ -2 & 1 \end{array} \right] = \left[\begin{array}{ccc} 3 & 4 \\ -2 & 1 \end{array} \right]$$

Logo, $b = 4 e a - b = 3 \Rightarrow a = 7$. Portanto, a + b = 4 + 7 = 11.

Ouestão 03 - Letra E

Comentário: Conforme as informações da questão, montamos a matriz A:

$$A = \begin{bmatrix} -1^1 & (-1)^2 \\ (-2)^1 & -2^2 \end{bmatrix}$$

Temos que a matriz A multiplicada pela sua inversa resulta na matriz identidade, então:

$$A.A^{-1} = I$$

$$\begin{bmatrix} -1^{1} & (-1)^{2} \\ (-2)^{1} & -2^{2} \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} -1 & 1 \\ -2 & -4 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} -a+c & -b+d \\ -2a-4c & -2b-4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

Resolvendo o sistema:

$$-a + c = 1 \Rightarrow c = 1 + a (I)$$

$$-2a - 4c = 0 \Rightarrow -2a - 4(1 + a) \Rightarrow$$

$$-2a - 4 - 4a = 0 \Rightarrow -6a - 4 = 0 \Rightarrow$$

$$-3a - 2 = 0 \Rightarrow a = -\frac{2}{3}$$

Substituindo o valor de a em (I):

$$c = 1 + a \Rightarrow c = 1 - \frac{2}{3} \Rightarrow c = \frac{1}{3}$$

Então,

$$\begin{array}{l} -b+d=0\Rightarrow d=b\\ -2b-4d=1\Rightarrow -2b-4b=1\Rightarrow -6b=1\Rightarrow b=-\frac{1}{6}\\ d=b\Rightarrow d=-\frac{1}{6}\\ \text{Logo, a matriz inversa \'e A}^{-1}=\left[\begin{array}{c} a&b\\c&d\end{array}\right]=\left[\begin{array}{c} -\frac{2}{3}&-\frac{1}{6}\\ \frac{1}{2}&-\frac{1}{6}\end{array}\right]$$

Ouestão 04 - Letra B

Comentário: Calculando f(A):

$$f(A) = A^2 - 2A =$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - 2 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 1 \\ 1 \cdot 1 + 1 \cdot 1 & 1 \cdot 1 + 1 \cdot 1 \end{bmatrix} - \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$$

$$\left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right] - \left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

Ouestão 05 - Letra A

Comentário: Perceba que tanto a primeira como a quinta linha têm seis elementos, e tanto a primeira como a sexta coluna têm cinco elementos. No entanto, há 4 pares de 2 elementos repetidos nessa contagem, de tal sorte que externamente aos elementos internos da matriz há $2 \cdot 6 + 2 \cdot 5 - 4 = 18$ elementos. Como a matriz tem 30 elementos, há 30 - 18 = 12 elementos internos. Em geral, os elementos internos de uma matriz $m \times n$ formam uma matriz (m - 2) (n - 1).

Questão 06 - Letra A

Comentário: Pela definição:

$$A.B = I \Rightarrow \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$B = \begin{bmatrix} 2x + z & 2y + w \\ -z & -w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$z = 0 \Rightarrow x = \frac{1}{2}$$

$$w = -1 \Rightarrow y = -\frac{1}{2} \Rightarrow$$

$$x + y + z + w = 0$$

Questão 07 - Letra C

 $A.B = 2C \Rightarrow$

 $b^a = 2^5 = 32$

Comentário: Pelas propriedades de multiplicação de matrizes:

$$\begin{pmatrix} 1 & a \\ 2 & -2 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & b \\ -1 & -2 \end{pmatrix} = 2 \cdot \begin{pmatrix} -b & -4 \\ 2 & a - 1 \\ 1 & b \end{pmatrix}$$

$$\begin{pmatrix} 1 - a & b - 2a \\ 4 & 2b + 4 \\ 2 & 3b - 2 \end{pmatrix} = \begin{pmatrix} -2b & -8 \\ 4 & 2a - 2 \\ 2 & 2b \end{pmatrix} \Rightarrow$$

$$3b - 2 = 2b \Rightarrow b = 2$$

$$1 - a = -2b \Rightarrow a = 5 \Rightarrow$$

Questão 08 - Letra C

Comentário: Denotando por A a primeira matriz e a segunda por A⁻¹, tem-se, pela definição:

$$A.A^{-1} = I \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2c - 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} a+b(2c-3) & b \\ c+d(2c-3) & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$b=0 \Rightarrow a=1$$

$$d=1 \Rightarrow c=1 \Rightarrow$$

$$a+b+c+d=3$$

Exercícios Propostos

Questão 01 - Letra C

Comentário: Sabendo que $x \ne 0$ e $y \ne 0$, temos:

$$A.Y + B.X = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x^2 \\ y^2 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ 8 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 3x^2 \\ y^2 \end{bmatrix} + \begin{bmatrix} 3y \\ 8x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 3x^2 + 3y \\ y^2 + 8x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{cases} 3x^2 + 3y = 0 \\ y^2 + 8x = 0 \end{cases} \Rightarrow \begin{cases} y = -x^2 \\ y(x^3 + 8) = 0 \end{cases} \Rightarrow \begin{cases} x = -2 \\ y = -4 \end{cases}$$

Portanto, x.y = (-2).(-4) = 8.

Questão 02 - Letra C

Comentário:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$a_{11} = 2^{-1} = \frac{1}{2}$$

$$a_{12} = 0$$

$$a_{21} = 0$$

$$a_{22} = 2^{-2} = \frac{1}{4}$$

$$\Rightarrow A = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$

Seja
$$A^{-1} = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$$
. Temos que $A.A^{-1} = I$, ou seja,

$$\left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{array}\right] \cdot \left[\begin{array}{cc} x & y \\ z & t \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \Rightarrow \left[\begin{array}{cc} \frac{x}{2} & \frac{y}{2} \\ \frac{z}{4} & \frac{t}{4} \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Logo,
$$\begin{cases} \frac{x}{2} = 1 \\ \frac{y}{2} = 0 \\ \frac{z}{4} = 0 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 0 \\ z = 0 \\ t = 4 \end{cases}$$

Portanto,
$$A^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
.

Ouestão 03 - Letra C

Comentário:

$$A.A^{t} = B \implies \left[\begin{array}{ccc} x + y & x - y \\ 3 & 1 \end{array} \right] . \left[\begin{array}{ccc} x + y & 3 \\ x - y & 1 \end{array} \right] = \left[\begin{array}{ccc} 10 & 0 \\ 0 & 10 \end{array} \right] \implies$$

$$\left[\begin{array}{cc} (x+y)(x+y)+(x-y)(x-y) & 3(x+y)+(x-y) \\ 3(x+y)+(x-y) & 9+1 \end{array}\right] = \left[\begin{array}{cc} 10 & 0 \\ 0 & 10 \end{array}\right] \Rightarrow$$

$$\left[\begin{array}{cc}2x^2+2y^2&4x-2y\\4x+2y&10\end{array}\right]=\left[\begin{array}{cc}10&0\\0&10\end{array}\right]\\ \Rightarrow \left\{\begin{array}{cc}2x^2+2y^2=10\\4x+2y=0\end{array}\right.\\ \Rightarrow \left\{\begin{array}{cc}x^2+y^2=5 \text{ (I)}\\y=-2x \text{ (II)}\end{array}\right.$$

Substituindo (II) em (I), temos:

$$x^2 + (-2x)^2 = 5 \implies 5x^2 = 5 \implies x = \pm 1$$

Para
$$x = 1$$
, $y = -2$ e para $x = -1$, $y = 2$.

Ouestão 04 - Letra B

Comentário: Deseja-se calcular os elementos da matriz A, denotando-os por a, b, c e d. Assim, já criptografando a palavra flor:

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{cc}1&-1\\2&1\end{array}\right]=\left[\begin{array}{cc}6&12\\15&18\end{array}\right]\Rightarrow$$

$$\begin{cases} a + 2b = 6 \text{ (I)} \\ -a + b = 12 \text{(II)} \end{cases} \Rightarrow \text{(I)} + \text{(II)} : 3b = 18 \Rightarrow b = 6 \Rightarrow a = -6$$

$$\begin{cases} c + 2d = 15 \text{ (III)} \\ -c + d = 18 \text{ (IV)} \end{cases} \Rightarrow \text{(III)} + \text{(IV)} : 3d = 33 \Rightarrow d = 11 \Rightarrow c = -7$$

Então, a matriz A é
$$\begin{bmatrix} -6 & 6 \\ -7 & 11 \end{bmatrix}$$
.

Questão 05 - Letra C

Comentário: Denote C = A.B. Perceba que **C** será uma matriz 3×3 . O elemento c_{11} da matriz C expressa a quantidade de parafusos *soft* produzidos em janeiro. O elemento c_{12} , por sua vez, o número de parafusos *soft* produzidos em fevereiro, e o elemento c_{33} o número de parafusos sextavados produzidos em março. Percebe-se, assim, que cada elemento c_{1j} da matriz C = A.B expressa o número de unidades do i-ésimo parafuso vendido no j-ésimo mês, ou seja, a produção mensal de cada tipo de parafuso.

Ouestão 06 - Letra B

Comentário: Montando a matriz A e efetuando a multiplicação, substituindo c = -b, tem-se:

$$A.C = B \Rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \end{pmatrix} \begin{pmatrix} a \\ b \\ -b \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix} \Rightarrow$$

$$a+b-b=a=5$$

$$2a + 4b - 8b = 2 \Rightarrow b = 2 \Rightarrow c = -2 \Rightarrow a.b.c = -20$$

Ouestão 07 - Letra C

Comentário: Resolvendo a equação $A^2 + x.A + y.B = C$, temos:

$$A^2 + x.A + y.B = C$$

$$\left[\begin{array}{ccccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] + x. \left[\begin{array}{ccccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] + y. \left[\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] = \left[\begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$$

$$x+2=0 \implies x=-2$$

$$x + y + 1 = 0 \implies y = 1$$

Ouestão 08 - Letra E

Comentário: A matriz V pedida é tal que V = Q.C.

Computando V

$$V = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 2 & 0 & 2 \end{array}\right) \left(\begin{array}{c} 10 \\ 50 \\ 30 \end{array}\right) = \left(\begin{array}{ccc} 2 \cdot 10 + 50 \cdot 1 + 30 \cdot 1 \\ 1 \cdot 10 + 2 \cdot 50 + 30 \cdot 0 \\ 2 \cdot 10 + 0 \cdot 50 + 2 \cdot 30 \end{array}\right) = \left(\begin{array}{c} 100 \\ 110 \\ 80 \end{array}\right)$$

Ouestão 09 - Letra E

Comentário: Como $A^t = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, temos que:

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{bmatrix}.$$

Portanto, a soma pedida é:

$$a^2 + b^2 + 2ac + 2bd + c^2 + d^2 =$$

$$a^2 + 2ac + c^2 + b^2 + 2bd + d^2 = (a + c)^2 + (b + d)^2$$
.

Ouestão 10 - Letra B

Comentário:

$$\mathsf{A} = \mathsf{A}^2 \ \Rightarrow \left(\begin{array}{cc} \mathsf{a} & \mathsf{0} \\ \mathsf{b} & \mathsf{1} \end{array} \right) = \left(\begin{array}{cc} \mathsf{a} & \mathsf{0} \\ \mathsf{b} & \mathsf{1} \end{array} \right) \left(\begin{array}{cc} \mathsf{a} & \mathsf{0} \\ \mathsf{b} & \mathsf{1} \end{array} \right) \Rightarrow \ \left(\begin{array}{cc} \mathsf{a} & \mathsf{0} \\ \mathsf{b} & \mathsf{1} \end{array} \right) = \left(\begin{array}{cc} \mathsf{a}^2 & \mathsf{0} \\ \mathsf{a}\mathsf{b} + \mathsf{b} & \mathsf{1} \end{array} \right) \Rightarrow$$

$$ab + b = b \implies ab = 0$$

$$a^2 = a \Rightarrow a \in \{0; 1\}$$

Como A é invertível, a não pode ser zero - pois det(A) seria zero - logo, a = 1 e b = 0.

