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Preface

This is the fourth in a series of four volumes, all written at an elementary calculus
level. The complete course covers the most important areas of classical physics,
such as mechanics, thermodynamics, statistical mechanics, electromagnetism,
waves, and optics. The volumes are the result of a translation, an in-depth revision
and an update of the Italian version published by Decibel-Zanichelli. This fourth
volume deals with oscillations, waves, and light.

It is assumed that the reader knows differential calculus and the simplest
properties of the vector fields (the same as in Volume 3), such as the gradient of a
scalar field, the divergence and curl of a vector field, and the basic theorems on the
line integral of a gradient, the Gauss divergence theorem and the Stokes curl
theorem. We shall also assume that the reader has already learned the basic con-
cepts of mechanics and electromagnetism up to Maxwell's equations, as developed
in the first volumes of this course, to which we shall make explicit reference when
needed, or equivalent ones.

Oscillations about a stable state of equilibrium are a very common natural
phenomenon, present in all sectors of physics ranging from mechanics to electro-
magnetism and from astrophysics to atomic and nuclear physics. A spider hanging
from its gossamer thread, if displaced from the equilibrium position, oscillates back
and forth as long as passive resistances do not stop it. A blade of grass pushed by
the wind moves periodically up and down. A boat on the surface of a lake oscillates
under the action of the waves. Large systems vibrate as well. The earth’s atmo-
sphere does so under the periodic action of the moon over a period of about 12 h.
The earth itself vibrates for a while when hit by an intense seismic shock, as do
extremely small objects. Light itself is produced by the vibrations of atoms, namely
the oscillations of the electrons they contain, which, as all accelerating charges do,
produce an electromagnetic wave. An electric circuit containing an inductance and
a capacitance performs harmonic, electric oscillations that are completely similar to
the mechanical oscillations of a pendulum. Electric and the magnetic fields also
oscillate in a vacuum, when they are the fields of an electromagnetic wave. And
space-time itself vibrates when a gravitational wave crosses it.
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Hence, many physical systems exist that can perform oscillations. Each system
may obey a different law, the Newtonian law if it is mechanical, the Maxwell's
equation if it is electromagnetic, or the quantum equation if it is an atom, but their
motions have similar characteristics. In particular, they are very often harmonic
motions, in a first, but usually very good, approximation. This is a consequence
of the fact that the oscillation takes place in the proximity of a stable equilibrium
configuration and the system is attracted to that by a restoring force (or, more
generally, by an action) proportional to the displacement from that configuration.
As a consequence, the differential equation governing their motions is the same for
all of these systems. The first part of this book deals with such small oscillation
phenomena.

In the remaining parts, we shall discuss waves. The word immediately brings to
mind the motion of the sea. Suppose, then, that we are on a beach and observing the
motion of the waves approaching us from the open sea, moving with a defined speed,
and crashing on the rocks under our observation point. Each wave is different from
the previous one, but some features are always evidently equal for all of them: their
speed, the distance between two crests (namely the wavelength), and the period
during which a given point of the surface rises and lowers. The show is fascinating
and could hold our attention for a long time, but, we may ponder, are there other
waves around us? They are not as evident, but knowing a bit about physics, we know
that there are indeed. The sound that reaches our ears was caused by the impact of the
water on the rocks and the cries of seagulls, both are waves. And so is the sunlight
that enlightens and heats us. It is waves that allow us to perceive the image of the sea
and of the person standing close to us. Waves run along our nerves from the retina
and the eardrum to the brain, and then, there are those that intersect in our brain while
we think and feel, although we do not know how.

Wave phenomena, therefore, are present in different physical systems, ranging
from mechanical to electrical and from biological to quantum. Like oscillations, the
different types of waves have common characteristics. Again, this is due to the fact
that the equation governing the different systems is, under many circumstances,
exactly the same. Our study will therefore be initially addressed to the general
properties of waves, common to their different types. To be concrete, we shall
exemplify this phenomenon through two of the most important cases, namely sound
and electromagnetic waves. Subsequently, we will focus on the visible electro-
magnetic waves, which are light. That is to say, we will study optics.

Quantum physics describes the phenomena on the atomic and subatomic levels
by associating each particle, atom, electron, nucleus, etc., with a “wave function.”
This is a complex function of the coordinates and of time, whose amplitude squared
gives the probability of finding the particle at a given point in a given instant. This
function behaves exactly like a wave. All of this is outside the scope of these
lectures. However, we observe that several surprising aspects of quantum
mechanics are entirely similar to completely classical aspects of the physics of
oscillations and waves. For example, inverse proportionality relationships, which
we shall look at in Chap. 2, between the duration of a signal in time and the width
of its frequency spectrum and that between the extension of a wave front and the
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width of the angular distribution of the wave vector, strictly correspond in quantum
physics to the Heisenberg uncertainty relations. In other words, the uncertainty
relations are characteristic of all wave phenomena, not only of the quantum
examples but of the classical ones as well. Another example is the wave phe-
nomenon of the “frustrated vanishing wave,” which we will look at in Chap. 4. It
corresponds to the “tunnel effect” in quantum mechanics. Consequently, a deep
enough understanding of classical wave phenomena will substantially help the
student when he/she tackles quantum physics.

The first two chapters are devoted to the study of oscillations of physical systems
whose state is determined by a single coordinate (Chap. 1) and more than one
coordinate (Chap. 2). Chapter 1 studies the oscillatory motion of a simple pendulum
and similar physical systems, in as much as they are described by the same dif-
ferential equation. We shall study oscillations in both the presence and absence of
damping and the presence and absence of an external periodic solicitation. In the
second chapter, we shall study more complicated systems, such as two pendulums
connected by a spring. We shall see that while the generic motion of these systems
is complicated, there are special motions, called normal modes, which are very
simple; namely, they are harmonic oscillations of all parts of the system in phase
with one another. We shall then see that even a continuous system like a guitar
string has particular motions that are its normal modes. The discussion will lead us
to discover an important mathematical tool, namely the harmonic analysis (Fourier
transform). This is an instrument that we shall use often in what follows.

In Chap. 3, we define the concept of the wave. We shall then study how a wave
can be produced, how it is reflected, and how it can be destroyed (absorbed). We
shall deal with electromagnetic waves and sound waves, as particularly important
examples. In Chap. 4, we learn that there are different concepts of wave velocity
and their relations with energy propagation, in particular the velocity of the phase
for a wave of definite wavelength and the group velocity for all types of wave. We
shall see that under several physical circumstances, the phase velocity is a function
of the wavelength. This is especially true for light waves in material media. We
shall examine the consequences and study the physical reason for the phenomenon.

In the subsequent chapters, we will focus solely on light waves, which are
electromagnetic waves in the range of wavelength in which they can be perceived
by the human eye. These wavelengths are very small, a few tenths of a micrometer,
and the frequencies are very high, on the order of hundreds of THz. In Chap. 5, we
shall study the phenomena of interference and diffraction of light, which are the
characteristics of the wave nature of light. In the sixth chapter, we shall deal with
the consequences of the fact that the electric field of light waves can vibrate in
different directions, all perpendicular to the propagation direction. These are the
polarization phenomena. We shall study the different polarization states of light,
how polarization can be produced from non-polarized light, and how the polar-
ization state can be experimentally analyzed.

In the last two chapters, we study the imaging processes. These are the processes
that take place in our own eye, as well as in optical instruments, providing us with
much of the information we have on the outside world. In Chap. 7, we shall learn,
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step-by-step, the process for the formation of images of point-like objects, of
objects of two and then of three dimensions. The processes of image formation may
be different, depending on whether one uses mirrors, lenses, or interference pat-
terns. Topics covered in the first part of the chapter normally fall under the name of
geometrical optics. However, the physics of these phenomena is dealt here with
constant attention to the wave nature of light. In the last chapter, we shall see that
the image formation process through a lens amounts to a succession of a Fourier
transform (from the image to the back focal plane) followed by a Fourier
anti-transform (from the back focal plane to the image plane). Finally, using the
coherent light of the laser, we shall see how we can produce those actual
three-dimensional images known as holograms.

Physics is an experimental science, meaning that it is based on the experimental
method, which was developed by Galileo Galilei in the seventeenth century. The
process of understanding physical phenomena is not immediate, but rather, it
advances through trial and error, in a series of experiments, which might lead, with
a bit of fortune and a lot of thought, to the discovery of the governing laws.
Induction of the process of physical laws goes back from the observed effects to
their causes, and, as such, cannot be purely logical. Once a physical law is found, it
is necessary to consider all its possible consequences. This then becomes a
deductive process, which is logical and similar to that of mathematics. Each of the
consequences of the law, in other words, its predictions, must then be experi-
mentally verified. If only one prediction is found to be false through the experiment,
even if thousands of them had been found true, it is enough to prove that the law is
false. As R. Feynman wrote on the blackboard at the very beginning of his famous
lecture course, “We are not concerned with where a new idea comes from—the sole
test of its validity is experiment.”

This implies that we can never be completely sure that a law is true; indeed, the
number of its possible predictions is limitless, and at any historical moment, not all
of them have been controlled. However, this is the price we must pay in choosing
the experimental method, which has allowed humankind to advance much further in
the last four centuries than in all the preceding millennia.

The path of science is complex, laborious, and highly nonlinear. In its devel-
opment, errors have been made and hypotheses have been advanced that turned out
to be false, but ultimately, laws were discovered. The knowledge of at least a few
of the most important aspects of this process is indispensable for developing the
mental capabilities necessary for anybody who wishes to contribute to the progress
of the natural sciences, whether they pursue applications or teach them. For this
reason, we have included brief historical inserts recalling the principal authors and
quoting their words describing their discoveries.

Quite often, aspects of oscillation and wave phenomena described in this book
can be observed in the nature around us. Some of these observations are mentioned,
including pictures when relevant. More photographs and movies can be found on
the Web.

Each chapter of the book starts with a brief introduction on the scope that will
give the reader a preliminary idea of the arguments he/she will find. There is no
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need to fully understand these introductions on the first reading, as all the argu-
ments are fully developed in the subsequent pages.

At the end of each chapter, the reader will find a summary and a number of
queries with which to check his/her level of understanding of the chapter’s argu-
ments. The difficulty of the queries is variable: Some of them are very simple, some
is more complex, and a few are true numerical exercises. However, the book does
not contain any sequence of full exercises, owing to the existence of very good
textbooks dedicated specifically to that.
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Symbols

Symbols for the Principal Quantities

d Absorption distance
a, as Acceleration
T Amplitude transparency
a, a Angular acceleration
x Angular frequency
J Angular magnification
x Angular velocity
C Capacitance
Z Characteristic impedance
q, Q Charge
q Charge density
c Contrast
j Current density
I Current intensity
C Curve
DOF Depth of field
D Diameter
j Dielectric constant
k Elastic constant
E Electric field
E Electromotive force (emf)
qe Elementary charge
p Electric dipole moment
D Electric displacement
ve Electric susceptibility
me Electron mass
U Energy
w Energy density (of the field)
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U Energy flux
e Exposure
f Focal length
F Force
C Fourier transform
m Frequency
c Fringe visibility
G Gravitational field
g Gravity acceleration
tg Group velocity
EL Illuminance
Z Impedance
i Incidence angle
L Inductance
I Intensity
E Irradiance
p Lens object distance
q Lens image distance
Clim Limit angle (resolution)
B Luminance
UL Luminous flux
JL Luminous intensity
H Magnetic auxiliary field
l Magnetic dipole moment
U, UB Magnetic flux
l Magnetic permeability (absolute)
j Magnetic permeability (relative)
vm Magnetic susceptibility
M Magnetization
m Magnification
m, M Mass
xh i Mean value, of x
l Molar mass
p Momentum
GN Newton constant
NA Numerical aperture
T Period
P Period in square distance
tp Phase velocity
eL Photometric exposure
h, a Plane angle
h, / Polar angle
q, h, / Polar coordinates (space)
P Polarization (density)
r Position vector
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/ Potential (electrostatic and scalar)
Up Potential energy
S Poynting vector
p, P Pressure
x0 Proper angular frequency
Q Q-factor
J Radiant emission intensity
I Radiant intensity
U Radiant power
r, R, q Radius
c Ratio of specific heats (gas)
n Refractive index
r Refraction angle
R Resistance (electric)
q Resistivity
c Resonance width
L Self-inductance
X Solid angle
k Spatial frequency
q Specific rotation constant
η Spectral luminous efficacy
S, R Surface
t Time
s Time constant
T Tension (of a rope)
c Velocity of light (in vacuum)
v,t Velocity
ut Unit vector of v
i, j, k Unit vectors of the axes
n Unit vector normal to a surface
e0 Vacuum permittivity
l0 Vacuum permeability
A Vector potential
V Volume
k Wavelength
w Wave function
ms Wave number
k Wave vector
D Width (slit, aperture)
W Work

Symbols xvii



Base Units in the SI

Quantity Unit Symbol

Length metre/meter m

Mass kilogram kg

Time second s

Current intensity ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Decimal Multiples and Submultiples of the Units

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d

1021 zetta Z 10−2 centi c

1018 exa E 10−3 milli m

1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n

109 giga G 10−12 pico p

106 mega M 10−15 femto f

103 kilo k 10−18 atto a

102 hecto h 10−21 zepto z

10 deka da 10−24 yocto y

Fundamental Constants

Quantity Symbol Value Uncertainty

Speed of light in
vacuum

c 299,792,458 m s−1 Defined

Newton constant GN 6.67308(31) � 10−11 m3 kg−1

s−2
47 ppm

Avogadro's number NA 6.022140857(74) � 1023 mol−1 12 ppb

Boltzmann constant kB 1.38064852(79) � 10−23 J K−1 570 ppb

Vacuum permittivity e0 ¼ 1=ðc2l0Þ 8.854187817… � 10−12 Fm−1 Defined

Vacuum permeability l0 ¼ 1=ðc2e0Þ 12.566370614… � 10−7 NA−2 Defined

Elementary charge qe 1.6021766208(98)… � 10−19 C 6.1 ppb

Unified atomic mass u = 1 g/NA 1.660539040(20) � 10−27 kg 12 ppb
(continued)
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(continued)

Quantity Symbol Value Uncertainty

Electron mass me 9.10938356(11) � 10−31 kg 12 ppb

Proton mass mp 1.672621898(21) � 10−27 kg 12 ppb

Greek Alphabet

alpha a A iota i I rho q P

beta b B kappa j K sigma r, 1 R

gamma c C lambda k K tau s T

delta d D mu l M upsilon t Y, !

epsilon e E nu m N phi /, u U

zeta f Z xi n N chi v X

eta η H omicron o O psi w W

theta h, 0 H pi p P omega x X

Symbols xix



Chapter 1
Oscillations of Systems with One Degree
of Freedom

Abstract Oscillations are periodic or quasi-periodic motions, or, more generally,
the evolution, of a large number of physical systems, which may be very different
from one another. However, the principal characteristics of the oscillatory phe-
nomena are similar. This is because the differential equation describing those
systems is the same. In this chapter, we study the oscillations of systems with one
degree of freedom, both mechanical and electric. We deal with free, damped and
forced oscillations and study the resonance phenomenon.

Many situations exist in which the motion, or, more generally, the evolution, of a
system is confined to a limited region. Think, for example, of the oscillations of a
pendulum, the vibrations of a drumhead or the string of a guitar, the electric
oscillations of a circuit in a radio receiver, the waves flickering in a water glass, etc.
In each case, the “oscillatory motion” occurs around a stable equilibrium position of
the system. The few examples we just gave, and the many others that come to mind,
happen in the most diverse physical systems. However, many characteristics of
oscillatory motions are similar and largely independent of the physical nature of the
system. The reason for this is that those motions are described by the same dif-
ferential equation, whose unknown is the function that measures the displacement
of the system from equilibrium. This function is different from one system to
another; it is the horizontal displacement for the pendulum, the deformation of the
drumhead or of the guitar string, the charge of the capacitor of the oscillating
circuit, the height of a wave of the water in a glass, etc.

The time dependence of the oscillation of a system is not necessarily a simple
mathematical function, but is simple when the restoring force, or, more generally,
the restoring agent, is proportional to the displacement from the equilibrium
position. The typical, but not unique, case is the elastic force. In practice, this is a
case with a good approximation of many systems, provided that the oscillation
amplitude is small. Under such conditions, the differential equation of the system is
linear, and its solution is a sinusoidal function of time. The motion is said to be
harmonic.
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In this chapter, we study the harmonic oscillations of the systems with one
degree of freedom, namely the simplest ones. Several elements of the oscillations of
mechanical systems were anticipated in Chap. 3 of the 1st volume and of electric
circuits in Chap. 7 of the 3rd volume of this course. Here, we repeat and extend the
analysis.

A configuration of a system with one degree of freedom is defined by a single
coordinate or variable. We shall study, in particular, both mechanical and electric
oscillators. The mathematical description is exactly the same. In Sect. 1.1, we deal
with the free oscillator under the idealized condition of negligible dissipative agents
(viscosity in the mechanical case, resistance in the electric case). In the subsequent
section, we take dissipative effects into account. In Sect. 1.3, we study what hap-
pens when a periodic external force acts on the oscillator. Its motions are called
forced oscillations. In Sects. 1.4 and 1.5, we deal with the important phenomenon of
resonance, which happens when the frequency of the external force gets close to the
proper frequency of the oscillator.

Energy is stored in any oscillating system. In a free oscillator, energy remains
constant if dissipative actions are absent. Contrarily, if they are present, as is always
the case in practice, and if they are proportional to velocity, the stored energy
decreases exponentially with time.

1.1 Free Harmonic Oscillations

Harmonic oscillations are ubiquitously present in all sectors of physics. The pro-
totype phenomenon is the harmonic motion of a point-like mass. This is a periodic
motion around a stable equilibrium position in which the restoring force is pro-
portional and in the opposite direction to the displacement. The oscillating system
may be an extended mechanical system, an electric circuit, a molecule, a star, etc.,
and the restoring agent may be something other than a force, as we shall discuss in
this chapter. In this section, we deal with free oscillations, namely those made
spontaneously by a system about a stable equilibrium position.

A well-known example is the simple pendulum, which is a material point
constrained to move along an arc of a circumference in a vertical plane (see
Sect. 2.9 of the 1st volume). Let the pendulum initially be in its natural position of
stable equilibrium. Let us now remove it somewhat and let it go with zero initial
velocity. We shall see the pendulum moving toward the equilibrium position with
increasing speed. The restoring force is a component of the weight. In the initial
phases of the motion, the potential energy of the restoring force diminishes, while
the kinetic energy increases. The pendulum reaches the equilibrium position with a
kinetic energy equal to its initial potential energy. It does not stop there, but rather
keeps going through inertia on the other side. Its kinetic energy is now diminishing
and its potential energy increasing, until the point at which a position at the same
distance from equilibrium as the initial one is reached, and so on. The oscillation
continues with an amplitude that would be constant with time if dissipative forces
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(like the air drag) were not present. The motion is a harmonic motion. Another
example is the motion of a material point linked to a spring, as we shall soon
discuss quantitatively.

An example of a non-mechanical system is the oscillating circuit shown in
Fig. 1.1. The plates of a capacitor C are connected to an inductor L through a switch
S. Clearly, when the circuit is closed, the stable equilibrium configuration occurs
when the charges on the plates are zero. Otherwise, the capacitor would discharge
along the circuit. Let us now imagine charging the capacitor with the switch open
and then closing it. The current intensity I, which is initially null, will increase
while the capacitor discharges. The magnetic field inside the inductor will increase
with I. The energy initially stored in the electric field inside the capacitor decreases,
while the energy stored in the magnetic field inside the inductor increases. When
the capacitor has reached the equilibrium position, namely is discharged, it cannot
stop there. Indeed, this would imply a sudden variation of the current. This is
opposed by a counter-electromotive force (cemf, for short) that develops in the
inductor. The inductance plays the role here of inertia in mechanics. In this case too,
the system overtakes the equilibrium position and moves to a configuration sym-
metrical to the initial one (if the dissipative effects can be neglected). Namely, the
current vanishes when the charges on the plates of the capacitor are equal to and
opposite of the initial ones.

In this section, we shall consider oscillating systems with a single degree of
freedom. Their configuration is determined by a single variable, like the displace-
ment angle for the pendulum or the charge of the capacitor for the oscillating
circuit. Let q be such a variable, or coordinate, as we can also call it. We shall
neglect dissipative effects and assume that the energy of the system is conserved.
Let U(q) be the potential energy of the system (energy of the weight, elastic energy,
energy of the capacitor, etc.) and let it have a minimum at q = q0. We shall consider
“movements” close to this stable equilibrium state, namely, as they are called, small
oscillations.

For values of q near enough to q0, we can develop in series U(q) and stop at the
first non-zero term. The first derivative dU/dq is certainly zero in q0, because this is
an extreme, while d2U/dq2 > 0 there because the extreme is a minimum. Defining
k � d2U=dq2ð Þq0 , we can write

UðqÞ � Uðq0Þ ¼ k
2

q� q0ð Þ2: ð1:1Þ

It is convenient to choose the arbitrary additive constant of the potential energy,
such as U(q0) = 0, and to define

C LVc V
L

Fig. 1.1 An oscillating
circuit
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x ¼ q� q0: ð1:2Þ

Namely, x is the displacement from the equilibrium position, or configuration.
We then have

UðxÞ ¼ k
2
x2: ð1:3Þ

Let us now consider, for the sake of concreteness, a mechanical system, con-
sisting of a material point of mass m. The force corresponding to the potential
Eq. (1.3) is

FðxÞ ¼ dU
dx

¼ �kx: ð1:4Þ

Namely, the restoring force is proportional to the displacement.
To be concrete, let us consider the system shown in Fig. 1.2. A block, of mass

m, lies on a horizontal plane, which we assume to be frictionless. You may think,
for example, to have a cavity in the block filled with dry ice and a number of small
holes in its bottom. A layer of CO2 gas will develop between the bottom of the
block and the support plane, reducing the friction to very small values. A spring is
connected to the block at one end and to a fixed point on the other. We assume we
are in the range of validity of Hook’s law. The restoring force and its potential
energy are then given by Eqs. (1.4) and (1.3), respectively, with k equal to the
elastic constant of the spring, also called the spring constant.

The equation of motion is

�kxðtÞ ¼ m
d2x
dt2

which we write in the canonical form

d2x
dt2

þ k
m
xðtÞ ¼ 0: ð1:5Þ

q

m

0

Fig. 1.2 A mechanical
oscillator
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This is the differential equation of the harmonic oscillator. We now introduce the
positive quantity

x2
0 ¼ k=m: ð1:6Þ

This has a very important dynamical meaning. x2
0 is the restoring force per unit

displacement and per unit mass. It depends on the characteristics of the system. We
can then write Eq. (1.5) as

d2x
dt2

þx2
0xðtÞ ¼ 0: ð1:7Þ

We observe that the differential equation is linear as a consequence of having
stopped the development in series of U at the first non-zero term (also called the
leading term). Consequently, the approximation holds for small values of x only. At
larger values of x, terms of order x3 or larger in the development of U in Eq. (1.3),
corresponding to order x2 or larger in the development of F in Eq. (1.4), may
become relevant. The equation of motion is no longer linear under the latter con-
ditions. We shall see important consequences of the linearity subsequently.

The general solution of Eq. (1.7), as determined by calculus, is

xðtÞ ¼ a cosx0tþ b sinx0t; ð1:8Þ

where the constants a and b must be determined from the initial conditions of the
motion. They are two in number because the differential equation is of the second
order.

The general solution can also be expressed in the, often more convenient, form

xðtÞ ¼ A cos x0tþ/ð Þ; ð1:9Þ

where the constants to be determined from the initial conditions are now A and /.
To find the relations between two pairs of constants, we note that

A cos x0tþ/ð Þ ¼ A cos/ cosx0t � A sin/ sinx0t:

Hence, it is

a ¼ A cos/; b ¼ �A sin/ ð1:10Þ

and reciprocally

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; / ¼ � arctanðb=aÞ: ð1:11Þ

We now introduce the terms that are used when dealing with this type of motion.
To do that in a general way, consider the expression (with a generic x)
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xðtÞ ¼ A cosðxtþ/Þ: ð1:12Þ

Themotion is not only periodic, but, specifically, its time dependence is given by a
circular function. Such motions are said to be harmonic. A is called the oscillation
amplitude, the argument of the cosine, xtþ/, is called the phase (or instantaneous
phase in the case of ambiguity) and the constant/ is called the initial phase (indeed, it
is the value of the phase at t = 0). The quantityx, which has the physical dimensions
of the inverse of time, is called the angular frequency and also the pulsation. Its
kinematic physical meaning is the rate of the variation of the phase with time and, we
will notice, is independent of the initial conditions of the motion. In the specific case
we have considered above, the harmonic motion is the spontaneous motion of the
system (in Sects. 1.3 and 1.4, we shall study motions under the action of external
forces) and the angular frequency, x0, as in Eq. (1.9), is called the proper angular
frequency.

The harmonic motion is periodic, with period

T ¼ 2p=x: ð1:13Þ

The number of oscillations per unit time is called the frequency, m. Obviously, it
is linked to the period and to the angular frequency by

m ¼ 1
T
¼ x

2p
: ð1:14Þ

The period is measured in seconds, the frequency in hertz (1 Hz = 1 s−1), and
the angular frequency in rad s−1 or simply in s−1. The unit is named after Heinrich
Rudolf Hertz (1857–1899).

The harmonic motion can be viewed from another point of view. Consider a
circular disc and a small ball attached to a point of its rim. The disc can rotate on a
horizontal plane around a vertical axis at its center. Suppose the disc is rotating with
a constant angular velocity x. If we look at the ball from above, in the direction of
the axis, we see a circular motion, but if we look horizontally, with our eye on the
plane of the rotation, we see the ball oscillating back and forth periodically. Indeed,
the motion is not only periodic, it is harmonic, as we will now show.

Figure 1.3 shows the material point P moving along a circumference of radius
A with constant angular velocity x. We call / the angle between the position vector
at t = 0 and the x-axis. The co-ordinates of P at the generic time t are

xðtÞ ¼ A cos xtþ/ð Þ; yðtÞ ¼ A sin xtþ/ð Þ:

The projection of the motion on the axes, in particular on x, is harmonic.
The conclusion leads to the simple graphical representation of the harmonic

phenomena shown in Fig. 1.4. To represent a harmonic motion of amplitude A,
angular frequency x and initial phase /, we take a fixed reference axis x and a
vector A, of magnitude A, rotating around its origin in the plane of the figure at the
constant angular frequency x and forming, with the x axis, the angle / at t = 0. The
projection of A on the reference x axis is our harmonic motion.
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This is shown in Fig. 1.4. The same can be represented analytically by con-
sidering Eq. (1.12) as the real part of the complex function

zðtÞ ¼ Aei/
� �

eixt ¼ aeixt; ð1:15Þ

namely as

xðtÞ ¼ Re½zðtÞ� ¼ Re aeixt
� �

; ð1:16Þ

where the two real integration constants have been included in the complex one

a ¼ Aei/; ð1:17Þ

which is called the complex amplitude. Its modulus is the real amplitude, its
argument is the initial phase. The complex notation is often quite simple for the
following reasons: (a) operations are simpler with exponentials than they are with
trigonometry, (b) differentiating an exponential, one obtains another exponential,
(c) the most usual operations (addition, subtraction, multiplication by a constant
factor, differentiation and integration) commute with taking the real part; conse-
quently, the latter operation may be done at the end. Notice, however, that the same
is not true for non-linear operations like multiplication or exponentiation.

Let us now consider the velocity. The derivative of Eq. (1.12) gives us

dx
dt

¼ �Ax sin xtþ/ð Þ ¼ Ax cos xtþ/þ p
2

� �
: ð1:18Þ

and, equivalently, the derivative of Eq. (1.15)

P

O
x

y

A

Fig. 1.3 A point P moving in
a circular uniform motion

A

x

Fig. 1.4 Vector diagram for
the harmonic motion
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dz
dt

¼ ixaeixt ¼ xaeiðxtþp=2Þ; ð1:19Þ

where we recalled that i ¼ eip=2.
In both forms, we see that the velocity varies in a harmonic way as well, with a

phase that is forward of p/2 radians to the displacement. This is shown in Fig. 1.5a.
Differentiating once more, we have the acceleration

d2x
dt2

¼ �Ax2 cosðxtþ/Þ ¼ Ax2 cos xtþ/þ pð Þ: ð1:20Þ

or, in complex notation,

d2z
dt2

¼ �x2aeixt ¼ x2aeiðxtþ pÞ; ð1:21Þ

The acceleration is proportional to the displacement with the negative propor-
tionality constant −x2. We can say that its phase is at p radians to the displacement,
or in phase opposition with it.

In the system we are considering, the total energy, meaning the sum of both the
kinetic and potential ones, is conserved. Let us check that. The total energy is

Utot ¼ UkðtÞþUpðtÞ ¼ 1
2
m

dx
dt

� �2

þ 1
2
kx2 ¼ 1

2
m

dx
dt

� �2

þx2
0x

2

" #

where x(t) is given by Eq. (1.12), and we obtain

Utot ¼ 1
2
mx2

0A
2 sin2ðx0tþ/Þþ cos2ðx0tþ/Þ	 
 ¼ 1

2
mx2

0A
2: ð1:22Þ

We see that neither the kinetic energy nor the potential energy are constant in
time, but rather, they vary as sin2ðx0tþ/Þ and cos2ðx0tþ/Þ, respectively, but
their sum, the total energy, is, as we expected, constant. Also notice that the kinetic,
potential and total energies are all proportional to the square of the amplitude on
one side and to the square of the angular frequency on the other.

(a) (b)

Fig. 1.5 Vector diagram for harmonic motion. a velocity, b acceleration
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The mean value of a quantity in a given time interval is the integral of that
quantity on that interval, divided by the interval. One immediately calculates that
the mean values of both functions cos2 and sin2 over a period are equal to 1/2.
Consequently, the mean values of both potential and kinetic energy over a period
are one half of the total energy.

Ukh i ¼ Up
� � ¼ 1

4
mx2

0A
2 ¼ 1

2
Utot: ð1:23Þ

Completely similar arguments hold for the above-considered oscillating circuit
in Fig. 1.1. We choose, as a coordinate defining the status of the system, the charge
Q(t) of the capacitor. Its time derivative is the current intensity I(t). Let VC be the
emf of the capacitor and VL = −LdI/dt the emf between the extremes of the
inductor. These extremes are directly connected to the plates of the capacitor, and
we must have VC = VL. Namely, it is

�L
dI
dt

¼ Q
C
;

which, considering that I = dQ/dt, we can write as

d2Q
dt2

þ 1
LC

QðtÞ ¼ 0; ð1:24Þ

which is equal to Eq. (1.7) with the proper angular frequency

x0 ¼ 1ffiffiffiffiffiffi
LC

p : ð1:25Þ

The solution to the equation is, consequently,

QðtÞ ¼ Q0 cosðx0tþ/Þ;

where Q0 and / are integration constants defined by the initial conditions.
We can check that energy is conserved in this case as well. In this case, the total

energy is the sum of the energy of the condenser, which is the energy of the electric
field, and the energy of the inductor, which is the energy of the magnetic field.
Indeed, we have

U ¼ 1
2
LI2 þ 1

2
Q2

C
¼ L

2
Q2

0x
2
0 sin

2ðx0tþ/Þþ 1
2C

Q2
0 cos

2ðx0tþ/Þ

¼ L
2
Q2

0x
2
0 sin2ðx0tþ/Þþ cos2ðx0tþ/Þ	 
 ¼ L

2
Q2

0x
2
0:
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1.2 Damped Oscillations

In the previous section, we neglected the dissipative forces, or effects, which,
however, are always present. The dissipative forces on a mechanical system may be
independent of velocity, as is the case with friction, or dependent on it, as is the
viscous drag. The dependence on velocity of the viscous drag may be quite com-
plicated, as we saw in Chap. 1 of the 2nd volume of this course. We shall limit the
discussion to the cases in which the resistive force, or more generally action, is
proportional to the velocity, or to the rate of change of the coordinate. Consider, for
example, a pendulum oscillating in air. The drag force is an increasing function of
the velocity. For small velocities, we can expand its expression in series. The term of
zero order is zero because the viscous force is zero for zero velocity. We stop the
expansion at the first non-zero term, which is proportional and opposite to the
velocity. Similarly, in an oscillating circuit, a resistivity is always present. The
potential drop across a resistor is proportional to the current intensity, which is the
time derivative of the charge of the capacitor. Under these conditions, the (macro-
scopic) energy of the system is not conserved and the free oscillations are damped.

Let us take back the mechanical oscillator of Fig. 1.2 and include a drag force. In
Fig. 1.6, we have schematized the drag with a damper, in which a piston linked to
the block of mass m moves in a cylinder full of a gas. Changing the pressure of the
gas, we can change the resistive force. Under the assumptions we have made, the
viscous drag is proportional to the velocity in magnitude and opposite to it in
direction. It is convenient to write the resistive force in the form

Fr ¼ �mc
dx
dt

ð1:26Þ

where c is a constant, representing the drag per unit velocity and per unit mass. We
neglect the friction between the support plane and the block. The second Newton
law gives us

m
d2x
dt2

¼ �mc
dx
dt

� kx; ð1:27Þ

which we write, dividing by m and taking all the terms to the left-hand side, in the
canonical form

x

m

0

Fig. 1.6 A mechanical
damped oscillator
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d2x
dt2

þ c
dx
dt

þx2
0x ¼ 0; ð1:28Þ

where x2
0 is, as always, the restoring force per unit displacement and per unit mass

x2
0 ¼ k=m: ð1:29Þ

Notice that both constants x0 and c have the dimension of the inverse of a time.
The inverse of c, namely

s ¼ 1=c ð1:30Þ

is the time that characterizes the damping, as we shall now see.
The solution to the differential Eq. (1.28) is given by calculus. The rule for

finding it is as follows. First, we write the algebraic equation obtained by substi-
tuting powers of the variable equal to the degree of the derivative into the differ-
ential equation. In our case, it is

r2 þ crþx2
0 ¼ 0: ð1:31Þ

Then, we solve it. The two roots are

r1;2 ¼ � c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
2

� �2
�x2

0

r
: ð1:32Þ

The general solution to the differential equation is

xðtÞ ¼ C1er1t þC2er2t ð1:33Þ

where C1 and C2 are integration constants that must be determined from the initial
conditions.

In this volume, we deal with oscillations, and consequently, we shall consider
only the case of small damping in which c/2 < x0 and the two roots are real and
different. Equation (1.33) can then be written as

x ¼ C1e�ðc=2Þtþ ix1t þC2e�ðc=2Þt�ix1t

where

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 �
c
2

� �2
r

: ð1:34Þ

We can now choose two different integration constants as a = C1 + C2 and b = i
(C1 − C2) and obtain the solution in the form
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xðtÞ ¼ e�ðc=2Þt a cosx1tþ b sinx1tð Þ: ð1:35Þ

For damping tending to zero ðc ! 0Þ, the equation of motion becomes Eq. (1.8),
as we expected. Equation (1.35) can be written in a form analogous to Eq. (1.9),

xðtÞ ¼ Ae�ðc=2Þtðcosx1tþ/Þ ¼ Ae�t=ð2sÞðcosx1tþ/Þ; ð1:36Þ

where the integration constants are now A and /.
In complex notation, Eq. (1.36) becomes

xðtÞ ¼ Re Aei/eiðx1 þ ic=2Þt
h i

: ð1:37Þ

The motion is an oscillation similar to the harmonic motion, with an amplitude,
Ae�t=ð2sÞ, which is not constant but rather decreases exponentially in time with a
decay time of 2s. The oscillations are damped. Note that the oscillation frequency is
modified by damping, namely it is reduced. As Eq. (1.34) shows, it is x1 < x0.
This is the consequence of the fact that the drag force tends to reduce the velocity.
Note that for very weak damping (c � x0), x0 differs from x1 by infinitesimals of
the second order of c/x0.

A weakly damped motion, namely with c � x1, is shown in Fig. 1.7. The
oscillation amplitudes diminish gradually over a time long compared to the period.
As a matter of fact, rigorously speaking, the motion is not periodic, because the
displacement after every oscillation is somewhat smaller than that before it.
However, if the damping is small, we can still identify a period

T ¼ 2p=x1: ð1:38Þ

Under a weak damping condition, namely if c � x1 or, equivalently, s � T, the
decay time is much longer than the period. The oscillation amplitude does not vary
too much in a period. Consequently, if we want to calculate the mean energy 〈U〉 in
a period, we can consider the factor e�ðc=2Þt to be constant and take it out of the
integral. We get

Fig. 1.7 A damped
oscillation
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Uh i ¼ U0h ie�ct; ð1:39Þ

Where 〈U0〉 is its initial value. The constant c has two physical meanings. On one
side, as we already saw, c is the drag force per unit velocity and unit mass, while on
the other, it is the fraction of the average energy stored in the oscillator (〈U〉) lost
per unit time. Indeed, the latter quantity is

� d Uh i
dt

1
Uh i ¼ c: ð1:40Þ

Its reciprocal 1/c, which is the characteristic time s of Eq. (1.30), is called the
decay time of the oscillator. This is the time interval in which the energy in the
oscillator decreases by a factor of 1/e.

QUESTION Q 1.1. Consider a damped oscillator with x0 = 103 s−1 and c = 10 s−1.
How much is x1? ⃞

In the analysis of the previous section of an oscillating circuit, we neglected the
dissipative effects. These, however, are always present. We now represent them
schematically with a resistor in series, which is R in Fig. 1.8.