Questão 11 - Letra B

Comentário: Efetuando o produto matricial, temos

$$\begin{bmatrix} 3 & 6 \\ 6 & 8 \end{bmatrix} \begin{bmatrix} \operatorname{tg} \alpha \\ \cos \beta \end{bmatrix} = \begin{bmatrix} 0 \\ -2\sqrt{3} \end{bmatrix} \Rightarrow$$

$$\begin{cases} 3 \text{tg } \alpha + 6 \cos \beta = 0 \\ 6 \text{tg } \alpha + 8 \cos \beta = -2\sqrt{3} \end{cases} \Rightarrow \begin{cases} 3 \text{tg } \alpha + 6 \cos \beta = 0 \\ -3 \text{tg } \alpha - 4 \cos \beta = \sqrt{3} \end{cases} \Rightarrow$$

$$2\cos \beta = \sqrt{3} \Rightarrow \cos \beta = \frac{\sqrt{3}}{2} \Rightarrow \tan \alpha = -\sqrt{3}$$

Assim,
$$\beta = \frac{\pi}{6} e \alpha = -\frac{\pi}{3} e \alpha + \beta = -\frac{\pi}{3} + \frac{\pi}{6} = -\frac{\pi}{6}$$
.

Questão 12 - Letra C

Comentário:

$$A. \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} -1 \\ 4 \\ 2 \end{array} \right]$$

Seja a matriz
$$A = \begin{bmatrix} x & y & z \\ t & w & v \\ u & l & p \end{bmatrix}$$
.

Temos:
$$\begin{bmatrix} x & y & z \\ t & w & v \\ u & l & p \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ t \\ u \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$$

Logo, x = -1, t = 4 e u = 2 são elementos da primeira linha da transposta de A.

Ouestão 13 - Letra A

Comentário: Deseja-se fazer um produto interno entre A e B, ou seja, deseja-se o somatório dos produtos dos termos correspondentes. Perceba, no entanto, que as duas matrizes não podem ser multiplicadas (a não ser que sejam 1×1). Para que se possa efetuar um produto entre matrizes arbitrárias A.B, o número de colunas de A deve ser igual ao número de linhas de B. Transpondo-se A, esta fica com 7 colunas, igual ao número de linhas de B. Logo, $A^t\times B$ é possível de ser feito. Perceba que a matriz resultante será 1×1 , contendo justamente o somatório desejado.

Questão 14 - Letra C

Comentário: Se, a cada minuto, podem passar até 12 carros, temos que em 75 segundos (S_{23}) podem passar

até $\frac{75s.12 \, carros}{60 \, s} = 15 \, carros$. Como de 8h às 10h existem

 $\frac{120}{2}$ = 60 períodos de 2 minutos, temos que podem passar até

15 . 60 = 900 automóveis no período considerado.

Ouestão 15 - Letra B

Comentário: Encontrar as primeiras potências de **A** pode ajudar:

$$A^{2} = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & a-a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \Rightarrow$$

$$A^{2017} = A.(A^{2})^{1008} = A.(I)^{1008} = A.I = A = \begin{pmatrix} 1 & a \\ 0 & -1 \end{pmatrix}$$

Seção Enem

Questão 01 - Letra A

Eixo cognitivo: III

Competência de área: 6

Habilidade: 25

Comentário: A soma dos elementos da linha 1 representa o total transferido pelo banco 1 e o mesmo acontece com cada linha da matriz. Assim, a linha que tiver a maior soma dos elementos representa o banco que transferiu a maior quantia via TED. Portanto, a resposta correta é o banco 1, cuja soma dos elementos é 0 + 2 + 0 + 2 + 2 = 6.

Questão 02 - Letra E

Eixo cognitivo: III

Competência de área: 6

Habilidade: 25

Comentário: Como a matriz de notas é de ordem 4×4 , teremos que multiplicá-la por uma 4×1 , para obter o somatório das notas por linha de cada matéria. Como são 4 bimestres, é só multiplicarmos por $\frac{1}{4}$, que é o equivalente a dividir o somatório por 4. Portanto, a alternativa correta é a E.

MÓDULO - B 23

Determinantes

Exercícios de Aprendizagem

Questão 01 - Letra E

Comentário: Calculando os determinantes separadamente:

$$A = \begin{pmatrix} 23 & 0 \\ 3 & 2 \end{pmatrix} \Rightarrow \det A = 23 \cdot 2 - 0 \cdot 3 = 46$$

$$B = \begin{pmatrix} 0 & 23 \\ 2 & 3 \end{pmatrix} \Rightarrow det B = 0.3 - 23.2 = -46$$

$$\det A + \det B = 46 + (-46) = 0$$

Questão 02 - Letra C

Comentário: Simplificando os valores da matriz, temos:

$$\begin{pmatrix} 2 & 1 & \log_2 8 \\ 1 & -2 & 4 \\ 3 & \log_2 4 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -2 & 4 \\ 3 & 2 & 1 \end{pmatrix}$$

Agora, calculando o determinante **d** da matriz:

$$d = -4 + 12 + 6 + 18 - 16 - 1 = 15$$

Ouestão 03 - Letra A

Comentário: O valor do determinante será igual a:

$$\cos^2 x + \sin^2 x = 1.$$

Questão 04 - Letra C

Comentário: Calculando (A.B), temos:

A.B = [1 . 4 + 2 . 5 + 3 . 6] = [4 + 10 + 18] = [32]. Portanto, o determinante de (A.B) = 32.

Ouestão 05 - Letra E

Comentário: Percebemos que A = B, logo:

$$\det (AB)^{-1} = \det (A^2)^{-1} = \frac{1}{\det A^2} = \frac{1}{(\det A)^2}$$

Assim, calculando o determinante de A, temos:

det (A) = 0 + 2 = 2. Portanto, det (AB)⁻¹ = $\frac{1}{2^2}$ = $\frac{1}{4}$, que não está em nenhuma das alternativas.

Questão 06 - Letra C

Comentário: Sabe-se que:

$$\det\left(\mathsf{A}^{\scriptscriptstyle{-1}}\right) = \frac{1}{\det\left(\mathsf{A}\right)}.$$

Chamando de A a matriz dada, temos que:

$$\det (A) = -6 + 0 - 4 - \left(-\frac{2}{5} + 0 + 0 \right) =$$

$$-10 + \frac{2}{5} = -\frac{48}{5}$$

Portanto, det
$$(A^{-1}) = -\frac{5}{48}$$
.

Questão 07 - Letra A

Comentário: Temos que o determinante da matriz será dado por: (3 + t).(t - 4) + 12; queremos saber o maior valor de **t** para que o determinante seja nulo. Com isso, temos:

$$3t - 12 + t^2 - 4t + 12 = 0 \Rightarrow t^2 - t = 0 \Rightarrow t(t - 1) = 0 \Rightarrow t = 0 \text{ ou } t = 1.$$

Portanto, o maior valor de **t** será 1.

Questão 08 - Letra C

Comentário: O determinante da matriz X é det X = 1 . 2 . 3 = 6, então o determinante da matriz Y será 6^n .

Exercícios Propostos

Questão 01 - Letra D

Comentário: Pelo enunciado, tem-se:

$$1 + a + 1 = b + 1 + a = 2 + b + 2$$

$$\begin{cases} 1 + a + 1 = b + 1 + a \Rightarrow b = 1 \\ 1 + a + 1 = 2 + b + 2 \Rightarrow a = b + 2 \Rightarrow a = 3 \end{cases}$$
Assim, $A = \begin{pmatrix} 1 & 3 & 1 \\ 1 & 1 & 3 \\ 2 & 1 & 2 \end{pmatrix}$

Logo,

$$det (A) = 2 + 18 + 1 - 2 - 3 - 6 = 10$$

Questão 02 - Letra B

Comentário: O determinante d da matriz será igual a:

$$d = sen x . sec x . cotg x = sen x . \frac{1}{cos x} . \frac{cos x}{sen x} = 1$$

Questão 03 - Letra A

Comentário: De acordo com a lei de formação apresentada,

temos que a matriz A será dada por:
$$A = \begin{pmatrix} 2^1 & 2^2 \\ 1^2 & 2^2 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 1 & 4 \end{pmatrix}$$

e, como B é a matriz identidade de ordem 2, B = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Calculando (A^t + B), temos:

$$A^t+B=\left(\begin{array}{cc}2&1\\4&4\end{array}\right)+\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=\left(\begin{array}{cc}3&1\\4&5\end{array}\right).$$

Finalmente, o determinante d de (At + B) será

$$d = 3 \cdot 5 - 4 \cdot 1 = 11$$
.

Ouestão 04 - Letra B

Comentário: Da simetria x = 2, z = 3 e y = w. Como o determinante da matriz vale 8, temos:

$$8 = 1 + 6y + 6y - 9 - y^2 - 4$$

$$y^2 - 12y + 20 = 0$$

Assim, y = w = 10 ou y = w = 2. Logo, como x + z = 5, a soma pedida vale $5 + 2 \cdot 2 = 9$ ou $5 + 2 \cdot 10 = 25$.

Questão 05 - Letra B

Comentário: Calculando o determinante da inversa de A, temos:

$$\det(A^{-1}) = 0 + m = m$$

Portanto, pelo Teorema de Binet, temos que:

$$det \ A \ . \ det \ A^{\scriptscriptstyle -1} = 1 \Rightarrow 1 \ . \ m = 1 \Rightarrow m = 1.$$

Ouestão 06 - Letra B

Comentário: Da simetria, conclui-se que x - y = 1 e x + 1 = 2y. Logo, da primeira equação, x = y + 1, o que, substituindo na segunda, gera (y + 1) + 1 = 2y e y = 2. Logo, x = 3. A matriz M é tal que:

$$M = \left(\begin{array}{ccc} 5 & 1 & 6 \\ 1 & -1 & 4 \\ 6 & 4 & 1 \end{array}\right)$$

$$det(M) = 5.(-1).1+1.4.6+1.4.6+6.1.6-4.4.5-1.1.1=-2$$

Questão 07 - Letra E

Comentário: Por meio do determinante, temos a seguinte equação:

$$\log^2 (x - 1) - \log (x - 1) = 0 \Rightarrow$$

$$\log (x - 1).[\log (x - 1) - 1] = 0$$

Com isso, temos:

$$\log (x - 1) = 0 \Rightarrow x = 2 \text{ ou}$$

$$\log (x - 1) - 1 = 0$$

$$\log (x - 1) = 1 \Rightarrow$$

$$x = 11$$

Questão 08 - Letra C

Comentário: Resolvendo a equação:

$$\begin{vmatrix} 2^{x} & 8^{x} & 0 \\ \log_{2} x & \log_{2} x^{2} & 0 \\ 1 & 2 & 3 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 2^{x} & 2^{3x} & 0 \\ \log_{2} x & 2\log_{2} x & 0 \\ 1 & 2 & 3 \end{vmatrix} = 0 \Rightarrow$$

$$2^{x}.2.\log_{2} x.3 = \log_{2} x.3.2^{3x} \Rightarrow 2^{x+1} = 2^{3x} \text{ (I) ou } \log_{2} x = 0 \text{ (II)}$$

$$2 \cdot 2 \cdot \log_2 x \cdot 3 - \log_2 x \cdot 3 \cdot 2 \qquad \Rightarrow \qquad 2 \qquad -2 \quad (1) \quad \text{our } \log_2 x - 3$$

(I):
$$x + 1 = 3x \implies x = \frac{1}{2}$$

(II):
$$\log_2 x = \log_2 1 \implies x = 1$$

$$m + n = 1 + \frac{1}{2} = \frac{3}{2}$$

Ouestão 09 - Letra A

Comentário:

- I. Verdadeira. Ao permutarmos duas filas paralelas de uma matriz quadrada A, obtemos uma matriz B, tal que $\det B = -\det A$.
- II. Falsa. Como: $\begin{pmatrix} 3a & 3b & 3c \\ 3d & 3e & 3f \\ 3g & 3h & 3i \end{pmatrix} = 3. \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, temos:$

$$\begin{vmatrix} 3a & 3b & 3c \\ 3d & 3e & 3f \\ 3g & 3h & 3i \end{vmatrix} = 3^3 \cdot \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 27.(-2) = -54 \neq -6$$

- III. Verdadeira. Se uma matriz quadrada apresenta uma fila de zeros, então seu determinante é nulo.
- IV. Verdadeira. O determinante de uma matriz não se altera ao substituirmos uma fila por uma combinação linear de filas.