The equation of the circuit is

L
dI
dt

þRIðtÞþ 1
C
QðtÞ ¼ 0;

which we can write in the form

d2Q
dt2

þ R
L
dQ
dt

þ 1
LC

QðtÞ ¼ 0: ð1:41Þ

This equation is identical to Eq. (1.28), with Q in place of x, 1/√LC for the proper
angular frequency x0 and R/L for the damping constant c. The condition of small
damping is then R=2\

ffiffiffiffiffiffiffiffiffi
L=C

p
. The corresponding solution is the quasi-harmonic

oscillation with exponentially decreasing amplitude with time, namely

QðtÞ ¼ Q0e�
R
2Ltðcosx1tþ/Þ; ð1:42Þ

C L

RFig. 1.8 A damped
oscillating circuit
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where

x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
LC

� R2

4L2

r
; ð1:43Þ

AN OBSERVATION ON THE EXPONENTIAL FUNCTION. The amplitude of a damped
oscillation in Eq. (1.36) and the energy of the damped oscillator, Eq. (1.39), are
examples of physical quantities decreasing exponentially over time. This behavior
is often encountered in physics. We make here a simple but important observation.
Consider the function

f ðtÞ / f0e�t=s

and the ratio between its two values in two different instants t1 and t2 (t1 < t2). We
immediately see that this ratio depends only on the interval t2 − t1 and not sepa-
rately on the two times or the constant (the initial value) f0. Indeed,

f ðt2Þ=f ðt2Þ ¼ e�ðt2�t1Þ=s: ð1:44Þ

In particular, the function diminishes by a factor of 1/e in every time interval
t2 � t1 ¼ s and not only in the initial one.

1.3 Forced Oscillations

Consider again the damped oscillator of the previous section and apply to the body
a force in the direction of the x-axis that oscillates as a circular function of time with
angular frequency x and amplitude F0. The component of the force on the x-axis
(its magnitude or its opposite, depending on the direction relative to x) is given by

FðtÞ ¼ F0 cosðxtÞ; ð1:45Þ

where we have chosen the origin of times as the instant in which the force is zero;
its initial phase is then null. The second Newton law gives us

m
d2x
dt2

¼ F0 cosxt � cm
dx
dt

� kx; ð1:46Þ

which we write in the form
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d2x
dt2

þ c
dx
dt

þx2
0x ¼

F0

m
cosxt: ð1:47Þ

The left-hand side of this equation is equal to the left-hand side of the damped
oscillation Eq. (1.28). But the right-hand side, which is zero for the latter, is now
proportional to the external force. Equation (1.47) is a non-homogeneous differ-
ential equation and Eq. (1.28) is its associated homogeneous differential equation.
A mathematical theorem states that the general solution to the former is the sum of
the general solution to the associated homogeneous equation, which we already
know, and any particular solution to the non-homogeneous one. The easiest way to
find the latter is to consider the same equation of the complex variable z(t) =
x(t) + iy(t). We search for a solution to the differential equation, of which (1.47) is
the real part, namely

d2z
dt2

þ c
dz
dt

þx2
0zðtÞ ¼

F0

m
eixt: ð1:48Þ

If we think that the motion of the system, after a sufficiently long period during
which the force has acted, should be an oscillation at the frequency of the force, we
can search for a solution of the type

zðtÞ ¼ z0eixt: ð1:49Þ

Let us try this in (1.48). We have

�x2z0eixt þ icxz0eixt þx2
0z0e

ixt ¼ F0

m
eixt;

which must be satisfied in every instant of time. And so it is, because all the terms
depend on time by the same factor. Hence, Eq. (1.49) is a solution, provided that

�x2z0 þ icxz0 þx2
0z0 ¼

F0

m
; ð1:50Þ

which is an algebraic equation. The unknown, which is the parameter we must find
to obtain the solution, is the complex quantity z0. This is immediately found to be

z0 ¼ F0=m
x2

0 � x2 þ icx
: ð1:51Þ

We see that the solution is completely determined by the characteristics of the
oscillator, x0 and c, and of the applied force, F0 and x. It does not depend on the
initial conditions.

The particular solution to Eq. (1.48) is then
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zðtÞ ¼ F0=m
x2

0 � x2 þ icx
eixt: ð1:52Þ

It is convenient to write z0 in terms of its modulus B and its argument –d

z0 ¼ Be�id: ð1:53Þ

We recall that the modulus of a ratio of two complex numbers is the ratio of the
modulus of the nominator and the modulus of the denominator, hence we have

B ¼ F0=mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � x2
� �2 þ c2x2

q : ð1:54Þ

We recall that the argument of a ratio is the difference between the arguments of
the nominator (which is 0, in this case) and the argument of the denominator. We
are interested in its opposite, which is

d ¼ arctan
cx

x2
0 � x2

: ð1:55Þ

The particular solution to Eq. (1.48) is then

zðtÞ ¼ Beiðxt�dÞ ð1:56Þ

and, taking the real part, the particular solution to Eq. (1.47) is

xðtÞ ¼ B cosðxt � dÞ: ð1:57Þ

Finally, the general solution to Eq. (1.47) is

xðtÞ ¼ Ae�ðc=2Þtðcosx1tþ/ÞþB cosðxt � dÞ; ð1:58Þ

where x1 is given by Eq. (1.34). Let us now discuss the motion we have found. It is
the sum of two terms. The first one represents a damped oscillation at the angular
frequency x1 that is proper for the oscillator. The constants A and / depend on the
conditions under which the motion started and appear in the first term alone. The
second term depends on the applied force. The motion is quite complicated under
these conditions. However, the amplitude of the first term decreases by a factor of
e in every time interval 2/c. After a few such intervals, the first term has practically
disappeared. Once this transient phase has gone, the regime of the motion is sta-
tionary. The stationary oscillation is described by the particular solution in
Eq. (1.57), which is called a stationary solution. We rewrite it as
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xsðtÞ ¼ B cosðxt � dÞ: ð1:59Þ

We repeat that the stationary motion is a harmonic oscillation at the angular
frequency of the force, not at the proper frequency of the oscillator. However, both
the amplitude B and the phase d, which is not the initial phase but rather the phase
delay of the displacement x relative to the instantaneous phase of the force, do
depend on the characteristics of both the oscillator and the force, as in Eqs. (1.54)
and (1.55). We shall come back to that in the next section. Before doing that, we
must introduce a few more interesting physical quantities.

Absorptive amplitude and elastic amplitude. The stationary solution, Eq. (1.59),
can be written, in an equivalent form, as the sum of a term in phase with the
external force (which we call elastic) and a term in quadrature, namely with a 90°
phase difference (which we call absorptive), namely as

xsðtÞ ¼ Ael cosxtþAabs sinxt; ð1:60Þ

where

Ael ¼ B cos d ¼ F0

m
x2

0 � x2

x2
0 � x2

� �2 þ c2x2

Aabs ¼ B sin d ¼ F0

cxm
c2x2

x2
0 � x2

� �2 þ c2x2
:

ð1:61Þ

The reason for the use of the adjective “absorptive” is understood by calculating
the mean power absorbed by the oscillator from the work of the external force, as
we shall immediately do. The reason for the use of “elastic” is that this adjective
often means “without absorption” in physics. Let us now express the instantaneous
power, which is

PðtÞ ¼ FðtÞ dxs
dt

¼ xF0 cosxt �Ael sinxtþAabs cosxt½ �:

We calculate the mean absorbed power in a period 〈P〉, remembering that the
mean over a period of sin2 and cos2 is 1/2 and that of sin times cos is zero. Hence,
we have

Ph i ¼ 1
2
F0xAabs ¼ F2

0

2m
cx2

x2
0 � x2

� �2 þ c2x2
: ð1:62Þ

We see that the mean absorbed power is proportional to the absorptive ampli-
tude. This happens because the average power delivered by the force is different
from zero only if the force has the same phase as the velocity, namely if it is in
quadrature with the displacement.

Another important quantity is the energy stored in the oscillator. This is
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UðtÞ ¼ 1
2
x2

0mx
2
s ðtÞþ

1
2
m

dxs
dt

� �2

¼ 1
2
mB2 x2

0 cos
2ðxt � dÞþx2 sin2ðxt � dÞ	 


:

We see that the stored energy is not constant, but rather it varies periodically
over time. In a free oscillator, the mean kinetic and potential energies are equal in
every instant, while in a forced one, they are different, in general, being equal only
when x = x0, namely at resonance. This is a consequence of the fact that the power
P(t) delivered by the external force is not exactly balanced in each instant of time by
the power dissipated by the drag force. The instant-by-instant balance exists only in
resonance. Indeed, in resonance, the elastic amplitude vanishes identically, and not
only at its average value.

Let us finally express the mean value over a period of the stored energy, which is

Uh i ¼ 1
2
mB2 x

2
0 þx2

2
¼ F2

0

2m
x2

0 þx2
� �

=2

x2
0 � x2

� �2 þ c2x2
: ð1:63Þ

1.4 Resonance Curves

We now observe that the expressions of the mean absorbed power in Eq. (1.62), the
mean stored energy in Eq. (1.63), the absorptive amplitude in Eq. (1.61) and the
square of the oscillation amplitude in Eq. (1.54) have the same denominator and
different numerators. The most interesting phenomena are when the angular fre-
quency of the external force x is near the proper frequency of the oscillator x0.
Here, the denominator is very small, and consequently, the four mentioned quintiles
exhibit very similar, if not identical, behaviors. Contrastingly, their behaviors are
quite different far from x0. The behavior of the elastic amplitude is very different. It
vanishes in resonance rather than having a maximum. We shall now discuss the
four quantities and subsequently the elastic amplitude.

The dependence on x of the four quantities is conveniently studied in terms of
the dimensionless function

RðxÞ ¼ c2x2

x2
0 � x2

� �2 þ c2x2
; ð1:64Þ

which we shall call the response function of the oscillator. As Fig. 1.9 shows, the
function is a bell-shaped curve with its maximum in x = x0, symmetric about the
maximum. This is a resonance curve.

Note that we have defined the function in order to have its maximum be equal to
one. Contrastingly, as we shall soon see, the maxima of the curves representing the
physical quantities depend on the damping parameter c.
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The resonance curve is narrower for smaller damping. As a matter of fact, the

abscissas at which the function is equal to 1/2 are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þðc=2Þ2
q

� c=2.

Consequently, the full width at half maximum (FWHM, for short), which we call
Dxris, is equal to c, namely

Dxris ¼ c: ð1:65Þ

QUESTION Q 1.2. Calculate the values of x at which the resonance curve is one
half of its maximum. ⃞

Let us now consider each of the four resonating quantities. The mean absorbed
power is

Ph i ¼ F2
0

2mc
RðxÞ: ð1:66Þ

Hence, its frequency dependence is exactly the same as for the response func-
tion, times, however, a constant factor depending on the damping c. The power is a
maximum when the angular frequency of the force is equal to the proper frequency
of the oscillator (x = x0). The maximum is higher the smaller the damping due to
the factor l/c multiplying R(x). Hence, the maximum of 〈P〉 increases without
limits when c decreases. The FWHM is exactly Dxris.

The oscillation amplitude squared is

B2 ¼ F0

mcx

� �2

RðxÞ ð1:67Þ

and is shown in Fig. 1.10.

Fig. 1.9 The resonance
curve
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The frequency dependence differs from that of R(x) by the factor 1/x2. Its
effects are not very large near resonance, if the damping is small. The maximum of
B2 is at a value smaller than x0, namely

xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � c2=2
q

: ð1:68Þ

This value is, at any rate, very close to x2
0 if c/x0 < <1.

QUESTION Q 1.3. Consider a damped oscillator with x0 = 103 s−1 and c = 10 s−1.
How much is xR? ⃞

The function of Eq. (1.67) contains the factor 1/c2 that makes B2 increase
indefinitely when c decreases. The width of the curve is approximately, but not
exactly, Dxris.

Let us now think for a moment about the same oscillator when it is free. The
decay time of the energy stored in the oscillator s is equal to l/c for Eq. (1.30), but is
equal to 1/Dxris as well, for Eq. (1.65). We reach the conclusion that the width in
angular frequency of the resonance curve for forced oscillations is inversely pro-
portional to the decay time of the free oscillations, namely that

Dxris � s ¼ 1: ð1:69Þ

This relation is extremely important, both in classical and quantum physics. We
shall use it in the subsequent chapters.

Arguments similar to those we made for the mean power and the oscillation
amplitude square hold for the mean stored energy and the absorptive amplitude.

The Lorentzian curve, named after Hendrik Antoon Lorentz (The Netherlands,
1853–1928), is a useful simplification of the expression of the resonance curve,
valid if the damping is sufficiently small and in the frequency region close to the
resonance. The factor that varies most rapidly in the function R(x) is its
denominator.

We write the denominator as x2
0 � x2

� �2 þ c2x2 ¼ ðx0 � xÞ2ðx0 þxÞ2 þ
c2x2 and note that, on the right-hand side, the term varying most rapidly is
ðx0 � xÞ2. Near to x0, and if c/x0 � 1, we can simplify the function by putting

Fig. 1.10 Frequency
dependence of the oscillation
amplitude square
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x0 in place of x in all the terms in the numerator and denominator except in
ðx0 � xÞ2.

In this approximation, the resonance curve R(x) becomes

LðxÞ ¼ ðc=2Þ2
ðx0 � xÞ2 þðc=2Þ2 ; ð1:70Þ

which is shown in Fig. 1.11. The curve has its maximum at x0 and FWHM equal to
c. Indeed, one can easily calculate that Lðx� c=2Þ ¼ 1=2. The curve very often
appears in atomic physics with the name Lorentzian and in nuclear and sub-nuclear
physics with the name of the Breit-Wigner curve.

Let us now study the phase delay d between the displacement x and the applied
force F, as given by Eq. (1.55). This function is shown in Fig. 1.12, for two
different values of the damping coefficient c, one smaller (continuous curve), one

Fig. 1.11 The Lorentzian
curve

Fig. 1.12 The phase delay of
the displacement relative to
the external force
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larger (dotted curve). Equation (1.55) tells us that when x � x0, the delay of the
displacement is very small, namely d ≅ 0 (see Fig. 1.12). This is easily understood:
at low frequencies, the accelerations of the oscillator are very small and the main
effect of the external force is to balance the restoring force −kx. Consequently, the
force is in phase with x.

Contrastingly, when x �x0, the phase delay of the displacement is d ≅ p. This
means that when the spring pulls to the right, the oscillator mass is on the left of the
equilibrium position and vice versa. Again, the interpretation is not difficult. At high
frequencies, the accelerations are large. Hence, the term is –md2x/dt2 (due to inertia,
we can say) and dominates over the elastic force term. The external force mainly
needs to balance that term. Consequently, it is in phase with acceleration, which is
in phase opposition with the displacement.

The above arguments help us to understand the behavior of B2, and of the
amplitude B, far from the resonance. Forx ! 0, Eq. (1.54) gives us B ! F0/k. This
means that, at small frequencies of the applied force, the oscillation amplitude is
(almost) independent of the frequency. It is independent of m and c as well. It
depends only on the spring constant k (strength of the force apart). For very high
frequencies, on the other side, B ≅ F0/mx

2. Hence, the amplitude, which vanishes
for x ! ∞, depends on the mass but not on the spring constant. As a matter of fact,
if the spring was not present, the change would be small, its force being very small
compared to −md2x/dt2.

Coming back to the phase delay, we note that the transition between the region
of small values d ≅ 0 and values d ≅ p takes place around the resonance in an
interval on the order of c. The smaller the damping, the sharper the transition. At
resonance, the displacement is in quadrature (d = p/2) with the applied force.
Considering that the velocity is in quadrature with the displacement, one sees that,
at resonance, the force is in phase with the velocity. This is why the absorbed power
is a maximum here.

Fig. 1.13 The elastic
amplitude
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We still have to analyze the behavior of the elastic amplitude. This is shown in
Fig. 1.13. The amplitude goes through zero in resonance due to the factor x2

0 � x2.
It has a maximum and a minimum at the abscissas x0 � c=2 symmetrically about
the resonance. Their values �F0=ð2mx0cÞ are equal and opposite, and are one half
of the maximum of the absorptive amplitude. The elastic amplitude, which is
considerably smaller than the absorptive amplitude in the region of the resonance,
becomes the dominant term far from it. We shall see the importance of both
amplitudes in the study of the refractive index of light in Chap. 4.

1.5 Resonance in Nature and in Technology

Resonance phenomena are ubiquitous in physics and have an enormous number of
technological applications. Indeed, every system oscillates harmonically, or almost
so, when abandoned close to a state of stable equilibrium. These oscillations have a
definite frequency, depending on the structure of the system. If an external force,
with a sinusoidal dependence on time with angular frequency x, acts on the system,
the motion of the system evolves toward a stationary regime in which it oscillates at
the frequency of the external force. The amplitude of the stationary oscillations is a
maximum when x is close to the proper angular frequency x0 of the system. The
maximum is narrower the smaller the damping c. To be precise, the systems with
one degree of freedom, which we have discussed in this chapter, have a single
proper frequency. Systems with several degrees of freedom have several proper
frequencies, as we shall study in the next chapter.

In this section, we shall discuss a few examples of resonance. Before doing that,
let us explain the origin of the name.

“Resonance” comes from the Latin verb “resonare”, meaning to resound or to
sound together. As we are dealing with sound, let us consider the following
experiment. We tune two strings of the same musical instrument to the same note;
plucking one of them, we now hear the note. If we stop the string with a finger, we
still hear the same note, at a volume as loud as when we first heard the sound of the
first string. Why? Because the second string, which has not been touched, has
entered into oscillations, being “in resonance” with the one that was touched.

The first string is the source of a sound wave (see Sect. 3.4) that has the same
frequency as its vibrations. The wave propagates in space, hitting, in particular, the
untouched string and exerting a periodic force on it. The force is weak, but it is at
the exact proper frequency of that string. Consequently, the efficiency of energy
transfer from the sound to the string is a maximum. Let us now repeat the obser-
vations after having detuned the second string a bit relative to the first. We still hear
the untouched string vibrating, if the detuning was not too great, but with a much
smaller amplitude. As a matter of fact, this amplitude decreases with increased
detuning, namely for increasing differences between x and x0.
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Galileo Galilei, who was a good musician, describes the phenomenon beautifully
in his “Dialogues and mathematical demonstrations concerning two new sciences”
(English translation by Henry Crew and Alfonso de Salvio, McMillan 1914), in
which Salviati, who represents Galilei himself, says that

to explain the wonderful phenomenon of the strings of the cittern [a musical instrument] or
of the spinet [another musical instrument], namely, the fact that a vibrating string will set
another string in motion and cause it to sound not only when the latter is in unison but even
when it differs from the former by an octave [namely with proper frequency twice or one
half] or a fifth [frequency ratio 2/3] [because a string has a series of proper frequencies, as
we shall see in the next chapter]. A string which has been struck begins to vibrate and
continues the motion as long as one hears the sound; these vibrations cause the immediately
surrounding air to vibrate and quiver; then these ripples in the air expand far into space and
strike not only all the strings of the same instrument but even those of neighboring
instruments. Since that string which is tuned to unison with the one plucked is capable of
vibrating with the same frequency, it acquires, at the first impulse, a slight oscillation; after
receiving two, three, twenty, or more impulses, delivered at proper intervals, it finally
accumulates a vibratory motion equal to that of the plucked string, as is clearly shown by
equality of amplitude in their vibrations. This undulation expands through the air and sets
into vibration not only strings, but also any other body which happens to have the same
period as that of the plucked string. Accordingly, if we attach to the side of an instrument
small pieces of bristle or other flexible bodies, we shall observe that, when a spinet is
sounded, only those pieces respond that have the same period as the string which has been
struck; the remaining pieces do not vibrate in response to this string, nor do the former
pieces respond to any other tone.

Resonance phenomena exist in mechanical systems, including the oceans and
astronomical bodies, in electromagnetism, in acoustics, and in molecules, atoms,
nuclei and subnuclear particles. The phenomenon is employed across a wide
spectrum of technologies, ranging from telecommunications and information
technology to medical applications, like electron spin resonance and nuclear
magnetic resonance, to laboratory instrumentation, as in the resonant cavities used
to accelerate particle beams, etc.

As an initial example, let us go back the resonant circuit of Sect. 1.2, where we
discussed its free damped oscillations. To obtain a forced oscillating circuit now,

Fig. 1.14 A forced
resonating circuit
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we insert an emf sinusoidal generator, as in Fig. 1.14. Let EðtÞ ¼ E0 cosxt be its
emf and let its frequency be adjustable as we wish.

We find the differential equation governing the circuit by imposing that the sum
of the electromotive forces along the circuit be zero, namely

L
dI
dt

þRIðtÞþ 1
C
QðtÞ ¼ EðtÞ;

which we can write in the form

d2Q
dt2

þ R
L
dQ
dt

þ 1
LC

QðtÞ ¼ E0

L
cosxt:

The equation is formally identical to Eq. (1.48), valid for the mechanical
oscillator. We can then state that, in this case as well, a stationary solution exists
that is a harmonic (sinusoidal) oscillation at the angular frequency x of the external
source. The closer x is to the proper oscillation angular frequency of the circuit
x0 = 1/√LC, the larger the oscillation amplitude. This is negligibly different from
the position of the maximum for very small damping. The width of the maximum is
inversely proportional to the damping coefficient, namely R/L, while its height
increases with decreasing R/L.

Resonating circuits of adjustable proper frequency are used selectively to detect
and amplify electromagnetic signals of definite frequency. For example, the basic
structure of a radio receiver includes a tunable resonating circuit. The receiver is
always under the action of electromagnetic waves produced by a large number of
natural and artificial sources. However, each radio station transmits on a certain
characteristic frequency. To select a particular station, one changes the proper
frequency of the receiver x0 = 1/√LC acting (with a knob) on a variable capacitor to
make it equal to the frequency x of the desired station (in practice, the electronics
are more sophisticated). When x0 = x, the (electric) oscillations of the receiver
have a large amplitude and are detected. The signals from other sources, which are
present, are out of resonance and do not excite oscillations of detectable amplitude,
provided their frequency differs from x0 by about R/L. The R/L parameter, namely
the width of the resonance curve, controls the selectivity of the receiver.

Resonances must be carefully considered in the design of mechanical systems,
especially if they have parts in rapid rotation, like motors, pumps, turbines, etc., but
also for civil structures, like bridges, harbors or tall buildings that may receive
periodic solicitations. Consider, for example, the rotating part of a motor. Engineers
accurately design the rotor so as to have the rotation axis be as coincident as
possible with a principal axis and the center of mass on the axis as accurate as
possible. However, even a small imperfection might be enough to induce
destructive oscillations, especially for high rotation speeds and small damping.
These effects must be accurately calculated in the design phases. A turbine or an
ultracentrifuge, for example, might have to cross a number of resonances during the
acceleration phase. The design must be such so as to guarantee that the process
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takes place without damage. This represents a full chapter of engineering, called the
mechanics of vibrations.

The resonance phenomenon is also present in the molecular oscillators, at quite
high frequencies, on the order of 1013 Hz (10 THz). These are the frequencies of
the electromagnetic waves in the infrared. Imagine conducting the following
experiment. We radiate a container with transparent walls containing an HCl gas
with an infrared radiation, of which we can vary the frequency, and we measure the
intensity of the radiation transmitted by the gas in correspondence. Taking the ratio
between the transmitted and the incident intensities, we have the absorption
probability of the gas as a function of frequency.

We obtain Fig. 1.15, in which, we must note, the abscissa is frequency, rather
than angular frequency. It is a resonant curve, because in resonance, much more
energy is transferred from the radiation to the molecular oscillators than at other
frequencies. However, two peaks, not one, are observed. The reason for this is that
Chlorine has two isotopes, 35Cl and 37Cl of atomic masses 35 and 37, respectively.
The two proper frequencies squared, x2

0, are different, as the forces are equal and
the masses different, in the two cases. To be thorough, in the spectrum, several
doublets like the one in Fig. 1.15 are present. This is because quantum oscillators
have several proper oscillation frequencies, rather than a single one.

To see the orders of magnitude, let us try to evaluate the “spring constant” k of a
molecular oscillator. Let us consider, for example, a metal. If we press a block of that
metal, it reacts with an elastic force. This force, which we can measure, because it is
macroscopic, is ultimately a result of the fact that we are changing the distance
between molecules. Let us consider the simple shape of a cylinder of section S and
length l and apply a force in the direction of the axis. The spring constant is k = ES/l,
where E is the Young modulus. A typical value for metals is E 	 2 
 1011 N/m2. At
the molecular scale, we can evaluate the geometric factor S/l to be on the order of a
molecular diameter, namely a few hundred picometers. If we take S/l = 4 
 10−10 m,
we get k 	 80 N/m. As for the mass, it should be the reduced mass of the system, but
the latter is practically equal to the mass of the hydrogen atom, because that of Cl is

Fig. 1.15 Absorption
probability for HCl molecules
versus frequency
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about 35 times larger. We then takemH = 1.67 
 10−27 kg. With these numbers, we
obtain x0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k=mH

p ffi 2
 1014 Hz. This angular frequency corresponds to
m0 ffi 200=6:28 ffi 30 THz, which is the correct order of magnitude.

Let us now consider a gas of monoatomic molecules. We can think of an atom as
being a spherical distribution of negative charge (the electrons) with a positive equal
and opposite point charge in the center. The centers of the negative and positive
charges coincide. The system is globally neutral. As we have studied in the 3rd
volume of this course, under the action of an electric field, the atom acquires an
electric dipole moment proportional to the electric field intensity. We can think of the
centers of the positive and negative charges as displacing one relative to the other,
the former in the direction of the field, the latter in the opposite direction. The force
resulting from the applied electric field is balanced at equilibrium by an internal
restoring force, which is proportional to the deformation (in a first approximation). If
the electric field varies periodically in time, the atom behaves like a forced oscillator,
a fact that we shall consider often in subsequent sections. The resonance phe-
nomenon appears in this case as well. The proper oscillation frequencies (they are
several) are larger than the molecular frequencies considered above, typically by one
or two orders of magnitude. If we conduct an experiment with a gas of atoms similar
to the above-considered with molecules, we observe similar resonance maxima, but
at much higher frequencies. We shall discuss these phenomena in Sect. 4.8, where
we shall see that the elastic amplitude determines the frequency dependence of the
refractive index. The curious shape of the curve of the elastic amplitude explains
why, in a transparent medium, the speed of blue light is smaller than that of red light.
This is the dispersion phenomenon of light, which is the physical explanation for the
rainbow, to be discussed in Sect. 4.4 (and much more). For this reason, the curve of
the elastic amplitude is also called a dispersion curve.

1.6 Superposition Principle

All the differential equations we have encountered in this chapter have had the
common characteristic of being linear in their unknown that is the function x(t).
There are no terms proportional to powers of the function, like x2(t), or of its
derivatives, like (dx/dt)2, or products, like x(t)dx/dt, etc. An important aspect is that
the solutions to linear equations obey the superposition principle. Let us demon-
strate this, for the sake of being concrete, on Eq. (1.47), with a generally valid
argument. We shall write this equation

m
d2x
dt2

þ c
dx
dt

þx2
0x

� �
¼ FðtÞ: ð1:71Þ

as
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m
d2

dt2
þ c

d
dt

þx2
0

� �
xðtÞ ¼ FðtÞ:

We then formally define operator O, which acts on the function x as

O � m
d2

dt2
þ c

d
dt

þx2
0

� �
: ð1:72Þ

In this notation, the differential equation becomes

OðxÞ ¼ FðtÞ: ð1:73Þ

This is obviously the exact same equation, written, we say, in operational form.
We say that O is a linear operator. It is so because it satisfies the following
properties:

Oðxþ yÞ ¼ OðxÞþOðyÞ ð1:74Þ

and, if a is an arbitrary constant,

OðaxÞ ¼ aOðxÞ: ð1:75Þ

The linear systems, namely the systems ruled by a linear differential equation,
obey the superposition principle, which can be expressed with the following
statements.

If the equation is homogeneous, O(x) = 0, any linear combination of solutions is
a solution.

Indeed, let x1(t) and x2(t) be two solutions. Then, Oðx1Þ ¼ 0 and Oðx2Þ ¼ 0 and
also Oðax1 þ bx2Þ ¼ Oðax1ÞþOðbx2Þ ¼ aOðx1Þþ bOðx2Þ ¼ 0:

If the equation is non-homogeneous, and if x1(t) is a solution when the known
term is F1(t) and x2(t) is a solution when the known term is F2(t), then
x1(t) + x2(t) is a solution when the known term is F1(t) + F2(t).

Indeed, Oðx1 þ x2Þ ¼ Oðx1ÞþOðx2Þ ¼ F1 þF2.
Note that non-linear differential equations are usually extremely difficult, or even

impossible, to solve analytically. Even if the natural systems are never exactly
linear, we can often use a linear approximation. This is what we did in this chapter
and shall do in the subsequent ones. Bear in mind, however, that the solutions will
be valid within a certain degree of approximation.

Let us go back to Eq. (1.71). In Sect. 1.3, we found the solutions to this differential
equation for a particular time dependence of the force, namely F(t) = F0 cos xt.
Well, the equation being linear, we can apply the superposition principle and
immediately find the solution for any F(t) that can be expressed as a linear combi-
nation of cosine functions, namely in the form
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FðtÞ ¼
X
n

An cosðxntþ/nÞ ð1:76Þ

or even as

FðtÞ ¼
Z

AðxÞ cos xtþ/ðxÞð Þdx: ð1:77Þ

We shall see in the next chapter that practically all the functions relevant in
physics can be expressed as the sum of a series, as in Eq. (1.76), when they are
periodic, or as an integral, as in Eq. (1.77). These statements are proved by theo-
rems credited to Joseph Fourier (France, 1768–1830), and the above expressions are
called a Fourier series and a Fourier transform, respectively.

In conclusion, the problem of the motion of a linear oscillator subject to an
applied force, with arbitrary dependence on time, is solvable by expressing the
force as a linear combination of sinusoidal forces of different frequencies. One shall
find the motion of the system separately for each of these forces and then take their
linear combination to have the motion under the given force.

Summary

In this chapter, we studied the following points.

1. A mechanical system performs harmonic (sinusoidal) oscillations around a
stable equilibrium position if the restoring force is proportional to the
displacement.

2. The angular frequency of the free oscillation is a property of the oscillator and
is equal to the square root of the restoring force per unit mass and unit dis-
placement. Contrastingly, the oscillation amplitude and initial phase depend on
the initial conditions of the motion.

3. Velocity and acceleration of a harmonic motion are sinusoidal functions of time
as well. They have the same frequency as the displacement, but different
phases.

4. The oscillation frequency of the oscillations about a potential minimum is
determined by the second space derivative of the potential.

5. If energy is conserved, the mean values of the potential and kinetic energies of
an oscillator are equal (and equal to one half of the total energy).

6. An LC circuit is governed by the same differential equation as the mechanic
oscillator. Consequently, its electrical oscillations are analogous.

8. A weakly damped oscillator performs quasi-harmonic oscillations of expo-
nentially decreasing amplitude at a frequency slightly less than those in the
absence of damping.

9. The damping parameter c is the relative loss of stored energy per unit time and
is equal to the drag force per unit speed and unit mass. This is a characteristic of
the system. The time constant with which the stored energy decreases is equal
to 1/c.
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10. The stationary oscillation of a forced oscillator has the frequency of the force.
11. The displacement has nearly the same phase as the force at frequencies much

smaller than the proper frequency, and is in phase opposition at a frequency
much larger than that. At resonance, the force is in phase with the velocity.

12. In a weakly damped oscillation, several kinematical quantities have a maximum
at or close to x0.

13. The width of the resonance curve of a forced oscillator is inversely proportional
to the decay constant of the damped oscillations of the same oscillator when
free.

14. An RLC circuit fed by a sinusoidal emf generator obeys the same differential
equation as a mechanical forced oscillator. It oscillates electrically as a
mechanical oscillator does mechanically.

15. The motion of a linear system under the action of several forces can be found
by adding its motions under the action of each force separately.

Problems

1:1. Consider the oscillator in Fig. 1.2 with m = 0.3 kg and k = 30 N/m.
Calculate the angular frequency, frequency and period.

1:2. Calculate amplitude, initial phase and complex amplitude of the oscillation
given by x ¼ ð10mmÞ cosx0tþð15mmÞ sinx0t.

1:3. Show that the amplitude of a damped oscillator is halved in a time equal to
1.39/c. How much does the energy vary during this time?

1:4. The proper angular frequency of an oscillator is x0 = 300 rad/s and it is
x0/c = 50. Compare the values of x0, of the free oscillations angular fre-
quency x1, and of the angular frequency at which the amplitude square is at a
maximum.

1:5. We want to assemble a mechanical oscillator similar to that in Fig. 1.2. We
have with us a mass and two identical springs. We connect to one side of the
mass separately: (a) one spring, (b) two springs in series, (c) two springs in
parallel, and then, (d) one spring on each side of the mass. What are the
values of the proper frequencies in the different cases, relative to case (a)?

1:6. Consider a forced oscillator in stationary oscillation. Show that the mean
energy over a period is mainly potential when x � x0, mainly kinetic when
x �x0, and exactly half and half at x = x0.

1:7. Consider a forced oscillator in stationary oscillation at x = x0. Show that the
mean absorbed power over a period is c times the mean stored energy.

1:8. We want to assemble an oscillating circuit similar to that in Fig. 1.1, having
two identical capacitors and two identical inductors for our use. We sepa-
rately make circuits with: (a) a capacitor and an inductor, as in Fig. 1.1,
(b) two capacitors in series and an inductor, (c) two capacitors in parallel and
an inductor, (d) two inductors in series and a capacitor. Find the oscillation
frequencies of cases (b), (c) and (d) relative to case (a).

1:9. We know the amplitudes of the displacement and of the velocity oscillations
of a harmonic oscillator. What can we say about the angular frequency?
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1:10. A damped oscillator performs 100 complete oscillations in 100 s. In the same
time, its amplitude decreases by a factor of 2.718. How much is the damping
constant c?Howmuch is the relative decrease in energy in a period –D〈U〉/〈U〉?

1:11. Does the amplitude of the stationary oscillations of a mechanical forced
oscillator at frequencies much smaller than resonance depend on the
amplitude of the applied force? On the mass? On the spring constant?
Answer the same questions at oscillation frequencies much larger than
resonance.

1:12. After having hit a damped oscillator with a stroke, we observe its oscilla-
tions. We measure an amplitude decay time of 100 s. Find the FWHM of the
resonance curve in angular frequency of the same oscillator when it is forced

1:13. The amplitude of the stationary oscillation of an oscillator forced by an initial
force, with sinusoidal dependence on time, is 20 mm. When separately
forced by a second sinusoidal force of the same period, the amplitude of the
stationary oscillation is 40 mm. When both forces act simultaneously, the
amplitude is 30 mm. What is the phase difference between the forces?
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Chapter 2
Oscillations of Systems with Several
Degrees of Freedom

Abstract In the first part of this chapter, we study oscillating systems with two
(and subsequently with n) degrees of freedom. We learn the existence of particular
motions, the normal modes, in which all parts of the system oscillate together
harmonically. The number of modes, and the number of resonances, is equal to the
number of degrees of freedom. We then study the modes of a vibrating sting. In the
second part of the chapter, we study Fourier analysis, in regard to both periodic and
non-periodic functions and for functions of both time and space.

The oscillators we studied in the previous chapter had one degree of freedom,
namely their state was defined by a single variable. In the first part of this chapter,
we study oscillating systems with two and then more degrees of freedom. We shall
deal, as an example, with the system of two pendulums linked together by a spring.
In general, the motions of the system are not harmonic oscillations, but can be quite
complicated. We shall find, however, that special, very simple motions exist in
which both pendulums, or, generally speaking, both parts of the system, oscillate in
a harmonic motion with the same frequency and in the same initial phase. These
stationary motions, called the normal modes, are two in number for a system with
two degrees of freedom; indeed, in general, the number of modes is the same as the
number of degrees of freedom. The oscillation frequencies of the modes, called
proper frequencies, are characteristic of the system.

Subsequently, in Sect. 2.3, we shall study the vibrations of a continuous system
through the example of an elastic string with fixed extremes. We shall see that
normal modes also exist for continuous systems. In these motions, all the points of
the system vibrate harmonically in phase with the same frequency. The number of
modes is infinite, but numerable. Once again, the frequencies of the succession of
modes are characteristic of the system. For an elastic string, the proper frequencies
form the arithmetic succession, which is the succession of the natural numbers. The
lowest frequency is called the fundamental, while those subsequent are its har-
monics. The name is a consequence of the fact that a sound composed of simple
sounds is pleasant if the frequencies of the components are in the ratio of small
natural numbers.
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The systems we study are linear, namely the differential equation ruling their
motion is linear and the superposition principle holds. A consequence of this is that
every motion of the system, as complicated as it can be, can always be expressed as
a linear combination of its normal modes. The functions (which are cosines for an
elastic string) giving the time dependence of the modes constitute, as we say, a
complete ortho-normal system of functions. Every function representing a motion
of the system can be developed as a linear combination of these functions. This
property allows for important simplifications in the study of the vibrations.

In the second part of the chapter, we study the harmonic (Fourier) analysis. This
is the chapter of mathematics that originates from the physical phenomena we have
just mentioned. We shall give only the mathematical statements without rigor and
without proof. We are interested in the way in which harmonic analysis is very
useful in physics. We shall see in Sects. 2.4 and 2.5 how a periodic function of time
can be expressed in its Fourier series, which is a linear combination of an infinite
sequence of harmonic functions, whose frequencies are the integer multiples of the
lowest of them.

In Sect. 2.6, we shall extend the result to non-periodic functions. For them, an
integral over the angular frequency, called the Fourier transform, takes the place of
the Fourier series. We shall discuss two relevant examples.

Finally, in Sect. 2.7, we shall consider the Fourier analysis for a function of a
space coordinate, rather than one of time. The function might be, for example, the
gray level of a picture. The problems are substantially equal from the mathematical
point of view, but their physical aspects are different. We shall need these concepts
when studying optical phenomena.