Ouestão 10 - Letra C

Comentário:

$$\begin{vmatrix} sen2x & 2cos^2 x \\ -cos x & sen x \end{vmatrix} =$$

 $sen2x.senx + 2cos^3 x = 2senx cos x senx + 2cos^3 x =$

 $2\cos x \sin^2 x + 2\cos^3 x =$

 $2\cos x(1-\cos^2 x)+2\cos^3 x=$

 $2\cos x - 2\cos^3 x + 2\cos^3 x =$

$$2\cos x = 2 \cdot \frac{1}{4} = \frac{1}{2}$$

Questão 11 - Letra B

Comentário: Multiplicando uma fila (linha ou coluna) de uma matriz quadrada por uma constante, seu determinante fica multiplicado por essa constante. Trocando-se duas filas paralelas de uma matriz quadrada, seu determinante fica multiplicado por −1. Para se obter, a partir de M, a matriz da alternativa B, foram trocadas as posições das linhas 1 e 3, a segunda linha foi multiplicada por 3 e a segunda coluna multiplicada por 2. Portanto, o determinante foi multiplicado por (-1).2.3 = -6.

Questão 12 - Letra E

Comentário: O processo descrito no enunciado diz respeito ao cálculo dos autovalores da matriz A, que são as raízes da equação det (A - xI) = 0. Assim:

$$A - xI = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{pmatrix} = \begin{pmatrix} -x & 0 & 1 \\ 0 & 1 - x & 0 \\ 1 & 0 & -x \end{pmatrix} \Rightarrow$$

$$det(A - xI) = 0 \Rightarrow$$

$$(-x)(1 - x)(-x) - (1 - x) = 0 \Rightarrow$$

$$(1 - x)(x^2 - 1) = 0$$

As raízes dessa última equação são x = -1 e x = 1, que é raiz dupla. O produto pedido é 1 . 1.(-1) = -1.

Ouestão 13 - Letra C

Comentário: Pelas propriedades de determinantes, det (A.B) = det A.det B. Ademais:

$$\det A = x.1 - 2 \cdot 1 = x - 2$$

$$\det B = 1 \cdot 2 - x \cdot (-1) = x + 2$$

Então, det (A.B) = 3x implica (x - 2)(x + 2) = <math>3x, o que é equivalente a $x^2 - 3x$, -4 = 0, que tem como raízes x = 4 e x = -1. Logo, a diferença pedida é 4 - (-1) = 5.

Questão 14 - Letra B

Comentário: Perceba inicialmente que, para qualquer matriz A, $det(A) = det(A^t).$

Logo, det
$$(2B^t)$$
 = det $(2B)$ = 2^2 .det (B) = $4(3 \cdot 1 - 2 \cdot 1)$ = 4.

Perceba que B + I = $\begin{pmatrix} 4 & 2 \\ 1 & 2 \end{pmatrix}$ e, portanto, det (B + I) = 4 . 2 - 2 . 1 = 6. Logo, a equação do enunciado reduz-se a det (A.B) + 6 = 4

e det (A.B) = det A.det B = -2. Como det (B) = 1, det (A) = -2para que a condição do enunciado seja satisfeita. Assim:

$$\det (A) = (x+1)(-x) - 2x^2 = -2 \implies$$

$$3x^2 + x - 2 = 0 \implies$$

$$P = \frac{c}{a} = -\frac{2}{3}$$

P denota o produto das raízes da equação quadrática, justamente o dado pedido pelo enunciado.

Questão 15 - Letra E

Comentário: Inicialmente, perceba que det (A²) = det (A.A) = det A.det A = $(\det A)^2$. Por outro lado, como **A** é 3 × 3, det (3A) = 33.det A = 27 det A. A restrição do enunciado, $det(3A) = det(A^2)$ reduz-se a 27 $det A = (det A)^2$ e det A = 0ou det A = 27. Como A é invertível, o valor 0 é absurdo, e det A = 27.

MÓDULO - B 24

Sistemas Lineares

Exercícios de Aprendizagem

Questão 01 - Letra A

Comentário: Seja x o preço de cada suco e y o preço de cada sanduíche. Então, teremos:

$$\begin{cases} 2x + 3y = 14 & \text{(I)} \\ 4x + 5y = 25 & \text{(II)} \end{cases}$$

$$4x + 5y = 25$$
 (II)

Fazendo (II) - 2(I):

$$-y = -3 \Rightarrow y = 3$$

Substituindo o valor de y na equação (I), encontramos:

$$2x + 3y = 14 \implies 2x + 3 \cdot 3 = 14 \implies 2x = 5 \implies x = 2,5$$

Portanto, o preço do suco é R\$ 2,50 e o do sanduíche R\$ 3,00. O valor da despesa da mesa 3 é de R\$ 5,50.

Ouestão 02 - Letra B

Comentário: Dado o sistema:
$$\begin{cases} 5x + 4y + 2 = 0 & \text{(I)} \\ 3x - 4y - 18 = 0 & \text{(II)} \end{cases}$$

Fazendo (I) + (II), temos:

 $8x - 16 = 0 \Rightarrow 8x = 16 \Rightarrow x = 2 \Rightarrow y = -3$. Portanto, o sistema possui solução única.

Questão 03 - Letra A

Comentário: Estabelecendo as relações encontradas em cada informação fornecida, temos que:

$$2X + 3Y + Z = 8420$$
 (I)

$$X + 2Y + 2Z = 7940$$
 (II)

$$4X + 3Y = 8 110$$
 (III)

$$2(I) - 3(II)$$
: $X - 4Z = -6980 (IV)$

$$3(II) - 2(III): -5X + 6Z = 7600 (V)$$

$$(V) - 5(IV)$$
: $Z = 1950$

Substituindo o valor de Z na equação (V), obtemos o valor de X=820

Substituindo o valor de X e Z em (II), obtemos Y = 1 610.

Portanto a diferença entre o comprimento da maior pista (Z) e da menor pista (X) = 1950 - 820 = 1130 m.

Ouestão 04 - Letra D

Comentário: Somando a segunda e a terceira linhas, chega-se a 3x - y = 1. Subtraindo a primeira equação desta, chegamos a z = 3. Disso concluímos que x + 2y = 5. Logo, x = 5 - zy. Substituindo esse valor na primeira equação, temos:

$$15 - 6y - y + 6 = 7 e y = 2$$

Questão 05 - Letra C

Comentário: Subtraindo a terceira equação da segunda, $z_0 = 2$. Assim, $x_0 = 2$ e $y_0 = -1$, e a soma pedida vale 3.

Ouestão 06 - Letra A

Comentário: Considerando PA = x, PE = y, PI = z e organizando os dados fornecidos em um sistema, temos:

$$\begin{cases} x + 2y + z = 15 & \text{(I)} \\ 4x + 5y + 7z = 63 & \text{(II)} \\ 6x + 8y + 9z = 89 & \text{(III)} \end{cases}$$

Fazendo (III) -[(I) + (II)], temos:

$$6x + 8y + 9z - (x + 2y + z + 4x + 5y + 7z) = 89 - (15 + 63) \Rightarrow$$

 $6x + 8y + 9z - (5x + 7y + 8z) = 89 - 78 \Rightarrow x + y + z = 11.$

Questão 07 - Letra C

Comentário: Para que a solução seja única, devemos ter $D \neq 0$.

$$D = \begin{vmatrix} m & 3 & -1 \\ 1 & m & 2 \\ 1 & -1 & -1 \end{vmatrix} = -m^2 + 6 + 1 - (-m - 2m - 3) \neq 0 \Rightarrow$$

$$-m^2 + 3m + 10 \neq 0 \Rightarrow$$

$$m \neq -2$$
 ou $m \neq 5$.

Ouestão 08 - Letra D

Comentário: Sejam **x**, **y** e **z**, respectivamente, os preços unitários das margaridas, dos lírios e das rosas.

De acordo com as informações, obtemos o sistema

$$\begin{cases} 4x + 2y + 3z = 42 \\ x + 2y + z = 20 \\ 2x + 4y + z = 32 \end{cases} \Rightarrow \begin{cases} x + 2y + z = 20 \\ 4x + 2y + 3z = 42 \\ 2x + 4y + z = 32 \end{cases}$$

$$\begin{cases} x + 2y + z = 20 \\ -6y - z = -38 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 5 \\ z = 8 \end{cases}$$

Portanto, o resultado pedido é:

$$x + y + z = 2 + 5 + 8 = R$ 15,00$$

Exercícios Propostos

Ouestão 01 - Letra A

Comentário:

$$\begin{cases} x + ky = 1 & \text{(I)} \\ x + y = k & \text{(II)} \end{cases}$$

Fazendo (I) - (II), temos:

$$-ky + y = -1 + k \Rightarrow y(k - 1) = 1 - k$$

O sistema será possível e determinado, ou seja, admite uma única solução, para:

$$-k + 1 \neq 0 \Rightarrow k \neq 1$$

Para k = 1 as equações do sistema serão idênticas; logo, o sistema terá mais de uma solução.

Portanto, o sistema tem solução para todo k.

Questão 02 - Letra D

Comentário: Pelos dados do enunciado, chegamos ao seguinte sistema de equações:

$$a + b + c = 20$$
 (I)

$$a + 0b - c = -5$$
 (II)

$$a + 2b + 4c = 54$$
 (III)

Fazendo (II) - (I) e (III) - (I), temos:

$$a + b + c = 20$$

$$\begin{cases} 0a - b - 2c = -25 \text{ (IV)} \end{cases}$$

$$0a + b + 3c = 34$$
 (V)

Fazendo, agora, (V) + (IV), encontramos:

$$0a - b - 2c = -25$$

$$0a + 0b + c = 9$$

Portanto, c = 9.

Substituindo o valor de **c** na 2ª equação, temos:

$$-b - 18 = -25 \Rightarrow b = 7$$

Ouestão 03 - Letra D

Comentário: O sistema apresentado será possível e indeterminado se, e somente se, a seguinte relação for verdadeira:

$$\frac{a}{1} = \frac{4}{a} = \frac{a^2}{-2} \Rightarrow a = -2$$

Ouestão 04 - Letra A

Comentário: O casal transportou x de peso excedente e 2z de peso permitido, numa soma de 60 kg; logo, x + 2z = 60. Por outro lado, o senhor levou y quilos de peso excedente e z de peso permitido, num total de 60 kg, ou seja, y + z = 60. Por fim, como o valor que o senhor pagou foi 3,5 vezes maior que o valor pago pelo casal, o seu excesso de peso deve ser 3,5 vezes maior; logo, y = 3.5x, o que equivale a 3.5x - y = 0.

Ouestão 05 - Letra A

Comentário: Como o sistema é homogêneo, para que ele possua solução não nula, o determinante da matriz dos coeficientes deverá ser igual a 0, logo:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -m & 1 \\ m & -1 & -1 \end{pmatrix} = 0 \Rightarrow m + m - 1 + m^2 + 1 + 1 = 0 \Rightarrow$$

$$m^2 + 2m + 1 = 0 \Rightarrow (m + 1)^2 = 0 \Rightarrow m = -1.$$

Ouestão 06 - Letra B

Comentário: Simplificando e analisando o sistema dado,

$$\begin{cases} 2x + ay = 3 \\ x + 2y = 1 \end{cases} (2) \Rightarrow \begin{cases} 2x + ay = 3 \end{cases} (I) \\ 2x + 4y = 2 \end{cases} (II)$$

Fazendo (I) - (II), temos

$$ay - 4y = 1 \Rightarrow y(a - 4) = 1.$$

Para que o sistema tenha solução (a – 4) \neq 0 \Rightarrow a \neq 4. Com isso, eliminamos as alternativas A e D. Se a = 1, o sistema tem solução única: $y = -\frac{1}{3} e x = \frac{5}{3}$. Logo, a alternativa Ctambém está incorreta. Se a = -1, o sistema também tem solução única: $y = -\frac{1}{5}e \times = \frac{7}{5}$; logo, a alternativa E está incorreta. Finalmente, para a = 2, o sistema tem exatamente uma solução: $y = -\frac{1}{2} e x = 2$.

Portanto, a alternativa correta é a B.

Ouestão 07 - Letra A

Comentário: Como a, b e c são inteiros consecutivos, b = a + 1 e c = a + 2. Já que (a, b, c) é uma solução do sistema, este vetor satisfaz toda as equações pertencentes ao sistema. Assim, pela primeira equação, a + 2(a + 1) + 3(a + 2) = 20 ea = 2, sendo b = 3 e c = 4. Temos que (2, 3, 4) também é solução da segunda equação. Logo, 7 . 2 + 8 . 3 - 4m = 26

Ouestão 08 - Letra A

Comentário: Calculando o determinante da matriz dos coeficientes, temos:

$$D = \begin{vmatrix} 1 & 1 & -a \\ 3 & -1 & -2 \\ 2 & 2 & -2 \end{vmatrix} 2 - 4 - 6a - 2a + 4 + 6 = 8 - 8a$$

Se 8 - 8a ≠ 0, o sistema será possível e determinado; logo, se a ≠ 1, o sistema terá solução única.

Ouestão 09 - Letra A

Comentário: Denote por A, B e V os custos, respectivamente, de um alimento de um prato amarelo, um branco e um verde. Na mesa A, a restrição de recursos pode ser expressa por 2A + 4B + 3V = 88 (I). Pela mesa **B**, tem-se 5B + 2V = 64 (II). Pela mesa C, A + 4V = 58 (III). Isolando-se B e A em (II) e (III) e substituindo em (I), tem-se:

$$A = 58 - 4V$$

$$B = \frac{64 - 2V}{5}$$

$$2A + 4B + 3V = 88 \implies 2(58 - 4V) + 4 \cdot \frac{64 - 2V}{5} + 3V = 88 \implies 64 - 2V$$

$$116 - 8V + 3V - 88 = -4.\frac{64 - 2V}{5} \implies$$

$$5V - 28 = 4.\frac{64 - 2V}{5} \implies 25V - 140 = 256 - 8V \implies$$

$$33V = 396 \Rightarrow V = 12 \Rightarrow A = 10 \Rightarrow B = 8$$

Percebe-se que B = 0,8A, ou seja, o valor do prato branco é 80% do valor do prato amarelo.

Questão 10 - Letra C

Comentário: Denote por x a quantidade de embalagens de 20 L compradas. Logo, 2x embalagens de 10 L foram compradas. Como foram gastos 65 reais, $10x + 6 \cdot 2x + 3n = 65$, ou seja, 22x + 3n = 65 (I). Como foram comprados 94 L de água, $20x + 10 \cdot 2x + 2n = 94$, ou seja, 20x + n = 47, do qual se tira n = 47 - 20x. Substituindo em (I), temos 22x + 3(47 - 20x) = 65 e 38x = 76 e x = 2. Logo, n = 7, um divisor de 77.

Ouestão 11 - Letra D

Comentário: Dado o sistema: $\begin{cases} 2x + y = 5 & (I) \\ ax + 2y = b & (II) \end{cases}$

Fazendo 2.(I), temos:
$$\begin{cases} 4x + 2y = 10 \\ ax + 2y = b \end{cases}$$

Para que o sistema seja possível e indeterminado, ou seja, tenha infinitas soluções, devemos ter: a = 4 e b = 10. Portanto, a + b = 4 + 10 = 14.

Questão 12 – Letra E

Comentário: Dado o sistema: $\begin{cases} x + ay = 1 & (I) \\ 3x - y = b & (II) \end{cases}$ Fazendo 3.(I), temos: $\begin{cases} 3x + 3ay = 3 \\ 3x - y = b \end{cases}$

Fazendo 3.(I), temos:
$$\begin{cases} 3x + 3ay = 3 \\ 3x - y = b \end{cases}$$

Portanto, para que o sistema admita mais de uma solução,

devemos ter:
$$3a = -1 \Rightarrow a = -\frac{1}{3}$$
 e b = 3.

Seção Enem

Questão 01 - Letra D

Eixo cognitivo: III

Competência de área: 2

Habilidade: 7

Comentário: As equações das três retas formam um sistema do tipo

$$\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \\ a_3 x + b_3 y + c_3 = 0 \end{cases}$$

Como não existe um ponto (x, y) que pertence às três retas ao mesmo tempo, podemos dizer que o ponto \mathbf{P} está em \mathbf{r} e \mathbf{t} , mas não pertence a reta s. O ponto \mathbf{Q} está em \mathbf{s} e \mathbf{t} , mas não pertence a \mathbf{r} , e o ponto \mathbf{R} está em \mathbf{s} e \mathbf{r} , mas não pertence a \mathbf{t} . O sistema, portanto, não admite solução.

Questão 02 - Letra B

Eixo cognitivo: III

Competência de área: 5

Habilidade: 21

Comentário: Sejam **x** e **y** os números de carros roubados das marcas **X** e **Y**, respectivamente.

Temos:

$$\begin{cases} x = 2y \\ x + y = 0,6.150 = 90 \end{cases}$$

Substituindo x = 2y na 2^a equação, obtemos:

$$3y = 90 \Rightarrow y = 30$$

MÓDULO - C 21

Polinômios I

Exercícios de Aprendizagem

Questão 01 - Letra A

Comentário: Substituindo os valores dados, temos que:

$$P(-1) = -4 + 8 - 1 + 1 = 4$$

$$P\left(-\frac{1}{3}\right) = -\frac{4}{27} + \frac{8}{9} + \frac{2}{3} \cong 1, 4.$$

Portanto, $P(-1) + P\left(-\frac{1}{3}\right) = 4 + 1, 4 \approx 5, 4.$

Questão 02 - Letra C

Comentário: Fazendo a divisão entre os polinômios pelo método da chave, temos:

$$6x^{4} - 2x^{3} - 8x^{2} + 10x - 2 \qquad \boxed{x^{2} + 3x - 2}$$

$$-222x + 126 \qquad 6x^{2} - 20x + 64$$

Portanto, o dobro do resto da divisão é −444x² + 252.

Questão 03 - Letra A

Comentário: Sendo **D** o divisor, **d** o dividendo, **Q** o quociente e **R** o resto, podemos escrever que:

$$D = Q.d + r$$

$$D = (8x^2 - 8x + 12).(x^2 + x) + (1 - 7x)$$

$$D = 8x^4 + 8x^3 - 8x^3 + 12x^2 + 12x + 1 - 7x$$

 $D = 8x^4 + 4x^2 + 5x + 1$

Ouestão 04 - Letra E

Comentário: Pelo método da chave, temos:

$$x^4 - 2x^2 + mx + p$$
 $x^2 + 1$
 $mx + p + 3$ $x^2 - 3$

Como o $x^2 + 1$ é divisor do polinômio, mx + p + 3 = 0, portanto m = 0 e p = -3.

Assim, m - p = 3.

Questão 05 - Letra C

Comentário: Se **q** é a razão da progressão geométrica, (16, 16q, 16q², 2), então teremos:

$$16q^3 = 2 \Rightarrow q = \frac{1}{2}$$

Logo, os graus de ${f q}$ e ${f f}$ são, respectivamente, ${f 8}$ e ${f 4}$.

8 + 4 = 12.

Questão 06 - Letra C

Comentário:

$$p(x) = ax^2 + (a - 15)x + 1 e$$

$$q(x) = 2x^2 - 3x + \frac{1}{b}$$

Como as raízes são iguais, as somas delas em cada um dos polinômios também são iguais. Portanto, temos que:

- i) a soma das raízes de p(x) é $\frac{-a+15}{a}$.
- ii) a soma das raízes de q(x) é $\frac{3}{2}$.

Igualando esses valores, temos:

$$\frac{-a+15}{a} = \frac{3}{2} \Rightarrow a = 6$$

Logo:

$$p(x) = 6x^2 - 9x + 1$$

Do mesmo modo, os produtos das raízes também são iguais. Então, temos que:

- i) o produto das raízes de p(x) é $\frac{1}{6}$.
- ii) o produto das raízes de q(x) é $\frac{1}{2b}$

Igualando esses valores, temos:

$$\frac{1}{6} = \frac{1}{2b} \Rightarrow b = 3$$

Portanto:

$$a + b = 6 + 3 = 9$$

Questão 07 - Letra D

Comentário: Pelos dados do enunciado, as duas expressões são idênticas, ou seja, termos de mesmo grau terão o mesmo coeficiente:

$$x^2 + 9 = a(x + 1)^2 + b(x + 1) + c \Rightarrow$$

$$x^{2} + 9 = ax^{2} + 2ax + a + bx + b + c \Rightarrow$$

$$ax^2 + (2a + b)x + (a + b + c)$$

Logo, a = 1. Pelo termo de grau:

$$2a + b = 2 + b = 0 e b = -2.$$

Por fim,
$$a + b + c = -1 + c = 9 e c = 10$$
.

Logo,
$$a - b + c = 1 - (-2) + 10 = 13$$
.

Ouestão 08 - Letra E

Comentário: O polinômio que multiplicado por g(x) tem como resultado h(x) é da forma $ax^3 + bx^2 + cx$, então podemos calcular o polinômio da seguinte forma:

$$g(x).(ax^{3} + bx^{2} + cx) = h(x) \Rightarrow$$

$$(3x^{3} + 2x^{2} + 5x - 4).(ax^{3} + bx^{2} + cx) =$$

$$3x^{6} + 11x^{5} + 8x^{4} + 9x^{3} - 17x^{2} + 4x \Rightarrow$$

$$3ax^{6} + (3b + 2a)x^{5} + (3c + 2b + 5a)x^{4} + (2c + 5b - 4a)x^{3} +$$

$$(5c - 4b)x^{2} - 4cx = 3x^{6} + 11x^{5} + 8x^{4} + 9x^{3} - 17x^{2} + 4x \Rightarrow$$

$$3ax^{6} = 3x^{6} \Rightarrow a = 1$$

$$-4cx = 4x \Rightarrow c = -1$$

$$3b + 2a = 11 \Rightarrow 3b + 2 \cdot 1 = 11 \Rightarrow b = 3$$
Portanto, $ax^{3} + bx^{2} + cx = x^{3} + 3x^{2} - x$.