2.1 Free Oscillators with Several Degrees of Freedom

After having studied the oscillations of systems with one degree of freedom in the
previous chapter, we study here oscillations of systems with a discrete number of
degrees of freedom. The motions, or more generally the evolution, which we shall
discuss will always be about a stable equilibrium configuration under the action of a
restoring force, or, more generally, of an agent, of magnitude proportional to the
displacement from equilibrium. In other words, we shall deal with linear systems.

We start with the free oscillations of systems with two degrees of freedom in the
absence of dissipative agents. To be specific, we consider a system of two coupled
oscillators, as shown in Fig. 2.1. We shall subsequently generalize our findings.
The coupled oscillators in the example of Fig. 2.1 are two identical pendulums,
a and b, having length l and mass m, joined by a spring, having a rest length equal
to the distance between the equilibrium positions of the pendulums. In order to have
the oscillators coupled only weakly, we must choose the spring constant k as being
small enough to have an elastic force substantially smaller than the weight.

We shall consider motions of the pendulums in the direction joining their
equilibrium positions. Let xa and xb be the coordinates of the pendulums each
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measured from their respective equilibrium position. We move pendulum a to the
distance A from equilibrium, keeping b in its equilibrium position and letting both
go with zero speeds. The initial conditions of the motions are the positions and
velocities of the two pendulums, namely xa(0) = A, xb(0) = 0, dxa/dt(0) = 0, dxb/dt
(0) = 0 (Fig. 2.1b).

We observe the following phenomenon. Initially, a oscillates with an amplitude
equal to A. In so doing, it exerts on b a periodic force through the spring. The force
is quite feeble (our having chosen to make k small) but it is at the resonance
frequency of b (the pendulums being equal). As a consequence, b starts oscillating.
The oscillations of b grow in amplitude with time, while those of a decrease, up to
the point when a stops, or almost does, for a moment. The amplitude of b is now
equal, or almost so, to A. The configuration is like that of the initial one, with the
roles exchanged. The amplitude of b starts decreasing with that of a increasing until
the system is back in its initial configuration, and so on. In this motion, energy goes
back and forth from one pendulum to the other. This motion would continue forever
in the absence of dissipative forces.

The motion we just described is more complex than the harmonic motion of a
single pendulum. However, a system with two degrees of freedom can perform
harmonic motions. More precisely, it is always possible to choose the initial con-
ditions in such a way that all the parts of the system (namely the two pendulums, in
this case) perform a harmonic motion. As a matter of fact, two different motions of
this type exist. The initial conditions are shown in Fig. 2.2.

The first motion is obtained by taking both pendulums out of equilibrium by the
same distance, say A, and letting them go at the same instant with zero speed.
Namely, the initial conditions are xa(0) = A, xb(0) = A, dxa/dt(0) = 0, dxb/dt(0) = 0.
Clearly, under these conditions, the spring is not deformed, namely its length
initially and always is the rest length. Consequently, the spring does not exert any
force (we assume its weight to be negligible) and each pendulum oscillates as if it
was free (not coupled). Namely, we have

x

l

a b

l

a

xa

b

x

(a) (b)

Fig. 2.1 Two coupled pendulums. a Equilibrium condition. b Initial condition
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xaðtÞ ¼ A cosðx1tþ/Þ
xbðtÞ ¼ A cosðx1tþ/Þ; ð2:1Þ

where

x2
1 ¼ g=l;

which, we must remember, is the restoring force per unit displacement and per unit
mass. Note that the amplitude A is arbitrary, as long as we do not stray from the
condition of having the restoring force proportional to the displacement. What does
matter for having a harmonic motion is the value of the ratio between the initial
amplitudes of the two pendulums, which must be equal to 1. In Eq. (2.1), we have
explicitly written the initial phase / in the arguments of the cosines to be complete.
In this case, it is / = 0. As a matter of fact, the initial phase is arbitrary too, but
must be the same for both pendulums.

The second way to obtain harmonic oscillations for both pendulums (Fig. 2.2b)
is to take them out of equilibrium by the same distance in opposite directions and let
them go with zero initial speeds. The initial conditions are xa(0) = A, xb(0) = −A,
dxa/dt(0) = 0, dxb/dt(0) = 0. In this case, the spring acts. The forces that it exerts on
the pendulums, internal to the system, are equal and opposite of one another in any
instant. The center of mass, which was initially at rest, remains at rest.
Consequently, in every moment, we have xa(t) = −xb(t).

Let us start analyzing the motion of a. Three forces act on the pendulum. Two
forces are exactly the same as for a non-coupled pendulum, namely the weight and
the tension of the suspension wire. Together, they give a contribution proportional
to the displacement equal to −xag/l. The third force is due to the spring. Taking
signs into account, the stretch of the spring is xa − xb. Consequently, the force is
−k(xa − xb) = −2kxa. We see that, in the present motion, it is proportional to the
displacement. In conclusion, the resultant force on a is a restoring force propor-
tional to its displacement from equilibrium. This is the condition necessary for

x

a b a b

x

(a) (b)

Fig. 2.2 The normal modes of two coupled pendulums
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harmonic motion. The square of its angular frequency, which we call x2, is, as
always, the restoring force per unit displacement per unit mass, namely

x2
2 ¼

g
l
þ 2

k
m
:

The situation for b is completely analogous. It moves under the action of its
weight, the tension and the spring. The force of the latter is equal to and opposite of
that of a and we can write it in terms of xb only as k(xa − xb) = −2kxb. The restoring
force is the same as that for a when the displacement is the same. Consequently,
being that the masses are also equal, b oscillates in harmonic motion with the same
angular frequency x2. The motions of the two pendulums are harmonic motions
with the same angular frequency and in phase opposition, or, to put it more
properly, with the same phase and equal and opposite amplitudes, namely

xaðtÞ ¼ A cosðx2tþ/Þ
xbðtÞ ¼ �A cosðx2tþ/Þ; ð2:2Þ

In this case too, the initial amplitude is arbitrary. What matters is the ratio
between the initial amplitudes, which must be equal to −1. Also, one of the initial
phases is arbitrary, just as before. What matters is that the two initial phases must be
equal (both / = 0, in this case).

The motions we described, namely those given by Eqs. (2.1) and (2.2), are
called normal modes of the system. In general, the motion of a freely oscillating
system with several degrees of freedom is said to be a normal mode when all the
parts of the system move in harmonic motion with the same frequency and the same
phase. “With the same phase” means that all the parts pass through their equilib-
rium positions in the same instant. We can also say that the normal modes are the
stationary motions of the system, namely the motions whose characteristics are
constant over time. Contrastingly, the characteristics of a generic motion, such as
the one considered at the beginning of the section, evolve over time.

The system we considered is particularly simple and symmetric, the two pen-
dulums being equal to one another. Its symmetry substantially allowed us to find the
normal modes through intuition. To solve the problem in general, we need a bit of
mathematics. We shall now show that the number of normal modes (or simply
modes) of a system is equal to the number of its degrees of freedom. For linear
systems, such as the ones we will consider, the superposition principle holds.
Consequently, a linear combination of its normal modes is a possible motion of the
system as well. In addition, we shall now show that every motion of the system can
be expressed as a linear combination of its modes.

Let us start with the formal treatment of the example just discussed. The dif-
ferential equations of its motion are
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d2xa
dt2

þx2
1xa ¼ � k

m
ðxa � xbÞ

d2xb
dt2

þx2
1xb ¼ � k

m
ðxb � xaÞ;

ð2:3Þ

where x2
1 ¼ g=l is a constant. We re-write the system in the form

d2xa
dt2

¼ � x2
1 þ

k
m

� �
xa þ k

m
xb

d2xb
dt2

¼ þ k
m
xa � x2

1 þ
k
m

� �
xb:

This form can be made general. Indeed, we define a linear, not damped, freely
oscillating system with two degree of freedom as a system obeying the following
system of differential equations

d2xa
dt2

¼ �a11xa � a12xb

d2xb
dt2

¼ �a21xa � a22xb;

ð2:4Þ

where the coefficients aij are constants characteristic of the system (in the example,
they are combinations of the masses, the elastic constant of the spring and the
gravity acceleration), which are independent of the initial conditions.

Let us search for normal modes, namely motions in which all the parts of the
system oscillate with the same frequency and in the same initial phase. The question
is: does any value of x exist such that the functions of time

xaðtÞ ¼ A cosðxtþ/Þ
xbðtÞ ¼ B cosðxtþ/Þ; ð2:5Þ

are solutions to the system in Eq. (2.4)?
To find an answer, we substitute these functions in Eq. (2.4), obtaining

a11 � x2
� �

xa þ a12xb ¼ 0

a21xa þ a22 � x2� �
xb ¼ 0:

ð2:6Þ

This is a homogeneous algebraic system. The condition for obtaining non-trivial
solutions is that the determinant must be zero, namely that

a11 � x2; a12
a21; a22 � x2

����
���� ¼ 0: ð2:7Þ
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This is a second-degree algebraic equation in the unknown x2. The equation is
so important that it has a name, the secular equation. The equation has two roots
(corresponding to the two degrees of freedom), say x1 and x2, which are called
proper angular frequencies of the system. For each solution, there is a normal
mode, say mode 1 and mode 2. Once the secular equation is satisfied, Eq. (2.6)
give, for each mode, the ratios between the oscillation amplitudes of xa and xb.

For mode 1, we have

xb
xa

� �
mode 1

¼ B1

A1
¼ x2

1 � a11
a12

; ð2:8Þ

where A1 and B1 are the amplitudes of the harmonic motions of xa and xb,
respectively. The equations of the motions, for mode 1, are then

xaðtÞ ¼ A1 cosðx1tþ/1Þ
xbðtÞ ¼ B1 cosðx1tþ/1Þ:

ð2:9Þ

Analogously, for mode 2, Eq. (2.6) give us

xb
xa

� �
mode 2

¼ B2

A2
¼ x2

2 � a11
a12

: ð2:10Þ

where A1 and B1 are the amplitudes of the harmonic motions of xa and xb,
respectively. The equations of motions for mode 2 are

xaðtÞ ¼ A2 cosðx2tþ/2Þ
xbðtÞ ¼ B2 cosðx2tþ/2Þ:

ð2:11Þ

Note that the physical characteristics of the system, which are encoded in the aij
constants, determine the proper frequency and the ratio between the amplitudes
(called the mode shape) for each mode. Contrastingly, the values of the amplitude
and the initial phase are determined by the initial conditions of the motion.

The most general solution to a system of two linear differential equations is
given by a linear combination of two independent solutions. It is then evident that
the most general solution of the system in Eq. (2.4) is

xaðtÞ ¼ A1 cosðx1tþ/1ÞþA2 cosðx2tþ/2Þ
xbðtÞ ¼ B1 cosðx1tþ/1ÞþB2 cosðx2tþ/2Þ:

ð2:12Þ

The initial conditions determine four quantities. As a matter of fact, only four of
the six constants (A1, A2, B1, B2, /1 and /2) in Eq. (2.12) are independent. Indeed,
Eqs. (2.8) and (2.10) determine the mode shapes, namely B1/A and B2/A2, inde-
pendently of the initial conditions, and we can rewrite the general solution in the
form
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xaðtÞ ¼ A1 cosðx1tþ/1ÞþA2 cosðx2tþ/2Þ

xbðtÞ ¼ B1

A1

� �
A1 cosðx1tþ/1Þþ

B2

A2

� �
A2 cosðx2tþ/2Þ:

ð2:13Þ

The four constants A1, A2, /1 and /2 are determined by the initial conditions
(xa(0), xb(0), dxa/dt(0) and dxb/dt(0)).

A generic motion of a system with two degrees of freedom may be quite
complicated. The motions of its parts may not be harmonic, but all these motions
can be expressed as linear combinations of two simple harmonic motions.

Coming back to our initial example, let us find the combination of normal modes
that expresses it. The shapes of the two modes of the system are given by the ratios
B1/A1 = 1 and B2/A2 = −1. Thus, we write

xaðtÞ ¼ A1 cosðx1tþ/1ÞþA2 cosðx2tþ/2Þ
xbðtÞ ¼ A1 cosðx1tþ/1Þ � A2 cosðx2tþ/2Þ:

We must find A1, A2, /1 and /2 in order to have the initial conditions xað0Þ ¼ A,
xbð0Þ ¼ 0, dxa=dtð0Þ ¼ 0 and dxb=dtð0Þ ¼ 0 satisfied. The solution is clearly
A1 ¼ A2 ¼ A=2; /1 ¼ /2 ¼ 0. The equations of the motions are then

xaðtÞ ¼ A
2
ðcosx1tþ cosx2tÞ

xbðtÞ ¼ A
2
ðcosx1t � cosx2tÞ;

ð2:14Þ

which can also be written in the more transparent form

xaðtÞ ¼ A cos
x2 � x1

2
t

� �
cos

x2 þx1

2
t

� �
xbðtÞ ¼ A sin

x2 � x1

2
t

� �
sin

x2 þx1

2
t

� �
:

ð2:15Þ

The two pendulums are weakly coupled, namely we have

2
k
m
� g

l
: ð2:16Þ

The difference between x1 and x2 is small compared to their values. The motion
of each pendulum can be thought of as an almost harmonic motion at the mean
angular frequency ðx2 þx1Þ=2 with an amplitude A cos ðx2 � x1Þt=2½ �, which is
not constant in time, but varies periodically, as a sine function, at low frequency
(half the difference between the proper frequencies), as shown in Fig. 2.3. When the
amplitude of a is large, that of b is small, and vice versa.

The energy of each pendulum is proportional to the square of its amplitude. The
total energy of the system is proportional to the sum
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A2 cos2
x2 � x1

2
t

� �
þ sin2

x2 � x1

2
t

� �h i
¼ A2;

which is constant, as expected.
Let us again use the example of the two equal, weakly-coupled pendulums to

introduce the concept of normal coordinates. Let us substitute in the system of
Eq. (2.3) the two linear combinations of xa and xb, which, remember, are the
displacement for each pendulum of its equilibrium position

x1ðtÞ ¼ xaðtÞþ xbðtÞ
x2ðtÞ ¼ xaðtÞ � xbðtÞ:

ð2:17Þ

Let us add and subtract the two equations in Eq. (2.3). We obtain

d2x1
dt2

þx2
1x1ðtÞ ¼ 0

d2x2
dt2

þx2
2x2ðtÞ ¼ 0:

ð2:18Þ

The equations are now independent of one another. The coordinates enjoying
such a property, like x1 and x2 in the example, are called normal coordinates. Note
that each normal coordinate corresponds to one of the modes. Indeed, for mode 1,
in which xaðtÞ ¼ xbðtÞ, it is x2ðtÞ ¼ 0 identically. We see that only x1 is excited.
Similarly, in mode 2, only x2 is non-zero. Note also that the equation of each normal
coordinate is the harmonic motion equation.

Analogous considerations hold for any linear, freely oscillating system with two
degrees of freedom, neglecting dissipative forces. However, the simple expressions
of the normal coordinates and normal modes we have found hold only in the simple
and symmetric example we have considered. They are not even valid for a system
similar to that shown in Fig. 2.1, but with two pendulums of different lengths, for
example, with a shorter than b. The system is still simple, but not symmetric. The

t

t

x
b

x
a 4π/(ω1+ω2)

4π/(ω2–ω1)

A

Fig. 2.3 The motions of two
equal, weakly-coupled
pendulums starting from the
initial conditions xa(0) = A,
xb(0) = 0, dxa/dt(0) = 0 and
dxb/dt(0) = 0

2.1 Free Oscillators with Several Degrees of Freedom 41



configurations analogous to those shown in Fig. 2.2 are not the normal modes. In
addition, if we observe the evolution of the system starting from an initial state
analogous to that shown in Fig. 2.1a, we still see that, initially, the oscillation
amplitude of a decreases over time and that of b increases. However, the amplitude
of a does not go down to zero, but rather reaches a non-zero minimum and then
goes back up again. In other words, energy is never transferred completely from the
pendulum that is initially moving to the one that starts from rest.

The problem of finding the normal modes in general must be treated with the
proper mathematics. We shall not do this here.

There exist freely oscillating systems with two degrees of freedom of very
different nature. Figure 2.4 shows some examples, three mechanical systems and
one electric. Very important cases of systems of two degrees of freedom exist in
molecules, atoms, nuclei and elementary particles as well. Just to quote a few
examples, we mention the ammonia molecule (and the MASER based on it), the
hydrogen molecule, a number of dye molecules (and the colors they produce), the
electrons in a magnetic field (and the electron-spin resonance) and the oscillation
phenomena of elementary particles. These systems are properly described by
quantum, rather than classical, physics. However, a proper classical oscillation
frequency corresponds in quantum physics to the energy, or to the mass, of a state.
Consequently, the analogy with classical physics is strong and can help us in
intuiting an understanding of these quantum phenomena.

C

L

C

L

C
+Q

–Q

Ia Ib

+Qa

+Qb

–Qb

–Qa

(a) (b)

(c)

(d)

Fig. 2.4 Examples of systems with two degrees of freedom. a Double pendulum. b Two-mass
loaded string, c Two-dimensional oscillator. d Capacitance coupled oscillating system
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Let us consider, as another example, the two oscillating circuits in Fig. 2.4d. They
have a capacitor in common and are consequently said to be capacity-coupled (an
alternative is to have an inductor in common; the reader can analyze this as an exercise).

With the positive signs for charges and currents shown in the figure, the dif-
ferential equations of the system are

�L
dIa
dt

¼ QaðtÞ
C

� QðtÞ
C

�L
dIb
dt

¼ QbðtÞ
C

þ QðtÞ
C

:

With these sign conventions, we have dQa/dt =+Ia and dQb/dt =+Ib, meaning an
Ia running in the positive direction positively charges the capacitor a, and the same
goes for Ib and capacitor b. Considering that there are instants in which all the
charges on the capacitors are zero and that charge is conserved, we conclude that
QðtÞþQaðtÞþQbðtÞ ¼ 0. We can then write the above differential equations as

d2Qa

dt2
¼ � 1

LC
ð2Qa � QbÞ

d2Qb

dt2
¼ � 1

LC
ð2Qb � QaÞ:

ð2:19Þ

These equations are also equal to those of the two coupled pendulums with 1/LC
in place of x2

1 and 1/LC in place of k/m. We can conclude that the proper fre-
quencies of the two modes are 1=

ffiffiffiffiffiffi
LC

p
and

ffiffiffi
3

p
=

ffiffiffiffiffiffi
LC

p
.

QUESTION Q 2.1. Analyze an inductance-coupled oscillating circuit, namely a
circuit similar to that shown in Fig. 2.4, with capacitances where there are induc-
tances and inductances where there are capacitances. ⃞

That which we have discussed can be easily generalized to systems of n degrees
of freedom. We call the coordinate measuring the displacement from its own
equilibrium position of each part of the system with x1, x2, …, xn, respectively. The
differential equations of the motion of the system, neglecting dissipative forces, are

d2xa
dt2 ¼ �a11x1 � a12x2 � . . .� a1nxn
d2x2
dt2 ¼ �a21x1 � a22x2 � . . .� a2nxn:

. . .

d2xn
dt2 ¼ �an1x1 � an2x2 � . . .� annxn

ð2:20Þ

We look for solutions that are normal modes, namely motions in which all the
coordinates move in harmonic motion with the same frequency and with the same
initial phase. In other words, we look to see if we can find one or more values of x
such that x1 ¼ Að1Þ cosðxtþ/Þ; . . .; xn ¼ AðnÞ cosðxtþ/Þ is a solution. We sub-
stitute these functions in Eq. (2.20) and obtain the algebraic system
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a11 � x2ð Þx1 þ a12x2 þ . . .þ a1nxn ¼ 0
a21x1 þ a22 � x2ð Þx2 þ . . .þ a2nxn ¼ 0
. . .
an1x1 þ an2x2 þ . . .þ ann � x2ð Þxn ¼ 0:

ð2:21Þ

In this case too, we must impose that the determinant be zero, in order to obtain
non-trivial solutions. We have an algebraic equation of n degrees in x2. Its n so-
lutions, say x2

1;x
2
2; . . .x

2
n, are the proper angular frequencies of the n normal

modes. While it can be shown that all the solutions are positive, and consequently
physically meaningful, it can happen, depending on the system, that the values of
some of them coincide. In this case, the corresponding normal modes are said to be
degenerate.

The system in Eq. (2.21) gives the ratios between the n amplitudes and one that
is arbitrary, namely the mode shape. The initial conditions determine the other
constants.

2.2 Forced Oscillators with Several Degrees of Freedom

We shall now consider a linear oscillating system with two degrees of freedom,
forced by an external force and in the presence of a drag force proportional to the
velocity. We shall start with the example of the two equal pendulums from the
previous section, applying a force to one of them, namely pendulum a, as shown in
Fig. 2.5. We consider an external force sinusoidally dependent on time, say
F(t) = F0cos xt.

The differential equations of motions of the system are

d2xa
dt2

þ c
dxa
dt

þ g
l
xa þ k

m
ðxa � xbÞ ¼ F0

m
cosxt

d2xb
dt2

þ c
dxb
dt

þ g
l
xb þ k

m
ðxb � xaÞ ¼ 0:

ð2:22Þ

l

a b

F(t)

Fig. 2.5 Two equal forced
coupled pendulums
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We know that the two normal modes of the system when it is free and in the
absence of drag, namely if c = F0 = 0, are

mode 1 xaðtÞ ¼ xbðtÞ; x2
1 ¼ g

l
mode 2 xaðtÞ ¼ �xbðtÞ; x2

2 ¼ g
l þ 2 k

m :

Let us try and see if the normal coordinates that worked for the free system,
namely

x1ðtÞ ¼ xaðtÞþ xbðtÞ
x2ðtÞ ¼ xaðtÞ � xbðtÞ

still work now. Let us add and subtract the two sides of Eq. (2.22), obtaining

d2x1
dt2

þ c
dx1
dt

þ g
l
x1 ¼ F0

m
cosxt

d2x2
dt2

þ c
dx2
dt

þ g
l
þ 2k

m

� �
x2 ¼ F0

m
cosxt:

ð2:23Þ

We find that we have been lucky; the two equations are independent of one
another. Consequently, x1 and x2 are the normal coordinates for the present system
as well.

We see that each of the equations in Eq. (2.23) is the differential equation of a
damped and forced oscillation. The normal coordinate x1 behaves like the coordi-
nate of such an oscillator with proper square angular frequency x2

1 ¼ g=l and
damping c forced by the force F tð Þ ¼ F0 coswt: The normal coordinate x2 behaves
similarly with proper square angular frequency x2

2 ¼ g=lþ 2k=m. The two oscil-
lations are independent. Each of them behaves like a one degree of freedom
oscillator. Remember, however, that x1 and x2 are not physical displacements, but
rather combinations of these.

The system has two resonances, one for each of its proper frequencies. If the
frequency of the external force is close to one of the resonance frequencies, the
system, after the transient phase has finished, reaches its steady regime. It moves in
the normal mode corresponding to that proper frequency. The other normal coor-
dinate is zero.

The resonances of the two modes, in general, not only have different frequencies
but also different widths. This is not the case in the simple example we have just
discussed, but suppose, for example, that the spring joining the pendulums dissi-
pates a certain amount of energy when it is stretched back and forth. In this case, the
energy loss rate will be larger for mode 2 (in which the spring is stretched) than for
mode 1 (in which the length of the spring does not vary). As a consequence, the
width of the second resonance will be larger than that of the first.

The discussion we developed around a simple example is valid in general,
provided that the difference between the proper frequencies is substantially larger
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than the widths of both of them. In these cases, normal motions exist, even if
finding the normal coordinates is not as simple as in the above example. This is not
the case in the presence of damping if the resonances are too close to one another.

All the arguments can be extended to systems with n degrees of freedom.

2.3 Transverse Oscillations of a String

Up to now, we have considered systems with a discrete number of degrees of
freedom. We shall now discuss the normal modes of a system with a continuous,
infinite number of degrees of freedom. We shall analyze the important case of an
elastic string with fixed extremes. More precisely, our string is an ideal one, namely
it is perfectly elastic (its tension is proportional to the stretching), perfectly flexible
(it does not oppose to folding) and is homogenous (its linear mass density q is
uniform). The extremes are fixed at a distance L. At equilibrium, the tension of the
rope, T0, is independent of the position. The motions we shall study are the small
oscillations.

Let x, y, z be a reference frame, with the z-axis on the equilibrium position of the
string and the origin in its left extreme, as in Fig. 2.6. We identify each element of
the string by the z coordinate of the equilibrium position of the element. The
position of that element when the string is moving at the instant in time t is a vector
function of z and t, which we call w(z, t). This vector has a component along the
string, corresponding to the longitudinal oscillation, and two components normal to
the string, corresponding to the transverse oscillations. We shall limit the discus-
sion here to the transverse oscillations. The z-component of w(z, t) is identically
zero.

In general, in a transverse oscillation, the direction of w(z, t) on the xy plane is
different both for different z and for different times. A transverse oscillation is said
to be plane polarized or, alternatively, linearly polarized if the direction of w(z, t) is
independent of both z and t. In this case, if we take a picture at any instant in time,
we see the string shape as a plane curve, always in the same plane. We shall limit
the discussion, for the sake of simplicity, to a linearly polarized motion, in which
the displacement is represented by a single function w(z, t), rather than by a vector.

Let us consider a small segment of the string, of length at rest Dz. Its mass is
Dm = qDz. In the generic non-equilibrium configuration, the element we are con-
sidering is removed from the z-axis, as shown in Fig. 2.7. The displacements of
both extremes are normal to the z-axis, because we assumed a purely transverse

z

ψ(z,t)

Fig. 2.6 A configuration of
an elastic string with fixed
extremes
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oscillation and they are, in general, different from one another. In general, the
element is not straight, namely the angles with the z-axis at the two extremes may
be different (h1 6¼ h2 in Fig. 2.7). The component of the resultant force in the
direction opposite to that of the displacement is

FðtÞ ¼ T2sin h2 � T1sin h1:

Two important simplifications are possible if the displacements from equilibrium
of all the elements of the string are small. First, we can approximate the tangent of
the angles with the angle or with its sine. Second, we can use the Pythagorean
theorem to find an approximate relation between the length Ds of the element and
its length at rest Dz. The theorem gives us

Ds2 ¼ Dz2 þ wðzþDz; tÞ � wðz; tÞ½ �2¼ Dz2 þ @w
@z

Dz

� �2

;

namely

Ds ¼ 1þ @w
@z

� �2
" #1=2

Dz

Now, @w=@z ¼ tan h is small, say infinitesimal, and we can expand the square
root on the right-hand side of this expression, stopping at the first term. We have

Ds ¼ 1þ 1
2

@w
@z

� �2
" #

Dz:

This expression shows, finally, that the difference between Ds and Dz is
infinitesimal of the second order. Under these conditions, the tensions T1 and T2 at
the two extremes differ from the tension at rest T0 by infinitesimals of the second
order, which we neglect. Under these approximations, for the restoring force, we
can write

zT0 T0

T2

T1

θ1

θ2
Δs

ψ(z,t)

ψ(z+Δz,t)

z+Δz

Fig. 2.7 A segment of the
elastic string in a generic
position
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FðtÞ ¼ T0sin h2 � T0sin h1 ¼ T0
@w
@z

� �
2
�T0

@w
@z

� �
1
¼ T0

@2w
@z2

Dz:

The acceleration of the element is @2w=@t2 and the second Newton law gives us

T0
@2w
@z2

Dz ¼ qDz
@2w
@t2

:

Finally, simplifying out Dz, we obtain

@2w
@t2

� t2
@2w
@z2

¼ 0; ð2:24Þ

where we have introduced the constant

t ¼
ffiffiffiffiffiffiffiffiffiffi
T0=q

p
; ð2:25Þ

which has the physical dimension of a velocity, as it is easy to check.
Equation (2.24) is a very famous partial differential equation known as the

vibrating string equation and, more commonly, the wave equation, for reasons that
will become clear in the subsequent chapter. From now on, through the entire book,
we shall discuss the properties of its solutions in a number of sectors of physics.

Let us now search for the normal modes of the system. Namely, we look for
solutions in which all the parts of the system move sinusoidally with the same
frequency and with the same phase, meaning that both x and / are independent of
z. The solution should have the form

wðz; tÞ ¼ AðzÞ cosðxtþ/Þ: ð2:26Þ

Let us substitute this in Eq. (2.24). We obtain

d2AðzÞ
dz2

¼ �x2

t2
AðzÞ: ð2:27Þ

The solution to this differential equation A(z) gives the shape of the mode.
Different modes have different shapes due to the factor x2 in the equation, which
differs from one mode to another.

Equation (2.27) is formally equal to the equation of the harmonic oscillator, with
the space coordinate z at the place of the time t. Hence, we know how to solve it. In
the present case, the most useful form is

AðzÞ ¼ A sin kzþB cos kz; ð2:28Þ

where A and B are the integration constant that we shall soon find and

48 2 Oscillations of Systems with Several Degrees of Freedom



k2 ¼ x2

t2
: ð2:29Þ

The quantity k is called the wave number, which is inversely proportional to the
wave length k as

k ¼ 2p
k
: ð2:30Þ

The function A(z) is the oscillation amplitude of the element at z, namely the
shape of the mode. We see that it is a sinusoidal function of z. The wavelength is the
period in length, which is equivalent to the period in time T in a periodic function of
time. The unit of the wavelength is the meter. Similarly, the wave number k is the
equivalent in length of the angular frequency x (x = 2p/T) in time. Consequently,
it is also called spatial frequency. Its measurement units are the inverse of a meter
(m−1). Note that we shall use the same symbol k for spatial frequency as for the
spring constant, but this should not generate confusion.

Note also that x and k are not at all independent. Rather, when one of the two is
known, the other is known as well. Indeed, for every system, a relation between x
and k exists, called the dispersion relation . The dispersion relation of the ideal
elastic string we are discussing is given by Eq. (2.29). Other systems, in general,
have more complicated dispersion relations. The dispersion relation is independent
of the boundary conditions.

Let us go back to the normal modes we have found, putting together Eqs. (2.26)
and (2.28). The solution we have found is

wðz; tÞ ¼ ðA sin kzþB cos kzÞ cosðxtþ/Þ: ð2:31Þ

We now determine the integration constant A and B by imposing the boundary
conditions. These are the equivalent of the initial conditions we have always used
when working in the time domain. The boundary conditions are that the extremes
do not move, namely w(0, t) = 0 and w(L, t) = 0 for any t. The first of these gives
B = 0 and we can consequently rewrite Eq. (2.31) as

wðz; tÞ ¼ A sinðkzÞ cosðxtþ/Þ ¼ A sin
2p
k
z

� �
cosðxtþ/Þ: ð2:32Þ

The second condition, and w(L, t) = 0, imposes that sin(2pL/k) = 0, trivial
solution A = 0 apart. The unique quantity we can adjust is the wavelength k. This
means that the modes exist only for definite wavelengths. There is an infinite
sequence of them, namely

k1 ¼ 2L; k2 ¼ k1=2; k3 ¼ k1=3; k4 ¼ k1=4; . . .: ð2:33Þ

Understanding the reason for that is easy if we recognize that the wavelengths of
the modes are those that have one half of the string length as an integer multiple.
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Namely, an integer number of half wavelengths must fit exactly between the
extremes, as shown in Fig. 2.8.

Summarizing, when the string vibrates in one of its normal modes, each of its
elements oscillates in a sinusoidal motion, all of them at the same frequency and in
the same phase. There are instants in which the string is straight, passing through its
equilibrium configuration. The vibration amplitude is different in the different
positions. There are points that are always at rest, which are called the nodes, and
points that vibrate with maximum amplitude, called the anti-nodes. Two contiguous
nodes and two contiguous anti-nodes are separated by half a wavelength.

The dispersion relation in Eq. (2.29) can be written in terms of the wavelength k
and of the frequency m = 1/T as

mk ¼ t: ð2:34Þ

It follows that each mode vibrates with a definite frequency. The sequence (or
progression) of these frequencies is

m1 ¼ t=k1; m2 ¼ 2m1; m3 ¼ 3m1; m4 ¼ 4m1; . . . ð2:35Þ

We see that the proper frequencies are the integer multiples of the smallest one,
called the fundamental frequency. This is a sequence (or progression) well known
from mathematics courses, called the harmonic sequence. The frequencies above
the fundamental are called harmonics. The reason for these names is in the physical
phenomenon we are discussing. Indeed, Pythagoras of Samos (Greece, −570 to
−495) discovered early on that two vibrating strings of a musical instrument give a
pleasant sound, we say a harmonic sound, if their lengths are multiples of one
another, and consequently if the fundamentals are multiples of one another as well.
The sound is also pleasant if the lengths are in the ratio of two small integer
numbers, when some of the harmonics of the two strings coincide.

Note that what we have just observed is a consequence of the linear relation
between x and k. Namely, the vibration frequency is directly proportional to the
wave number, hence inversely proportional to the wavelength (m = t/k, with t being
a constant). We also note that the proportionality constant

t ¼
ffiffiffiffiffiffiffiffiffiffi
T0=q

p
: ð2:36Þ
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Fig. 2.8 The first four oscillation modes of an elastic string with fixed extremes
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is directly proportional to the square root of the tension (namely of the restoring
force) and inversely to the square root of the density (namely the inertia). In other
words, for a given length of the string, the vibration frequency is higher if the
tension is larger and if the density is smaller. As always, the proper frequency
square is proportional to the restoring force per unit mass.

As we already stated, a dispersion relation exists for every system, however, such
a relation is often more complicated than Eq. (2.29) or Eq. (2.34) km = x/k=
t = constant. Piano strings, for example, are not perfectly flexible. They present a
small degree of stiffness, which opposes flexion. Being that flexion is larger for
larger curvatures, namely for shorter wavelengths or larger wavenumbers k, the
contribution of stiffness to the restoring force is larger for larger wave numbers. Let
us develop the unknown dispersion relation x2(k2) in series of powers of k2 and stop
at the first term. This is proportional (k2)2 by a certain constant a. We write

x2 ¼ T0
q
k2 þ ak4:

We do not really know the constant a, but, remembering that x2 is the restoring
force per unit displacement and per unit mass, we know that it is positive for the
argument given above.

The boundary conditions for our piano string are the same as those we discussed
for an ideal string, and consequently the shapes of the modes are the same. Their
wavelengths are still k1 = 2L, k2 = k1/2, etc., but now the proper frequencies of the
modes are not exactly integer multiples of the fundamental. Being that a > 0, the
frequencies of the higher modes are a bit higher than those of the harmonic
sequence. The sound is still (or even more) pleasant if the differences are not too
large.

We have seen in Sects. 2.1 and 2.2 that every motion of a linear system with
n degrees of freedom (where n is an integer number) can be expressed as a linear
combination of its n normal modes. The vibrating string we are now studying has a
continuous infinite number of degrees of freedom. As we have seen, its normal
modes are numerable infinite. Well, even in this case, it can be shown (although we
shall not do that) that every possible motion of the string (with fixed extremes) can
be expressed as a linear combination of its normal modes. This means that, given an
arbitrary motion represented by the function w(z, t), we can find two infinite
sequences of numbers, F0, F1, F2… (amplitudes) and /1, /2,… (initial phases) such
that

wðz; tÞ ¼
X1
m¼1

Fm cosðxmtþ/mÞ sin kmz; ð2:37Þ

where xm are the proper angular frequencies and km = xm/t.
The normal modes of the vibrating string that are solutions to the wave equation

are also called stationary waves.
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Let us finally consider the energy of a vibrating string. Every element of the
string has kinetic and potential energy in every moment. As we have just seen,
every motion can be expressed as a superposition of the modes. Consider now the
energy the string would have if it were vibrating in the generic mode m with the
same amplitude Fm appearing in that superposition. Let us call it the energy of the
mode. Well, it is easy to show (although we shall not do that) that the energy of the
string in the considered motion is equal to the sum of the energies of the modes of
the superposition taken separately.

2.4 The Harmonic Analysis

We have already stated that the functions that we usually encounter in the
description of physical phenomena can be expressed as linear combinations of sines
or cosines. The mathematical process for finding such combinations is called the
harmonic analysis or Fourier analysis of the function under examination. This
represents an important chapter in mathematics initiated in modern terms by Joseph
Fourier (France; 1768–1830) in 1809 (after important contributions by several
predecessors). In both this section and the one that follows it, we shall present the
elements of the harmonic analysis that we shall need in the subsequent study,
having in mind physics rather than mathematical rigor. We shall not provide the
mathematical demonstrations of the statements. However, we shall discuss several
examples of interest for physics.

We preliminarily note that harmonic analysis is extremely useful, both for
functions of time, such as the displacement of a point of a string or the evolution of
a force, and for functions of the position in space, such as the surface of the sea with
its waves at a certain instant or the level of gray in a photograph.

This section has an introductory character, intended to provide a sense of the
issue as it applies to physics. As we are dealing with an analysis that is called
harmonic, let us start from harmony, namely from music and musical tones.

To be specific, let us consider a guitar string tuned to an A at 440 Hz. We
assume the string to be perfectly flexible. Consequently, the frequencies of its
normal nodes are in harmonic sequence, namely

m1 ¼ 440Hz, m2 ¼ 880Hz, m3 ¼ 1320Hz,. . .; ð2:38Þ

If we pluck the string, we move it out of equilibrium. Initially, the string is not in
a normal mode. The disturbance propagates in both directions, reaches the
extremes, is reflected there, and then comes back, and so on. After a short moment
of transition, the motion of the string becomes stationary. The stationary vibration
continues for a duration that is very long compared to the period of the funda-
mental, which is 1/m1 = 22.7 ms.

In its vibrations, the string produces periodic variations of the air pressure that
propagates in space. This is the sound wave we shall be studying in Sect. 3.4. The
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sound wave, in turn, sets our eardrum into vibration, which is a motion completely
similar to the vibrations of the points of the string; and thus we perceive the sound.

Let f(t) be the displacement from equilibrium of the eardrum at the instant t. If
we were to measure it, we would obtain something like that represented in Fig. 2.9.