Exercícios Propostos

Ouestão 01 - Letra E

Comentário: Pelo método da chave, temos:

$$x^3 + kx^2 + 12x + 8$$
 $x - 2$
 $4k + 24$ $x^2 + (k + 2)x + (2k + 16)$

Como o x - 2 é fator do polinômio, 4k + 24 = 0, portanto k = -6.

Questão 02 - Letra D

Comentário: Dividindo f(x) por g(x), obtemos:

$$\begin{array}{ccc} 6x^4 - x^3 - 9x^2 - 3x + 7 & \underline{|2x^2 + x + 1|} \\ \underline{-6x^4 - 3x^3 - 3x^2} & 3x^2 - 2x - 5 \Rightarrow q(x) \\ \hline -4x^3 - 12x^2 - 3x + 7 & \underline{4x^3 + 2x^2 + 2x} \\ \hline & -10x^2 - x + 7 & \underline{10x^2 + 5x + 5} \\ & 4x + 12 \Rightarrow r(x) \end{array}$$

Então, $q(x) = 3x^2 - 2x - 5 e r(x) = 4x + 12$. O produto das raízes de q(x) é dado por $-\frac{5}{3}$, enquanto, em r(x), temos raiz igual a -3. Assim, o produto pedido é $-\frac{5}{2}$. (-3) = 5.

Questão 03 - Letra B

Comentário: Dividindo p(x) por d(x), obtemos:

$$2x^{3} + 5x^{2} + x + 17$$

$$-2x^{3} - nx^{2} - 4x$$

$$(5 - n)x^{2} - 3x + 17$$

$$-(5 - n)x^{2} - \frac{(5 - n^{2})}{2}x - (10 - 2n)$$

$$\frac{\left(-6 - 5n + n^{2}\right)}{2}x + 7 + 2n$$

Para que o resto da divisão seja 5, devemos ter:

$$\begin{cases} n^2 - 5n - 6 = 0 \\ 2n + 7 = 5 \end{cases} \Rightarrow \begin{cases} n = -1 \text{ ou } n = 6 \\ n = -1 \end{cases}$$

Para satisfazer o sistema, temos que n = -1, ou seja, um número negativo e maior que -4.

Ouestão 04 - Letra A

Comentário: Pode-se decompor o polinômio de segundo grau em $x^2 + x + 1 = (x + 3)(x + a) + (b)$, em que **a** e **b** são constantes reais, (x + a) é o quociente e b o resto da divisão de $x^2 + x - 1$ por x + 3. Pela propriedade da identidade de polinômios, temos:

$$x^{2} + x - 1 = (x + 3)(x + a) + b = x^{2} + (a + 3)x + (b + 3a)$$

 $a + 3 = 1 \Rightarrow a = -2$
 $b + 3a = b - 6 = -1 \Rightarrow b = 5$

Logo, o resto da divisão é 5 e seu quociente (x - 2).

Questão 05 - Letra E

Comentário: Se p(x) é divisível por q(x), então existe h(x) tal que p(x) = h(x).q(x). Temos que h(x) possui grau 1, sendo da forma h(x) = x + b. Multiplicando os polinômios, e lembrando que dois polinômios serão idênticos se, e somente se, todos os coeficientes dos termos de mesmo grau forem iguais:

$$p(x) = h(x).q(x) \implies x^{3} + x^{2} - 3ax - 4a = (x+b)(x^{2} - x - 4) \implies x^{3} + x^{2} - 3ax - 4a = x^{3} + (b-1)x^{2} + (-4-b)x - 4b \implies b - 1 = 1 \implies b = 2 -4a = -4b \implies a = 2 -3a = -4 - b \implies a = 2$$

Questão 06 - Letra C

Comentário:

$$\begin{array}{c}
 x^{3} + 0x^{2} + ax + b & \underline{x^{2} + x + 2} \\
 -x^{3} - x^{2} - 2x & x - 1
 \end{array}$$

$$-x^{2} + (a - 2)x + b$$

$$-x^{2} + x + 2$$

$$(a - 1)x + b + 2$$

Dado que o resto é igual a 4, temos:

$$(a-1)x + b + 2 = 4 \Rightarrow$$

$$\begin{cases} a-1 = 0 \Rightarrow a = 1 \\ b+2 = 4 \Rightarrow b = 2 \end{cases}$$
Assim, $a + b = 3$.

Questão 07

Comentário: Como $p(x + 1) - p(x) = 6x^2$, temos: $[a(x + 1)^3 + b(x + 1)^2 + c(x + 1)] - [ax^3 + bx^2 + cx] = 6x^2$ $[ax^3 + (3a + b)x^2 + (3a + 2b + c)x + (a + b + c)] - [ax^3 + bx^2 + cx] = 6x^2$ $3ax^2 + (3a + 2b)x + (a + b) = 6x^2$ $3a = 6 \Rightarrow a = 2$ $3a + 2b = 0 \Rightarrow b = -3$ $a + b + c = 2 - 3 + c = 0 \Rightarrow c = 1$

Logo, $p(x) = 2x^3 - 3x^2 + x e a^2 + b^2 + c^2 = 2^2 + (-3)^2 + 1^2 = 14$.

Ouestão 08 - Letra B

Comentário: Como o primeiro polinômio é um dos fatores do polinômio de 3º grau, a divisão do segundo pelo primeiro não deixa resto, portanto:

$$mx^3 + nx^2 + 1 = (x^2 - x - 1)(ax + b) \Rightarrow$$

$$ax^3 + (b - a)x^2 + (-b - a)x - b$$

Como dois polinômios são iguais se, e somente se, todos os coeficientes de graus iguais são iguais, temos b = -1.

Como
$$-b - a = 0$$
, $a = 1$. Como $a = 1$ e $a = m$, $m = 1$.

Por fim,
$$n = b - a = -1 - 1 = -2$$
. Assim, $n + m = -1$.

Ouestão 09 - Letra A

Comentário: Temos que $q(x) = x^2 - 1 = (x + 1)(x - 1)$.

- i) O resto da divisão de p(x) por x + 1 é igual a p(-1). p(-1) = $(-1)^{99}$ - 2(-1) + 3 = -1 + 2 + 3 = 4
- ii) O resto da divisão de p(x) por x 1 é igual a p(1).

$$p(1) = 1^{99} - 2 \cdot 1 + 3 = 1 - 2 + 3 = 2$$

p(x)|q(x)

r(x) b(x)

Observe que r(x) é do 1º grau, ou seja, é da forma r(x) = ax + b.

$$p(x) = (x^2 - 1).b(x) + ax + b$$

$$p(-1) = 0.b(-1) - a + b = 4$$

$$p(1) = 0.b(1) + a + b = 2$$

Resolvendo o sistema $\begin{cases} -a+b=4\\ a+b=2 \end{cases} \text{ temos } a=-1 \text{ e } b=3.$

Portanto, r(x) = -x + 3.

Questão 10 - Letra B

Comentário: Dois polinômios serão iguais se, e somente se, os termos de graus idênticos forem idênticos. Manipulando a expressão e usando esse fato importante:

$$\frac{2x^2 + 5x - 1}{x^3 - x} = \frac{R}{x} + \frac{P}{x + 1} + \frac{A}{x - 1}$$

$$\frac{2x^2 + 5x - 1}{x^3} = \frac{R(x+1)(x-1) + P(x) \cdot (x-1) + A(x)(x+1)}{(x-1)(x-1)(x-1)(x-1)}$$

$$\frac{2x^2 + 5x - 1}{x^3 - x} = \frac{R(x^2 - 1) + P(x^2 - x) + A(x^2 + x)}{(x^3 - x)}$$

$$2x^2 + 5x - 1 = (R + P + A)x^2 + (A - P)x - R$$

$$-1 = -R$$
 \Rightarrow $R = 1 \Rightarrow$
$$\begin{cases} P + A = 1 \text{ (I)} \\ -P + A = 5 \text{ (II)} \end{cases}$$

$$(I) + (II) : 2A = 6 \Rightarrow A = 3 \Rightarrow P = -2$$

O corte feito na terceira linha do argumento anterior merece alguma atenção. Perceba que a expressão do enunciado não é bem definida para x=0, x=1 e x=-1 e, assim, esses valores não fazem parte do domínio da expressão. Assim, a satisfação da identidade para tais valores de \mathbf{x} é irrelevante. Logo, no corte, eliminou-se uma expressão certamente não nula, o que pode ser feito.

Ouestão 11 - Letra D

Comentário: Perceba que, como a soma dos coeficientes de $p(x) = x^3 - x^2 + x - 1$ é 0, 1 é raiz do polinômio. Assim, p(x) pode ser reescrito como:

$$p(x) = (x - 1)(x^2 + ax + b) = x^3 + (a - 1)x^2 + (b - a)x - b = 0.$$

Logo, $a - 1 = -1$ e $a = 0$. Ademais, $b = 1$. Logo, $p(x) = (x - 1)(x^2 + 1)$.
Desejamos saber a multiplicidade da raiz 1 em $[(x - 1)(x^2 + 1)]^{20} = (x - 1)^{20}.(x^2 + 1)^{20}$. Como as raízes de $x^2 + 1$ são imaginárias, a multiplicidade é 20.

Ouestão 12 - Letra D

Comentário: Dividindo p(x) por q(x), obtemos:

$$\begin{array}{c|cccc}
4x^2 + 3x + 5 & 2x^2 - x - 1 \\
-4x^2 + 2x + 2 & 2 \\
\hline
5x + 7 & 2
\end{array}$$

Temos r(x) = 5x + 7. Assim:

$$f(g(x)) = r(x) \Rightarrow$$

$$2.q(x) + k = 5x + 7 \Rightarrow$$

$$g(x) = \frac{5x + 7 - k}{2}$$

Sabendo que o conjunto solução da inequação $g(x) \ge 10$ é $\{x \in \mathbb{R} | x \ge 3\}$, temos:

$$\frac{5x+7-k}{2} \ge 10 \Rightarrow$$

$$5x \ge k + 13 \Rightarrow$$

$$x \ge \frac{k+13}{\underbrace{5}}$$

Logo,
$$\frac{k+13}{5} = 3 \Rightarrow k = 2$$
.

Seção Enem

Ouestão 01 - Letra A

Eixo cognitivo: III

Competência de área: 5

Habilidade: 21

Comentário: A questão pede um outro instante, além de t=0, em que o volume de leite em ambos os reservatórios seja o mesmo. Para isso, vamos igualar as funções que descrevem esses volumes ao longo do tempo:

$$V_1(t) = V_2(t) \Rightarrow$$

$$250t^3 - 100t + 3000 = 150t^3 + 69t + 3000 \Rightarrow$$

$$100t^3 - 169t = 0 \Rightarrow$$

$$t(100t^2 - 169) = 0 \Rightarrow$$

$$100t^2 - 169 = 0 \Rightarrow t = \pm \frac{13}{10} = \pm 1,3 \ (-1,3 \text{ não convém})$$

Portanto, um outro instante em que $V_1 = V_2$ é t = 1,3 h.

Ouestão 02 - Letra B

Eixo cognitivo: III

Competência de área: 5

Habilidade: 21

Comentário:

$$p(x) = x^3 + ax^2 + bx + c$$

$$p(0) = 0^3 + a.0^2 + b.0 + c = 2 \Rightarrow$$

c = 2

Reescrevendo o polinômio, temos:

$$p(x) = x^3 + ax^2 + bx + 2$$

$$p(1) = 1^3 + a.1^2 + b.1 + 2 = 5 \Rightarrow$$

$$a + b = 2$$

$$p(2) = 2^3 + a \cdot 2^2 + b \cdot 2 + 2 = 10 \Rightarrow$$

$$2a + b = 0$$

Resolvendo o sistema
$$\begin{cases} a+b=2\\ 2a+b=0 \end{cases}$$
, temos que $a=-2$.

MÓDULO - C 22

Polinômios II

Exercícios de Aprendizagem

Questão 01 - Letra B

Comentário: Pelo Teorema do resto, p(1) = 0, então temos:

$$p(1) = -2(1)^3 + m(1) - 5 \cdot 1 + 2 = 0 \Rightarrow m - 5 = 0 \Rightarrow m = 5$$

Questão 02 - Letra C

Comentário: Pelo Dispositivo prático de Briot-Ruffini, **q** vale 1, pois o primeiro termo é repetido. Temos, assim, que -2 + p = -4 e que p = -2. Também temos que:

$$5.(-2) + 4 = -6 = r$$

Além disso, -2 é raiz do binômio (x + a); logo, a = 2.

Ouestão 03

Comentário: Pelo Teorema do resto, temos:

$$2(2)^3 + 5(2)^2 - p.2 + 2 = 0 \Rightarrow 38 - 2p = 0 \Rightarrow p = 19$$

Questão 04 - Letra B

Comentário: Pelo Teorema do Resto, p(-1) = 0. Logo, $p(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = (b + d) - (a + c) = 0$ e a + c = b + d.

Questão 05 - Letra D

Comentário: Se o polinômio é divisível por x + 2 e por x - 1, podemos escrever:

$$x^2 + ax + b = (x + 2).(x - 1)$$

$$x^2 + ax + b = x^2 + x - 2$$

Igualando termo a termo, chegamos a:

$$a = 1 e b = -2$$
.

Logo,
$$a - b = 1 + 2 = 3$$
.

Questão 06 - Letra E

Comentário: Pelo Teorema do Resto, P(1) = 4. Logo, substituindo esse dado na expressão de P(x), temos 4 = 1 - 3 + p + 1 e p = 5.

Questão 07 - Letra B

Comentário: Pelo Teorema do Resto, p(1) = 0. Assim,

$$p(p(1)) = p(0) = a.0 + b.0 + c.0 = 0$$

Questão 08 - Letra D

Comentário: Dado que os restos são iguais quando p(x) é dividido por (x - 1) ou (x + 1), aplicando o Teorema do Resto, temos:

$$P(1) = P(-1)$$

$$3.1^4 - 2.1^3 + m.1 + 1 =$$

$$3.(-1)^4 - 2.(-1)^3 + m.(-1) + 1$$

$$3 - 2 + m + 1 = 3 + 2 - m + 1$$

$$2m = 4$$

m = 2

Exercícios Propostos

Questão 01 - Letra B

Comentário:

$$x^5 + ax^3 + x$$
 $x^3 + bx$

$$-x^5 - bx^3$$
 $x^2 + (a - b)$

$$x^3(a-b)+x$$

$$-x^{3}(a-b)-bx(a-b)$$

$$x - bx(a - b) = 0$$

Logo,

$$x - abx + b^2x = 0 \implies$$

$$x(1 - ab + b^2) = 0 \Rightarrow b^2 - ab + 1 = 0$$

Questão 02 - Letra E

Comentário: Pelo Teorema do Resto, P(2) = 0 e P(-3) = -45. De P(2) = 0, temos 8a + 4 + b = 0, ou seja, b = -4 - 8a. Por outro lado, -45 = -27a - 6 + b = -27a - 6 + (-4 - 8a). Assim, -35 = -35a e a = 1. Substituindo, b = -8 - 4 = -12.

Questão 03 - Letra A

Comentário: Pelo Teorema do Resto:

$$p(2) = 2 e p(1) = 4$$

Mas
$$p(1) = 1^3 + a.1^2 + b.1 = 4 \Rightarrow$$

$$a + b = 3$$

Mas p(2) =
$$2^3$$
 + $a.2^2$ + $b.2$ = $2 \Rightarrow$

$$4a + 2b = -6 \Rightarrow$$

$$2a + b = -3$$

Resolvendo o sistema
$$\begin{cases} a + b = 3 \\ 2a + b = -3 \end{cases}$$
 temos que:
$$a = -6 e b = 9.$$

Ouestão 04 - Letra E

Comentário: Se o polinômio é divisível por (x - 3), temos p(3) = 0, ou seja:

$$6.3^3 - 4.3^2 + 2.m.3 - (m + 1) = 0 \Rightarrow$$

$$162 - 36 + 6m - m - 1 = 0 \Rightarrow$$

Logo,
$$\sqrt{|-25|} = 5$$
.

Questão 05 - Letra D

Comentário: Denote $P(x) = x^3 + px + q$. Pelo Teorema do Resto, P(-1) = 4 e P(1) = 8. Substituindo esses dados na expressão de P(x), tem-se p + q = 7 e q - p = 5. Somando-se as duas expressões, tem-se 2q = 12. Logo, q = 6 e p = 1.

Questão 06 - Letra C

Comentário: Pelo Teorema do Resto, P(1) = P(-2) = 3. Tome o polinômio Q(x) = P(x) - 3. Salta aos olhos que Q(1) = Q(-2) = 0. Como Q(x) é de segundo grau, suas raízes são exatamente 1 e - 2; logo, a soma das raízes de P(x) é 1 - 2 = -1.

Questão 07 - Letra C

Comentário: Considere $R(x) = ax^2 + bx + c$. Sabe-se que R(0) = -1; logo, c = -1 e $R(x) = ax^2 + bx - 1$. Ademais, R(1) = 12 e R(-1) = 16, pelo Teorema do Resto aplicado na divisão euclidiana do polinômio. Pela primeira igualdade, a + b = 13 e pela segunda a - b = 17. Somando as duas equações, temos a = 15 e substituindo b = -2. Logo, pelas Relações de Girard, a soma procurada é $-\frac{b}{a} = \frac{2}{15}$.

Questão 08 - Letra B

Comentário: Abrindo a expressão para o primeiro polinômio e, posteriormente, usando o método da chave, chegamos a:

$$(x^2 + x + 1)^2 = x^4 + 2x^3 + 3x^2 + 2x + 1$$

$$x^4 + 2x^3 + 3x^2 + 2x + 1$$
 $x^2 - x + 1$

$$\frac{-x^4 + x^3 - x^2}{3x^3 + 2x^2 + 2x + 1}$$
 $x^2 + 3x + 5$

$$\frac{-3x^3 + 3x^2 - 3x}{5x^2 - x + 1}$$

$$\frac{-5x^2 + 5x - 5}{4x - 4}$$

Logo, o resto da divisão é 4x - 4 = 4(x - 1).

Questão 09

Comentário: Pelos dados do enunciado:

$$x^4 + x^3 + x^2 + ax + b = (x^2 + 1)(x^2 + cx + d) + 3$$

$$x^4 + x^3 + x^2 + ax + b = x^4 + cx^3 + (1 + d)x^2 + cx + (d + 3)$$

Pela propriedade de identidade de polinômios, c=1 e a=c=1. Ademais, 1+d=1 e d=0. Por fim, b=d+3=3.

Logo,
$$a + b = 4$$
.

Ouestão 10 - Letra D

Comentário: Para que f(x) seja um cubo perfeito da forma $f(x) = (x + b)^3$, as três raízes do polinômio devem ser iguais a (-b). Pela Relação de Girard da soma, sabe-se que a soma das raízes é 6:

$$-3b = 6 \Rightarrow b = -2$$

$$f(x) = (x - 2)^3 = x^3 - 3x^2 \cdot 2 + 3x \cdot 2^2 - 2^3 = x^3 - 6x^2 + 12x - 8$$

Assim,
$$m = 12 e n = -8$$
.

Questão 11

Comentário:

- A) Pelo Teorema do Resto, p(2) = 0. Substituindo na expressão de p(x) dada, temos 8 8 8 + m = 0 e m = 8.
- B) Utilizando Briot-Ruffini para a raiz 2 dada:

Logo, o polinômio x^2 – 4 tem as mesmas raízes de p(x). Essas raízes são –2 e 2.

Ouestão 12 - Letra A

Comentário: Pelo Teorema do Resto, p(-1) = 3. Logo, perceba que $(-1)^n$ só pode assumir os valores -1 e 1. Então, para que p(-1) = 3, devemos ter $(-1)^n = (-1)^m = 1$ e **n** e **m** são pares.

Questão 13 - Letra E

Comentário: Pelo Teorema do Resto, o resto da divisão de P(x) por (x - 3) é P(3).

Esse valor é
$$P(3) = 27 - 9 + 2^k + 2 = 20 + 2^k$$
.

Esse valor é igual a 4^k – 220, ou seja, 4^k – 220 = 20 + 2^k . Denotando 2^k = y, tem-se y^2 – y – 240 = 0 e, por Bhaskara, y = 16 ou y = -15. Como a exponencial tem contradomínio em \mathbb{R}_+ , 2^k = 16 e k = 4.

Seção Enem

Questão 01 - Letra B

Eixo cognitivo: III

Competência de área: 5

Habilidade: 21

Comentário: Efetuando a divisão de $-x^3 + 8x^2 - 19x + 12$ por x - 1, pelo Método de Briot-Ruffini, temos:

Logo, o lucro pode ser escrito como $L(x) = -x^2 + 7x - 12$. O valor da produção que corresponde à máxima lucratividade é igual à abscissa do vértice da parábola, ou seja:

$$x_{v} = -\frac{b}{2a} = -\frac{7}{2(-1)} = 3,5 \text{ toneladas}$$

MÓDULO - C 23

Equações Polinomiais I

Exercícios de Aprendizagem

Questão 01 - Letra B

Comentário: Como 1 é raiz de p(x), 0 = 2 - a - 2 e a = 0. Logo, p(x) = $2x^3 - 2x = 2x(x^2 - 1) = 2x(x - 1)(x + 1)$.

Ouestão 02 - Letra A

Comentário: Podemos reescrever esse polinômio da seguinte maneira:

$$P(x) = x^3 + 5x^2 + 4x$$

$$P(x) = x(x^2 + 5x + 4)$$

$$P(x) = x(x + 1).(x + 4)$$

Logo, podemos perceber que os valores de \mathbf{x} que anulam o polinômio são: x = 0, x = -1 e x = -4.

Questão 03 - Letra A

Comentário: Se **v** e **w** são as raízes da equação, ela pode ser escrita da seguinte forma:

$$x^2 + ax + b = (x - v)(x - w) \Rightarrow$$

$$x^2 + ax + b = x^2 - (v + w)x + vw \Rightarrow$$

$$-(v + w) = a \Rightarrow (v + w) = -a$$

$$vw = b$$

$$(v + w)^2 = (-a)^2 \Rightarrow v^2 + 2vw + w^2 = a^2 \Rightarrow$$

$$v^2 + 2.b + w^2 = a^2 \implies v^2 + w^2 = a^2 - 2b$$

Questão 04 - Letra A

Comentário: Reescrevendo o polinômio na sua forma fatorada:

$$p(x) = 7x(x-1)^{2}(2x-2) = 14(x-0)(x-1)^{3}$$

Logo, 1 é raiz tripla.

Questão 05 - Letra D

Comentário: Resolvendo:

$$(x-1).(x+2) - 2(x+2) - 4 = x - 2$$

$$x^2 + x - 2 - 2x - 4 - 4 = x - 2$$

$$x^2 - 2x - 8 = 0$$

Assim, x = 4 ou x = -2, e o módulo da diferença entre as raízes é 4 -(-2) = 6.