As a comparison, let us think about recording the motion of our eardrum when
we perceive noise, for example, the clapping of our hands. We would find some-
thing similar to Fig. 2.10. Comparing the two cases, we see that a musical sound
corresponds to a periodic function of time, and a noise, a non-periodic one. The
function shown by Fig. 2.9 repeats identically when the time is incremented by a
well-defined quantity T, which is the period of the function. Mathematically
expressed, the function has the property that f(t + T) = f(t) for every t. This is
clearly an idealization. Indeed, rigorously speaking, a periodic function should exist
for an infinitely long time from minus infinite in the past to plus infinite in the
future. No physical phenomenon is represented by a truly periodic function.
However, if the duration of the phenomenon is long compared to the period, we can
consider the function as being approximately periodic.

The periodic function f(t) representing the sound of the string in general is not,
however, a simple sinusoidal function. This is because the string does not vibrate in
a normal mode, as a consequence of its initial state not having had the shape of any
mode. If the motion was the first normal motion (the fundamental), the vibration of
the eardrum (and of any point on the string) would be a cosine of period
T = 1/m1 = 22.7 ms. The second normal motion is a cosine function as well, with
period T/2. This means that the function repeats itself every T/2 s. But it repeats
itself every T seconds as well. Similarly, the third mode repeats itself every T/3 s,
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f (t)Fig. 2.9 A musical sound

t

f (t)Fig. 2.10 A noise
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and hence also every T seconds, etc. In conclusion, all the functions cos x0t, cos
2x0t, cos 3x0t, … (and sin x0t, sin 2x0t, sin 3x0t, … as well) are periodic
functions with period T. Hence, every linear combination of these functions is
periodic with period T as well.

Hence, the motion of our eardrum, which is a linear combination of harmonic
motions as given by Eq. (2.38), is a periodic motion at the frequency T = 1/m1. The
term corresponding to each mode enters into the linear combination with a certain
amplitude (we shall call Fm the amplitude of the mode at the frequency mm) and with
a certain initial phase (which we shall indicate with /m). Both quantities depend on
the initial configuration of the string. If the angular frequency of the fundamental is
x0 = 2p/T, the general motion of the eardrum can be expressed as

f ðtÞ ¼ F1cosðx0tþ/1ÞþF2cosð2x0tþ/2ÞþF3cosð3x0tþ/3Þþ . . .; ð2:39Þ

We obtained the example shown in Fig. 2.9 by adding together only two terms,
namely as

f ðtÞ ¼ cosð2p � 440 � tþ 0Þþ 0:8 � cosð2p � 880 � tþ p=2Þ;

with t in seconds. Figure 2.11 graphically represents the two components and the
resulting combination. Note, in particular, how the two components start, at t = 0,
at a different point of their period. This is because the initial phases are different:
one is 0 and the other is p/2.

We shall now use this simple example to discuss some general features.
Let us first consider doubling the amplitudes of both components. The result is

simply twice what we had. The new function has the same shape as the old one.
Hence, generally speaking, the shape of the resulting function depends on the ratios
between the component amplitudes, and not on their absolute value.
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f (t)
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Fig. 2.11 The components of the function in Fig. 2.9 having periods T and T/2
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Let us now change the initial phases by adding the same quantity to each of
them, for example, p/2. We have the function

f ðtÞ ¼ cosð2p � 440 � tþ pÞþ 0:8 � cosð2p � 880 � tþ 3p=2Þ;

The result is shown as a dotted curve in Fig. 2.12. The new function has the
same shape and magnitude as the old one. It is simply translated forward in time by
half a period.

Let us now change the difference between the initial phases. Let us have, for
example, p/4 in the second term instead of p/2 without changing the argument of
the first, obtaining

f ðtÞ ¼ F1cosð2p � 440 � tÞþ 0:8 � F1cosð2p � 880 � tþ p=4Þ:

Figure 2.13b shows the result, while Fig. 2.13a shows the original function for
comparison. Now, the shape has changed. Generalizing the result, the shape of the
combination depends on the differences between the initial phases, but is inde-
pendent of their absolute values.

All the functions we have considered in the above examples have mean values
over a period equal to zero. Indeed, this is the case for any function representing the
displacement from a fixed equilibrium position in an oscillation about it. More
generally, the mean value of a function might be different from zero. Let us con-
sider, for example, the function
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Fig. 2.12 Changing by the same amount both phases of the components
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Fig. 2.13 Changing the phase difference between the components
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f ðtÞ ¼ F0 þ cosð2p � 440 � tÞþ 0:8 � cosð2p � 880 � tþ p=2Þ:

Being that the mean values over a period of all the cosines are zero, the mean
value of f is F0. Figure 2.14 shows this function as a dotted line compared with the
original one, which is a continuous line. Clearly, the shapes of both are equal. We
have only a vertical shift up or down, depending on the sign of F0.

We have concluded the observations for our simple example. They have a
general character. We are ready to state the Fourier theorem, which is valid for a
very large class of periodic function, as precisely defined by mathematics. We shall
not demonstrate the theorem, but shall simply state that practically all the functions
encountered in physics obey the theorem. We state that, given any “reasonable”
function of time f(t) periodic of period T, one can always find two infinite sequences
of real numbers F0, F1, F2, … and /1, /2, …, which, with x0 = 2p/T, are such that

f ðtÞ ¼ F0 þF1cosðx0tþ/1ÞþF2cosð2x0tþ/2Þþ . . .; ð2:40Þ

Let us go back to our example of the musical tone. In general, the motion of our
eardrum can be expressed as the series in Eq. (2.40) (with F0 = 0). The term in
m1 = x0/2p is the fundamental, the subsequent ones are the harmonics. Each of
them is the same note in a higher octave. Two notes differ by an octave when the
frequency of the second is twice the frequency of the first. The amplitudes Fm

define the relative importance of the subsequent harmonics. Our ear is capable of
appreciating the relative weights of the harmonics, namely the Fm. In other words,
our ear performs a Fourier analysis. On the other hand, we are not sensitive to the
phases.

The proportions of the fundamental and of the different harmonics determine
what is called the timbre (and also color) of the sound. A sound is said to be pure if
it contains the fundamental alone, rich if, on the contrary, several harmonics are
important. The same note, the A we have been considering, for example, is different
if it is played by a piano, an oboe, a violin or another instrument, because the
different instruments produce harmonics in different proportions. Similarly, the
timbre distinguishes the same note sung once as a-a-a, and then again as o-o-o.
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Fig. 2.14 Including a
constant term
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We recall now that, at the end of Sect. 2.3, we stated that every motion of the
string can be expressed as a linear combination of its normal modes writing
Eq. (2.37). Let us now consider an arbitrary point of the string, for example, the
point at z = z*, and let us indicate its displacement from equilibrium with g(t). This
function of time is given by Eq. (2.37), which is a function of z and t, valuated for
z = z*, namely

gðtÞ ¼ w z�; tð Þ ¼
X1
m¼1

Fmsinkmz
�½ �cos mx0tþ/mð Þ:

This expression is just Eq. (2.40) with Fmsinkmz� in place of Fm, which is just
another way to write the constants. This consideration shows that the Fourier series
is also the series of the normal modes of a physical system, the flexible string.

The development in Eq. (2.40) can be written in an equivalent form, which will
be useful and that we will find immediately. We start from the trigonometric
identity cosðxtþ/Þ ¼ cos/ � cosxt � sin/ � sinxt. Considering that cos / and
sin / are two constants, we can absorb them into the amplitudes of the terms and
express the function as the sum of a linear combination of sines ðsinmx0tÞ and one
of cosines cosmx0tð Þ with initial phase zero. The equivalent form of Eq. (2.40) is

f ðtÞ ¼ A0 þA1 cosx0tþA2 cos 2x0tþ . . .þB1 sinx0tþB2 sin 2x0tþ . . .;

ð2:41Þ

2.5 Harmonic Analysis of a Periodic Phenomena

In this section, we generalize the conclusions we have reached, giving, without any
demonstration, the proper mathematical expressions for the Fourier series. We shall
see how to calculate the coefficients in three equivalent, but all useful, expressions.

Consider the periodic function of time f(t) with period T, and, correspondingly,
angular frequency x0 ¼ 2p=T . As we know, all the functions cos x0t, cos 2x0t,…,
cos mx0t… and sin x0t, sin 2x0t,…, sin mx0t…are periodic with period T. In
addition, these functions constitute a complete set of normal orthogonal functions
over the interval 2p. This means that the functions enjoy the following properties:

1
p

Z 2p

0
cosmx � cos nx � dx ¼ 0 form 6¼ n

1 form ¼ n

1
p

Z 2p

0
sinmx � sin nx � dx ¼ 0 form 6¼ n

1 form ¼ n

1
p

Z 2p

0
cosmx � sin nx � dx ¼ 0 for anym and n:

ð2:42Þ
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In other words, the properties are as follows. Firstly, the integral over a period of
the product of two different functions is zero. Such functions are said to be
orthogonal in analogy to the fact that the scalar product of two orthogonal vectors is
zero. Here, we have the integration in place of the scalar product. Secondly, the
integral of the square of each function is equal to 1. Such functions are said to be
normal. This has been obtained by including the “normalization factor” 1/p.

The Fourier theorem states (as we already discussed in Sect. 2.4) that, given any
“reasonable” function of time f(t) periodic of period T, it is always possible to find
two infinite successions of real numbers A0, A1, A2, … and B1, B2, … such that

f ðtÞ ¼ A0 þ
X1
m¼1

Am cosðmx0tÞþ
X1
m¼1

Bm sinðmx0tÞ; ð2:43Þ

where x0 ¼ 2p=T . The constant term A0 is the mean value of the function in any
time interval T, namely it is

A0 ¼ fh i ¼ 1
T

Zsþ T

s

f ðtÞdt ð2:44Þ

Note that the cosine is an even function of its argument (its values in opposite
values of the argument are equal). Consequently, in the development of an even
function f(t) of t, (namely such that f(−t) = f(t)), Bm = 0 for all m. Similarly, in the
development of an odd function (f(−t) = −f(t)), Am = 0 for all m. In the general
case, expression (2.43) shows the even and odd parts of the function separately.

The ortho-normality property of the set of sine and cosine functions allows us to
find the expressions of the coefficients of the series immediately. To find the generic
An, we multiply both sides of Eq. (2.43) by cos nx0t, obtaining

f ðtÞ cos nx0tð Þ ¼ A0 cos nx0tð Þþ
X1
m¼1

Am cos mx0tð Þ cos nx0tð Þ

þ
X1
m¼1

Bm sin mx0tð Þ cos nx0tð Þ

and integrate over a period, say from s to s +T. For the orthogonality property, the
only integral different from zero on the right-hand side is the term in the first sum
with m = n, so that we have

Zsþ T

s

f ðtÞ cos nx0tð Þdt ¼ An

ZsþT

s

cos2 nx0tð Þdt ¼ An
T
2
;

and hence, finally,
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An ¼ 2
T

ZsþT

s

f ðtÞ cos nx0tð Þdt:

Similarly, we obtain Bn by multiplying by sin nx0t and integrating over a period.
In conclusion, the coefficients of the Fourier series of the periodic function f(t) are
given by

An ¼ 2
T

Zsþ T

s

f ðtÞ cos nx0tð Þdt; Bn ¼ 2
T

ZsþT

s

f ðtÞ sin nx0tð Þdt ð2:45Þ

The second equivalent expression of the Fourier series is

f ðtÞ ¼ F0 þ
X1
m¼1

Fmcos mx0tþ/mð Þ; ð2:46Þ

where the coefficients are now the Fm (which are non-negative) and the m. We
immediately state these quantities in terms of the Am and Bm as

F0 ¼ A0; Fm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þB2

m

q
; /m ¼ � arctan

Bm

Am
: ð2:47Þ

The third equivalent form of the series, which we shall use very often, is
obtained from Eq. (2.46), using the identity

Fm cos mx0tþ/mð Þ ¼ Fm

2
eim/eimx0t þ Fm

2
e�im/e�imx0t

and defining the coefficients as

C0 ¼ F0; Cm ¼ Fm

2
ei/m ; C�m ¼ Fm

2
e�i/m : ð2:48Þ

Equation (2.46) becomes

f ðtÞ ¼
X1

m¼�1
Cmeimx0t; ð2:49Þ

Note that the sum now runs on all the integer numbers, not just the positive ones,
and that the coefficients are complex numbers. Note also that the two coefficients
corresponding to the opposite values of the index are the complex conjugates of one
another. As immediately seen from their definitions, we have
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C�m ¼ C�
m: ð2:50Þ

We may also immediately verify that the complex coefficients Cm are given by

Cm ¼ 1
T

Zsþ T

s

f ðtÞe�inx0tdt: ð2:51Þ

We shall call the coefficients Fm the Fourier amplitudes and /m the Fourier
phases of the Fourier series. They are, respectively, the modulus and the argument
of the complex Fourier amplitudes Cm.

Finding the coefficient of the Fourier series of a given function is called Fourier
analysis or harmonic analysis.

The sequence of Fourier amplitudes Fm of a time-dependent phenomenon is
called the amplitude spectrum or simply the spectrum of the phenomenon. The
periodic phenomena we are considering have a discrete spectrum. An example is
shown in Fig. 2.15. We can appreciate the importance of the concept of an
amplitude spectrum if we remember that the energy of the oscillating system is
equal to the sum of the energies of its normal modes, namely of the energies of its
Fourier components. The latter are proportional to the squares of the amplitudes Fm

and do not depend on the phases. The energies of the Fourier components are
completely determined by the amplitude spectrum of the function.

Let us now consider an example, which is important for our study in the sub-
sequent chapters. Consider the function of time shown in Fig. 2.16a. It is a periodic
sequence, with period T, of equal rectangular pulses of height L and length Dt
(Dt < T). We assume the function to be exactly periodic, namely that the sequence
of pulses extends through infinite time. Clearly, this is an idealized condition. Real
situations will approach it the longer the duration of the sequence is compared to the
period.

Taking advantage of the symmetry of the problem, we choose the origin of time
in the center of a pulse. The function is an even one. The angular frequency is
x0 = 2p/T. We want to find the Fourier coefficients. The choice of the integration

0

F

ωω0 2ω0 3ω0
.  .  .  .  .  .  .  .

Fig. 2.15 Example of a
spectrum of a periodic
phenomenon
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period being arbitrary, we choose the easier one, which is cantered on zero, namely
−T/2 � t � T/2. In this interval, our function is different from 0 only in the
interval �Dt=2� t� þDt=2, in which it is f(t) = L. The complex amplitudes are
given by

Cm ¼ 1
T

ZDT=2
�DT=2

Le�imx0tdt ¼ � L
T
e�imx0Dt=2 � eþ imx0Dt=2

imx0
¼ LDt

T
sin mx0Dt=2ð Þ
mx0Dt=2

:

Let us analyze the result. The mth coefficient of the series is the product of a
constant times a function. The constant is the product of the height of the pulse (L)
and the ratio between its length (Dt) and the period (T). The function is (sin x)/x, a
function that we shall often encounter. To analyze its behavior, we start by
observing that the quantity mx0 in its argument is the mth angular frequency in the
series. Let us call it xm = mx0. We then write

Cm ¼ LDt
T

sin xmDt=2ð Þ
xmDt=2

: ð2:52Þ
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Fig. 2.16 An example of a periodic function and of its spectrum, for different values of the period
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We note that, as a consequence of f(t) being an even function, the coefficients are
real and, for m 6¼ 0, Cm = C−m. The coefficients are shown in Fig. 2.16b. We shall
use the other parts of the figure in the next section. We recall that these coefficients
are one half of the Fourier amplitudes Fm.

2.6 Harmonic Analysis of a Non-periodic Phenomena

The Fourier analysis can be extended to non-periodic functions. These functions
can represent phenomena that are “periodic” only for a certain duration or that are
not periodic at all, like the noise represented in Fig. 2.2.

Let us consider a function f(t), which is different from zero within a definite time
interval Dt (as are all the functions describing physical phenomena). Let us consider
another function of time, which is equal to f(t) during Dt and that repeats itself
periodically with the same form in an arbitrary period T > Dt. Being that this new
function is periodic, we can calculate its Fourier coefficients, write down its Fourier
series and then look to see if we can find its limit for T going to the infinite.

Let us consider a very simple, non-periodic function, namely a rectangular pulse
of height L and duration Dt. The corresponding periodic auxiliary function is
represented in Fig. 2.16a. We have already calculated its Fourier coefficients. Let
T now grow, keeping Dt fixed. Figure 2.16a, c, e represent the result for T = 2Dt,
T = 4Dt and T = 8Dt, respectively. Note that when T increases, the fundamental
angular frequency x0 = 2p/T decreases in an inverse proportion. The abscissa of
the diagram is the angular frequency x. The m-th Fourier amplitude Cm is at the
abscissa xm = mx0. Consequently, when x0 decreases, the amplitudes Cm get
closer to one another, while Eq. (2.52) continues to hold, describing their envelope.
In other words, when T varies, the values of the xms vary as well, namely the
positions on the abscissa at which the amplitudes are evaluated vary, but the
dependence of the amplitudes on x does not change. This is shown in Fig. 2.16b, d,
f. It is then convenient to think of the Fourier spectrum, namely of the amplitudes
Cm, as the values of a continuous function C(x) evaluated in xm, namely as Cm =
C(xm). In the limit T ! ∞ (Fig. 2.16g), the spectrum becomes a continuum
function, namely the domain of the function C(x) becomes defined on the entire
real axis x and not only at the discrete values xm (Fig. 2.16h).

In conclusion, for a non-periodic function, in place of an infinite discrete
sequence of Fourier amplitudes, we have a continuous function of the angular
frequency. Correspondingly, in place of the Fourier series, we have an integral. The
integral is called the Fourier transform. We shall now give, without demonstration,
the three equivalent expressions of the Fourier transform (analogous to the three
expressions of the Fourier series in the previous section).

Let us start with the analogy of Eq. (2.43). In place of the discrete sequences of
Am and Bm, we now have two functions of the continuous variable x, which we call
A(x) and B(x), respectively. In place of the sums, we have integrals on x on the
entire domain that is x � 0,
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f ðtÞ ¼
Z1
0

AðxÞ cosxt dxþ
Z1
0

BðxÞ sinxt dx: ð2:53Þ

The expressions for the two functions x, A(x) and B(x) (analogous to
Eq. (2.45)), are

AðxÞ ¼ 1
p

Z1
�1

f ðtÞ cosxt dt; BðxÞ ¼ 1
p

Z1
�1

f ðtÞ sinxt dt: ð2:54Þ

Note that the domain is on the entire axis of time, from �1 to þ1.
The second equivalent form, analogous to Eq. (2.46) in the periodic case, is

f ðtÞ ¼
Z1
0

FðxÞ cos xtþ/ðxÞð Þdx: ð2:55Þ

The functions F(x) and (x) are given in terms of the A(x) and B(x) by the
expressions

FðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ðxÞþB2ðxÞ

p
; /ðxÞ ¼ � arctan

BðxÞ
AðxÞ : ð2:56Þ

The third expression, analogous to Eq. (2.49), is

f ðtÞ ¼
Zþ1

�1
CðxÞeixtdx: ð2:57Þ

The function C(x) is complex and so equivalent to two real functions. Its
expression, analogous to Eq. (2.51), is

CðxÞ ¼ 1
2p

Z1
�1

f ðtÞe�ixtdt: ð2:58Þ

The continuous complex function of the angular frequency x, C(x), is called the
Fourier transform of the function of time f(t). Twice its absolute value, namely 2|C
(x)|, is the frequency spectrum, which is a continuous rather than a discrete
function, as in the case of the periodic functions. The function f(t) itself, as given by
Eq. (2.57), is called the Fourier antitransform of the function C(x).

Note that the Fourier integral in the third form of Eq. (2.57) extends on both the
positive and negative values of the angular frequency. This was already the case for
periodic functions in the sum of Eq. (2.49). As we know, the angular frequency is

2.6 Harmonic Analysis of a Non-periodic Phenomena 63



inversely proportional to the period, and is consequently a physically positive
quantity. The negative values of appear as a consequence of the mathematical
rearrangements we have made, but do not have a direct physical meaning.
However, we shall see in the next section that the corresponding quantity for
functions of space, which is the spatial frequency, does have a physical meaning
both for positive and negative values.

Let us now go back now to the function in Fig. 2.16g, which is not only simple,
but very important as well. Its Fourier transform is found using Eq. (2.58). The
calculation is simple and completely analogous to what we did for the Cm. We shall
not develop it, but rather go directly to the result, which is

CðxÞ ¼ 1
2p

Zþ1

�1
f ðtÞe�ixtdt ¼ L

2p

ZþDt=2

�Dt=2

e�ixtdt ¼ LDt
2p

sinðxDt=2Þ
xDt=2

: ð2:59Þ

Looking at Fig. 2.16h, we see that this function has its absolute maximum at
x = 0. Two minima, where the function is null, are located symmetrically on the
sides of the maximum. Going further, we encounter a succession of maxima and
minima. The heights of the maxima decrease monotonically. We note that the most
important components of the spectrum are located at low frequencies.

This is, indeed, a general characteristic of all the functions of time that have a
beginning and an end, namely a finite duration. The most important part of their
spectrum is situated in a region of lower frequencies, which we call bandwidth. The
concept of bandwidth has a certain degree of arbitrariness, but the main argument
for defining it is as follows. Consider a certain function of time f(t) and calculate its
Fourier transform C(x). Let us then reasonably define a bandwidth Δx and consider
the function C′(x), which is equal to C(x) inside the bandwidth and 0 outside it. Let
us antitransform C′(x), obtaining, say, the function of time f′(t). The result will not
be exactly equal to f(t), but the differences may be small enough for our purposes. If
this is not the case, we need to define a somewhat wider bandwidth.

Coming back to the case under discussion, we now define the bandwidth Dx as
one half of the interval between the first two zeroes of C(x), which is about the full
width of the peak at half maximum (FWHM). The latter are at the values of x for
which xDt = ±p. We see that the bandwidth Dx and the duration Dt are linked by
the expression

DxDt ¼ 2p: ð2:60Þ

This is an extremely important equation. Indeed, it is a particular case of a
theorem of general validity, which we call the bandwidth theorem. We shall not
demonstrate the theorem, but just give its statement, which is: the bandwidth Dx of
the Fourier spectrum of a function limited in time to a duration Dt is inversely
proportional to that duration. The result is general, even if the specific coefficient
(2p, in our example) depends both on the shape of the function of time and by our
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specific definitions of the bandwidth and of the duration (which is somewhat
arbitrary as well for functions that are not rectangular pulses). Equation (2.60) has
very relevant consequences for optics, as we shall see in Sect. 5.3. Even more
important are the consequences for quantum physics, where its equivalent is one of
the fundamental laws, namely the uncertainty relation between energy and time.

In conclusion, the spectrum of a non-periodic function of time is a continuous
function of the angular frequency; the spectrum of a periodic function of time is a
function defined for discrete values of the frequency alone. In particular, the
spectrum of a sinusoidal function of time has one component only, at the frequency
of the sine.

As we shall see in the subsequent chapters, light is an electromagnetic wave.
When the wave has a sinusoidal dependence on time, light has a definite color to
our eyes. Contrastingly, in white light, there are waves of different frequency,
continuously distributed over a wide range. As a consequence, an electromagnetic
wave with sinusoidal dependence on time is said to be monochromatic, meaning a
single color in Greek. By extensions, all the sinusoidal functions of time are often
called monochromatic as well.

We shall now discuss two important examples.
Damped oscillation. Elastic oscillations in the presence of resistive forces pro-

portional to velocity are quite common phenomena in different fields of physics.
We have studied their equations in Sect. 1.2. We would now like to work with an
acoustic oscillator vibrating on a single mode. The tuning forks used to tune the
musical instruments have this property. They are U-shaped metal objects properly
shaped to the purpose. Let x1 be the proper angular frequency of our tuning fork.
We excite its vibrations by hitting one of its prongs with a small wooden hammer.
Let us consider the displacement from equilibrium of one of its points as a function
of time w(t) and let w0 be the initial displacement. We assume the air drag to be
proportional to the velocity as

Fr ¼ �mc
dw
dt

:

As we know, the equation of motion for t > 0, namely after the oscillation has
started, is

wðtÞ ¼ w0e
�c

2t cosx1t ¼ w0e
� t

2s cosx1t; ð2:61Þ

where we have taken, as in Sect. 1.2.,

s ¼ 1=c

We recall that the time s is the time interval in which the energy of the oscillator
(which is proportional to the square of the vibration amplitude) decreases to 1/e of
the initial value. The oscillation is not exactly sinusoidal, at angular frequency x1,
as a consequence of damping. Consequently, its spectrum contains components at
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angular frequencies different from x1. The spectrum is obtained by performing the
integral in Eq. (2.58) with f(t) = w(t). The limits of the integral are 0 and +∞
because w(t) = 0 for t < 0. We also recall that x2

1 ¼ x2
0 � ðc=2Þ2, where x0 is the

proper frequency in the absence of damping. Performing the Fourier transform
integral and taking the square of the result, one finds for the square of the frequency
spectrum the expression

F2ðxÞ ¼ 1

ð2pÞ2
4x2 þ c2

x2
0 � x2

� �2 þ c2x2
: ð2:62Þ

We see that the denominator is the same as that of the resonance curves. If the
damping is small, as is often the case, namely if it is c � x, we can neglect the
second term in the numerator and write

F2ðxÞ ¼ 1
p2

x2

x2
0 � x2

� �2 þ c2x2
; ð2:63Þ

which, constant apart, is exactly the response function, or the resonance curve, of the
oscillator in Eq. (1.64). The function F(x) is shown in Fig. 2.17. We can then state
that the square of the Fourier transform of a damped oscillation is proportional to
the response curve R(x) of the resonance of the same oscillator when it is forced.

Rigorously speaking, the spectrum extends over an infinite frequency range.
However, the important contributions are those that are not very different from x0

within a certain bandwidth. We here define the bandwidth to be the full width at
half maximum (FWHM) of the resonance curve DxF. Under this definition,
recalling what we stated in Sects. 1.2 and 1.3, we can conclude that:

(a) the bandwidth of the Fourier transform of a weakly damped oscillator is equal
to the width of the same oscillator when forced by a periodic external force;

(b) both widths are inversely proportional to the decay time s of the free oscil-
lations, namely the time in which the stored energy decreases to a value equal
to 1/e of the initial value.

Namely, we have

Dxris ¼ DxF ¼ 1=s: ð2:64Þ

The bandwidth theorem requires defining the duration Dt of the phenomenon.
Rigorously speaking, the duration would be infinite, but, in practice, the vibration is
finished after several s. Somewhat arbitrarily taking Dt = 2ps, we can write
Eq. (2.64) as

DxFDt ¼ 2p: ð2:65Þ
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Even if the oscillators encountered in nature and technology are often damped to
some degree, their damping is often small and their behavior approaches that of an
ideal oscillator. The quality factor, or simply the Q-factor, is defined as the ratio
between the resonance angular frequency and the FWHM of the resonance curve.
The same quantity can be expressed in the following equivalent forms:

Q 	 x0

DxF
¼ x0

c
¼ 2p

s
T
: ð2:66Þ

Q-factors of mechanical oscillators are typically between several hundreds and
several thousands (as in the case of a piano string), and up to millions or more for
electronic oscillators.

The just found expressions have important experimental consequences. Indeed,
while it is usually easy to measure the decay time of a macroscopic oscillator, for
example, making a film of its vibrations, the same cannot be done for an atomic, or
subatomic, oscillator. We can, however, enclose a number of atoms, say a gas, in a
container and excite them, for example, with an electric discharge that force the
ions, a few of which are always present, to violently collide with atoms. The
electron cloud of each excited atom will then oscillate with a frequency and decay

0

Δt=2πτ

τ

t

ψ(t)

0 ω0 ω

Δω
F
=γ

1/πγ
F(ω)

Fig. 2.17 A weakly damped oscillation and its Fourier transform
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time that are characteristic of the atomic species under study (as a matter of fact, the
atom has several normal modes, each with a frequency and a decay time). The
excited atoms emit the energy they have acquired as electromagnetic radiation. The
decay time s, called the lifetime of the excited atomic state, is an important quantity
in atomic physics, but is usually too short to be directly measurable. However, if we
measure the Fourier spectrum of the intensity of the emitted radiation, we obtain a
resonance curve, whose width DxF we can measure. We then have the lifetime
from the relation s = 1/DxF.

QUESTION Q 2.2. Calculate the Fourier transform of Eq. (2.59). ⃞
QUESTION Q 2.3. You hit the prong of a tuning fork of 440 Hz and hear a sound

lasting about 30″. How much is its c? How much is its Q-factor? ⃞
QUESTION Q 2.4. Consider an excited atom having a resonance angular frequency

of 2 
 1016 s−1 and a lifetime of 2 ns. How much is the Q-factor? ⃞
QUESTION Q 2.5. The Q-factor of a harmonic oscillator of frequency 850 Hz is

7000. What is the time in which the amplitude reduces by a factor 1/e? How many
oscillations happen in this time? What is the difference between two consequent
oscillation amplitudes relative to the amplitude itself? ⃞

QUESTION Q 2.6. With reference to Eq. (1.40), prove that the Q-factor is equal to
2p times Uh i= d Uh i=dtð Þ. ⃞

Beats. A beat is a sound resulting from the interference between two sounds of
slightly different frequencies. We perceive it as a periodic variation in volume
whose rate of change is the difference between the two frequencies, say x1 and x2.
The sound can be easily heard using two equal tuning forks, and altering the
frequency of one of them by fixing a small weight to one of its prongs. If the weight
is near the bottom of the prong, the change in frequency is quite small. If we now
hit both forks, we hear the beat. If we fix the weight a little higher and repeat the
experiment, we hear the volume of the sound periodically varying at a higher
frequency. If we further increase the difference, we reach a limit in which the
system of ear-plus-brain perceives the two sounds as separate. The limit depends on
the person, usually being at about Dx/x = 6 %. The ear of a musician is sub-
stantially more sensitive.

Let us analyze the phenomenon. Assume, for simplicity, that the two vibrations
have equal initial amplitudes and phases. The two displacements from equilibrium
are then

w1ðtÞ ¼ A cosx1t; w2ðtÞ ¼ A cosx2t:

The motion of our eardrum is proportional to the sum of these two functions,
namely it is given by

w ¼ w1 þw2 ¼ A cosx1tþA cosx2t ¼ 2A cos
x1 � x2

2
t

� �
cos

x1 þx2

2
t

� �
:

As we stated, the beat happens when the difference between the two frequencies
Dx = x1 − x2 is small in absolute value. Under these conditions, the average of
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the two, namely x0 = (x1 + x2)/2, is very close to each of them and we can write
within a good approximation

wðtÞ ¼ 2A cos
Dx
2

t

� �
cosðx0tÞ: ð2:67Þ

We can think of this expression as describing an almost harmonic motion taking
place at the mean frequency x0, whose amplitude varies slowly (and harmonically
as well) in time with angular frequency Dx/2. The function is shown in Fig. 2.18.

Note that the perceived angular frequency of the modulation is Dx and not
Dx/2. The reason for this is that the ear is sensitive to the intensity of sound.
The intensity is proportional to the square of the amplitude, namely to
4A2 cos2ðDxt=2Þ ¼ 2A2ð1þ cosDxtÞ. The constant term on the right-hand side is
irrelevant; the angular frequency of the varying term is Dx.

Let us now consider the more general case in which the amplitudes of the two
motions are different. Let us call them A1 and A2, and represent the motions as
rotating vectors (Fig. 2.19). The vector sum of the two represents the resultant
motion. If the oscillations have the same angular frequency x, then all vectors
rotate as a rigid structure with angular velocity x. As a consequence, the magnitude
of the resultant is constant over time and its x component makes a harmonic motion.
Contrastingly, if the two frequencies are a little different, the angle between the
vectors A1 and A2 slowly varies, and consequently the magnitude of their resultant
slowly varies as well. From the figure, we see that the magnitude of the resultant is

t

2π/Δω

2π/ω0

Fig. 2.18 The amplitude of a beat sound
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Fig. 2.19 Two rotating
vectors and their resultant
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A ¼ A2
1 þA2

2 þ 2A1A2 cosðx1 � x2Þt

 �1=2

: ð2:68Þ

2.7 Harmonic Analysis in Space

In this section, we shall consider the Fourier analysis as a function of space rather
than of time. A function of space is, in general, a function of three variables, which
are the coordinates. Such is the case with, for example, the temperature of a fluid.
Examples of functions of two spatial coordinates exist as well, like the height of the
waves on the surface of a lake or the sea and the gray levels of a photograph. For
the sake of simplicity, we shall limit the discussion to functions of one space
variable only. Such is the case with, for example, the configuration of a rope at a
certain instant in time. Under these conditions, the mathematics of the spatial
Fourier analysis is exactly the same as in the time domain we have considered in the
previous sections.

Let us start by considering a periodic function of the coordinate x, which we call
f(x). As in the case of time, no physical system is described by a strictly periodic
function of space, because no system exists of infinite dimensions. However,
approximately periodic spatial structures are often encountered.

The period in space is the wavelength k. The quantity corresponding to the
frequency is the wave number, namely the number of wavelengths in one meter

ms ¼ 1=k ð2:69Þ

and that, corresponding to the angular frequency, is the spatial frequency

k ¼ 2p=k ¼ 2pms: ð2:70Þ

Let f(x) now be a periodic function of x of period k, and let k0 = 2p/k be its
fundamental spatial frequency. Clearly, we can express the Fourier series of f(x) in
any of the three forms we have seen for a function of time. We shall write down
only the third one, which is, in complete analogy with Eq. (2.49),

f ðxÞ ¼
X1

m¼�1
Cmeimk0x: ð2:71Þ

The complex coefficients are given by the integral over a period, analogous to
Eq. (2.51), as

Cm ¼ 1
T

Znþ k

n

f ðxÞe�ink0xdx; ð2:72Þ
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starting from any n.
If the function f(x) is not periodic, then instead of a Fourier series, we have a

Fourier integral, or a spatial Fourier transform. Analogous to Eq. (2.57), the
transformation is

f ðxÞ ¼
Zþ1

�1
CðkÞeikxdk: ð2:73Þ

The function C(k), analogous to Eq. (2.58), is given by the Fourier spatial
antitransform

CðkÞ ¼ 1
2p

Z1
�1

f ðxÞe�ikxdx: ð2:74Þ

We shall now come back to the gray level of a (black and white) picture, as an
example of a space function. These are, in general, functions of two variables, say
the coordinates x and y, but, for the sake of simplicity, we shall limit the discussion
to functions of one coordinate only, say on x.

In the time domain, the Fourier analysis is the simplest for a sine function of
time. The same is obviously true in the space domain as well. If the physical
quantity described by the function is a gray level of a picture, it cannot have
physically negative values. Let us consider the simplest case, namely

f ðxÞ ¼ 1
2
þ 1

2
cos kx: ð2:75Þ

The two constants on the right-hand side might have different values. We have
chosen them so as to have the function vary between 0 and 1. The gray level and the
function in Eq. (2.75) are shown in Fig. 2.20. Note that the gray level does not
depend on y. This is obviously an idealization.

As shown in the figure, the wavelength is the distance between two homologous
points, for example, between two consecutive maxima or minima. The wave
number is the number of periods in one meter. The space frequency k is the wave
number times 2p. The larger the spatial frequency, the closer the clear and dark
bands are to one another. This structure is called sine grating in optics.

In the following example, we consider an infinite succession of completely black
rectangular bands of width D repeating with a period in x equal to k. Such suc-
cessions are called Fraunhofer gratings in optics. This situation, as shown in
Fig. 2.21, is again idealized, because neither the succession nor the length of the bars
in y can be infinite. Being that the function is periodic, it admits a Fourier series,
which is given by Eq. (2.71) with k0 ¼ 2p=k. This function of x is identical to the
function of time we considered in Sect. 2.5. Consequently, we already know the

2.7 Harmonic Analysis in Space 71



coefficients of the series, which are those of Eq. (2.52), with the obvious changes in
the variables, namely

Cm ¼ D
k
sinðkmD=2Þ
kmD=2

: ð2:76Þ

Let us now move to a non-periodic function of x, namely a single black band of
width D, as shown in Fig. 2.22. Being that the function is not periodic, we must
consider the integral of Eq. (2.73). In this case too, this is the spatial analogy of the
rectangular function of time that we considered in Sect. 2.6. Consequently, we

0
x

x

y

λf

Fig. 2.20 A sinusoidal function of one space coordinate
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Fig. 2.21 A periodic spatial
grating
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already know the Fourier transform in Eq. (2.74) of our function, which we obtain
from Eq. (2.59). Changing the variables as needed, we obtain

CðkÞ ¼ D
2p

sinðDk=2Þ
Dk=2

: ð2:77Þ

We shall return to this equation when we study the diffraction phenomenon of a
grating in optics in Sect. 5.9.

The spatial Fourier transform in Eq. (2.78) is shown in Fig. 2.23, which is
obviously the analogy in space of Fig. 2.16h in the time domain. The abscissa is
now the spatial frequency k in place of the angular frequency x.

Clearly, the bandwidth theorem holds in the space domain, as it does in the time
domain. In this example, the function f(x) is different from zero in a limited interval,
which is Dx = D. The most important part of the Fourier transform has a certain
width Dk, which we define similarly to what we did for the angular frequency (see
Fig. 2.23) The relation between them is

Dk � Dx ¼ 2p: ð2:78Þ

Namely, the narrower the space function, the larger the frequency interval
needed to represent it in the Fourier transform. This relation has important
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Fig. 2.22 A single black
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Fig. 2.23 The spatial Fourier
transform of the function in
Fig. 2.22
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consequences in optics, which we shall discuss in Chap. 5. Even more important
are the consequences for quantum physics, where its equivalent is one of the
fundamental laws, namely the uncertainty relation between momentum and
position.