Questão 06

Comentário:

- A) Pelo Teorema do Resto, p(2) = 0. Logo, substituindo na expressão dada para p(x), temos 0 = 8 8 10 + d e d = 10.
- B) A equação p(x) = 10 é equivalente a $x^3 2x^2 5x = 0$. Perceba que 0 é raízes desta equação e o polinômio pode ser reduzido a $x^2 2x 5 = 0$. As raízes desta equação são $\frac{2 \pm \sqrt{(-2)^2 (-5) \cdot 1.4}}{2} = 1 \pm \sqrt{6}$. Logo, encontramos as três raízes de p(x) = 10.

Ouestão 07 - Letra D

Comentário: Por inspeção, percebemos que -1 é raiz desse polinômio. Reduzindo o grau do polinômio pelo dispositivo de Briot-Ruffini:

	1	4	6	4	1
-1	1	-1 + 4 = 3	-3 + 6 = 3	-3 + 4 = 1	-1 + 1 = 0

Logo, temos agora o polinômio $x^3 + 3x^2 + 3x + 1$. Percebemos facilmente que essa expressão é $(x + 1)^3$. Logo, $x^4 + 4x^3 + 6x^2 + 4x + 1 = (x + 1)(x^3 + 3x^2 + 3x + 1) = (x + 1).(x + 1)^3 = (x + 1)^4$. Portanto, percebemos que -1 é raiz de multiplicidade 4 do polinômio dado.

Ouestão 08 - Letra A

Comentário: O polinômio p(x) pode ser escrito como $p(x) = a(x + 2)(x + 1)(x)(x - 1)(x - 2) = a.x.(x^2 - 1)(x^2 - 4)$, em que **a** é uma constante real não nula. Substituindo o valor do polinômio dado no enunciado:

$$\begin{split} p(\sqrt{2}) &= a.\sqrt{2}. \Big((\sqrt{2})^2 - 1 \Big) \Big((\sqrt{2})^2 - 4 \Big) = -2a\sqrt{2} = 2\sqrt{2} & \Rightarrow a = -1 \\ p\Big(\sqrt{3} \Big) &= (-1)\sqrt{3}. \Big((\sqrt{3})^2 - 1 \Big) \Big((\sqrt{3})^2 - 4 \Big) = 2\sqrt{3} \end{split}$$

Exercícios Propostos

Questão 01 - Letra D

Comentário: Fatorando m(x) e encontrando suas raízes, temos

$$m(x) = (x - 1).(x - 2).$$

Fatorando n(x) e encontrando suas raízes, temos

$$n(x) = (x - 1).(x - 3).$$

Fatorando q(x) e colocando ${\boldsymbol x}$ em evidência, temos

$$(x^2 - 4).(x - 1) = (x - 2).(x + 2).(x - 1).$$

P(x), então, será igual a:

$$(x-1).(x-2).(x-1).(x-3).(x-2).(x+2).(x-1)$$

Suas raízes são: 1; 2; 1; 3; 2; -2; 1

Somando as raízes distintas, temos: 1 + 2 + 3 + (-2) = 4.

Questão 02 - Letra A

Comentário: Cálculo da área livre da sala:

$$A = 131 - 20x + x^2$$
.

Volume livre da sala:

$$V = (131 - 20x + x^2)x \Rightarrow$$

$$V = x^3 - 20x^2 + 131x$$

Queremos que o volume livre da sala seja igual a 280 m³, ou seja:

$$x^3 - 20x^2 + 131x = 280 \Rightarrow$$

$$x^3 - 20x^2 + 131x - 280 = 0$$

Logo, o menor valor de \mathbf{x} que atende a essa condição é 5, pois $5^3 - 20 \cdot 5^2 + 131 \cdot 5 - 280 = 0$.

Ouestão 03 - Letra E

Comentário: O polinômio $P(x) = 2x^3 - 11x^2 + 17x - 6$ pode ser escrito da forma $P(x) = (2x - 1)(x^2 - 5x + 6)$. Fatorando ainda mais esse polinômio, temos:

$$P(x) = (2x - 1)(x - 3)(x - 2)$$

Portanto, as raízes de P(x) são $\frac{1}{2}$, 3 e 2. Assim, a média aritmética das raízes é:

$$\frac{\frac{1}{2} + 3 + 2}{3} = \frac{\frac{11}{2}}{3} = \frac{11}{6}$$

Ouestão 04 - Letra A

Comentário: Por Briot-Ruffini, temos:

Portanto, temos:

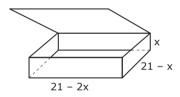
$$P(x) = (x^2 - 3x - 4)(x^2 - 1) = (x - 4)(x + 1)(x^2 - 1)$$

As duas outras raízes são iguais a 4 e - 1. Assim, o valor absoluto da diferença entre elas é igual a:

$$|4 - (-1)| = 5$$

Questão 05 - Letra C

Comentário:



$$(21 - x)(21 - 2x)x = 810 \Rightarrow$$

$$2x^3 - 63x^2 + 441x - 810 = 0$$

Sabendo que 3 é uma das raízes, temos:

$$2x^2 - 57x + 270 = 0 \Rightarrow$$

$$\begin{cases} x = 22,5 \text{ (não convém)} \\ \text{ou} \\ x = 6 \end{cases}$$

Logo, x pertence ao intervalo (5, 7).

Questão 06 - Letra C

Comentário: Utilizando a forma fatorada,

$$g(x) = a(x + 2)(x - 3)(x - 4)(x - 5).$$

Como
$$q(0) = -240$$
, $-240 = a(-120)$ e a = 2.

Logo,
$$g(x) = 2(x + 2)(x - 3)(x - 4)(x - 5)$$
.

Assim,
$$g(6) = 2 . 8 . 3 . 2 . 1 = 96$$
.

Ouestão 07 - Letra A

Comentário: Como a raiz de ordem par de um real negativo não está definida nos reais, tanto p(x) como q(x) não possuem raízes reais. Por outro lado, $r(x) = x^4 - 10x^2 + 9$. Denotando $a = x^2$, e fazendo r(x) = 0, temos $a^2 - 10a + 9 = 0$ e a = 9 ou a = -1. Assim, $x \in \{-3, -1, 1, 3\}$ e r(x) possui quatro raízes reais.

Ouestão 08 - Letra C

Comentário: Pela soma dos coeficientes de $P_1(x)$, sabe-se que 1 é raiz deste polinômio. Fatorando por agrupamento, temos $P_1(x) = (x + 1)(x^2 - 1)$, cujas raízes são -1 e 1. Perceba que $P_2(x) = (x + 1)^3$ e, logo, $P_2(-1) = 0$ e $P_2(1) = 8$.

Ouestão 09 - Letra E

Comentário: Sendo o polinômio $P(x) = 2x^3 + 3x^2 - 3x - 2$, sabe-se que ele é divisível por (2x + 1), pelo Teorema do Resto. Também por este teorema, sabe-se que P(x) é divisível por (x - m) e (x - n). Logo, utilizando a propriedade de identidade de polinômios, podemos escrever:

$$\begin{aligned} 2x^3 + 3x^2 - 3x - 2 &= (2x + 1)(x - m)(x - n) \\ 2x^3 + 3x^2 - 3x - 2 &= (2x^3 + x^2)(1 - 2m - 2n) + (2mn - n - m)x + mn) \\ \begin{cases} mn &= -2 \\ 2mn - n - m &= -3 \Rightarrow m + n = -1 \Rightarrow \\ m + n &= -1 \end{cases} \\ m &= -1 - n \Rightarrow (-1 - n)n = -2 \Rightarrow n^2 + n - 2 = 0 \Rightarrow n \in \{-2, 1\} \end{aligned}$$

Perceba que, se n = -2, m = 1, e que, se n = 1, m = -2. Logo, m^n pode ser $m^n = -2^1 = -2$ ou $m^n = 1^{-2} = 1$.

Ouestão 10 - Letra A

Comentário: O polinômio p(x) pode ser reescrito como p(x) = f(x).g(x).(ax + b), em que \mathbf{a} e \mathbf{b} são constantes reais a serem determinadas. Sabe-se que p(-1) = 150. Logo, p(-1) = f(-1)g(-1)(-a+b) = 150 = 6(-5)(-a+b) = a-b=5. Analogamente, como p(2) = 63, temos p(2) = f(2).g(2).(2a+b) e 63 = (9).1.(2a + b) e 2a + b = 7. Somando-se esta equação a a - b = 5, temos a = 4 e substituindo b = -1. Logo, p(x) = f(x).g(x).(4x - 1). A soma pedida é p(1), que vale p(1) = f(1).g(1).(4 . 1 - 1) = (6)(-1)(3) = -18.

Questão 11 - Letra D

Comentário: Perceba que, como há 3 raízes reais, haverá necessariamente quatro raízes reais, já que raízes imaginárias vêm sempre em pares complexos. No entanto, uma das raízes fornecidas pode ter multiplicidade dois, caso no qual o gráfico da função tangenciará o eixo x no ponto que representa a raiz de multiplicidade dois. Por outro lado, lembre-se de que a função só pode mudar de sinal quando passa pela raiz (sendo contínua). A função sempre mudará de sinal quando passar pela raiz, a não ser no caso de tangência descrito anteriormente. Tome a raiz 1. Como P(0) e P(2) são positivos, o gráfico tangencia o eixo x em (1,0). Nas outras raízes, a mudança de sinal ocorre normalmente. Logo, se -3 < x < 5 (tirando x = 1), P(x) > 0. Caso contrário, P(x) < 0. Portanto, P(-5) < 0, P(4) > 0 e P(6) < 0.

Questão 12

Comentário:

$$p(x) = x^3 - 12x + 16$$

A) 2 é raiz do polinômio, já que:

$$p(2) = 2^3 - 12 \cdot 2 + 16 = 8 - 24 + 16 = 0$$

B) p(x) é divisível por x - 2.

$$B(x) = x^2 + 2x - 8$$

As raízes de B(x) são -4 e 2.

Assim, escrevendo p(x) na forma fatorada, temos:

$$p(x) = (x - 2)^2(x + 4)$$

Para x > 0 e $x \ne 2$, as duas parcelas anteriores são positivas, ou seja, p(x) > 0. (c.q.d.).

Seção Enem

Questão 01 - Letra D

Eixo cognitivo: III

Competência de área: 5

Habilidade: 21

Comentário: $P(x) = x^3 - 7x^2 + 14x - 8$

Pesquisando as raízes racionais, verificamos que 1 é raiz. Temos:

O quociente é $Q(x) = x^2 - 6x + 8$.

Cálculo das raízes de Q(x):

$$\Delta = (-6)^2 - 4 \cdot 1 \cdot 8 \Rightarrow \Delta = 4$$

$$x = \frac{6 \pm 2}{2} \Rightarrow \begin{cases} x = 2 \\ ou \\ x = 4 \end{cases}$$

Portanto, são três raízes reais, ou seja, o robô bombeiro será utilizado três vezes.

MÓDULO - C 24

Equações Polinomiais II

Exercícios de Aprendizagem

Questão 01 - Letra C

Comentário: Pelas Relações de Girard, temos que a soma das raízes da equação será: $-\frac{b}{a} = -\frac{-2}{1} = 2$.

Questão 02 - Letra B

Comentário: Utilizando a Soma de Girard e considerando x_2 e x_3 as outras duas raízes da equação, temos:

$$2i + x_2 + x_3 = -\frac{a}{1} \Rightarrow x_2 + x_3 = -a - 2i$$

Ouestão 03 - Letra D

Comentário: Sendo x_1 , x_2 e x_3 as raízes do polinômio p(x) e dadas as informações do enunciado, temos que: $x_1 + x_2 = -1$ e x_1 . $x_2 = -1$. Assim, pelas relações de Girard, é verdade que:

$$x_1 + x_2 + x_3 = -\frac{a}{1} \Rightarrow -1 + x_3 = -a \Rightarrow x_3 = 1 - a$$

 $\Rightarrow b = 1 - a.$
 $x_1 \cdot x_2 \cdot x_3 = -\frac{b}{1} \Rightarrow -1 \cdot x_3 = -b \Rightarrow x_3 = b$

Portanto, $P(1) = 1^3 + a \cdot 1^2 + 1 + (1 - a) = 1 + a + 1 + 1 - a = 3$.