Let us finally note that Eq. (2.78) is, a sign apart, the Fourier transform of the
“gray level” function shown in Fig. 2.24, which is the same as Fig. 2.22 with
inverted blacks and whites. But we can also think of Fig. 2.24 as a screen that
completely absorbs an incident light beam, except for the part in the white band,
which can go through. This can be obtained, for example, by opening a slit in an
absorbing screen. We shall discuss this phenomenon in Chap. 5, where we shall
see, in particular, that the light intensity beyond the slit depends on the coordinates
as the square of the function shown in Fig. 2.23. What we shall learn to be the
(Fraunhofer) diffraction pattern of the slit is the physical materialization of the
mathematical concept of the spatial Fourier transform.

Summary
The most important concepts studied in this chapter are the following:

1. Two coupled harmonic oscillators can move in two particular motions, the
normal modes, in which all the parts of the system oscillate with the same
frequency and in the same initial phase. The oscillation frequencies of the
modes are the proper frequencies of the system. The proper frequencies and the
shapes of the modes depend on the structure of the system, but not on the initial
conditions.

2. Particular coordinates can be found, called the normal coordinates, in which the
equations of motions are decoupled.

3. The equations of motion of two forced coupled oscillators are independent
when written in normal coordinates. Two resonances exist at the two proper
frequencies.
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Fig. 2.24 A slit
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4. Coupled oscillating electrical and mechanical systems obey the same differ-
ential equations and behave in analogous manners.

5. The above properties can be generalized to systems with n degrees of freedom.
6. An oscillating string with fixed extremes is a system with an infinite continuous

number of degrees of freedom. Its motion is described by an important partial
differential equation.

7. The normal modes of the vibrating elastic string have the following charac-
teristics: (a) all the points of the string oscillate with the same amplitude and in
the same phase, (b) each mode has its own (proper) oscillation frequency,
dependent on the structure of the system and independent of the initial state,
(c) the shape of the modes are sine functions, whose period is the wave length.

8. The relation between the angular frequency and the wave number of the modes
is the dispersion relation. The dispersion relation is linear for a perfectly elastic
string. In this case, the proper frequencies are in the arithmetic succession.

9. A periodic function, both of time and of a space coordinate, can be expressed as
a sum of cosine functions and in other equivalent forms.

10. A non-periodic function can be expressed as an integral, performing a Fourier
transform. The Fourier transform of a function of time (space coordinate) is a
function of the angular frequency (space frequency).

11. The bandwidth of the Fourier transform of a function of time of limited
duration is inversely proportional to that duration. The bandwidth of the Fourier
transform of a function of a space coordinate extending throughout a limited
interval is inversely proportional to that interval.

12. The width of the resonance curve of a weakly damped forced oscillator is equal
to the width of the Fourier transform of the displacement as a function of time
in the free oscillations of the same oscillator. Both widths are inversely pro-
portional to the decay time of the free oscillations.

Problems

2:1 Consider two coupled pendulums, such as those discussed in Sect. 2.1.
Suppose that the squares of their proper angular frequencies differ by 4 s−2. If
we change the spring with another one having a spring constant 10 times
smaller, how much is the new difference?

2:2 Consider the two coupled pendulums again. Does the proper frequency of the
lower frequency mode depend on the spring constant? Does it depend on the
masses? Answer the same questions for the higher frequency mode.

2:3 A string of a viola is 0.5 m long and is tuned 440 Hz. You can play it at
550 Hz, pressing it with your finger to make it shorter. How much shorter
should we make it?

2:4 A string of an instrument should be tuned to 440 Hz, but instead is at 435 Hz.
How should we change its tension to tune it?

2:5 The width of a forced oscillator is Dxris = 35 s−1. We let it freely oscillate and
we measure its displacement as a function of time. We then Fourier transform
the function we have found. What is the bandwidth of this transform?
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2:6 Consider the motion wðtÞ ¼ ð10mmÞ cos 6:28s�1ð Þtþ 32
�
 �þ

ð15mmÞ sin 6:21s�1ð Þt � 72
�
 �
. Calculate the mean frequency and the beat

frequency
2:7 The bandwidth of the Fourier transform of a function of time is 120 s−1. How

much is the duration of the function?
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Chapter 3
Waves

Abstract In this chapter, we introduce the concept of the progressive wave, first in a
one-dimensional medium, then in 3D space. We focus on sound and electromagnetic
waves. We discuss the sources of electromagnetic waves, which are ultimately
accelerating charges, presenting an expression of the electric field they generate, in
an approximation valid at large distances from the source. This is a very useful
expression that we shall often use in subsequent sections. We discuss the
quadratic-law detectors and the concept of intensity for sound and electromagnetic
waves. Finally, we study how the frequency and wavelength of a wave depends on
the motion of the source and of the detector (the Doppler effect).

In the previous chapter, we found that the motions of a perfectly elastic string obey
a partial differential equation, which is called a wave equation. We then considered
the oscillations of a string of limited length and with defined boundary conditions,
in particular, with fixed extremes. Under these conditions, the oscillation modes of
the string are called stationary waves. In this chapter, we begin our study of the
properly-named waves, namely those that advance, or propagate, in a medium,
called the progressive waves. Waves are a very common natural phenomenon,
appearing in a number of different forms. They are the big waves in a stormy sea,
the tiny ripples on a pond, the sounds propagating through the air, the pulses in a
nerve. There are seismic waves, light waves, electromagnetic television waves, etc.

When a wave propagates in a medium, there is no matter traveling along with it.
For example, in a sound wave, the different points of the medium oscillate back and
forth around fixed positions, while in the waves of the sea, the water particles
describe closed trajectories about their equilibrium positions, and so on. What
propagates with a wave is the disturbance of the medium. The medium exists only
as a support for the wave, and is not even necessary. Indeed, no material medium
carries electromagnetic waves. They even travel in a vacuum.

What we have called disturbance means that some physical quantity character-
istic of the medium (or of the electromagnetic field) assumes values different from
those at equilibrium. For example, this quantity may be the pressure of the gas in a
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sound wave, the intensity of the electric field in an electromagnetic wave, the
displacement from the equilibrium of a water element, etc. Propagation of the
disturbance means that the change from equilibrium affects points at distances
increasing with time. Indeed, waves propagate with a definite velocity. Namely, the
distance traveled by the disturbance in a certain time is proportional to that time.
A wave is not a simple object, like a material point. Consequently, a precise
definition of the wave velocity is not as straight forward as for a material point. As a
matter of fact, we shall define not one, but several different wave velocities: the
velocity of a pulse, the phase velocity and the group velocity.

The velocities of different types of wave span many orders of magnitude. For
example, the waves on the surface of water travel on the order of several meters per
second, the sound in the atmosphere at about 300 m/s, and light and gravitational
waves, the fastest of all, at about 300,000 km/s.

Propagation of a disturbance implies propagation of information. Indeed, waves
are the principal vehicle for information. Just think of the sound, of the electro-
magnetic waves of TV and cell phones, of the light, of the electric waves in cables.

In addition, waves carry energy. For example, the light from the sun brings the
energy necessary for life to earth. Its intensity is about 1 kW/m2. A fraction of this
energy is absorbed by the vegetation, the trees, and us when we burn wood or coal.
We can also use it to produce electric power with photovoltaic cells. TV stations
radiate power on the order of several dozens of kilowatts. Sound waves have
relatively small intensities, for example, on the order of l0 nW/m2, while a seismic
wave can transport a huge quantity of energy. In addition, waves carry linear and
angular momentum, but we shall not deal with these aspects in this book.

We shall always consider situations in which the displacements from equilibrium
are relatively small. Under these conditions, the systems behave approximately
linearly (exactly so for electromagnetic waves). This means that the differential
equation ruling the system is linear and that the superposition principle holds.
Consider, for example, the waves on the surface of water. If their amplitude is
small, the system is linear. To control the validity of the superposition principle, we
just have to toss two stones into a quiet pond and observe the waves. Looking
carefully, you understand that there are two systems of expanding circles, each
centered at the points where the stones touched the water. The waves cross one
another without disturbing each other. As another example, think of the feeble light
of a star that we see in the night. Before reaching us, it has crossed the intense light
of the sun without being altered.

Examples of non-linearity are everywhere as well. They appear whenever the
displacements from equilibrium are large. Examples are the sound waves from an
explosion, the big waves in the ocean that make surfers happy and the light from a
powerful LASER. In this course, we shall consider only linear conditions.

In the first three sections, we introduce the concept of a progressive wave in a
one-dimensional medium, which will be an elastic string. We study how a wave
reflects at an extreme of the string. We then go to the progressive waves in space,
namely in three dimensions, with a focus on the important cases of sound and
electromagnetic waves. In Sect. 3.7, we discuss the sources of electromagnetic
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waves, which are ultimately accelerating charges. We present and discuss an
expression of the electric field they generate, according to R. Feynman, which is an
approximation valid at large distances from the source and for source velocities
much smaller than light. This is a very useful expression that we shall use often in the
subsequent sections. Then, we discuss a category of frequently used detectors,
namely the quadratic-law detectors, whose response is proportional to the square of
the disturbance. In Sects. 3.9 and 3.10, we deal with wave intensity and the energy
transport of sound and electromagnetic waves. In Sect. 3.11, we discuss the equation
and properties of a very common transmission line, namely the coaxial cable.

Finally, in Sect. 3.12, we study how the frequency and wavelength of a wave
depend on the motion of the source and the motion of the detector. This is the
Doppler effect, which will be analyzed through the examples of sound and elec-
tromagnetic waves. This will show us the profound differences between the two
cases.

3.1 Progressive Waves

In Sect. 2.3, we studied the steady oscillations of an elastic string. We have seen
that the partial differential equation ruling its motions is the equation

@2w
@t2

� t2
@2w
@z2

¼ 0; ð3:1Þ

where w(z, t) is the wave function, which is the displacement from equilibrium at
time t of that point of the string that is located at z when in equilibrium and

t2 ¼ T0=q: ð3:2Þ

Here, T0 is the tension and q is the linear density of the string. Equation (3.1) is
often simply called the wave equation.

We also recall that in Sect. 2.3, we found those particularly important motions of
the elastic string with fixed extremes, which are the normal modes. As a matter of
fact, normal modes, or stationary waves as they are also called, also exist when both
extremes are free to move or when one is fixed and the other is free. The important
feature that is necessary for a stationary wave is the existence of boundary conditions.
The system must have boundaries, which are the extremes in the case of the string.

In this section, we shall study the opposite case, namely the oscillations of an
open system, for example, an infinitely extended string. Suppose we apply a per-
turbation at a point of our infinitely long string. The perturbation immediately
propagates along the string, in both directions, in the form of waves that move
farther and farther as time goes by. If boundaries were present, these waves,
reaching an extreme, would reflect and come back, interfering with the progressive
waves. The resulting, initially quite complicated situation will evolve towards a
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stationary oscillation. If the string is open, we need to consider only the primary
waves generated by the applied force. As another example, consider a sound source,
a trumpet, for example. Boundaries of the medium in which the sound waves
propagate are any walls, the floor and the ceiling. In an open medium, these
boundaries are absent or, at least, very far away. Another example is a wave on the
surface of an infinitely extended water surface.

In practice, infinitely extended media do not exist. However, what really con-
cerns us here is the absence of reflections. This condition can also be realized in a
non-infinite medium. For example, in a theater, sound reflections are avoided by
placing heavy tents in the proper locations, and at the borders of a pond, waves may
be absorbed by thick vegetation living in the water.

Let us consider, for simplicity, a one-dimensional medium, our elastic and flex-
ible string, and let us limit the discussion to completely transversal and linearly
polarized motions, as we did previously in Sect. 2.3. This system is ruled by the
differential equation in Eq. (3.1), but we shall not need it. Indeed, we shall now define
the concept of the progressive wave, or simply wave, independently of the differential
equation ruling the system. Namely, we want to establish the characteristics that the
wave function w(z, t) should have in order to be considered a progressive wave.

Let us suppose that we take a shot of the moving string at a certain instant t,
finding the continuous curve shown in Fig. 3.1. Let us take another shot after a time
interval Δt, namely at the instant t + Dt. If the movement is that of a progressive
wave, we must find the same curve translated by a certain distance Dz, as shown
dotted in the figure. In addition, this translation must be proportional to Dt if the
entire wave has to move with a definite speed. Let us call it w.

Let us formally analyze what we have just stated verbally. We want the function
w to have the same value for t and z when we substitute t + Dt for t and z + Dz for
z at the same time, namely it should be w zþDz; tþDtð Þ ¼ w z; tð Þ, where Dz and Dt
are proportional to one another, namely it should be Dz = wDt. This can only
happen if w does not depend on z independently of t; rather, it should be of the type

w z; tð Þ ¼ f z� wtð Þ: ð3:3Þ

Indeed, for such a function, we have

w zþDz; tþDtð Þ ¼ f zþDz� wt � wDtð Þ ¼ f ðz� wtÞ ¼ w z; tð Þ:

Δz

t+Δt

z

Ψ

t

Fig. 3.1 Snapshot of a wave
at time t (continuous) and
t + Δt (dotted) with Δz/
Δt = w
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Note that f(z − wt) is a function of one variable only.
We have checked that w(z, t) should obey Eq. (3.3) to represent a progressive

wave advancing without deformations. Under these conditions, w(z, t) is also a
solution to the wave equation in Eq. (3.1) for whatever function f. Let us check
through direct substitution. Calling f″ the second derivative of f, we have @2f =@t2 ¼
w2f 00 and @2f =@z2 ¼ f 00, and, by substitution in Eq. (3.1), we obtain
w2f 00 � t2f 00 ¼ 0. This equation is satisfied by any function f, provided that

w ¼ �t: ð3:4Þ

First of all, this means that the physical meaning of the constant t in the wave
equation is that it is the wave velocity. Second, the result we have found shows that
there are two possibilities, with velocities equal in absolute value but opposite in
sign. We can say that, beyond solutions of the type f(z − tt) from which we started,
solutions of the type, say, g(z + tt), where g is also an arbitrary function, exist as
well. The former waves advance in the positive direction of z (progressive wave),
the latter move in its negative direction (regressive wave).

One can show that the most general solution to Eq. (3.1) can be expressed as the
sum of two properly chosen solutions, one being progressive and one regressive,
namely as

w z; tð Þ ¼ f z� ttð Þþ g zþ ttð Þ: ð3:5Þ

The latter is neither a progressive nor a regressive wave, in general. We can
obviously also write it as

w z; tð Þ ¼ f t � z=tð Þþ g tþ z=tð Þ:

Let us go back to considerations independent of whether or not the differential
equation is Eq. (3.1), and consider the relevant case of a progressive wave being a
circular function. We call it a monochromatic wave or also a harmonic wave. Its
wave function can be written as

w z; tð Þ ¼ A cosx t � z=tð Þ: ð3:6Þ

We see that this equation describes a cosine (or sine) function moving in time
with constant velocity t. Taking into account that x and k are linked by the relation
k = x/t, we can write the equation as

w z; tð Þ ¼ A cos xt � kzð Þ: ð3:7Þ

Remembering that the phase is the argument of the cosine, we immediately see
that x represents the phase advance per unit time and k the phase advance per unit
length in the direction of motion of the wave.
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We recall that, in a stationary wave at a given instant, all the points on the string
have the same oscillation phase. Contrastingly, in a progressive wave, the phase of
the points of the string increases linearly with z. More precisely, considering that
the phase is the function

/ z; tð Þ ¼ xt � kz ð3:8Þ

let us ask ourselves what the velocity is at which the phase advances, which is the
phase velocity, and which we indicate with tp. This is the velocity of any point of
the wave, for example, a maximum. Namely, let / be the phase at the instant t of
the point at z and let dz be the increment of z such that, at the instant t + dt, the
wave function of the point at z + dz has the same phase /. The situation is shown in
Fig. 3.2. Then, the phase velocity is dz/dt. In other words, the phase velocity is
dz=dtð Þ/¼constant. Consequently, we find the phase velocity imposing on the total
differential of the phase to be zero, namely

d/ ¼ @/
@t

dtþ @/
@z

dz ¼ xdt � kdz ¼ 0;

which gives us

@z
@t

� �
/¼const

¼ x
k
¼ tp: ð3:9Þ

This result is the phase velocity for whatever the differential equation ruling the
system may be, because we did not make any assumptions about it. We repeat that
one can only speak of phase velocity if a phase exists. Being that the phase is the
argument of a circular function, phase velocity makes sense only for monochro-
matic waves. It does not make sense for waves that have different shapes.

If the equation ruling the system is Eq. (3.1), then the phase velocity is also

tp ¼ x
k
¼ t: ð3:10Þ

z

Ψ

t

Δz

t+Δt

Fig. 3.2 Snapshot of a sine
(harmonic) wave at time
t (continuous) and
t + Δt (dotted) with Δz/Δt = t
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We see that the phase velocity, in this case, is equal to the constant t in the wave
equation.

Let us consider a progressive harmonic wave advancing in an arbitrary medium,
not necessarily obeying Eq. (3.1). It might be, for example, an imperfectly flexible
and stiff string. Two possible situations exist, namely the phase velocity may or
may not depend on the wave number. The medium is said to be non-dispersive in
the second case, dispersive in the first.

Being that, in any case, the phase velocity is the ratio between angular frequency
x and wave number k, the non-dispersive case is when this ratio is a constant,
namely when the dispersion relation is Eq. (2.29). This equation can also be written
in the form

x
k
¼ t ¼ constant: ð3:11Þ

We see that systems described by the wave equation in Eq. (3.1) are not dis-
persive. Examples of such systems, beyond that of the elastic string, are the sound
waves in air, the light in a vacuum, etc. In all these cases, the phase velocity is
independent of k and equal to the constant t, appearing, squared, in the wave
equation. Clearly, the expression of t in terms of the physical characteristics of the
medium is different in the different cases.

When the dispersion relation is not given by Eq. (3.11), as is often the case, the
medium is dispersive. We gave an example of that in Sect. 2.3 with a piano string
that is not perfectly flexible. In a dispersive medium, the harmonic waves with
different wavenumbers k (or, as we can also say it, with different wavelengths)
travel at different speeds. Note that in dispersive cases, the wave equation cannot be
Eq. (3.1).

Even if the harmonic waves move in a dispersive medium at different speeds for
different wavenumbers, they still propagate, keeping their shape unaltered.
Contrastingly, non-harmonic waves change their shape as they propagate in a
dispersive medium. The very concept of the progressive wave needs to be extended
in comparison to the definition we gave in the previous section. As a matter of fact,
the concept cannot be defined very precisely. In practice, however, the dependence
of the phase velocity on the wavenumber is usually quite modest. For example, a
white light pulse traveling in a dispersive medium like water does not separate into
its different colors while it propagates. Contrastingly, the longer ocean waves
produced by a storm in the open sea reach shore before the shorter ones.

In this chapter, we shall study the main properties of non-dispersive waves. In
the subsequent one, we shall discuss a few examples of waves in dispersive media,
in particular, light in a material medium. We shall see how, even if the differential
equation of the system is unknown, the knowledge of the dispersion relation will be
enough to understand the physical processes.
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3.2 Production of a Progressive Wave

In this section, we study how to produce a progressive wave. Concretely, we
consider an elastic string, but our arguments have a general character. We consider
purely transversal and linearly polarized motions. Let T0 be the tension and q the
linear mass density of the string. We assume the string to be semi-infinite and take a
z-axis along its position at rest, with the origin in its extreme. We can inject a
progressive wave into the string acting on an extreme by moving it up and down.
This action requires applying a force on the extreme. Let us consider using the
device shown in Fig. 3.3. If w(z, t) is the wave function, the displacement of the
extreme at time t is w(0, t) and the slope of the string in the origin, which is the
direction of the tension there, is @w=@tð Þz¼0. Hence, the component of the tension in
the direction of the motion of the extreme is T0 @w=@tð Þz¼0. The force to be applied
must be equal to and opposite of this. Indeed, being that the mass of an element of
the string is infinitesimally small, the resultant force must be zero so as not to have
an infinite acceleration.

Now, w(z, t) represents a progressive wave. Hence, it must be of the type w(z,
t) = f(z − tt), for which t ¼ ffiffiffiffiffiffiffiffiffiffi

T0=q
p

is the wave velocity.
This condition implies a relation between the partial derivatives of w(z, t). In

particular, at the extreme, we must have

@w
@z

� �
z¼0

¼ � 1
t

@w
@t

� �
z¼0

; ð3:12Þ

which must be satisfied at any instant in time. The externally applied force must
then be

Fe tð Þ ¼ �T0
@w
@z

� �
z¼0

¼ T0
t

@w
@t

� �
z¼0

¼
ffiffiffiffiffiffiffiffi
T0q

p @w
@t

� �
z¼0

:

Ψ

z

T0Fig. 3.3 Injecting a
progressive wave into an
elastic string
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We see that the applied force is proportional to the velocity of the application
point, namely of the extreme. Let us call it w0. The proportionality constant

Z ¼
ffiffiffiffiffiffiffiffi
T0q

p
ð3:13Þ

is a characteristic of the medium, the string in this case, and is called the charac-
teristic impedance of the medium. We see that the two physical characteristics,
tension and linear mass density, determine the two quantities, wave velocity t ¼ffiffiffiffiffiffiffiffiffiffi

T0=q
p

and characteristic impedance Z ¼ ffiffiffiffiffiffiffiffi
T0q

p
, that completely characterize the

waves’ propagation.
Coming back to the external force, as we noticed, it is proportional to the speed

of its application point, namely it is

Fe ¼ Zw0: ð3:14Þ

This force acts against the resistance of the string that is equal to −Zw0. Forces
proportional to velocity and opposite to it absorb energy from outside the system.
Indeed, when we generate the wave, the elements of a section of the string of
increasing length acquire both potential and kinetic energy. This energy must be
injected into the system by an external agent, which is the force in this example.

3.3 Reflection of a Wave

Let us now assume the string to have a second extreme and look at what happens
when it is reached by the front of the wave we have generated. The phenomenon is
the reflection. The type of reflection depends on how the extreme is constrained.

Let us start by assuming the extreme to be fixed to a body of very largemass, which
is immovable. Let us choose the origin of the coordinate z in this extreme and let the
string lay on the negative z-axis. Let us consider the progressive wave f(z − tt)
approaching the extreme moving along the z-axis. When the wave reaches the
extreme, the function f is, in general, different from zero, at least for some value
t. Under these conditions, the extremewouldmove. As this does not happen, the wave
function must have, in its general form, the expression w = f(z − tt) + g(z + tt),
with the second term also being present. Better still, this term is fully determined by the
conditionw(0, t)�0, namely that g(tt) = –f(−tt)). We can say that g is the opposite of
f as evaluated at the opposite value of the argument. In conclusion, we have

w z; tð Þ ¼ f z� ttð Þ � f �z� ttð Þ: ð3:15Þ

We can think of the phenomenon visually, as shown in Fig. 3.4. We imagine
having an imaginary string on the positive z-axis and a regressive wave moving
toward the origin. This wave is f inverted and reflected, as stated above. In the
physical region z < 0, namely the place where the real string is located, the motion
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is the sum of the two waves, the real one and the imaginary one. They propagate in
opposite directions, in such a way as to cancel one another out at z = 0 at every
instant in time.

Let us now look at what happens when the incoming wave is sinusoidal, namely
when it is

f z� ttð Þ ¼ A cos xt � kzð Þ:

Recalling that the cosine is an even function, the reflected wave is

�f z� ttð Þ ¼ �A cos xtþ kzð Þ;

which we can also write as

�f z� ttð Þ ¼ A cos xtþ kzþ pð Þ:

We can then state that the reflected wave is a regressive wave that we can
consider to be the incident wave coming back after having had a phase jump up by
p in reflection. We shall see this situation repeating for several types of waves.

When the incident and reflected waves are present, the resultant displacement
function is

Fig. 3.4 Reflection of a pulse
wave
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w z; tð Þ ¼ A cos xt � kzð Þ � cos xtþ kzð Þ½ � ¼ 2A sin kz sinxt:

We see that all the points of the string, at whatever z, oscillate harmonically with
the same angular frequency x and in the same initial phase. The combination of
incident and reflected waves is a stationary wave.

As a matter of fact, quite similar conclusions are reached if the extreme is free
rather than fixed. To have the extreme be free and the string under tension, we can
attach a small ring to the extreme and have it be free to move up and down on a
vertical post fixed to an immovable body. Under these conditions, and neglecting
friction between ring and post, the vertical component of the tension at the extreme
is zero, and consequently the boundary condition is @w=@zð Þz¼0¼ 0. With argu-
ments very similar to those for the fixed extreme, it is easy to find that a wave pulse
reflects without inversion and a sinusoidal wave reflects without changing its phase.
In the latter case, the combination of an incoming and a reflected wave is still a
stationary wave.

QUESTION Q 3.1. Prove the above statements. ⃞
We now make an observation that will be useful in the subsequent sections. In

the case we considered of a fixed extreme, the string was connected to an object of
very large, ideally infinite, mass that could not move. Let us now consider the case
in which the farther extreme of our string is connected to the first extreme of a
second string of mass density larger than the first one. Consider the propagation of
harmonic waves. The tensions of the two strings are equal. Consequently, the wave
speed on the second string is smaller than that on the first one. We can think of the
condition of the fixed extreme as being the limit of this one when the density of the
second string goes to infinity. In the present case, we state without proving that
when the wave on the first string reaches the junction, it partially reflects back and
partially continues on the second string, with the corresponding velocity. The
transmitted wave, as it is called, does not have any phase change at the joint, while
the reflected wave has a change of phase of p.

Let us now assume the density of the second string to be smaller than that of the
first. We can think of the free extreme as being the limit of this situation when the
density of the second string vanishes. Now, the wave speed on the second string is
larger than that on the first. In this case too, a progressive harmonic wave at the
junction is partially transmitted and partially reflected. Neither the transmitted nor
the reflected wave has a change of phase at the junction. We shall come back to this
in Sects. 4.6 and 5.4.

Let us now consider the following question: what are the conditions to impose to
the far end of the string to avoid any reflection? Consider a progressive wave
traveling on an elastic string stretched along the negative z semi axis incoming from
–∞. Let the extreme of the string be at z = 0. If we want to destroy the wave at the
extreme we must act inversely as we did to generate it. As a matter of fact we
should apply to the extreme a force equal to the velocity of the extreme due to the
wave times the opposite of the characteristic impedance −Z. Indeed, suppose for a
moment that our string would continue beyond z = 0. Clearly there would be no
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reflection under these conditions because there would be no extreme at z = 0. Well,
the string section at z > 0 would exert on the element at z = 0 just that force.

Figure 3.5 schematically shows a possible device for achieving this scope.
Attached to the extreme, we have a piston of negligible mass immersed in a fluid,
which generates a viscous force, namely a force proportional to and opposite of the
velocity of the extreme. The impedance delivered by the “absorber” must be exactly
equal to the characteristic impedance of the string. Under these conditions, the
extreme moves as if the string extends indefinitely beyond it. The energy trans-
ported by the wave is absorbed at the just rate by the absorber. Under these
conditions, we talk of matched termination or of termination in the characteristic
impedance.

In the cases discussed above of the junction between two strings of different
densities, the two characteristic impedances are different as well, the junction is not
matched and reflections exist.

Similar situations are encountered for all the transmission lines, in particular, for
electric pulses traveling through cables. In this case, reflections are also generated at
the end of a cable or at the junction between two cables if the termination or the
junction are not matched. We shall discuss this in Sect. 3.12.

3.4 Sound Waves

We shall now consider a first example of a wave in three dimensions, rather than in
one, as we have done up to now. A very important example is a sound wave in a
gas. A sound wave is produced, for example, by a vibrating string or membrane.
The movement, harmonic or not, displaces a part of the gas in which the source is
immersed, causing a change in the gas’s density and, as a consequence, a change in
the pressure. These differences from equilibrium values of density and pressure, in
turn, generate changes in density and pressure a little farther from the vibrating

T
0

Fig. 3.5 Principle of
termination on characteristic
impedance
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object that is the source of sound. This cyclic succession of events generates a wave
that propagates in space, departing from the source.

Let us fix our attention on a particular small volume of gas. When the wave goes
through, the volume oscillates back and forth about its equilibrium position. If, in
particular, the wave is monochromatic, the motion of the volume is harmonic. Let w
be the displacement of the small volume from equilibrium. Note that the dis-
placement is now longitudinal relative to the propagation direction of the wave.
Sound is a longitudinal wave. Pay attention to the fact that we are considering the
motion of a small gas volume and not of the single molecules it contains. Indeed,
the gas molecules always move, including when no wave is present. We are
interested in the macroscopic ordered motion, which is the average motion of the
molecules in the volume. The latter is very small on a macroscopic scale, but still
large enough to contain an enormous number of molecules. Let us now quantita-
tively see what we have stated in words.

We are considering the wave propagation in a continuum medium. This means
that the wavelengths must always be much larger than the average distance between
molecules, which, as we have seen in the 2nd volume of this course, in a gas at
STP, is on the order of several nanometers. Being that the wavelength of the sound
waves is on the order of centimeters or larger, the condition is certainly satisfied.
A second condition we shall assume is that the variations from equilibrium of
pressure and density are small relative to the unperturbed values. Indeed, this is the
case for the sound waves, in which these variations are on the order of per mille or
less (see Sect. 3.10). It is not the case, however, for the “bang” of a supersonic
airplane or for the waves generated by a blast in a mine.

Let us proceed under these assumptions, assuming, for the sake of simplicity, all
the relevant quantities, namely position, velocity, pressure and density, to be
functions of one space coordinate only (rather than three), which we shall call z. In
this case, we speak of a plane wave, because all the points on a given plane normal
to the propagation direction are equivalent (having the same displacement, velocity,
density and pressure).

We first express the fact that the movement of a small volume of gas generates a
change in density. Let w(z, t) be the longitudinal displacement (namely in the
direction z) of the gas particle that at equilibrium is located at z. Consider a volume
of section S enclosed between two planes perpendicular to the propagation direction
located at z and z + dz when at rest. The mass of air in the volume Sdz at equi-
librium is q0Sdz, where q0 is the equilibrium density. In the presence of the per-
turbation, the volume changes, because its side at z + dz displaces by w(z + dz, t) (if
it is positive, the volume increases) and its side at z displaces by w(z, t) (if it is
positive, the volume decreases). The volume consequently becomes
Sdzþ Sw zþ dz; tð Þ � Sw z; tð Þ ¼ Sdzþ S @w=@zð Þdz. Considering that mass is con-
served, we then have q0Sdz ¼ qS 1þ @w=@zð Þdz, where q is the new density.

Let us call dq the difference between the actual and the equilibrium density,
namely dq = q − q0. For small values of @w=@z, we can approximate the above
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expression solved for q, namely q ¼ q0 1þ @w=@zð Þ�1, as q ¼ q0 1� @w=@zð Þ. We
then obtain

dq ¼ �q0
@w
@z

: ð3:16Þ

The second process is the change in the pressure due to the change in density.
Indeed, in every gas, ideal or real, definite relations exist between pressure and
density, say p = p(q). Let p0 be the pressure at equilibrium and dp = p − p0 the
difference of pressure in the presence of the wave. Being that this is small, we can
write dp ¼ @p=@qð Þq0dq and, calling a � @p=@qð Þq0 , also

dp ¼ adq; ð3:17Þ

which tells us that the variation in pressure is proportional to the variation in
density.

Changes in pressure act on the gas, causing variations in its motion. This is
clearly the second Newton law. The mass of gas in the volume we are considering is
q0Sdz and its acceleration is @2w=@t2.

The acting force is the difference between the pressure forces at z and z + dz,
namely S p z; tð Þ � p zþ dz; tð Þ½ � ¼ � @p

@z Sdz ¼ � @dp
@z Sdz. Hence, the second Newton

law gives us q0Sdz
@2w
@t2 ¼ � @dp

@t Sdz. Simplifying, we have

q0
@2w
@t2

¼ � @dp
@t

:

We now use Eq. (3.17) to eliminate dp and write

q0
@2w
@t2

¼ �a
@dq
@t

and, finally, using Eq. (3.16) to eliminate dq, we obtain

@2w
@t2

� a
@2w
@z2

¼ 0: ð3:18Þ

This is the wave equation we know. The propagation velocity is

t ¼ ffiffiffi
a

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@p
@q

� �
q0

s
: ð3:19Þ

We must now find how the pressure depends on the density, namely the function
p(q). For that, we need two assumptions, one on the nature of the gas (its state
equation) and one on the type of thermodynamic process happening during its
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compression and expansion. As for the state equation, we shall consider the gas to
be ideal, which is a good approximation under normal conditions. To establish
which is the type of thermodynamic process, consider two adjacent regions of
maximum and minimum pressure due to the wave passage. They are also regions of
maximum and minimum temperature. They are separated by half a wavelength.
You might think that heat would flow from the high to the low temperature region,
but this is not so (do not worry; Newton himself made this mistake). Indeed, heat is
transferred through collisions between faster and slower molecules. However, the
time needed for this process is much longer than the time available, which is less
than half a period, because the latter is the time interval in which the roles of hot
and cold regions are interchanged. Recall that the wavelength is much larger than
the mean path between collisions. We further observe that we are considering small
relative variations of the thermodynamic variables. Under these conditions, the
process is reversible.

In conclusion, the process in the gas is a reversible adiabatic transformation of an
ideal gas, whose equation is pVc ¼ const (where c is the ratio of the specific heats).
Considering that q is inversely proportional to V, we can write the equation as
p ¼ constqc. Differentiating this expression, we obtain

@p
@q

¼ cp
q
:

Coming back to the velocity in Eq. (3.19), we write

t2 ¼ cp0=q0 ¼ c Vp0ð Þ= Vq0ð Þ:

We use the gas equation Vp0 ¼ nRT , in which n is the number of moles, and
express the mass of the gas as q0V ¼ nl, where µ is the molar mass. Finally, we
obtain

t ¼
ffiffiffiffiffiffiffiffiffi
cRT
l

s
: ð3:20Þ

This is the speed of sound in air and, more generally, in a gas. Note how the
speed of sound depends on the temperature and the nature of the gas, but is
independent of its pressure and its density.

Let us compare the result with the experiment. As we shall see in Sect. 4.3, the
velocity of sound in air at STP is 332 m/s. On the other hand, Eq. (3.20) can also be
written as

t ¼
ffiffiffiffiffiffiffi
cp0
q0

r
: ð3:21Þ

For air, c = 1.4 and the molar mass (being an average) is 29 g/mol.
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At atmospheric pressure p0 = 1.01 � 105 Pa, the density is q0 ¼
29� 103 kg/molð Þ= 22:4 l/molð Þ ¼ 1:29 kg/m3 and we have

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:01� 105 � 1:4

1:29

r
¼ 332 ms�1;

in accordance with the measured value.
QUESTION Q 3.2. The Amundsen-Scott scientific station is located at the South

Pole at 2835 m above sea level. During winter, the outside temperature may reach
− 70 °C. What would be the speed of sound? ⃞

QUESTION Q 3.3. What would be the speed of sound in He at STP (molar mass is
4 g/mol)? ⃞

3.5 Plane Harmonic Plane Waves in Space

In this section, we shall more precisely define the concept of a wave in three
dimensions. In the preceding section, we considered a plane wave. This concept can
be easily defined for a harmonic wave, namely when the phase of the wave is
defined. In this case, the wave surface is defined as the locus of points having the
same phase at a given instant. Clearly, the surface geometry of a wave can be
anything. For example, a bell ringing in air produces a wave whose surface at a
large distance from the bell is a sphere. A portion of the same wave at a still larger
distance may be thought to be plane. We shall consider here the simplest geometry,
namely a plane wave and the wave equation for which it is a solution. We shall not
analyze different wave shapes, but simply call the attention of the reader to the fact
that small portions of even complicated shapes can often be locally approximated
with a plane surface, to which the concepts that we shall now develop can be
applied.

Let us consider a progressive plane harmonic wave. We call z′ the direction in
which it propagates. Being a plane wave, its wave function depends on time and on
z′ but not on the other two coordinates, which we call x′ and y′. In this reference
frame, and with a proper choice of the initial phase, we can write the wave function
as

w z0; tð Þ ¼ A cos xt � kz0ð Þ:

This expression is identical to that in one dimension due to the particular choice
of the reference frame. In general, an arbitrary reference frame, say x, y, z, is rotated
relative to x′, y′, z′ by certain angles about the origin (we can forget the translations
that only imply an irrelevant change of the initial phase).

To have the equation of our wave in a generic (x, y, z) reference frame, we must
express in this frame the product that is kz′ in the (x′, y′, z′) frame. Let r′ = (x′, y′, z′)
and r = (x, y, z) be the position vectors of a generic point on the wave in the two
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frames. Let us now introduce the vector k having magnitude k and the same
direction and sense as those of the propagation of the wave. The components of k in
the two reference frames are (0, 0, k) and (k x, k y, k z), respectively. We now see that
kz′ is no less than the scalar product of k and r′ in our original reference frame.
Remembering that the scalar product is invariant under rotations, we can write
kz0 ¼ k � r0 ¼ k � r ¼ kxxþ kyyþ kzz. In conclusion, a progressive harmonic plane
wave is represented by the equation

w x; y; z; tð Þ ¼ A cos xt � k � rð Þ ð3:22Þ

or, in complex notation, by

w x; y; z; tð Þ ¼ Aei xt�k�rð Þ: ð3:23Þ

We have stated that k is a vector, namely it is the wave vector. However, as is
well known, not all the ordered triplets of numbers are the components of a vector.
To be so, they must properly transform under rotations of the reference axes. Let us
show that k is indeed a vector by looking at its physical meaning. The meaning of
the absolute value of k is to be the change of phase (in radiants) per unit dis-
placement in the propagation direction of the wave. Consequently, the meaning of
one of its components, kx, for example, must be the change of phase per unit
displacement in the x direction. Let h be the angle of k with the x-axis. Now, k is
inversely proportional to the wavelength k, which is the distance between, for
example, two consecutive maxima, as shown in Fig. 3.6. From the figure, we see
that the distance between two consecutive maxima measured in the x direction,
which we might call kx, is kx = k/cos h, which is larger than k. Hence, kx, which is
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Fig. 3.6 A plane wave, the
wavelength and the wave
vector and their projections on
the axes
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inversely proportional to kx, is kx = k cos h. Hence, k is a vector. Contrastingly, the
triplet of numbers (kx, ky, kz) is not a vector. There is no vector wavelength.

One can immediately verify that a progressive harmonic plane wave satisfies the
relations

@2w
@t2

¼ �x2w;
@2w
@x2

¼ �k2xw;
@2w
@y2

¼ �k2yw;
@2w
@z2

¼ �k2zw:

We can find the wave equation for which the wave is a solution only if we know
the dispersion relation of the system. In three dimensions, this is a relation between
the angular frequency x and the magnitude of the wave vector k. For the
non-dispersive media, the relation is the one we know, in which we must reinterpret
k2 as the square of the wave vector. We have

x2 ¼ t2k2 ¼ t2 k2x þ k2y þ k2z
� �

: ð3:24Þ

Hence, the differential equation is

@2w
@t2

� t2
@2w
@x2

þ @2w
@y2

þ @2w
@z2

� �
¼ 0; ð3:25Þ

which we can write in a compact notation as

@2w
@t2

� t2r2w ¼ 0: ð3:26Þ

This is called the wave equation in three dimensions. In the following section,
we shall study several waves, which are solutions to these equations in different
physical situations. The plane harmonic waves are particular solutions of
Eq. (3.26). Other solutions may be different, both in their shape (spherical, cylin-
drical, any) and in their dependence on time (not necessarily sinusoidal).

3.6 Electromagnetic Waves

We have already seen, in Chap. 10 of the 3rd volume of this course, how the
Maxwell equations, which are the partial differential equations governing all
electric and magnetic phenomena, imply the existence of electromagnetic waves. In
this solution to the Maxwell equations, both electric and magnetic fields in a
vacuum obey the wave equation with a propagation velocity that is equal to the
speed of light. We shall repeat here the demonstration for the sake of
self-containment and briefly recall how Maxwell experimentally verified the pre-
dictions of the theory he had developed.
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Let us first recall that James Clerk Maxwell (Scotland UK, 1831–1879) worked
on the developments that finally led to his famous equations for ten years between
1855 and 1865, when he published the complete theory in the paper “On the
dynamical theory of the electromagnetic field”.

The wave equations we obtained in the previous sections were consequences of
the Newton laws applied to a mechanical medium. Now that there is no material
medium, the underlying equations are different, but the wave equation is the same
(even better, it is now exact rather then an approximation). This is a consequence of
the fact that, in the case of the electromagnetic field, a cyclic mechanism exists
similar to that which we discussed for sound. This process of cyclically chained
causes and effects generates a disturbance that, detached from the source that gave it
its origin, propagates in space with a well-defined speed.

Let us first describe this mechanism qualitatively. Suppose we have a point
charge initially at rest in the origin of our reference frame. It produces a static
electric field (Coulomb’s law) and no magnetic field. Let us now assume that the
charge accelerates in a certain direction for a brief time interval Dt and then con-
tinues in a uniform motion. In the immediate surroundings of the charge, we now
observe the fields generated by a charge in motion. In particular, the magnetic field
is now different from zero. This means that, in the brief time interval, the magnetic
field has varied from zero to its final value. However, for the Maxwell equations, a
variation over time of the B field produces a curl of the E field, and consequently
also an E field, which, in turn, also varies with time. Additionally, the Maxwell
equations tell us that an electric field varying over time generates a curl of B, and
hence a B, which varies with time,…., and so on. Initially, we had the fields of a
charge at rest in the entire space. Now, they are those of a charge in motion, but
only within a sphere, whose radius is growing over time with the speed of light.
Outside the sphere, the fields are still those of the charge at rest. We can say that the
news that the charge had begun its motion did have not time to reach the points
outside the sphere. At the surface of the sphere, a region cDt thick separates the two
types of field. In this region, we have the fields of an accelerating charge connecting
the internal to the external regions. Figure 3.7 schematically shows the electric field
lines. The advancing spherical shell is the electromagnetic wave.

It is important to distinguish two “actors” in the process described. The first actor
is the charge that produces the wave with its acceleration. Indeed, the sources of
electromagnetic waves are, in any case, accelerating electric charges. A charge at
rest or moving with constant velocity does not produce a wave. The second actor is
the wave, which, once it has been born, has, so to speak, a proper life, propagating
independently of the source. If, for example, the source charge were to be anni-
hilated by an equal and opposite charge, the wave would continue its travel.

Let us now analyze how the Maxwell equations quantitatively describe the
interplay between electric and magnetic fields, as we did in Chap. 10 of the 3rd
volume. We shall consider what happens in a vacuum, namely in the absence of
charges and currents. Under these conditions, the Maxwell equations are

3.6 Electromagnetic Waves 95



r � E ¼ 0; ð3:27Þ

r � E ¼ � @B
@t

; ð3:28Þ

r � B ¼ 0; ð3:29Þ

and

r� B ¼ l0e0
@E
@t

: ð3:30Þ

Let us take the curl of both sides of Eq. (3.28), obtaining

r�r� E ¼ � @ r� Bð Þ
@t

:

We now use the vector identity

r�r� E ¼ r r � Eð Þ � r2E

and express r� B on the right-hand side with Eq. (3.30). We also use Eq. (3.27)
for r � E, obtaining

O

Fig. 3.7 The electric field
lines for a charge that is at rest
in O, accelerates during a
brief time interval and then
moves at constant speed to the
left. The dotted lines guide the
eye to the initial position
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@2E
@t2

� 1
l0e0

r2E ¼ 0: ð3:31Þ

A similar argument, starting from Eq. (3.30), leads to the same equation for the
magnetic field, namely to

@2B
@t2

� 1
l0e0

r2B ¼ 0; ð3:32Þ

We have thus found that both electric and magnetic fields in a vacuum obey the
wave equation. Namely, the Maxwell equations foresee the existence of electro-
magnetic waves, propagating in a vacuum with speed

c ¼ 1ffiffiffiffiffiffiffiffiffi
l0e0

p : ð3:33Þ

The two constants on the right-hand side are measured with electrostatic and
magnetostatic experiments respectively. We recall that the differential equations
ruling the electric and magnetic fields under time-independent conditions are

r � E ¼ q=e0; r� B ¼ l0j: ð3:34Þ

Knowing these values, Maxwell not only predicted the electromagnetic waves
but also found that their velocity should have been exactly equal, within the
experimental errors, to the speed of light. Maxwell concluded that light must be an
electromagnetic phenomenon, unifying electromagnetism and optics, two chapters
of physics that had been completely separate before him.

However, in 1865, the experimental values of both sides of Eq. (3.33) were
known with a rather limited accuracy. We shall discuss the measurements of the
velocity of light in Chap. 4. Here, we will just mention that, in 1865, the results of
two laboratory measurements were available. In 1849, Hippolyte Fizeau (France,
1819–1896) had measured the value c = 3.15 � 108 m/s. In 1862, in a more
accurate experiment, Léon Foucault (France, 1819–1868) had obtained c = 2.
98 � 108 m/s. The two results differ by about 5 %. The quantity on the right-hand
side, called the ratio of units at the time, had been determined by Rudolf
Kohlrausch (Germany, 1809–1858) and Wilhelm Weber (Germany, 1804–1891) in
1856. Those authors had measured the potential difference of a capacitor of known
capacitance, thereby establishing the charge electrostatically. The capacitor was
then discharged through a ballistic galvanometer, measuring the same charge as
current intensity integrated over time. The result was (e0l0)

−1/2 = 3.11 � 108 m/s.
As Maxwell puts it, “the only use made of light in the experiment was to see the
instruments”.
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While the values were not in disagreement, their experimental uncertainties were
large, and Maxwell thought he had to improve the situation. He developed an
ingenious and elegant experiment, which we described in the 3rd volume. We shall
not repeat the description here, but will only recall that it was an absolute mea-
surement of the ratio between the force between two current-carrying coils and
between the plates of a capacitor charged through a voltage generated by the same
current running on a standard resistor. The outcome, presented to the Royal Society
of London in 1868 under the title “On a direct comparison of electrostatic with
electromagnetic force”, was (e0l0)

−1/2 = 2.88 � 108 m/s.
Indeed, precise measurements both of the ratio of units and of the speed of light

are quite difficult. After the publication of the Maxwell theory, work to increase the
accuracy of both started worldwide. In 1878, in the third edition of his “A treatise
on electricity and magnetism”, James Clerk Maxwell wrote

It is manifest that the velocity of light and the ratio of the units are quantities of the same
order of magnitude. Neither of them can be said to be determined as yet with such degree of
accuracy as to enable us to assert that the one is greater than the other. It is to be hoped that,
by further experiments, the relation between the magnitudes of the two quantities may be
more accurately determined.

In the mean time our theory, which asserts that these two quantities are equal, and assigns a
physical reason for this equality, is not contradicted by the comparison of these results such
as they are.

By the next year, the year of the Maxwell’s death, the equality of the two
quantities had been established with 1 % accuracy. William Ayrton (UK, 1847–
1908) and John Perry (UK, 1850–1920) had measured the ratio of units as

l0e0ð Þ�1=2¼ 2:96� 0:03� 108 m/s and Albert Michelson (USA, 1852–1931) the
velocity of light (in air) as c = 2.99864 ± 0.00051.

We shall now discuss the fundamental properties of the electromagnetic waves
in a vacuum. The wave equation has an enormous number of different solutions. Let
us consider the simplest one, which is the plane monochromatic progressive wave.
In complex notation, we can write for the electric and magnetic fields

E ¼ E0e
i xt�k�rð Þ; B ¼ B0e

i xt�k�rþ/ð Þ; ð3:35Þ

where the “amplitudes” E0 and B0 are now two vectors. We have chosen the origin
of the time in order to have the initial phase of the electric field be equal to zero.

Maxwell equations tell us much more about the properties of the electromagnetic
waves in a vacuum. Electromagnetic waves are transversal, namely the vectors
E and B are both perpendicular to the propagation direction. In addition, they are
perpendicular to one another. The sense of the wave propagation is the direction of
E � B. Finally, the ratio of the magnitudes of E and B is equal to the velocity c.

We demonstrate these statements, which are true in general, in the particular case
of a plane monochromatic wave. Differentiating Eq. (3.35), we immediately get
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@E
@t

¼ ixE;
@B
@t

¼ ixB; ð3:36Þ

r � E ¼ �ik � E; r � B ¼ �ik � B; ð3:37Þ

and

r � E ¼ �ik� E; r � B ¼ �ik� B: ð3:38Þ

The Maxwell equations for the divergences in a vacuum in Eqs. (3.27) and
(3.29) give us, for the monochromatic plane wave,

k � E ¼ 0; k � B ¼ 0; ð3:39Þ

namely, both fields are perpendicular to the propagation direction of the wave,
which is the direction of the wave vector k.

The Maxwell equations for the curls in a vacuum in Eqs. (3.28) and (3.30) give
us, for the monochromatic plane wave,

k� E ¼ xB; k� B ¼ �e0l0xE ¼ �c�2xE: ð3:40Þ

These equations imply that E and B are mutually perpendicular and that k has
the same sense as E � B. Remembering that x/k = c and taking into account that
E is perpendicular to k, we immediately find that the ratio of the magnitudes of the
fields is

B ¼ E=c: ð3:41Þ

In conclusion, the electric and magnetic fields in an electromagnetic wave are
tightly connected. Once we know one of them, we know the other as well. In the
study of electromagnetic waves, it is consequently sufficient to consider one field
only, calculating the other one when necessary. In the following section, we shall
deal with the electric field, chosen because it is usually the one giving the most
directly observable effects.

We also note that the particular wave in Eq. (3.35) that we have considered is
not only monochromatic and plane but also plane polarized. Namely, the directions
of the fields do not depend on time or position. In general, the directions of E and
B vary from point to point and from instant to instant, while remaining perpen-
dicular to one another and to the propagation direction.
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3.7 The Discovery of Electromagnetic Waves

With his beautiful theory, Maxwell had unified (meaning he had described them
under the same set of equations) two previously separated fields, namely electro-
magnetism and optics. However, the existence of electromagnetic waves, produced
by electric charges moving in a circuit as predicted by the theory, had to be
experimentally verified. Starting immediately after 1865, this difficult experimental
problem was attacked by a number of scientists for a period stretching over twenty
years, finally being solved by Heinrich Hertz (Germany, 1857–1894) in 1887.

The basic prediction of the theory that needed to be checked experimentally was
whether electric charges and currents do, indeed, generate waves in which the
electric and magnetic forces, using the language of the time, propagate with the
speed of light. We might think, for example, of quickly discharging a capacitor and
measuring the delay of a possible electric effect on an electrometer at a distance. Or
we might rapidly excite a magnet and measure the delay with which the needle of a
compass reacts, again at a certain distance. We note that the distance between the
source where the wave is produced and the position where we attempt to detect it
should be sufficiently large. As a matter of fact, the electric field is generated by two
causes: electric charges and variations in time of the magnetic field. Similarly, the
magnetic field is the result of the currents in the conductors and the variations in
time of the electric field. The contributions resulting from the charges and the
currents are those dominant near the source, while the contributions due to the rate
of change of the other field, which are the ones in which we are interested, become
dominant at distances substantially larger than the main wavelengths of the game.
The wavelengths generated by a conductor are on the order of the dimensions of the
conductor itself. In conclusion, we should place our detectors at, say, ten meters
from a one meter or so long source. As a matter of fact, Michael Faraday (UK,
1791–1867) had already attempted this type of experiment, without finding any
effect. This was before the development of the Maxwell theory, and thus he did not
know what delay to expect.

As opposed to Faraday, Hertz knew that it was a minuscule delay, only 30 ns at
10 m. The main problem in using a phenomenon like the discharge of a capacitor or
the excitation of a magnet is that it is too slow, namely its duration greatly exceeds
30 ns. In an address delivered at a conference in Heidelberg in 1889, Hertz
explained this point as follows (from the English translation of 1889 by D.E.
Jones):

Such a small fraction of time we cannot directly measure or even perceive. It is still more
unfortunate that there are no adequate means at our disposal for indicating with sufficient
sharpness the beginning and the end of such a short interval. If we wish to measure a length
correctly of the tenth part of a millimeter it would be absurd to indicate the beginning of it
with a broad chalk line. If we wish to measure a time correctly to the thousands part of a
second (which is still about 30 000 longer than 30 ns) it would be absurd to indicate its
beginning by the stroke of a big clock.
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Hertz carefully studied the discharge of capacitors and conductors, finding
durations on the order of tens of microseconds and, hence, too long for his purpose.
He did, however, discover that, under suitable conditions, the discharge is not a
continuous process, but rather

it consists of a large number of oscillations in opposite senses which follow each other
exactly at equal intervals.

Hertz was able to discharge conductors and excite oscillations having periods
between 10 and 1 ns.

We now have indicators for which 30 ns is not too short provided that we can get only two
or three of such sharply-defined indicators.

In practice, Hertz employed a Ruhmkorff induction coil, a device that had been
patented in 1851 by Daniel Ruhmkorff (Germany, 1803–1877) and was in common
use at the time. Hertz modified the coil as described below. The coil, schematically
shown in Fig. 3.8, is essentially a transformer composed of two cylindrical coaxial
solenoids wrapped around an iron core. One of them, the primary circuit, has a
limited number, say N1, of turns of a thick wire, while the secondary has a large
number of turns, N2, of a thin wire. The primary is connected to the poles of a
battery, providing a continuous voltage through a switch. The switch is periodically
closed and opened by a small motor, about one hundred times per second. In this
way, a current variable over time is generated in the primary, which electromag-
netically induces an electromotive force in the secondary. The amplitude of the
oscillating emf in the secondary is N2/N1 times larger than that in the primary. This
transformation ratio, as it is called, can be as high as several hundred. In the
Ruhmkorff coil, the secondary is open. The emf between its terminals (a and a′ in
Fig. 3.8) can be of several kilovolts.

Hertz joined two straight strands of copper, each 75 cm long with a 5 mm
diameter, to the terminals and two spherical conductors of radius R = 15 cm at their
far extremes (B and B′ in the figure). The two near extremes of the wires were
terminated by two small conducting spheres at a distance of a few millimeters,
constituting a spinterometer.

Hertz could adjust the distance s between the spheres of the spinterometer with a
micrometer in order that a spark would occur when the emf between the small
spheres reached a certain value.

The operation of the device is as follows. The switch of the primary having been
closed, the emf between the terminals of the secondary increases with time. In

s

B B'

A

a a'

Fig. 3.8 The Hertz device
for generating
electromagnetic waves. A is
the Ruhmkorff coil
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particular, the two larger conductors B and B′ charge up with opposite charges, like
a condenser. When the emf reaches the preset value, the spark occurs. The two
conductors B and B′ discharge through the copper wires, whose resistance is small,
on the order of the ohm. As a matter of fact, the “circuit” made of B, B′, the wires
and the spark behave like an oscillating circuit and the discharge oscillates as in the
above sentences by Hertz. The circuit is not in a stationary regime. The current
intensity is different in its different sections. In addition, the circuit is not even
closed, similarly to the one we considered in Sect. 10.2 of the 3rd volume. Note that
the secondary circuit, which is in parallel with the spark, offers a completely
negligible contribution during the discharge, due to its much higher impedance at
the high frequencies of the oscillating discharge. However, it will be active in the
next phase, when the two large spheres will be charged again.

We need to know the period of the oscillating discharge. This is clearly
T ¼ 2p

ffiffiffiffiffiffi
LC

p
, where L is the inductance and C is the capacitance of the oscillating

circuit. The capacitance is that of the two spherical conductors, namely
C = 4pe0R. With R = 15 cm, we have C = 17 pF. For the calculation of the
inductance, Hertz used an approximate formula by Neumann, finding L = 0.22 µH.
The calculated value of the period is then T = 12 ns. Hertz had a source of suffi-
ciently sharp indicators.

But these would be of little use to us if we were not in a position to actually perceive their
action up to the distance under consideration, namely about ten meters. This can be done by
very simple means. Just at the spot where we wish to detect the force we place a conductor,
say a straight wire, which is interrupted in the middle by a small air-gap. The rapidly
alternating (electromotive) force sets the electricity of the conductor in motion, and gives
rise to a spark in the gap. The method had to be found by experience, for no amount of
thought could well have enabled one to predict it would work satisfactorily. For the sparks
are microscopically short, scarcely a hundredth of millimeter long; they only last about one
millionth of a second. It almost seems absurd and impossible that they should be visible;
but in a perfectly dark room they are (evidence by Hertz) visible to an eye which has well
rested in the dark.

Once the method had been found, Hertz worked on it, optimizing the dimensions
and the geometry of the detecting wire. He found its detector behaving as an
acoustic resonator, namely a high sensitivity could be achieved by tuning the
detector to the same frequency as the wave, which was the frequency of its
generator.

Then, Hertz designed the experimental conditions so as to obtain stationary,
rather than progressive, waves in his laboratory. He located the source at a fixed
point and observed the intensity of the sparks in its detector in different locations in
the laboratory. He found, as expected, positions of maximum intensity alternating
with positions of minimum intensity of the sparks. By measuring the distance
between two consecutive minima, he determined the wavelength. He had calculated
the theoretical period, as we have seen, and he calculated the wave velocity
(wavelength divided by the period). The result was the speed of light, within the
experimental uncertainties.
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He further investigated the effect of rotating the detecting wire in a given
position. The intensity of the spark was a maximum if the direction was perpen-
dicular to the direction joining the observation point to the source, while the sparks
completely disappeared when the wire was pointing to the source. In agreement
with the Maxwell theory, the wave is transversal.

Hertz had proved experimentally that the Maxwell theory is true. Not only had
the unification of electromagnetism and optics been completed, but new phenomena
of physics had been foreseen and were waiting to be explored and exploited: the
phenomena of electromagnetic waves of wavelengths both larger than those of
light, namely on the order of millimeters and centimeters up to kilometers, and
shorter than those of light in the ultraviolet and beyond.

Hertz himself continued his study of the electromagnetic waves that he had
learnt to generate, which had wavelengths on the order of meters. Locating the
source in the focus of a parabolic mirror, he produced a parallel beam. He showed
that the beam propagated in a straight line, that it was producing a shadow when
encountering obstacles, and that it reflected and refracted in exactly the same
manner as the light. In addition, he showed that the polarization properties (see
Chap. 6) were also equal to those of light. Hertz was now able to perform all the
classical experiments of optics with “hertzian waves”.

Fourteen years after the first successful experiment by Hertz, in December 1901,
Guglielmo Marconi (Italy, 1874–1937) was able to exploit, for the first time, the
“hertzian waves” in a transatlantic radio transmission from Poldhu, Cornwall,
England to St John’s, Newfoundland, Canada, over a distance of 3500 km.

3.8 Sources and Detectors of Electromagnetic Waves

The sources of electromagnetic waves are, in any case, accelerating electric charges.
A charge at rest generates only a time-independent field, but no wave. For the
relativity principle, a charge in uniform rectilinear motion cannot generate a wave
either. In every physical source of electromagnetic waves, an atom, a lamp, a radio
station or a star, accelerating charges are always present. Often, their motion is an
oscillation.

We shall pay attention here to the electric field produced by a charge in an
arbitrary motion (remember that, in a wave, electric and magnetic fields are con-
nected). From the 3rd volume, we know the electric field produced by a charge at
rest, which is given by Coulomb’s law. From this, we can obtain the electric field of
a point charge in uniform rectilinear motion through a Lorentz transformation, but
we shall not need it. The expression of the electric field of a point charge in
arbitrarily accelerated motion obtained by solving the Maxwell equation is rather
complicated, but we shall not need it in its complete form.

Figure 3.9 shows the trajectory of the point charge q. Let E(r, t) be the electric
field of the charge at a generic point P at a distance r from the charge at the instant
t. As shown in the figure, r is the vector from the charge position at the instant t to
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the point P. Well, by solving the Maxwell equations, one finds that the field in
P does not depend on r but rather on the position the charge had in a preceding
instant t′. This instant is precedent by the time necessary for the information to
reach the point P, moving at the speed of light c. Namely, if r′ was the distance at
the instant t′, it is t′ = t − r′/c. The time t′ is called retarded time. To better
understand this, suppose the charge emits light pulses while moving. An observer in
P looking in the instant t does not see the position occupied by the charge at the
instant t but the one it occupied at t′ = t − r′/c.

Hence, the field of a point charge in an arbitrary motion is a function of the
distance at the retarded time r′. As a matter of fact, in the study of electromagnetic
radiation, we are always at distances that are large compared to the wavelength of
the radiation under study. The complete expression of the electric field contains
terms decreasing with increasing distance r′ as 1/r′, terms decreasing as 1/r′2 and
terms decreasing as 1/r′3. Only terms proportional to 1/r′ are sizeable at large
distances, while the others rapidly become negligible.

We call the part of the electric field that decreases as 1/r′ with the distance the
radiation field. This is the only term relevant for our discussion. This is the term
that causes the light of objects very far away, like stars, to be visible to our eyes and
our instruments, namely so their field will still be large enough to excite the cells of
our retina or our sensors. If the field was decreasing as 1/r′2, as the Coulomb field of
a charge at rest would, we would not see any stars; our sky would be dark both at
night and during the day.

A further simplification is possible when the motion of the charge develops in a
limited space, which is much smaller than the distance to the observation point. In
this case, the distance does not vary too much with time and we can make its value r
′ at the retarded time equal to its actual value r. In addition, we shall assume the
velocity of the charge to be much smaller than the speed of c. All these assumptions
are well satisfied in the situations we shall discuss, in which we shall deal with the
field generated by electrons inside atoms or by the conduction electrons oscillating
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r '

r

2
t '

t
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n
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Fig. 3.9 The electric field of
a charge moving in an
arbitrary motion
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in an aerial at a large distance from it. Under these conditions, the expression of the
electric field of a point charge, found by R. Feynman, is

Erad ¼ � q
4pe0

an t � r=cð Þ
rc2

; ð3:42Þ

where r is the present distance between the charge and the observation point P and
the vector an is the component of the acceleration of the charge in the direction
normal to r, namely the projection of the acceleration on the plane normal to the
direction in which the charge is seen from P. We call this direction the line of sight.
We shall use Eq. (3.42) very often in the subsequent sections.

As already stated, all the electromagnetic waves in a vacuum are described by
the same equation, are generated by oscillating charges, propagate with the same
velocity, are, in any case transversal, etc., independently of their wavelengths.
However, their wavelengths span an enormous number of orders of magnitude, and
consequently they can give origin to very different phenomena, depending on the
wavelength. Different are their physical sources and the instruments required to
detect them are different.

For example, FM radio, TV broadcasts and cellphones use wavelengths from
100 mm to 10 m (corresponding to frequencies in the range from 30 MHz to
3 GHz). Radars employ shorter wavelengths, say from 1 mm to 100 mm (3–
300 GHz). These waves exist in nature and can be generated artificially as well.
They can be detected using an aerial, which can be schematically thought of as a
metallic bar. The electric field of the incoming wave forces the conduction electrons
into oscillations, generating an emf in the bar, which is amplified by an electronic
circuit. In this way, we can follow the evolution of the magnitude of the wave field
as a function of time. Inversely, we can generate an oscillating electromotive force
with an electronic circuit and excite the aerial with it. The aerial will transmit an
electromagnetic wave.

Electromagnetic waves are visible, namely they are light, in the wavelength
range of 0.38 µm < k < 0.78 µm, where the color blue has the shortest length, the
color red the largest. The corresponding frequency band is roughly from 400 to
750 THz. The band is quite narrow and is centered around the maximum on the
solar spectrum. The evolution of our eyes has determined this to be visible.
Examples of artificial sources are common lamps and LASERs. The latter produce a
qualitatively different type of light, as we shall see. Several detectors are available,
ranging from photographic emulsions to photodiodes to photomultipliers.

The infrared band is at frequencies immediately smaller than the smallest visible
one, ranging from several dozen THz to 750 THz (in wavelength from dozens of
µm to 0.78 µm). They are produced by hot bodies and by our MASERs. We can
detect them, for example, with bolometers, which are blackened foils, or other
absorbing bodies that, when exposed to the radiation, heat up so that their tem-
perature of equilibrium with the environment can be measured.
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The ultraviolet band is on the other side of visibility, down to wavelengths of a
few dozen nanometers. At still higher frequencies, we have X-rays and then
gamma-rays.

This very limited discussion was meant simply to familiarize the reader with the
most common terminology and will not be pursued any further. However, the
following very important issue must be still mentioned. The signal induced by an
electromagnetic wave can be detected and amplified by an electronic circuit, pro-
vided the circuit is fast enough to follow the evolution in time of the electric field of
the wave. This can be done only up to a certain maximum frequency. The exact
value of this limit changes with the progress of technology, but we can think of it as
being in the range of the GHz. Similar high frequency limits exist for the sources.

Let us consider the sources first. In the infrared, in the range of visibility and at
higher frequencies, the macroscopic sources, like a lamp or a star, contain an
enormous number of atoms. A fraction of these atoms, once excited, are the
microscopic sources of radiation. The important point is that each atom oscillates
independently of all the other ones. Even when the oscillations are at the same
frequency, their initial phases are chaotically distributed. Each single oscillation
lasts for a specific total time, which is typically 10–8 s. This duration is much longer
than the oscillation period (say 10–14 s) and much shorter than the macroscopic
times. As a consequence, even if the emitted wave is practically monochromatic, its
instantaneous phase varies in a chaotic way, completely outside our control. These
sources are called thermic sources.

This is not the case with the MASERs and the LASERs. In these systems, we are
capable of having all the atoms oscillate in phase with one another in a process
called stimulated emission. MASER and LASER stand, respectively, for
Microwave (in the infrared) and Light Amplification by Stimulated Emission of
Radiation. The nature of the coherent radiation they produce is completely differ-
ence from that of the thermal sources. We shall come back to this in Sect. 4.8.

Let us now discuss how we can detect an electromagnetic wave. As we shall see
in the next section, any progressive wave, and the electromagnetic ones in partic-
ular, carry energy with them. We can detect a wave only if our detector, or sense
organ, absorbs a sufficient amount of energy. To proceed, we shall now introduce a
few physical quantities, with definitions that are valid for every type of progressive
wave.

Let dR be an infinitesimal surface normal to the direction of propagation of the
energy of the wave. Energy propagates in the direction of the wave vector k for a
harmonic wave (for which it can be defined) in an isotropic medium, but not under
every circumstance. We shall study the case of non-isotropic media in Chap. 6. Let
dU be the energy of the wave crossing dR in the infinitesimal time interval dt. We
define as elementary the energy flux dU through the surface element dR normal to
the propagation direction of the energy crossing dR per unit time, namely
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dU � dU
dt

¼ IdR; ð3:43Þ

where, on the right-hand side, I is the wave intensity, which is defined as the energy
flux through the normal surface dR per unit time, namely

I ¼ dU
dRdt

: ð3:44Þ

More generally, we obtain the energy flux through a surface element dS of
arbitrary orientation considering the projection of dS onto the normal in the
direction of propagation. If n is the unit vector normal to dS and u the unit vector of
the direction of propagation, we have

dU � dU
dt

¼ Iu � ndS: ð3:45Þ

The energy flux through a finite surface S is obtained through integration.
Namely, it is

U ¼
Z
S

dU ¼
Z
S

Iu � ndS: ð3:46Þ

The physical dimensions of the energy flux are those of an energy divided by a
time, namely they are the same as power. The flux is measured in watt (W). The
energy intensity is the flux per unit surface and is measured in watt per square meter
(Wm–2).

Let us now consider the detectors of electromagnetic waves. They have different
characteristics depending on the frequency interval in which they work, but have
common characteristics as well. In any case, a detector can respond, giving its
signal, only if it absorbs a sufficient amount of energy. As a consequence, every
detector has a sensitive surface of a non-zero area, which is crossed by the energy
carried by the wave. The detector will absorb a fraction, up to 100 %, of this power.
After a certain time interval, the total absorbed energy will be sufficient for
detection. The important point here is that any detector must integrate the incoming
intensity over a non-zero surface and over a non-zero time interval. The specific
process leading to detection is different from one detector type to another. For
example, it is a physico-chemical process in the sensitive cells of our retina and in a
photographic emulsion, it is a temperature increase in a bolometer, it is the transfer
of electrons from one energy state to another in a photo-camera, etc. However,
whatever the process may be, it needs a minimum energy to happen.

Note that all these detectors are not directly sensitive to the amplitude of the
wave, but rather to its square, because the energy of a wave is proportional to the
square of the amplitude. For this reason, they are called square-law detectors. In
addition, as we have just seen, any square-law detector measures the average
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energy flux over a certain area and over a certain time interval. For electromag-
netic radiation at frequencies above the many GHz scale, the integration times of
our detectors are much longer than the period of oscillation. Namely, the detectors
measure the average intensity over a time interval containing a large number of
periods. This number being very large, we can well approximate it in our calcu-
lations with an integer number, say n, and consider that the average over n periods
is equal to the average over one period. We then define as the average intensity of a
harmonic wave the average value over a period (or over a time interval much longer
than a period) of the energy flux it carries through a unit surface perpendicular to
the energy propagation direction. Note that the term intensity alone is often used in
the sense of average intensity. Note also that the definitions we are given are valid
in general, not only for electromagnetic waves.

3.9 Impedance of Free Space

In Sect. 3.3, we saw how to terminate the characteristic impedance on a string
carrying an elastic wave. The termination was such so as to absorb the exact energy
carried by the wave. The same problem exists for every type of progressive wave.
Particularly important is the case of electromagnetic waves in a vacuum, which we
will now analyze.

Let us consider a plane progressive harmonic wave propagating in the positive
z direction, linearly polarized with the electric field in the x direction, say E = (Ex,
0, 0). Consequently, the magnetic field is in the y direction, namely B = (0, By, 0).
In our wave, the magnitudes of the fields are related, and we can write

cBy ¼ Ex: ð3:47Þ

Let us now suppose that the wave advances, in the z direction as noted, in the
semi-space of the negative z and that we want absorb it into the plane z = 0. We do
that by placing a conducting surface on that plane having a surface resistivity Z of
the value we shall now find.

The electric field Ex of the wave produces a current on this surface in the
x direction, having a surface density, which we call Kx, given by Ohm’s law. We
have

Kx ¼ Ex=Z ¼ cBy=Z: ð3:48Þ

The energy flux of the electric field is transferred to the charge carriers and
dissipated, transformed into thermal energy, via the Joule effect. As a result, the
electric field of the wave vanishes on the surface.

On the other hand, as we learned in the 3rd volume (Sect. 10.8), the component
of the magnetic field parallel to a current-carrying surface has a discontinuity in
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crossing that surface equal (in the present case) to Kx/µ0. We take advantage of this
to impose a zero magnetic field beyond the surface. The condition for that is

Kx ¼ By=l0: ð3:49Þ

We see that we can satisfy the conditions in both Eqs. (3.48) and (3.49), by
choosing the surface resistivity to be such that Z/c = µ0. Remembering that

c ¼ e0l0ð Þ�1=2, the condition is

Z ¼ l0c ¼
ffiffiffiffiffi
l0
e0

r
¼ 376:730 . . . X: ð3:50Þ

This fundamental quantity is called the impedance of the free space or impe-
dance of the empty space.

Note that the two fundamental constants, the electromagnetism e0 and l0,
determine the two fundamental constants of electromagnetic waves in a vacuum,
velocity and impedance. Note also that in the SI units system, the values of c and l0
are given by definition (of the meter and the ampere, respectively). Consequently,
the value of Z is given by definition as well. In Eq. (3.50), only the first few digits
are shown.

3.10 Intensity of the Sound Waves

In this section, we shall consider the energy carried by sound waves. A sound wave
is basically an elastic wave. The simplest elastic wave is the wave on an elastic
string, as we considered in Sect. 3.1. Consider, for example, a pulse, namely a wave
of limited length, traveling along the string. The elements of the string affected by
the pulse at a certain time, being displaced from their equilibrium position, have
some potential (elastic) energy, and, being in motion, some kinetic energy. Once the
pulse is gone, both their potential and kinetic energies have returned to zero. The
string is a continuous medium, and consequently we must talk of energy density,
which is the energy per unit length in this one-dimensional case.

Let us consider a progressive harmonic plane sound wave moving in the positive
z direction in a homogenous and isotropic medium. Under these conditions, the
propagation velocity and direction of energy are the same as that of the wave. As
we shall see subsequently, special care must be taken with the definition of “ve-
locity” in the case of dispersive waves. In this case, the wave velocity of a harmonic
wave depends on frequency, and the velocity of the pulses needs to be carefully
considered. In addition, the velocity of the energy flow may be different from the
velocity of the wave. For the non-dispersive waves we are considering now, con-
trastingly, all the velocities that can be defined in relation to the wave have the same
value.
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Let w(z,t) = f(z – tt) be the wave function of our sound wave, namely the dis-
placement of a fluid element from equilibrium. In a progressive wave, there is a
relation between the time and space partial derivative, as in Eq. (3.12). In this case,
we have

@w
@z

¼ � 1
t
@w
@t

: ð3:51Þ

We now consider the force exerted by the gas laying to the left of the coordinate
z to the gas on its right through the generic section S normal to z. If the pressure is p,
the force is pS. Let us consider the volume of gas having section S that, at equi-
librium, is located between z and z + a, where a is a small distance. This volume is
V0 = Sa. When the wave is present (remember that it is longitudinal), the volume
varies by the quantity dV given by the equation

dV ¼ w zþ a; tð Þ � w z; tð Þ½ �S ¼ @w
@t

Sa:

We shall need the relative change in volume, which is

dV
V0

¼ @w
@z

:

As we know that we are dealing with adiabatic transformation of an ideal gas,
we obtain the corresponding relative change in pressure by differentiating the
adiabatic equation pV c ¼ const, obtaining

dp
p0

¼ �c
dV
V0

:

We can then write

dp ¼ �p0c
@w
@z

¼ �t2q0
@w
@z

; ð3:52Þ

where q0 is the density in absence of the wave and t2 ¼ cp0=q0 is the wave velocity
squared. The work done on the unit surface per unit time by the pressure force,
which is positive on one side of the volume and negative on the other, is the
pressure difference dp times the velocity of the gas elements due to the wave. The
latter is @w=@t. But this work per unit area and unit time is just the energy flux per
unit area, which is the intensity. We can then write

IðtÞ ¼ �t2q0
@w
@z

@w
@t

and, using Eq. (3.51),
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IðtÞ ¼ tq0
@w
@t

� �2

: ð3:53Þ

Considering now a harmonic wave, namely the wave function

w z; tð Þ ¼ A cos xt � kzð Þ ð3:54Þ

the instantaneous intensity is

IðtÞ ¼ tq0A
2x2 sin2 xt � kzð Þ: ð3:55Þ

We see that the instantaneous intensity varies periodically over time as a circular
function squared. We obtain the average intensity by taking the average on a period
and recalling that such an average is equal to ½ for a squared circular function. We
obtain

I tð Þh i ¼ 1
2
tq0A

2x2: ð3:56Þ

We now recall that, in Eq. (1.22), we found that the energy of a harmonic
oscillator of mass m of amplitude A and angular frequency x is (1/2)mA2x2. In the
present case, thus, the energy per unit volume is (1/2)q0A

2x2, and Eq. (3.56) tells
us that the energy flux is the energy density times the wave velocity. This appar-
ently obvious conclusion, namely that energy propagates with the wave velocity, is
true in the present case, but there are cases in which it is not so.

Note that, as anticipated, the wave intensity is proportional to the square of the
oscillation amplitude.