Questão 04 - Letra E

Comentário: Para polinômios de terceiro grau em que **a** seja diferente de zero, uma das Relações de Girard é que a soma das raízes é igual a menos a razão entre os coeficientes **b** e **c**. Portanto.

$$X_1 + X_2 + X_3 = -\frac{b}{c}$$

 $X_1 + X_2 = \frac{3}{2} - \frac{5}{2} = -1$

Questão 05 - Letra A

Comentário: $p(x) = x^4 - x^3 - 14x^2 + 2x + 24$

O produto das 4 raízes é igual a 24. Como o produto de duas delas é igual a -12, o produto das outras duas é igual a -2.

Questão 06 - Letra A

Comentário: Generalizando as Relações de Girard para polinômios de grau **n**, sendo n ≥ 1, o produto das raízes é:

$$x_1 x_2 x_3 \dots x_n = (-1)^n \frac{a_0}{a_1}$$

Em que a_0 é o termo independente e a_n é o coeficiente do termo de maior grau. Logo, o produto das raízes desse polinômio é:

$$X_1 X_2 X_3 X_4 = (-1)^4 \frac{2}{1} = 2$$

Questão 07 - Letra B

Comentário: Pelas Relações de Girard, descobre-se que a soma das raízes do polinômio é 3,5. Sendo **m** e **n** as outras duas raízes do polinômio, temos que:

$$2 + 2 + m + n = 3,5$$

Logo:

m + n = -0.5

Questão 08 - Letra E

Comentário: $p(x) = cx^3 + ax^2 + bx + 2c$

Sejam -1, 1 e x, as raízes de p(x).

O seu produto é dado por:

$$(-1).1.x_1 = -\frac{2c}{c} \Rightarrow x_1 = 2$$

Exercícios Propostos

Questão 01 - Letra C

Comentário: Como x = 3 é uma raiz da equação, teremos que: 9a + 3b + c = 0 (I)

Usando a + b + c = 0 (II), podemos montar o seguinte sistema:

$$\begin{cases} a+b+c=0 \ \left(II\right) \\ 9a+3b+c=0 \ \left(I\right) \\ II-3I: \\ \frac{c}{}=3 \end{cases}$$

Uma das Relações de Girard para polinômios de grau dois, em que a \neq 0, nos diz que o produto das raízes é igual à razão de \mathbf{c} sobre \mathbf{a} .

Questão 02 - Letra C

Comentário: Reescrevendo o polinômio na forma $p(x) = (x^2 + a).(x - 1)$, podemos perceber que, sendo x = 1 a única raiz real de p(x), **a** tem de ser positivo.

Questão 03 - Letra A

Comentário: Perceba que temos todas as raízes da equação, que são 5. Logo, a soma dessas raízes é 6,5. Por Girard, -0.5p = 6.5 e p = -13. Por outro lado, (2 + i)(2 - i)(1 + 2i)(1 - 2i).0,5 = 12,5. Logo, por Girard, q = -25. Assim, $p + q + pq = -13 - 25 + 13 \cdot 25 = 287$.

Questão 04 - Letra A

Comentário:

$$x^5 - 8x^2 = 0 \Rightarrow x^2(x^3 - 8) = 0 \Rightarrow x^2(x - 2)(x^2 + 2x + 4) = 0$$

Resolvendo a equação produto, temos:

$$x^2 = 0 \Rightarrow x = 0$$
 (raiz dupla)

$$x - 2 = 0 \Rightarrow x = 2$$
 (raiz simples)

$$x^2 + 2x + 4 = 0$$
 (raízes imaginárias)

A soma das raízes imaginárias será dada por:

$$S = -\frac{b}{a} = -\frac{2}{1} = -2$$

Questão 05 - Letra B

Comentário: Pelo Dispositivo prático de Briot-Ruffini:

Obtemos um novo polinômio de grau 2:

$$x^{2}-2x+2=0 \Rightarrow x=\frac{2\pm\sqrt{4-8}}{2\cdot1}=\frac{2\pm2i}{2} \Rightarrow \begin{cases} x=1+i \\ ou \\ x=1-i \end{cases}$$

Assim, as outras duas raízes são (1 + i) e (1 - i).

Questão 06 - Letra C

Comentário: Como os coeficientes do polinômio são reais, se $z \in \mathbb{C}$ é raiz deste, então \overline{z} , o conjugado de z, também será. Logo, -2 – i e 1 + 2i também são raízes do polinômio. A quinta raiz será necessariamente real, devido à propriedade supramencionada (se esta fosse imaginária, o seu conjugado, também imaginário, não seria raiz, absurdo).

Ouestão 07 - Letra A

Comentário: A soma de todas as raízes da equação polinomial $x^3 + 2x^2 - mx - m - 1 = 0$ é -2. Logo, uma raiz é -2 - 1 = -3. Substituindo, temos -27 + 18 + 3m - m - 1 = 0 e m = 5. Perceba que $p(x) = x(x^2 - 4x - 5)$ e as raízes de p(x) são -1, 0 e 5. Logo, a soma pedida é -1 + 0 = -1.

Questão 08 - Letra C

Comentário: Se 1 é raiz dupla do polinômio, então P(x) é divisível por:

$$(x-1).(x-1) = (x-1)^2$$

Usando o Método de Briot-Ruffini:

1	-2	-3	а	b	1
1	-1	-4	-4 + a	-4 + a + b	1
1	0	-4	-8 + a		

Logo:

$$\begin{cases} -4+a+b=0 \\ -8+a=0 \end{cases} \Rightarrow \begin{cases} a=8 \\ b=-4 \end{cases}$$
$$ab=8(-4)=-32$$

Ouestão 09 - Letra A

Comentário: Como a média aritmética da raízes de p(x) é 7, a soma delas será 14 e r=-28, por Girard. Analogamente, s=-12. Assim, $p(x)+q(x)=5x^2-40x+3$. A soma de suas raízes, que são reais, é 8, por Girard. Logo, a média aritmética delas é 4.

Questão 10 - Letra C

Comentário: Como todos os coeficientes da equação são reais, 1 + 2i também é raiz da equação. Por Girard, a soma das raízes é -1. Logo, a outra raiz é -3. O produto pedido é (1 + 2i)(1 - 2i).(-3) = -15.

Questão 11 - Letra D

Comentário: Como 6=3. 2, 6 tem (1+1)(1+1)=4 divisores positivos; $9=3^2$ e, portanto, tem 3 divisores positivos; $16-2^4$ e tem, portanto, 5 divisores positivos. Logo, 3, 4 e 5 são as raízes da equação dada. O coeficiente \mathbf{b} expressa, pelas Relações de Girard, o produto dois a dois das raízes, já o que o coeficiente de x^3 é 1. Logo, b=3. 4+3. 5+4. 5=47.

Questão 12 - Letra D

Comentário: Se x = 2i é raiz, então x = -2i também é. Sendo P(x) divisível por 2x - 3, podemos afirmar que seu grau é 3 e, assim, teremos:

$$P(x) = 2a\left(x - \frac{3}{2}\right)(x - 2i).(x + 2i)$$

Usando P(0) = -12:

$$P(0) = -12 = -3a (-4i^2)$$

$$-12 = -3a - 4 \rightarrow a = 1$$

Voltando com o valor de **a** para a primeira expressão de P(x), concluímos que:

$$P(x) = 2\left(x - \frac{3}{2}\right)(x - 2i).(x + 2i)$$

$$P(x) = (2x-3).(x^2-4i^2)$$

$$P(x) = 2x^3 - 3x^2 + 8x - 12$$

Ouestão 13 - Letra C

Comentário: Pelo Dispositivo de Briot-Ruffini, podemos reduzir o grau do polinômio a outro polinômio que terá as mesmas raízes do original. Assim, utilizando o dispositivo para a raiz real 1 três vezes, temos:

Agora, temos o polinômio $x^4 - 2x^3 + 2x^2 - 2x + 1$. Reduzindo-se o grau deste:

Agora, temos o polinômio $x^3 - x^2 + x - 1$. Reduzindo-se o grau deste:

Logo, temos finalmente o polinômio $x^2 + 1$, de raízes (-i) e (+i).

Questão 14 - Letra E

Comentário: Pelo Teorema do Resto, (x + 2) e (x - 2) são divisores de p(x). O polinômio p(x) pode ser reescrito como $p(x) = (x + 2)(x - 2)(x^2 + ax + b)$, em que as raízes de $x^2 + ax + b$ também são raízes de p(x). Por identidade de polinômios:

$$x^4 + 2x^3 - 7x^2 - 8x + 12 = (x + 2)(x - 2)(x^2 + ax + b)$$

$$x^4 + 2x^3 - 7x^2 - 8x + 12 = (x^2 - 4)(x^2 + ax + b)$$

$$x^4 + 2x^3 - 7x^2 - 8x + 12 = x^4 + ax^3 + (b - 4)x^2 - 4ax - 4b$$

Logo, -4b = 12 e b = -3. Ademais, a = 2. Logo, as raízes de $x^2 + 2x - 3$, 1 e -3 serão raízes de p(x), que terá, portanto, raízes -3, -2, 1 e 2.

Questão 15 - Letra A

Comentário: Seja $p(x) = x^3 + ax^2 + bx + c$ o polinômio de terceiro grau do exercício. Pelas Relações de Girard, c = -15 e a = -1. Logo, $p(x) = x^3 - x^2 + bx - 15$. Pelo Teorema do Resto, p(-2) = 7. Logo, p(x) = -8 - 4 - 2b - 15 e p(x) = -17. Assim, $p(x) = x^3 - x^2 - 17x - 15$. O quociente procurado $p(x) = x^2 + dx + e$ é tal que:

$$p(x) = q(x).(x + 2) + 7$$

$$x^3 - x^2 - 17x - 15 = (x^2 + dx + e)(x + 2) + 7 = x^3 + (d + 2)x^2 + (2d + e)x + (2e + 7)$$

Logo, d + 2 = -1 e d = -3. Ademais, 2e + 7 = -15 e e = -11. Logo, o polinômio procurado é x^2 – 3x – 11.

Questão 16

Comentário:

A) A soma das raízes de p(x) é r - r + s = s. Por Girard, s = 2. O produto das três raízes é $-r^2$. Por Girard, esse valor é -18; logo, r = 3 ou r = -3, o que é imaterial, já que as raízes sempre serão 2, -3 e 3.

B)
$$p(1 + i) = (1 + i)^3 - 2(i + 1)^2 - 9(i + 1) + 18 = (1 + 3i - 3 - i) - 4i - 9i - 9 + 18 = 7 - 11i$$

Seção Enem

Questão 01 – Letra E

Eixo cognitivo: IV

Competência de área: 1

Habilidade: 21

Comentário: Admitindo que P(x) = -1 163, temos:

$$x^3 - 34x^2 + 381x - 1511 = -1163 \Rightarrow$$

$$x^3 - 34x^2 + 381x - 348 = 0$$

Pelas Relações de Girard, o produto das raízes desse polinômio é dado por $-\frac{(-348)}{1} = 348$.

Rua Diorita, 43 - Prado Belo Horizonte - MG Tel.: (31) 3029-4949

www.bernoulli.com.br/sistema