The sound intensity units are the watt per square meter (Wm–2).
The frequency range in which a sound wave is audible depends on the person. Its

assumed standard values are between 20 and 20,000 Hz (between 17 m and 17 mm
wavelengths). At higher frequencies, one talks of ultrasounds. In any case,
instruments capable of following the wave oscillations in time can be easily built.
For example, a common microphone produces an emf that is proportional to the
value of the pressure varying with time, which can be amplified, registered, etc.
Often, however, what matters is the average intensity, meaning a square-law
detector can be used.

Our ear is not only a quadratic detector, meaning that the system integrates over
times much longer than the period of the sound wave, but it has a non-linear
response as well. The response of our auditory system is logarithmic. In this way,
we are sensitive to sounds over an enormous range of intensity. This feature, called
the dynamic range, extends, for a normal ear, over 13 orders of magnitude, from
10–12 W/m2 (you need very good hearing for that) to 10 Wm–2 (a level producing a
painful sound).

The unit for the sound intensity on a logarithmic scale is called the decibel (dB).
The decibel is one tenth of a bel. Rigorously speaking, these units measure the
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logarithm of the ratio between two intensities. Namely, the intensity I2 is higher
then the intensity I1 by K bel when K ¼ log I2=I1ð Þ. Clearly, the intensity I2 is
higher then the intensity I1 by K decibel when

K ¼ 10 log I2=I1ð Þ: ð3:57Þ

Note that the ratio between two sound intensities of 1 dB is equal to 1.26 and is
barely perceivable by the human ear. For this reason, in practice, the decibel is used
in acoustics, rather than the bel. In addition, the decibel is often used for absolute
values of the intensity as well. This is done by assuming the minimum audible
intensity as a standard reference, namely I1 = 10–12 W/m2, which is then equal to 0
db by definition. For example, a whisper at one meter might have an intensity of
10–15 db, while the engine of an airplane, even at a few meters, would be 120 db.

We shall give further examples after having considered the oscillation ampli-
tudes of the displacement of our air drum and of the pressure acting on it.
Considering a harmonic wave, we obtain from Eq. (3.52), taking Eq. (3.51) into
account, that the relation between the maximum pressure, say pmax, and the max-
imum oscillation velocity, say umax ¼ @w=@tð Þmax¼ Ax, is pmax ¼ q0tumax ¼ q0tAx.
From Eq. (3.56), the average intensity is I tð Þh i ¼ tq0u

2
max=2, and we can write the

relation between intensity and maximum oscillation pressure as

pmax ¼
ffiffiffiffiffiffiffiffiffiffi
2q0t

p ffiffiffiffiffiffi
Ih i

p
: ð3:58Þ

Let us consider the relevant example of air at STP with q0 = 1.3 kg/m3 and
t = 332 m/s. Equation (3.58) gives us pmax = 29.3√I. Then, the maximum pressure
corresponding to a painful sound of 10 W/m2 is pmax � 90 Pa. This is a very small
pressure, on the order of one thousandth of the atmospheric pressure.

Let us see how much the corresponding maximum displacement of the eardrum
is. From Eq. (3.56), we have that the oscillation amplitude is

A ¼ 1
x

ffiffiffiffiffiffiffiffi
2 Ih i
q0t

s
: ð3:59Þ

For example, at a typical frequency of 1 kHz, namely for x = 2p � 103 rad/s,
we have

A ¼ 1
6:28� 103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1:3� 3:3� 102

r ffiffiffiffiffiffi
Ih i

p
¼ 1:1� 10�5

ffiffiffiffiffiffi
Ih i

p
m:

Hence, for a painful sound of 10 W/m2 intensity at l kHz frequency, the
oscillation amplitude of our eardrum is A = 35 µm. If the intensity is at the audible
threshold, the amplitude of the eardrum motion is A = 0.01 nm, which is much
smaller than an atomic radius. Table 3.1 shows approximate values of sound
intensity, both in W/m2 and in decibel and maximum pressure excursions for
several typical sounds.
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3.11 Intensity of Electromagnetic Waves

In this section, we shall see that the speed of electromagnetic waves in a vacuum is
also the propagation velocity of the energy of the electromagnetic field. We recall
that, in Chap. 10 of the 3rd volume, we found that the energy density in an elec-
tromagnetic field is given by

w ¼ e0
2
E2 þ 1

2l0
B2 ¼ e0

2
E2 þ c2B2� � ð3:60Þ

and that the electromagnetic energy flux, namely the energy through the surface
unit normal to the propagation direction in a second, is given by the Poynting vector

S ¼ 1
l0

E� B: ð3:61Þ

Consider now a progressive monochromatic (harmonic) plane electromagnetic
wave in a vacuum. We immediately note that S has the same positive direction as
the wave vector k (namely as E � B). To find its magnitude, we recall that, in our
wave, E and B are perpendicular to one another and that their magnitudes are
related by B = (1/c)E. The energy flow per unit section and unit time is then
S ¼ E2= cl0ð Þ ¼ e0cE2. The intensity is the average of S over a period, namely

I ¼ Sh i ¼ e0c E2	 

:

The average stored energy is immediately obtained from Eq. (3.60) as

wh i ¼ e0 E2
	 


and we finally have that

I ¼ c wh i:

The (average) intensity is equal to the average energy density times the wave
velocity.

Consider, as an example of energy carried by an electromagnetic wave, the
energy we receive from the sun. Above the atmosphere, its intensity is about

Table 3.1 Shows
approximate values of sound
intensity, both in W/m2 and in
decibel and maximum
pressure excursions for
several typical sounds

p (Pa) I (W/m2) K (db)

Audibility threshold 3 � 10–5 10–12 0

Drizzle 3 � 10–4 10–10 20

Conversation at 3 m 3 � 10–3 10–8 40

Orchestra 0.3 10–4 80

Airplane at 5 m 30 1 120
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S = 1.3 kW/m2. The atmosphere absorbs and reflects a fraction of this flux,
depending on the weather conditions, on the latitude, etc. On average, half of the
flux reaches the soil. Typically, on a surface of 100 m2, you can have an incident
power of about 50 kW on a clear sunny day at intermediate latitudes. If you want to
know the usable power, you must multiply this by the efficiency of your device (say
10–20 %).

Let us now find the magnitudes of the electric and magnetic fields of the wave.
With S = 1.3 kW/m2, we have E2

	 
 ¼ Sh i= e0cð Þ ¼ 4:9� 105 V2 m�2 that isffiffiffiffiffiffiffiffiffi
E2h i

p ¼ 700 V/m, a quite small value. For the magnetic field, we haveffiffiffiffiffiffiffiffiffi
B2h i

p ¼ ffiffiffiffiffiffiffiffiffi
E2h i

p
=c ¼ 2:3 lT, which is a very small value. For comparison, think

about the fact that the earth’s magnetic field is an order of magnitude larger.

3.12 Electromagnetic Waves in a Coaxial Cable

Coaxial cables, or coax for short, are very frequently used as transmission lines for
electromagnetic signals when a protection from external electromagnetic interfer-
ence is requested. They consist of an inner copper wire (1 mm or so in diameter)
called the core, surrounded by a cylindrical insulating sheath, a second cylindrical
conductor outside the sheath, and finally, a second external insulating and pro-
tecting layer, called the jacket. The electric pulse to be transmitted is applied to the
core electrode, while the external electrode is grounded. A function of the external
conductor is to act as a shield against any electromagnetic interference from the
environment. We shall now find the two most important characteristics of the cable:
the wave velocity and the characteristic impedance.

Let R1 and R2 be the radiuses of the internal and external conductor, respectively,
e the dielectric constant of the insulator, which we assume to be a normal dielectric,
and Cu and Lu the capacitance and the inductance per unit length, respectively. The
latter are given by the expressions (see volume 3, Sects. 2.9 and 7.9)

Cu ¼ 2pje0
ln R2=R1ð Þ ; Lu ¼ l0

2p
ln R2=R1ð Þ; ð3:62Þ

where we have assumed, as is always the case in practice, the magnetic perme-
ability of the insulator to be equal to that of a vacuum. We call the attention of the
reader to the fact that the dielectric constant j is, rigorously speaking, a function of
the frequency of the electric field under dynamic conditions. This issue is discussed
in Chap. 10 of the 3rd volume of this course, to which we refer. We only state here
that, in the majority of cases, the frequencies at which the coaxial cables are
employed are not too high and we can consider the dielectric constant to have its
frequency independent electrostatic value.
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Let us start our analysis by approximating the cable as a series of discrete
elements, each of length Dx. Each element consists of a capacitor DC = CuDx to
ground and an inductance in series DL = LuDx, as shown in Fig. 3.10.

Calling /(x) and /(x + Dx) the electromotive forces between the plates of the
capacitors at the positions x and x + Dx, respectively, the emf between the terminals
of the inductor DL is /(x + Dx)–/(x). We can then write

/ xþDxð Þ � /ðxÞ ¼ �DL
@IðxÞ
@t

¼ �LuDx
@IðxÞ
@t

:

On the other hand, if Q(x) is the charge on the capacitor DC at x, Q(x) varies with
time, because the current I(x) acts to increase it and the current I(x + Dx) to decrease
it. We then have

I xþDxð Þ � IðxÞ ¼ � @QðxÞ
@t

¼ �DC
@/ðxÞ
@t

¼ �CuDx
@/ðxÞ
@t

:

We divide the two equations by Dx and find

/ xþDxð Þ � /ðxÞ
Dx

¼ �Lu
@IðxÞ
@t

;
I xþDxð Þ � IðxÞ

Dx
¼ �Cu

@/ðxÞ
@t

and, taking the limit for Dx ! 0, we find

@/
@x

¼ �Lu
@I
@t

;
@I
@x

¼ �Cu
@/
@t

:

We now differentiate the first equation with respect to x and the second with
respect to t and equate the resulting mixed derivative of I, obtaining

@2/
@x2

� LuCu
@2/
@t2

¼ 0; ð3:63Þ

Similarly, differentiating the first equation with respect to t and the second with
respect to x and equating the resulting mixed derivative of /, we obtain

x

I(x+Δx)I(x)

Q(x+Δx)Q(x)
φ(x) φ(x+Δx)ΔC ΔC

ΔL ΔL ΔL

ΔC

x+Δx

Fig. 3.10 Discrete approximation of a coaxial cable
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@2I
@x2

� LuCu
@2I
@t2

¼ 0: ð3:64Þ

We see that both the emf and the current intensity obey the same wave equation.
The propagation velocity of the wave is

t ¼ 1ffiffiffiffiffiffiffiffiffiffi
LuCu

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
je0l0

p : ð3:65Þ

We see that the wave velocity is independent of the geometry of the cable,
namely the radiuses of the conductors. It is on the order of the speed of light in a
vacuum, namely a factor √j of it. Plastic materials used as insulators have dielectric
constants typically in the range j = 3 − 9. In the approximation of neglecting the
dependence of the dielectric constant on frequency, the wave in the cable is
non-dispersive.

Let us now find the characteristic impedance of a cable. Our argument is similar
to that which we developed in Sect. 3.2 for the elastic string. We apply an emf
generator between the two conductors at one extreme. Initially, the charge and the
current of the cable are zero. When the generator starts acting, it charges a segment
of length dx = tdt in the time interval dt. The capacity of this segment is
dC = Cudx = Cutdt. Hence, the injected charge is dQ = / dC = / Cutdt. The
corresponding current intensity delivered by the generator is

I ¼ dQ
dt

¼ /Cut ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cu=Lu

p
:

Everything proceeds as if the generator would have to provide the current I on a
load resistance

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lu=Cu

p
: ð3:66Þ

This is the characteristic impedance of the cable.
With exactly the same arguments as those for an elastic string in Sect. 3.2, we

can conclude that if the line is interrupted at a point and terminated in its charac-
teristic impedance, physically a resistor of resistance Z, this appears to the wave as
if the line would continue indefinitely. There are no reflections, and the energy
traveling with the wave is absorbed and degraded to thermal energy by the resistor
through the Joule effect.

Contrastingly, reflections at the far extreme exist in any other case. Suppose, for
example, that we shorten the two conductors of the cable at the far extreme. The
boundary condition is that the emf should be zero at the extreme. This is analogous
to the fixed extreme of the string. We can think about satisfying the boundary
condition with an imaginary voltage pulse traveling in the opposite direction,
inverted relative to the incident pulse. As a result, the reflected voltage pulse is
inverted. If the cable is open at the far end, the condition is that the current intensity
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should be zero at the extreme. Under these conditions, the reflected current pulse,
rather than the voltage one, is inverted.

Equation (3.66) holds for every type of cable. In the case of a coax, we can use
Eq. (3.62) to express the capacitance and inductance per unit length in terms of the
physical characteristics of the cable. We obtain

Z ¼ 1
2p

ffiffiffiffiffiffiffi
l0
je0

r
ln

R2

R1

� �
: ð3:67Þ

We see that the characteristic impedance depends both on the dielectric (through
its dielectric constant) and on the geometry of the cable (the radiuses of the con-
ductors). The square root factor would be the impedance of the empty space,
namely 377 X if there were no insulator. In practice, it is a few times smaller. The
other factors are, in general, smaller than one.

QUESTION Q 3.4. A common standard for the characteristic impedance of coaxial
cables is Z = 50 X. Consider such a cable having a core conductor diameter of
1 mm and a dielectric made of polyethylene, whose dielectric constant is j = 2.1.
What should the radius of the external conductor be? ⃞

In practice, we can measure both the propagation velocity and the characteristic
impedance using an oscilloscope and a pulse generator as follows. We connect the
generator and the scope to the same extreme of the cable and leave the far extreme
open. Having synchronized the scope with the pulse generator, we observe both the
injected pulses and the reflected ones. Measuring the delay of the second and
knowing the length of the cable, we have the propagation speed. We can subse-
quently measure the characteristic impedance by connecting the conductors at the
far extreme through a variable resistor, and adjusting its resistance until we no
longer observe a reflection.

3.13 Doppler Effect

Let us consider an approximately monochromatic sound source, for example, a
tuning fork, in motion relative to an observer, or, better yet, a measurement
instrument. Let the tuning fork be on a carriage movable along a straight rail and let
us locate a microphone and a recording apparatus near the rail at a certain distance
in front of the carriage and similar ones behind it. We first register the sound at both
stations with the fork at rest. Then, we repeat our measurements with the carriage
moving at constant velocity along the rail. Finally, we measure with the tuning fork
at rest, and the registering apparatus in motion on a carriage. The question now is:
are the frequencies, the wavelengths and the wave velocities measured in the dif-
ferent cases equal or different?

The effect we are discussing is the Doppler effect, named after Christian Doppler
(Austria, 1803–1853), who first observed in 1842 that the tone of a note emitted by
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a source in motion heard by an observer on the ground is higher when the source is
approaching then when it is moving away.

We shall now analyze the effect, which exists for all wave phenomena. We shall
consider two cases: sound waves and electromagnetic waves. In the first case, the
wave propagates in a material medium, while in the second, there is no medium.
We shall see that, for an electromagnetic wave, the effects depend on the relative
motion of the source and detector only, while for the sound, they additionally
depend on the velocity of the source and that of the detector relative to the medium.
Indeed, in the case of sound, a “privileged” reference frame exists, being the
reference in which air is at rest. In the case of the electromagnetic wave, there is no
privileged reference, simply because there is no medium supporting the wave.

This important difference may appear to be obvious today, but it was not so
before the development of special relativity, when a hypothetical medium, called
ether, was assumed to exist to support the propagation of light. A privileged ref-
erence frame would have existed under this hypothesis, namely the frame in which
the ether is at rest. Under these conditions, the Doppler effect for light would be
similar to that for sound. The fundamental experiment in 1887 by Michelson and
Morely proved that such a frame does not exist.

Let us now discuss the Doppler effect for sound. We shall limit the discussion to
velocities, both of the source and of the detector, both smaller than the sound
velocity, which we indicate with c. Clearly, all the velocities in the problem are
much smaller than the speed of light, and we can surely consider time intervals and
distances between two points independent of the reference frame.

Let S0 be the reference frame in which the medium, namely the air, is at rest.
Consider a source moving with uniform velocity tS relative to S0. Let the detector
be at rest in S0, located in front of the moving source along the straight line from the
source in the direction of its velocity (the line of sight). The velocity of the wave in
the medium (c) is a characteristic of the medium, and consequently is independent
of the motion of the source. Let us consider two consecutive ridges of the wave
emitted by the source in two instants separated by the time interval s. In this
interval, the source has approached the detector by the distance tSs. Consequently,
the time taken by the second ridge to reach the detector is shorter than the time
taken by the first ridge of tSs/c. This means that the time interval between the
arrival at the detector of two consecutive ridges is not s, but s(1 − tS/c). Let mo be
the frequency of the wave emitted by the source and N the number of periods
emitted in s (not necessarily an integer number). We then have N = mos. These
N periods reach the detector in the time interval s(1 − tS/c). Consequently, the
frequency seen by the detector is

m ¼ N
s 1� tS=cð Þ ¼

m0
1� tS=c

:

If the source moves away from the detector, again along the line of sight, the
argument is similar and leads to the same result, with a + (plus) in place of
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the − (minus). In conclusion, we can write, for the frequencies of the acoustic wave
measured by a detector at rest in S0, the expressions

m ¼ m0
1� tS=c

sourcemoving toward the detector: ð3:68Þ

m ¼ m0
1þ tS=c

sourcemoving away from the detector: ð3:69Þ

Consider now the wavelength and let k0 be the wavelength when both source
and detector are at rest in S0, namely k0 = c/m0. When the source moves, the
velocity does not change, but the frequency does, as we just saw. Consequently, the
wavelength becomes k = c/m. Using Eqs. (3.68) and (3.69), we can write

k ¼ k0 1� tS=cð Þ sourcemoving toward the detector: ð3:70Þ

k ¼ k0 1þ tS=cð Þ sourcemoving away from the detector: ð3:71Þ

In other words, when the source is in motion, an experiment measuring the wave
velocity gives us the same result as when the source is at rest, an interference
experiment to measure the wavelength gives us different results, and different
results give us an experiment measuring the pitch of the sound.

Let us now consider the case in which the detector moves in a rectilinear uniform
motion with velocity tD relative to the medium. The source is at rest in the medium.
The motion is, again, along the line joining source and detector. Consider first the
case in which the detector approaches the source. Now, the wave velocity of the
wave relative to the detector is not the velocity in the medium, but rather c + tD.
The remaining portion of the argument is identical to that of the previous one. We
can thus obtain our result by substituting c + tD in the place of c in the previous one
and tD in place of tS. We find that the frequency measured by the detector is

m ¼ m0 1� tD= cþ tDð Þ½ � ¼ m0 1þ tD=cð Þ:

The argument in the case of the detector moving away from the source is similar,
and we can write the conclusions as

m ¼ m0 1þ tD=cð Þ detector moving toward the source: ð3:72Þ

m ¼ m0 1� tD=cð Þ detector moving away from the source: ð3:73Þ

We see that the expression is different from the case in which the source was
moving and the detectors standing. However, m is larger than m0 in this case as well.

Hence, in the case of the detector moving relative to the medium and the source
at rest in the medium, the frequency measured by the detector and the wave velocity
are different from those measured by a detector at rest. Contrastingly, as easily
verified, the wavelengths are equal.
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QUESTION Q 3.5. Prove the last statement.
Suppose now that both detector and source move relative to the medium of

rectilinear uniform motions along the same line, parallel to the direction of the
wave, with velocities tD and tS, respectively. The problem of finding the frequency
measured by the detector is solved, for example, in the case in which the detector
runs after the source in the same direction using, in sequence, Eq. (3.72) first and
then Eq. (3.69). One finds

m ¼ m0
1þ tD=c
1þ tS=c

: ð3:74Þ

Note that when the velocities of the source and detector relative to the medium
are equal, namely if tD = tS, for example, if the source and detector are both on a
carriage moving with that velocity, then the measured frequency is the same as that
when both are at rest. Contrastingly, if the velocities are different, the effect depends
separately on tD and tS, and not simply on the relative value tD–tS. Consequently,
experiments based on the Doppler effect determine the velocities of the source and
detector relative to the medium.

We shall not address the general case here in which the line joining the source
and detector is at an angle with the propagation velocity different from zero. We
only observe that one must consider the projections of the velocities in that
direction.

Let us now consider electromagnetic waves. As we know, there is no medium
supporting the waves, as they propagate in a vacuum. As a consequence, as opposed
to sound waves, there is no privileged reference frame in which a supporting medium
would be at rest. All the experiments have shown that only the relative motion of the
source and detector can be experimentally detected, while the concept of absolute
motion, say relative to a vacuum, has no physical sense. This was clearly shown by
Albert Michelson (USA, 1852–1931) and Edward Morley (USA, 1838–1923) in
their famous experiment in 1887, which we discussed in the 1st volume. On that
basis, and on that of other experimental results, Henry Poincaré (France, 1854–1912)
concluded, in 1900, at the International Congress on Physics in Paris:

Does our ether really exist? I do not believe that more precise observations will never be
able to reveal nothing but relative motions.

We thus expect that equations like those valid for sound from Eqs. (3.68)
to (3.74) cannot hold for electromagnetic waves. Otherwise, the Doppler effect
would allow us to determine the absolute motion. Let us look at the reason for that,
considering the case having the detector at rest in an inertial frame and the source
moving with uniform velocity tS. The argument is equal to that which we devel-
oped for the sound, with the important difference that the time intervals cannot be
considered invariant. The time interval s between two consecutive ridges is a
proper time because it is in the frame in which the source is at rest (which is inertial
as well). The frame in which the detector is at rest moves relative to that with
velocity tS. Consequently, the time interval between ridges appears to the detector
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dilated by the factor 1� tS=cð Þ2
h i�1=2

, where c is now the speed of light, namely

of our wave. Repeating the argument we made for the sound with this important
variant, we state that the interval between consecutive ridges at the detector is

s 1� tS=cð Þ 1� tS=cð Þ2
h i�1=2

¼ s 1� tS=cð Þ= 1þ tS=cð Þ½ �1=2:

In conclusion, the frequency measured by the detector is

m ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tS=c
1� tS=c

s
distance between detector and source decreasing: ð3:75Þ

m ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tS=c
1þ tS=c

s
distance between detector and source increasing: ð3:76Þ

The same result is reached in the case of the detector moving and the source at
rest. In this case, the contraction of the distances must be considered.

QUESTION Q 3.6. Prove the last statement. ⃞
The Doppler effect is important for several aspects of physics, because it allows

for measuring the speed of far away, or, in general, not directly accessible, objects.
We must purposefully recall that each species of molecule and atom emits electro-
magnetic radiation oscillating in a set of proper frequencies, which are characteristic
of the species. A record of the light intensity as a function of frequency is called a
spectrum. The spectrum of an atomic or molecular species shows a series of peaks,
called lines, at the proper frequencies. If the atoms, or molecules, move relative to the
detector, all the line patterns in the spectrum shift as a result of to the Doppler effect.
Measuring that shift, we can determine the speed of the emitting object relative to our
detector or better, the component of that speed on the line of sight.

Consider, for example, a gas in a transparent container. We give energy to the
gas molecules in order to excite their vibrations, for example, with an electric
discharge. We want to have them completing their oscillation motions without
colliding with other molecules. To insure that, we reduce the density to a small
enough value. Measuring the spectrum, we observe that the lines are broader than
their natural value and that the broadening increases with increasing temperature.
The effect, called Doppler broadening, is due to the chaotic thermal motion. Some
molecules approach the detector, and the observed frequency increases, some others
move away, and the observed frequency decreases. The broadening increases with
temperature, because the average kinetic energy is proportional to the absolute
temperature.

As a second example, consider a star, or a heavenly body, moving relative to an
observer on earth. Its entire spectrum appears to be shifted to lower frequencies (an
effect called redshift) if the star is moving away; contrastingly, if it is approaching,
the spectrum is “blue-shifted”. Measuring these shifts, we can determine the velocity
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of the object along the line of sight. In 1929, Edwin Hubble (USA, 1989–1953),
measuring the distance and the redshift of several galaxies, discovered that they were
moving away with velocities proportional to their distances. This was the discovery
of the expansion of the Universe that opened the way for modern cosmology.

Summary
In this chapter, we learned the following important concepts.

1. A pulse of an elastic string travels with non-altered shape with a definite
velocity dependent on the string density and tension.

2. The concept of a phase is defined for harmonic waves. The phase varies with
time at a given point by x radiants per second and in a given instant by
k radiants per meter.

3. The phase of a monochromatic wave moves with the velocity x/k.
4. A dispersion relation is the relation between x and k and is a characteristic of

the medium. This is an extremely important relation for all wave phenomena.
5. To inject a progressive wave into an elastic string, one must apply to its input

extreme a force proportional to the velocity of that extreme. The proportionality
constant is the characteristic impedance of the system

6. An elastic string is like a transmission line of elastic pulses. To avoid reflections
at the far extreme, one must terminate the string on its characteristic impedance.
The situation is the same for electric cables.

7. The concept of a wave vector for a harmonic wave in space.
8. Sound waves in a gas and their phase velocity.
9. The electromagnetic waves predicted by the Maxwell equations, light in par-

ticular, and their characteristics.
10. How waves, sound and electromagnetic, in particular, transport energy.
11. Accelerating charges are the sources of electromagnetic waves. We gave a very

useful expression of their electric field at a distance.
12. The square wave detectors are sensitive to the square of the wave amplitude

averaged over a period, or a time much longer than the period.
13. The Doppler effect for sound and light. The fundamental differences between

the two cases.

Problems

3:1. Consider the harmonic progressive x ¼ 10 mmð Þ cos 10 s�1ð Þtþ 8m�1ð Þk½ �
wave and calculate frequency, wavelength and phase velocity.

3:2. Figure 3.11 is a snapshot of a progressive harmonic wave on an elastic string
moving to the right. Establish for each of the marked points whether it moves
up or down. Does A or B move more quickly? Answer the same questions for
the case in which the photo is of a standing wave at maximum deformation.

3:3. In which of the following cases is there a reflection and in which are there
not? (a) Wave on an elastic string with free extreme. (b) Wave on an elastic
string with fixed extreme. (c) Current pulse on a cable with extreme in short.
(d) Current pulse on a cable with extreme open.
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3:4. How much does the characteristic impedance of an elastic string vary if;
(a) You double the tension, (b) You double the density? How much does the
characteristic impedance of a cable vary if; (a) You double the inductance per
unit length, (b) You double the capacitance per unit length?

3:5. An observer at a distance of 1 km from a charge oscillating in a harmonic
motion measures a certain oscillation amplitude of the radiation electric field.
A second observer does a similar measurement at 10 km from the source.
What is the ratio of the two amplitudes?

3:6. Two coaxial cables have the same geometry and dielectric constants, one
twice the other. What are the ratios of their characteristic impedances and
their phase velocities? Is the system dispersive?

3:7. How much do the sound velocities in air differ in Death Valley at 50 °C and
on the Mont Blanc at −40 °C?

3:8. What is the electric radiation field at 10 m distance from a charge of 1 °C
moving in a rectilinear uniform motion with velocity 0.3c?

3:9. What is the ratio between the pressure oscillation amplitudes of two sounds
differing by 2 dB?

3:10. An electromagnetic monochromatic wave propagates in a dielectric having
constant j = 3. What is the ratio of the electric and magnetic field ampli-
tudes? What is the phase velocity?

3:11. Consider the monochromatic plane electromagnetic wave in a vacuum
E = E0cos(xt − kx) advancing in the x direction. Find the direction, sense
and magnitude of the Poynting vector.

3:12. The magnetic field amplitude of an electromagnetic plane monochromatic
wave in a vacuum is 10–6 T. Determine: (a) The amplitude of the wave
electric field, (b) The average wave intensity, (c) The average energy density.

3:13. A car traveling at 72 m/s carries a loudspeaker emitting a note at 1 kHz. The
sound waves emitted in the forward direction encounter an obstacle and are
reflected back, adding to the primary waves. What is the beat frequency of
the resulting signal?

3:14. Superman is traveling at a low altitude along an avenue in Metropolis.
Coming to a traffic light, he sees it as green (520 nm) and crosses.
A policeman stops him, stating he had crossed on the red (650 nm).
Assuming both to be right, find the velocity of Superman.

3:15. A train whistles while passing near an observer standing on the ground.
When the train passes from front to back, the observer perceives a change in
the tone of the whistle. By how much does the perceived frequency change if
the train travels at 90 km/h?

A

B

C

D
EFig. 3.11 A snapshot of a

harmonic wave
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Chapter 4
Dispersion

Abstract In this chapter, we study dispersive waves. Examples of these are the
waves on the surface of water and the electromagnetic waves in a transparent
medium. Dispersive waves, when monochromatic, propagate with a phase velocity
that depends on wavelength, where they change shape while they propagate if they
are not monochromatic. We introduce the concepts of group velocity and energy
propagation velocity. We see how light velocities have been measured and study
the phenomena of reflection, refraction and dispersion. We also discuss the physical
origin of the refractive index.

In the previous chapter, we considered non-dispersive waves. If they are
monochromatic, their phase velocity is independent of frequency; in any case,
monochromatic or not, their shape remains unaltered during propagation. However,
a different type of wave exists, the dispersive waves. Examples of these are the
waves on the surface of water and the electromagnetic waves in a transparent
medium. In these cases, the wave equation is more complicated and might even be
unknown. These waves, if monochromatic, propagate with a wavelength-dependent
phase velocity, while they change in shape while they propagate if they are not
monochromatic. We shall see that, even if the ruling differential equation is not
known, the knowledge of the dispersion relation, which links frequency and wave
number, is sufficient for our understanding of many phenomena.

We shall see that different concepts of velocity need to be defined for a dis-
persive wave beyond phase velocity. The most important of these is group velocity,
because energy and information propagate with group velocity under almost all
circumstances. In Sect. 4.2, we shall consider the measurement of group and phase
velocity of light.

In Sect. 4.3, we study the behavior of a light wave at the interface between two
transparent media, namely the reflection and refraction phenomena and the Snell
law governing the latter. After an interlude during which we will go into the
fascinating phenomenon of the rainbow in Sect. 4.4, we shall justify the laws of
reflection and refraction from the undulatory point of view in Sect. 4.5. We then
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discuss the dispersion of white light in the different colors in a medium due to the
dependence of phase velocity on the wavelength.

In Sect. 4.7, we try to understand the physical origin of the difference between
light velocity in a medium and that in a vacuum and of dependence on wavelength.
We do that in a low-density medium in order to focus on physics, avoiding
mathematical complications. We shall find, in particular, how the elastic and
absorptive resonance curves studied in Chap. 1 will now become useful. Finally, in
Sect. 4.8, we shall find the wave equation and the dispersion relation of an elec-
tromagnetic wave in a dense normal dielectric.

4.1 Propagation in a Dispersive Medium. Wave Velocities

The progressive waves we encounter in physics are never exactly monochromatic
(the terms harmonic and sinusoidal are synonyms, as we know), if for no other
reason than the fact that they always have a beginning and an end, and therefore a
limited duration. Obviously, a “truncated” sine is far more similar to a mathematical
sine in as much as the duration is long compared to the period. In other cases, the
wave shape is more different from a sine. Think, for example, of the elastic wave
propagating on a metal bar hit with a hammer at an extreme or of the sound of a
hand clapping propagating in air. We shall now study how non-harmonic waves
propagate in a medium. We shall see that several concepts of propagation speed
exist depending on the propagating quantity associated with the wave.

As we already mentioned in Chap. 3, we can distinguish the following two
cases, depending on the nature of the wave and that of the medium.

(1) non-dispersive wave, when the dispersion relation is a proportion, namely
when the wave number of a monochromatic wave is directly proportional to its
angular frequency. Under these conditions, the phase velocity is the same for
all the monochromatic waves, independent of their frequency. In addition, the
non-monochromatic waves propagate with invariable shape. The partial dif-
ferential equation of the system is the wave equation in Eq. (3.1).

(2) dispersive wave, when the dispersion relation is not a proportionality relation.
Under these circumstances, the phase velocity of the monochromatic waves
depends on frequency (and wavelength) and the non-monochromatic waves
change their shape when they propagate. This is what happens for the elec-
tromagnetic waves in a dielectric (like glasses and water) and for the most
evident waves, namely the waves on the surface of water. We shall discuss the
latter example later in this section. The differential equation for dispersive
waves is not Eq. (3.1). As a matter of fact, we shall not need to know the
equation, because the dispersion relation will be sufficient to describe the
phenomena.
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A pulse or a wave of similar shape is not monochromatic and we cannot rig-
orously speak of phase velocity. The pulse substantially advances with the group
velocity. This is a very important quantity that we will now define. In these cir-
cumstances, a “group” is a group of wave crests of finite duration (or length in
space).

A non-monochromatic wave has several, in general, infinite, Fourier compo-
nents. Each of them is monochromatic and has a phase velocity, different from one
another. Let us start by considering the simplest case, namely a superposition of two
monochromatic waves only (dichromatic wave) of different frequencies, say x1 and
x2 with x2 > x1. Let us assume, for simplicity, that the two amplitudes are equal.
The resulting wave is

w z; tð Þ ¼ A cos x1t � k1zð ÞþA cos x2t � k2zð Þ: ð4:1Þ

The problem is very similar to the case of the beats we discussed in Sect. 2.6.
The difference is that the function now depends not only on time but also on a space
coordinate. In any case, similarly to what we did then, let us put forth

x0 ¼ x1 þx2

2
; x ¼ x2 � x1

2
; k0 ¼ k1 þ k2

2
; x ¼ k2 � k1

2
ð4:2Þ

and re-write Eq. (4.1) in the form

w z; tð Þ ¼ f z; tð Þ cos x0t � k0zð Þ; ð4:3Þ

where

f z; tð Þ ¼ A cos xt � kzð Þ: ð4:4Þ

To better understand the phenomenon, let us consider x1 and x2 to be very close
to one another, as in the case of the beats. Under these circumstances, it is x0 � x.
Then, Eq. (4.3) represents a progressive wave, which is almost harmonic with
angular frequency x0. Its amplitude f(z,t) is not constant, either in time or in space,
but can be thought of as being a progressive wave itself. It is harmonic with angular
frequency x, as Eq. (4.4) tells us. Figure 4.1 shows a snapshot of the wave at a
certain instant.

z

υp
υg

Fig. 4.1 Phase and group velocities in a dichromatic wave

4.1 Propagation in a Dispersive Medium. Wave Velocities 127

http://dx.doi.org/10.1007/978-3-319-48329-0_2


The higher frequency (x0) wave, which is called a carrier wave, propagates with
a phase velocity given by

tp ¼ x0=k0: ð4:5Þ

This is the velocity of the wave crests of the smaller wavelength, whose
amplitudes are modulated by the modulating wave. This is also a sine, with a
smaller frequency (x).

Let us now look at the propagation velocity of the modulation. This is an
extremely relevant question. The velocity of the modulation is the propagation
velocity of the information. Indeed, all the crests of a non-modulated sine wave
invariably have exactly the same shape, and they cannot transport any information.
If we want to send a message to another observer, we must alter at least one of these
crests. In doing so, we modulate the wave and make its frequency spectrum
non-monochromatic.

With reference to Fig. 4.1, we now consider the velocity with which an arbitrary
point of the modulating wave propagates. We choose a maximum, namely a point at
which f(z,t) = 2A. We find its velocity by imposing the argument of f(z,t) to remain
constant, namely for the total differential of f(z,t) to be zero, that is, d(xt–kz) = 0.
This is also xdt–kdz = 0. Hence, the ratio between dz and dt, namely the velocity of
the modulation maximum, which we call tg, must be

tg ¼ dz
dt

¼ x
k
¼ x2 � x1

k2 � k1
:

Taking the limit for x2 − x1 going to zero, we have

tg ¼ dx
dk

: ð4:6Þ

This expression, which we have found in a particular case, is taken by definition
as the group velocity under any circumstance. Its physical meaning depends
somewhat on both the waveform and the medium. However, it is always true that
only in a non-dispersive medium in which the dispersion relation is x = tk are
group and phase velocities equal to one another.

The example we have just discussed is useful for reaching the concept of group
velocity with a simple argument, but it is also unrealistic. Figure 4.2 shows a more
realistic case of a “wave packet”, in which the term means a group of wave crests.
We may think of one of the infinite groups in Fig. 4.1.

z

Fig. 4.2 A wave packet, or
wave group
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In a good approximation, the wave packet (or wave group) is a “sine” of finite
length. We can recognize it as having a main wavelength, or, in an equivalent
manner, a main wave number, which we call k0. The amplitude of the “sine” has a
maximum in the middle of the packet and gradually vanishes on both sides.
Figure 4.3 helps us in understanding how a wave packet propagates in a dispersive
medium. The figure shows a series of snapshots taken at regular time intervals. In
this example, the phase velocity is twice as large as the group velocity. In the figure,
we have marked a certain wave crest with the color gray. It moves forward at the
phase velocity. We have also marked, with a black dot, the center of the group. It
advances with the group velocity. The reader can appreciate the difference between
the velocity of the group and the velocity of the phase of the dominant wavelength

Fig. 4.3 Evolution of a wave
packet. The phase velocity is
twice the group velocity
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component by following the two marks with his/her eye. Being that the phase
velocity is larger than the group velocity, a crest born in the rear of the packet
moves forward relative to the group. In doing so, its amplitude grows, reaches a
maximum when it is in the middle of the packet, and then decreases until it
disappears in the front of the group.

This phenomenon can be observed with a simple, although not easy, experiment
on the still surface of a pond. As we shall see at the end of the section, the phase
velocity of the water waves is twice as large as the group velocity under these
conditions. You can produce a wave group by placing a wooden stick on a still
water surface (in a swimming pool when nobody is swimming, for example) and
then moving it rhythmically up and down four or five times. Then, try to observe a
wave crest appearing at the tail of the packet, overtaking it and disappearing at the
front. You shall need to practice somewhat, and work with a friend, because the
speed of the waves is quite fast, on the order of a few meters per second.

We now discuss, in general, why a non-harmonic wave changes shape when it
propagates in a dispersive medium. Let us think about taking a snapshot of the
wave at a certain instant t. We obtain a curve that is a function of the coordinate.
What will be its shape after a certain time interval Δt? To answer this question, we
start by developing the function we have found in a Fourier integral. If tp(k) is the
phase velocity at the wave number k, the phase of the monochromatic component of
that wave number advances by the distance tp(k)Δt in the considered time interval.
The dependence on k of tp implies that the differences between the phases of the
Fourier components at t + Δt are different than those at t. To find the new shape, we
must now anti-transform. As the phase differences have changed, the resulting
shape is different from what it was at t.

Two further important concepts are the energy propagation speed and the
information propagation speed. Under many circumstances, but not all, the two
velocities coincide. This is always the case when waves are detected by a
square-law detector. Indeed, as we have already discussed, the signal delivered by
such detectors is proportional to the energy flux received, integrated over a time
interval that is much longer than the period (or the periods) of the wave.
Consequently, the signal is proportional to the average of the squared amplitude.

Under many circumstances, the energy and the information propagation speeds
for a wave packet (or a wave group) are both equal to the group velocity. Indeed,
we have found the group velocity by considering the propagation velocity of the
modulation maximum. Around that point, the largest fraction of the energy trans-
ported by the wave is located. Consider an observer A sending a wave packet signal
to an observer B. We distinguish two cases, depending on whether the detector in
B is a square-law detector or a detector sensitive to the amplitude. In the former
case, which is the case at high frequencies, such as those of light, the detector will
signal the arrival of the pulse substantially in the instant in which it is reached by
the maximum of the modulation. Consequently, the measured velocity is the group
velocity.

The situation is different if the detector in B is sensitive to the amplitude. Think,
for example, of the packet in Fig. 4.2 as consisting of waves on the surface of water
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or of elastic waves in a dispersive medium. The signal in B can then be recorded
with a pen connected to a buoy or with a microphone, respectively. As such, the
signal will be detected as soon as the amplitude of the incoming wave has risen
above the sensitivity threshold of our instrument. The information propagation
speed is not necessarily the group velocity under these circumstances.

The information propagation speed may also be different from the group velocity
in Eq. (4.6) for a square-law detector if the waveform is different from a wave
packet. Take, for example, a “beginning sine”, the ideal case of a wave that starts its
existence at t = 0 and then continues as a sine forever. In this case, a square-law
detector in B will not necessarily detect the front of the incoming wave, which is
altered by dispersion, as having moved at the group velocity. As a matter of fact, the
group velocity of light in a dispersive medium may be larger than the light velocity
in a vacuum, as we shall see in the subsequent sections. This is quite an exceptional
case, but historically, it raised doubts about a possible violation of the relativity
principle. However, it was soon shown that, under those circumstances, the
information propagation speed is different from group velocity and is, in any case,
smaller than c.

Another similar example is the ideal case of a “finishing sinusoid”, in which a
sinusoidal wave that always existed suddenly ends at t = 0. We shall see later in this
section how the speed of the end of the waves, as opposed to the above quoted
exception, is equal to the group velocity for the surface waves on water.

The most familiar example of wavy phenomena is undoubtedly the waves on
water surfaces. They are strongly dispersive and give us the opportunity to discuss
the concepts we have introduced in concrete examples. Note, however, that a
mathematical description of the surface waves is not at all simple, and we shall not
enter into the demonstrations. Let us look at the principal characteristics.

First of all, the surface waves are neither transversal nor longitudinal. Let us fix
our attention on a particle of water on the surface (or immediately below the
surface) and on its trajectory when the wave passes through. The motion is neither
an oscillation on a line perpendicular to the wave velocity, nor one on a line in the
velocity direction. Looking carefully, we see that the water particle trajectory is an
ellipses. This is simply a consequence of water being incompressible. If, at a certain
point, the water surface should rise because a wave ridge is forming, more water has
to move there, in practice, from a point in front, where a gorge is forming.

Secondly, as we anticipated, the surface waves are dispersive. The dispersion
relation depends on the restoring forces acting on the water particle when it is out of
equilibrium. These are the forces that make water surfaces flat at equilibrium
(considering a dimension much smaller than the earth’s radius). As a matter of fact,
there are two restoring forces: the weight and the surface tension. Surface tension is
important for the small ripples having wavelengths on the order of a millimeter
(waves in a coffee pot). For larger wavelengths, the weight completely dominates.
We shall only discuss the latter conditions here.

Thirdly, effects that are quite often dissipative are present. For example, in
shallow water, the wave motion can reach the bottom of the basin, and here the
friction with the ground can subtract energy from the wave. This is what happens
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when a wave approaches a beach. We see that when the water depth decreases
enough, the crest of the wave overturns and the wave breaks. Under these condi-
tions, the system is not linear.

We shall limit our discussion to the gravity waves on the surface of an ideal
liquid, which is incompressible (constant density q) and inviscous (viscosity η = 0).

Let h be the depth of the basin, namely the distance between the surface and the
bottom. Observing the motion, we can state that the elliptic trajectories of the water
particles have decreasing diameters with increasing depth. At the depth of one
wavelength, the amplitude of the motion is reduced to 0.2 % of the amplitude on
the surface. In addition, it can be shown that the dispersion relation is

x2 ¼ kg tanh khð Þ; ð4:7Þ

where g is the gravity acceleration. Clearly, harmonic waves of different wave-
lengths have different wave velocities. We draw the attention of the reader to the
argument of the hyperbolic tangent function, which is kh = 2ph/k. It is proportional
to the ratio of two lengths, the depth of the basin and the wavelength of the wave.
There are two interesting limit cases, in which one of the two lengths is much
greater than the other.

When h � k, we speak of a deep water wave. In this case, considering that
lim
h!1

tanh kh ¼ 1, we have

x2 ¼ kg: ð4:8Þ

The phase velocity is then

tp ¼ x
k
¼

ffiffiffiffiffiffi
gk
2p

r
: ð4:9Þ

The group velocity is one half of the phase velocity, namely

tg ¼ dx
dk

¼ 1
2
tp: ð4:10Þ

We note that both velocities are independent of the depth of the water. This is
because the motion of the water particles has already ceased at a depth on the order
of a wavelength, as we already mentioned, and consequently, everything proceeds
as if the bottom did not exist.

The phase velocity grows proportionally to the square root of the wavelength,
namely longer waves travel faster than shorter ones. Figure 4.4 shows phase and
group velocities as being functions of the wavelength. If, for example, a speedboat
produces waves in the sea somewhat offshore, an observer on the beach will see the
longer waves arriving first. Subsequently, waves of shorter wavelengths, and higher
frequencies, will gradually appear.
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QUESTION Q 4.1. What is the period of a sea wave of 10 m wavelength in deep
water? And that of a wave of 2 m wavelength? What are their group and phase
velocities? ⃞

Let us now consider the opposite case of shallow water waves. We can now
approximate tanh (kh) � kh, and Eq. (4.7) becomes

x2 ¼ ghk2: ð4:11Þ

Under these conditions, the system is non-dispersive, namely x is proportional
to k. Consequently, the phase and group velocities are equal to one another. They
are given by

tp ¼ tp ¼
ffiffiffiffiffi
gh

p
: ð4:12Þ

The velocity increases with the square root of the depth.
The non-dispersive property of shallow water waves explains the disastrous

phenomenon of the tsunamis originated by high magnitude quakes having their
epicenter in the open sea. The seismic movement of the sea floor propagates to the
entire water column up to the surface. The height of the column may be of a few
kilometers. The resulting waves generally have small amplitude, only several
centimeters in the open sea, but the mass of moving water is huge. The wavelengths
are enormous, up to one hundred kilometers, namely so large that even the ocean is
shallow water for them. As a consequence, these waves propagate without defor-
mation, transporting all the original energy in a few crests. Their speed in the deep
sea is very high, comparable to a sound wave in the atmosphere. Indeed, Eq. (4.12)
gives us, for example, for a depth h = 3 km, tg = 170 m/s. This corresponds, for a
typical wavelength of 170 km, to a period of 1000 s. At this speed, if the epicenter
is, say, at 10 km offshore, the waves will reach the seacoast in about 10’. When the
wave is close to shore and the sea depth decreases, the height of the submerged
liquid column and the speed of the wave decrease as well. In order for energy to be
conserved, a large fraction of the kinetic energy transforms into potential energy
and the height of the wave increases enormously. When the two or three crests hit
the coastline, they sow destruction everywhere they hit.
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Fig. 4.4 Phase and group
velocities of surface waves in
deep water versus wavelength
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Let us now schematically look at how we can measure the different velocities of
the surface gravity waves in water. This will help us to understand how phase
velocity, group velocity and energy (information) velocity are also different
quantities when considered from the operational point of view.

Let us start by recalling the definitions. The phase velocity of a harmonic wave is

tp ¼ x
k
; ð4:13Þ

which can be written in terms of the wavelength and the frequency as

tp ¼ kv: ð4:14Þ

The group velocity is

tg ¼ dx
dk

: ð4:15Þ

Suppose we perform our measurements in a canal of square cross-section, 1 m
wide and 1 m deep, and some 20 m long. This is a wave-guide in which we can
inject waves moving up and down a wooden septum on the surface at one extreme
of the canal. In this way, we produce a wave group of a few crests separated by, say,
a dozen centimeters and then study its propagation. We have prepared two reference
lines forming a baseline that we have measured. We shall determine the velocities
by measuring the time taken by the wave to travel through this base.

Let us start with the phase velocity. We can measure it by two methods.
With the first method, we fix our attention on a particular crest of the packet and

measure the time it takes for it to go through the base. The phase velocity is
obviously the ratio between the base length and this time.

With the second method, we take a photo of the packet at a certain instant and
measure, on the picture, the average distance between crests. This is the average
wavelength. We had also arranged a small buoy connected to a recorder that
provides us with a record of the height of the surface as a function of time. From
this record, we can easily extract the average oscillation frequency. Having mea-
sured wavelength and frequency, we multiply them to obtain the phase velocity.

The two methods are operationally different, but, as we can verify, give the same
result within the experimental uncertainties.

We now measure the group velocity with a method similar to the first one above.
However, we now look at the times of passage at the two lines of the maximum of
the packet rather than of a single crest. In this way, we find that the group velocity is
one half of the phase velocity.

We can finally measure the energy velocity by measuring the speed of the end of
the waves. We inject into the guide a certain number of crests, fix our attention on
the moving point at which the wave motion is just finished, and measure the time it
takes to go through the base. We thus find the velocity with which energy propa-
gates through the system. Note that, operationally, energy and group velocities are
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different concepts. In this case, we experimentally find that energy and group
velocities are equal to one another. However, this might not be the case for other
systems.

4.2 Measurement of the Speed of Light

The word “light”, strictly speaking, means the electromagnetic radiation in the
frequency interval in which it can be “seen” by human eyes. In this section, we
describe the first historical measurements of the speed of light. They were
accomplished with astronomical observations, hence in vacuum, and subsequently
in the atmosphere, in which the difference from a vacuum is, however, very small.

Let us start by recalling a few fundamental concepts that should be well known
to the reader. The speed of light is extremely fast, or, more properly stated, it is the
largest possible velocity. Indeed, as we discussed in the 1st volume of this course,
the relativity principle, originally stated by Galileo Galilei (Italy, 1564–1642), holds
for all laws of physics. We also recall that it can be shown that, under very general
assumptions on the properties of space and time and the validity of the cause and
effect principle, only two sets of transformations between the spatial and time
coordinates of two inertial reference frames exist, namely the Galilei and the
Lorentz transformations. The latter contain a constant, c, which has the physical
dimensions of a velocity. The Galilei transformations are the limit of the Lorentz
transformations for c ! ∞. The quantity c is one of the fundamental constants of
physics, is invariant under Lorentz transformations, is the largest possible velocity,
and is the velocity of the electromagnetic and gravitational waves in a vacuum.
Given its importance, c was measured with precision increasing with time. The
relative uncertainty was as small as four parts per billion (Δc/c < 4 � 10−9) in
1975, when the Conférence Générale de Poids et Mesures recommended redefining
the unit of lengths, the meter, as the distance traveled by light in a vacuum in 1/299
792 458 of a second. Consequently, in the SI system of units, the value of c is fixed
by definition to be equal to

c ¼ 299 792 458 m s�1: ð4:16Þ

We finally recall that we learned in Sect. 3.6 that the wave equation in Eq. (3.31)
is a solution to the Maxwell equations in a vacuum. Consequently, light waves in a
vacuum are not dispersive and the phase and group velocities are equal.

Considering the extremely large value of the speed of light, it is not surprising
that its propagation has been considered as instantaneous through the millennia of
human culture. It was G. Galilei who first thought that light might propagate with a
finite velocity and tried an experiment to measure it, as he later wrote in his “Two
new sciences” published in 1638. The idea was as follows. Two people hold two
lanterns, such that, by interposition of the hand, the one can shut off or admit the
light to the vision of the other. They first practice, at a short distance from one
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another, a scenario in which one, in the instant he sees the light of his companion,
uncovers his own. Having acquired the skill necessary for a response with a
“negligible delay”, the two experimenters perform the same experiments at night at
two locations separated by “two or three miles”. Galilei could not measure any
delay under such conditions. Indeed, we know now that the delay in observing over
a back and forth distance of about 10 km is about 30 µs, far too short a time to be
detectable in this experiment.

Much longer delays can be observed on astronomical baselines. Note that in an
experiment on earth, one can measure the time spent by light in back and forth
travel, as in the Galilei experiment and all those that followed, while an astro-
nomical observation must be based on a light travelling in one direction only, from
the source in the sky to the detector on earth. As a consequence, the source must be
periodic, namely a clock. Its period should be accurately known and short enough
to allow observations over many periods. Indeed, such heavenly clocks had been
available, with the discovery by Galilei of the Jupiter satellites. In 1669, Gian
Domenico Cassini (Italy-France, 1625–1712) was called to Paris by King Luis XIV
to build an advanced astronomical observatory, the Observatoire des Paris. In the
following years, Cassini, initially by himself and, from 1672, with his assistant Ole
Rømer (Denmark, 1644–1710), performed systematic measurements and calcula-
tions on the Jupiter satellites. They measured the intervals between two subsequent
occultations by Jupiter of each satellite. For a given satellite, these intervals mea-
sured the orbit period. However, the two astronomers observed that the interval
between occultations, in particular of the most external one, Io, continuously
increased over a period of six months and decreased over the subsequent six
months. The maximum delay amounted to about 22 min. They calculated and
applied all the necessary corrections, but the effect did not disappear.

In 1675, Cassini concluded that it was very likely that the delay was due to the
time “taken by light to reach us”. On November 22, 1676, Rømer finally presented to
the French Academy his “memoire”. The delays and advances were due to the finite
velocity of light. Consider the scheme shown in Fig. 4.5 and assume, for a moment,
that Jupiter is immobile in the position J in the figure. The occultations of Io are
luminous signals leaving Jupiter at equal intervals of time. However, the distance
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Fig. 4.5 Scheme of Cassini—Rømer argument for the speed of light
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they have to cross to reach earth is growing when earth moves from position E1 to
position E2 in the figure, namely over six months. As a consequence, the intervals
between two occultations as seen from earth keep growing during this period, and
diminishing during the subsequent half a year. The delays of the first period (and the
anticipations of the second) accumulate up to the mentioned total of about 22 min.
This is the time spent by light to cross the diameter of the earth’s orbit.

The above-simplified argument requires several corrections, due to the motion of
Jupiter about the sun (a revolution of about ten years), due to the earth’s orbit being
an ellipses, and the like. However, the conclusions are correct.

Today, we know that the diameter of the earth’s orbit is, in round figures,
300 million kilometers and can calculate a value of c. However, this distance was
not known with any precision in the XVII century and Rømer, perfectly aware of
that, did not provide a number for the speed of light.

Hippolyte Fizeau (France 1819–1896) was the first scientist to measure the
speed of light in a laboratory, in 1849. Even in this case, the light flux was peri-
odically interrupted, as it now is automatically, employing a mechanical system
built by the experimenter. Another difference with an astronomic measurement, as
we already mentioned, is that, in the laboratory, light travels over a distance and
then comes back. Figure 4.6 shows the scheme of the apparatus built by Fizeau. It
consists of a cogwheel, W in the figure, and a mirror, M2, placed 8 km apart. It is
essential that the distances between consecutive cogs of the rim of the wheel are
exactly equal to one another.

The lens L1 produces an image of the small light source S in F on the border of
the wheel in such a way that light can go through the space between two cogs. The
lens L2 makes the light beam parallel, while L3 converges the beam on the mirror
M2. The latter reflects the light, which now comes back following the same path as
did going in, again passing through the space between two cogs in F. The mirrorM1

is half-silvered and reflects part of the returning light in a direction in which the
observer can see it without interfering. The lens L4 converges the light into the eye
of the experimenter.

This is what happens when the wheel is at rest. If we were now to rotate the
cogwheel at an increasing speed, we would continue to see the light of the beam
coming back when the angular velocity is small. Increasing the angular velocity,
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Fig. 4.6 Scheme of the Fizeau cogwheel experiment
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Fizeau reached a value for which, in the time spent by light to travel back and forth,
a cog had time to move to the position F where light had passed going in. Under
these conditions, the reflection back from the mirror was obscured, because the light
had struck one of the cogs.

If n is the number of cogs, the first obscuration happens when the number of
turns per second m satisfies the condition

1
2nm

¼ 2l
c
; ð4:17Þ

where l is the distance between the cogwheel and M2. Rigorously speaking, Fizeau
was measuring the light velocity in air, rather than in a vacuum. However, the
difference between the two is extremely small, so small that we can neglect it here.
If we now further increase the angular velocity of the cogwheel, we observe a
maximum light intensity when the reflected light finds the free space after the cog it
had encountered previously. The condition on m is

2
2nm

¼ 2l
c
:

We encounter a second eclipse when

3
2nm

¼ 2l
c
;

and so on. By measuring the spin frequencies at the occultations, we obtain the
speed of light c.

In this experiment, the distance was l = 8633 m, and the number of cogs was
n = 720. In one of his first measurements, Fizeau found the first minimum occurring
at m = 12.6 turns per second and the first maximum at m = 25.2 s−1. The flash of light
had traveled 17,266 m in 1/(25.2 � 720) s, namely at the speed of 3.13 � 108 m/s.
Fizeau’s final result is c = 3.15 � 108 m/s (uncertainty was not quoted).

A few years later, in 1862, Léon Foucault (France, 1819–1868) realized a second
method, which is now called the rotating mirror method, one that had been put
forward by François Arago (France, 1786–1853) in 1838. Figure 4.7 shows a
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Fig. 4.7 Scheme of the Foucault rotating mirror experiment
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scheme of the experiment. The light from the point source S, after having crossed
the semitransparent mirror M1, is focused by the lens L on the point C, after having
been reflected by the plane rotating mirror M2. C is on the surface of the mirror M3,
which is spherical. The reflected light travels back through the path CM2LM1,
where it is partially reflected to the telescope of the observer. The smart idea is that
the curvature center of the spherical mirror M3 lies on the rotation axis ofM2. In this
way, the light reflected by M3 always arrives at the same point of the rotating
mirror, whatever the angle between M2 and M3. This would not be possible if M3

was a plane. In the figure, I is the position of the reflected image of the source when
M2 does not move and I’ the image with the mirror in rotation with a certain angular
velocity.

If D is the distance from C to M2, the time taken by the light to go from the
rotating mirror to M3 and back is s ¼ 2D=c. In this time, the mirror rotated by an
angle a ¼ sx. Here, x is its angular velocity, which was measured with high
accuracy. The distance I I′, which is the result of the experiment, is proportional to
this angle. The proportionality constant is known by construction. In 1862,
Foucault measured c = 2.98 ± 0.005 � 108 m/s. The precision was considerably
improved compared to Fizeau.

The rotating mirror method is apt to be operated on shorter base lines and,
consequently, for measuring the speed of light in transparent media. Foucault was
able to reduce the distance D down to 4 m, reach a rotation speed of 800 s−1, and
measure the speed of light in water.

When measuring the speed of light in a medium, which is always more or less
dispersing, we must ask ourselves, what is the speed we are measuring? In prin-
ciple, this question should even be addressed for air. What Fizeau measured is the
speed of the end of the light wave. This is the same logically as what we did in the
previous section with the end of the surface waves. We understand that Fizeau
measured the group velocity. Similar arguments hold for the measurements of
Foucault.

A difference between phase velocity tp and group velocity tg for light, which is
extremely small in air, was established for the first time by Albert Michelson on
carbon disulfide (CS2), which is a highly dispersing, colorless liquid. He found the
value c/tg = 1.76 for yellow light pulses, while it was known that c/tp = 1.64.

Let us now see how the phase velocity of light should be measured. As given by
Eq. (4.14), we must generate a monochromatic light (at least, approximately so)
and measure both wavelength and frequency. For (visible) light, k is about 0.5 µm,
and m is on the order of 1015 Hz. We can easily measure k taking advantage of
interference phenomena. We shall study that in the next chapter. Contrastingly, the
measurement of m is difficult, due to its very large value, but quite possible with
modern techniques. Even better, these techniques lead to an extreme precision on
the order of a part in 1011. In practice, phase velocity in a medium is obtained
indirectly by measuring the refractive index, which is inversely proportional to it, as
we shall now see.
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4.3 Refraction, Reflection and Dispersion of Light

Electromagnetic waves not only propagate in a vacuum but in material media as
well, if the latter are sufficiently transparent. We have seen in Sect. 3.6 that
Maxwell equations predict that the electric and magnetic field obey the wave
equation in a vacuum [see Eqs. (3.31) and (3.32)]. These equations imply that
electromagnetic waves are non-dispersive in a vacuum, a fact that is experimentally
verified. Contrastingly, material media are dispersive for electromagnetic waves.
We shall find, in Sect. 4.8, the partial differential equations, in place of Eq. (3.31)
governing the propagation of the electromagnetic field in dielectric transparent
media. We shall now focus on the physics of light. We start with discussion of the
phenomena of reflection and refraction at the interface between two different media
and the phenomenon of dispersion. We assume the media to be transparent,
homogeneous and isotropic.

The refraction phenomenon is governed by a dimensionless quantity charac-
teristic of the medium, which is defined for monochromatic waves and is a function
of the wavelength. This is the refractive index, which is the ratio between the speed
of light in a vacuum and the phase velocity in the medium, namely

nðkÞ ¼ c=tpðkÞ: ð4:18Þ

We immediately observe that measuring the refractive index is much easier than
measuring the phase velocity. Let us consider two transparent media separated by a
plane surface and a plane light wave traveling in the first medium, crossing the
boundary between the two and continuing in the second. Let n1 and n2 be the
refraction indices of the first and second medium, respectively. We assume the
extension of the separation surface to be very large compared to the wavelength of
the waves we shall consider. Under these conditions, we can neglect the wave
character of light and speak of geometric optics. We also define the trajectory of the
energy transported by light as a light ray. In an isotropic and homogeneous medium
for a monochromatic wave, the propagation direction of energy coincides with the
direction normal to the wave front, namely of the wave vector k. This is not the case
for anisotropic media, as we shall see in Chap. 6. A light beam is a set of light rays
with a certain cross-section.

Let us start by considering the case in which the first medium is a vacuum (or, in
practice, air), which obviously has an index n1 = 1, and let n2 = n be the index of
the material medium. You can think of water or of a glass, for example. Let us
consider a monochromatic wave and let x be its angular frequency and k0 its
wavelength in a vacuum. The corresponding wave number is k0 ¼ 2p=k0 linked to
the angular frequency by the dispersion relation

x=k0 ¼ c: ð4:19Þ
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In the material medium, the angular frequency of the wave is the same as in a
vacuum, because, for continuity, the time dependence of the fields must be the same
on the two faces of the interface surface (more discussion of this in Sect. 4.5). Let
k be the wave number and tp(k) the phase velocity in the medium. The dispersion
relation in the medium is

x=k ¼ tpðkÞ ¼ c=nðkÞ: ð4:20Þ

In conclusion, wavelength and wave number in the medium are different than in
a vacuum. The relations are

k ¼ nðkÞk0; k¼k0=nðkÞ: ð4:21Þ

To fix the ideas, the refractive index is about 3/2 for glass and about 4/3 for
water. The index of the air is very close to 1, while at STP, it is 1 + 3 � 10−4.

As is well known to the reader through common experience, lenses are built by
assembling media of different refraction indices limited by plane, spherical or
cylindrical surfaces. These issues will be treated in Chap. 7. Here, we discuss the
basic phenomena connected to the propagation of light, namely reflection, refrac-
tion and dispersion.

Refraction. Consider a beam of parallel light rays that is incident on the interface
between two transparent media, as shown in Fig. 4.8. Let n1 and n2 be the refraction
indices of the first and second media, respectively. We assume the separation
surface to be a plane and of dimensions very large compared to the wavelength. The
rays in the first medium are called incident rays and the angle they form with the
normal to the surface (h1 in the figure) is the angle of incidence. The plane of the
direction of incidence and normal to the surface is called the plane of incidence.
The rays in the second medium are called refracted rays and the angle they form
with the normal (in the figure) is called the angle of refraction. Historically, it was
the Greek Egyptian scientist Claudius Ptolemy (Alexandria in Egypt, 100–170)
who first measured the relation between the angle of incidence and the angle of
refraction. He made accurate measurements in steps of 10° for the three most
important couples of media, namely between air and water, air and glass, and water
and glass. In the Xth century, the Arab scientist Ibn Sahal (Bagdad, 940–1000)
developed a theory regarding the use of glass lenses to focus light for burning
purposes. His work, published in 984 with the title “On burning mirrors and len-
ses”, contains a geometrical expression fully equivalent to the correct analytical
expression we use today. The latter was finally found in 1621 by Willebord Snell
(The Netherland-1580–1626) and is called Snell’s law.

Snell’s law tells us that: (a) the refracted ray lies in the plane of incidence, (b) the
relation between the angle of incidence and angle of refraction is

n1 sin h1 ¼ n2 sin h2: ð4:22Þ
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In Sect. 4.5, we shall give the interpretation of the law based on the wave theory.
Here, we give a justification based on simple arguments. Point (a) is an obvious
consequence of the symmetry of the problem. Point (b) is illustrated in Fig. 4.8 for
the case n2 > n1. The figure shows, as a dotted line, the incident wave surface in the
moment at which the first ray of the beam hits the interface between the media (A in
the figure). The points of the wave close to A are the first to enter into the second
medium, in which the speed is reduced, and the first to slow down. Other points of
the incident wave surface are still in the “faster” medium. For a quantitative
analysis, let us consider the triangles ABC and ABD in the figure. Both are rect-
angular and share the hypotenuse AB. Let x be its length. The two wave surfaces
shown in the figure are the last completely in the first medium and the first com-
pletely in the second one. Their extremes are separated by distances that we call l1
and l2. These distances are given by l1 ¼ x sin h1 and l2 ¼ x sin h2. Now, the time
taken by the phase to cross the distance l1 in the first medium with phase velocity t1
must be equal to the time it takes to cross l2 in the second medium with phase
velocity t2. Namely, we must have l1=t1 ¼ l1=t2. Finally, we have n1l1=c ¼ n2l2=c,
which is Snell’s law in Eq. (4.22).

Figure 4.8, as already stated, is drawn for the case in which the rays go from a
less refracting to a more refracting medium. In this case, as we say, the rays get
closer to the normal in the second medium. In the opposite case, from greater to
lesser refracting media, the rays are along exactly the same route, moving in the
opposite direction. In this case, the rays depart from the normal.

For the majority of the transparent media, like water and glasses, the refractive
index of light is a slowly varying, monotonically increasing, function of frequency.
In particular, it is a little larger for the blue than for the red. Table 4.1 reports, as an
example, the case of a crown glass (as it is called). One sees that the index for blue
is about 1 % larger than that for red. This small difference is sufficient to originate
the dispersion of light, for example, in a prism, as shown in Fig. 4.9.
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Fig. 4.8 Refraction of a light
beam from a less dispersing to
a more dispersing media
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We call dispersion of light the action made by a prism of glass, and by other
transparent dielectrics, on a white light beam, which becomes dispersed in the
different colors it contains. Figure 4.9 shows the scheme. Entering into the glass,
the components of the beam of different frequencies, which correspond to different
colors to our eyes, are refracted through different angles, because their refraction
indices are slightly different. At the exit, the rays are refracted again with differ-
ences between them that add up to the first ones. The total deflection angle, as it is
called, is maximum for blue and minimum for red. The dispersion phenomenon of
white light into its colors is a consequence of the dependence of the phase velocity
on frequency. This is at the origin of the term dispersion relation, a term that has
been generalized to all types of wave.

Two important comments are necessary here. Firstly, it is often said that colors
are seven in number. This comes from a statement by Newton, who was the first to
use a prism to experimentally study the separation of the colors of a sunbeam
entering into a dark room from a small hole in a window. He identified and named
seven different colors. This number, however, is arbitrary, being purely a matter of
definition. Secondly, while it is true that we perceive a monochromatic light per se
as a definite color, the opposite is not necessarily so. Indeed, the color perception is
a subjective process that involves not only our eye as a detector but also a lot of
processing in our retina and our brain. As a consequence, for example, a field on a
surface illuminated by light of a certain frequency may be perceived as having
different colors depending on the illumination of the nearby fields. We shall not
deal with these interesting questions in this course.

Table 4.1 Refractive index
of crown glass

k vacuum (nm) m (THz) n

Ultraviolet 361 831 1.539

Violet 434 692 1.528

Blue green 486 618 1.523

Yellow 589 510 1.517

Red 656 457 1.514

Dark red 768 391 1.511

Infrared 1200 250 1.505

blue
green
red

Fig. 4.9 Diffraction of a
white beam by a prism
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Reflection. When a ray is incident on the interface between two media of dif-
ferent indices, not all of its intensity goes to the refracted ray. Part of it gives origin
to the reflected ray. The reflected ray propagates in the same medium as the incident
ray, and in the incident plane. In addition, the angle of reflection is equal to the
angle of incidence. Figure 4.10 shows the geometry in the case of increasing index
from the first to the second medium (like from air to water or from air to glass).

The intensity of the incident ray is shared by the refracted and reflected rays in a
proportion depending on the angle of incidence. We shall not study this in this
book, but only the sharing between the two rays at normal incidence in Sect. 4.6.
We shall also see, in Sect. 4.5, that the presence of the reflected radiation, in
addition to the refracted one, is a necessary consequence of the wave nature of the
phenomenon.

Total refraction or total internal refraction. The phenomenon happens in the
passage from a more refracting to a less refracting medium, n2 < n1 (from water to
air, for example), as shown in Fig. 4.11.

Snell’s law in Eq. (4.22) tells us that, under these conditions, the angle of
refraction is larger than the angle of incidence. If we now increase h1, h2 will
increase as well, up to the point of reaching 90°. Under this condition, the refracted
ray grazes the surface and cannot go further. In other words, there are no solutions
for the refracted ray for larger values of h1. Indeed, the condition sinh2 � 1 tells us
that the refracted ray does not exist for incident angles h1 � h1;lim, for which the
limit angle is given by

sin h1;lim ¼ n2=n1: ð4:23Þ
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Fig. 4.10 Reflection and
refraction from a less
refracting to a more refracting
medium
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These are the conditions of the total internal reflection. You can observe this
phenomenon by swimming several meters under the quiet surface of the sea.
Looking up, you see the sunlight coming in through a circle, like a large manhole,
of a certain radius (depending on your depth). Outside the circle, the water is
silvery, like a mirror.

4.4 Rainbow

The rainbow is a fascinating phenomenon, which has always attracted the attention
of humanity, and of scientists, in particular. We can observe it when there are water
drops in the air, during a rain shower, in the water spray of a waterfall or of a
fountain. Figure 4.12 shows an example.

The phenomenon is explained by the dispersion of solar light by spherical water
drops, as shown schematically in Fig. 4.13. Let us see how.

The colors of the rainbow are bright, with the red in its external, or higher, part,
the violet on the internal, lower, one. Often a second bow can be seen, higher and
much fainter than the first one. The arcs are called primary and secondary bows,
respectively. The order of the color dispersion is inverted on the secondary bow,
compared to the primary one, with red as the lowest, violet the highest. The sky
between the two bows is noticeably darker than below the principal bow. This is
called Alexander’s dark band, from the Greek philosopher Alexander of Aphrodisias
(Greece, 2nd century AD), who first described the effect around 200 A.D. Even
when the secondary bow cannot be seen, one can easily appreciate how the sky is
much more luminous on the lower side than on the upper side of the principal bow.

Humans have been enchanted by these phenomena since ancient times and that
enchantment continued even as their explanation gradually became clearer. By the
10th century in Cairo, Ibn al-Haytham (Basra and Cairo, c. 965-c. 1040), better
known in the West as Alhazen, was already studying the phenomenon and the
dispersion of colors. In 1266 in England, Roger Bacon (UK, 1214–1292) measured

θ1 θ1

θ2

incident reflected

refracted

Fig. 4.11 Total internal
refraction
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the angles between the directions of the light incident from the sun and diffused in
the bows. He found 138° and 130°, respectively (see Fig. 4.13). At the beginning of
the XIV century, Theodoric from Freiberg (Germany, 1250–1310) advanced the
hypothesis that the bow could be caused by water drops. To check the idea, he
conducted experiments on a spherical glass bowl full of very pure water, serving as
a model of the drop. He sent a light ray through the bowl at different distances from
the center and studied the trajectory of the ray in the water for each of them. He

Fig. 4.12 The primary and secondary bows and the dark band. The supernumerary bows are
visible under the primary arc. Photograph by Nelson Kenter with permission
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Fig. 4.13 Schematic representation of the primary and secondary bow formation
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found that the principal bow is due to the rays that enter the drop, are internally
reflected once and then exit, while the secondary bow is due to rays that internally
reflect twice and then exit (Fig. 4.14). Unknown to him, Ibn al-Haytham had
already performed similar experiments four centuries earlier. Three centuries after
Theodoric, in 1637, René Descartes (France, 1596–1650) gave a clear interpretation
of the phenomenon based on Snell’s law (1621).

Let us analyze what happens when a light ray, which we initially consider
monochromatic, reaches the surface of a spherical water drop.

We start by noticing that, given the cylindrical symmetry of the problem, the
only geometrical parameter is the distance b between the line defined by the
incoming ray and the center of the drop. This distance is called the impact
parameter.

The ray hitting the drop at a given impact parameter is partially reflected, giving
origin to what we call a 1st class ray, in part refracted, following Snell’s law. When
the refracted ray reaches the surface, it, in turn, is partially reflected (inside the
drop), partially refracted, leaving the drop as a 2nd class ray. Again, the ray
remaining in the drop is partially reflected and partially refracted (3rd class ray).
The process continues. The 3rd class rays produce the primary bow, the 4th class
rays the secondary bow. Rays of higher classes exist, but their intensities are lower
and lower with increasing class order. They produce very faint higher order bows,
which can be observed with sensitive photographic techniques.

In conclusion, every incident ray at a certain impact parameter produces a set of
outgoing rays, called scattered rays, of different classes. For each class, the scat-
tering angle, which is the angle between the outgoing and incoming rays, varies
with the impact parameter. Considering that the sun casts light on the drop at all the
impact parameters uniformly, one might think that light should be scattered prac-
tically at all angles. What, then, is the reason that we see the bow around a definite
angle?
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Fig. 4.14 The trajectories of the rays in the drop for a the primary bow, b the secondary bow
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To answer the question, we study how the 3rd class ray scattering angle varies as
a function of the impact parameter. When this is zero, the incident angle is also
zero, and the 3rd class ray is scattered at 180˚ after having crossed the drop twice on
its diameter. If the impact parameter increases, the scattering angle decreases, but
not forever. Indeed, it reaches a minimum and then increases back. In order to see
that, let us consider the scattering angle as a function of the incident angle, which
we call i. This is a function of b given by sin i ¼ b=R, where R is the drop radius.
Looking at Fig. 4.14, we see that the scattering angle is the sum of the deviation at
the first refraction (i − r), of the deviation at the following reflection (p − 2r) and
of the deviation at the second refraction (i − r). Hence, it is

D ¼ i� rþ p� 2rþ i� r ¼ pþ 2i� 4r

We can eliminate r using Snell’s law. Calling n the index of water (its value is
about n = 1.333) and taking 1 as the index of air, we find

r ¼ arcsin
sin i
n

� �
:

We then obtain

D ¼ pþ 2i� 4 arcsin
sin i
n

¼ pþ 2i� 4 arcsin
b
nR

:

For small incident angles (i.e., small impact parameters), D is a decreasing
function of i (and of b), as one can easily check approximating the sine with its
argument, namely as

D ’ pþ 2i� 4
i
n
¼ pþ 2 1� 2

n

� �
i ¼ pþ 2 1� 2

n

� �
b
R

and noticing that 2(1–2/n) < 0. However, the scattering angle D only initially
decreases with increasing i. It subsequently reaches a minimum and then increases.
It is simply the existence of the minimum, or better yet, of an extreme, that is at the
origin of the rainbow, as we shall now see. We find the minimum by putting the
derivative as equal to zero and solving the equation

dD
di

¼ 2� 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 i

n2

q cos i
n

¼ 0:

We get 4 cos2 i ¼ n2 � sin2 i , and hence, sin2 i ¼ 4� n2ð Þ=3 , which gives us
i = 59.4°.

The angle of refraction is given by sinr = sini /n = 0.65, that is r = 40.2°.
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The minimum deflection angle is thus Dmin = 180° + 118.8° − 160.9° = 137.9°.
It is reached at the impact parameter value of about 7/8 (0.86) of the radius.

Figure 4.15 shows the behavior of the scattering angle (also called the deflection
angle) as a function of the impact parameter.

The primary rainbow is observed at the minimum angle. To understand why,
consider that the sunlight illuminates the drop uniformly at all the impact param-
eters. The light incident at a certain impact parameter is scattered at a certain angle,
as we computed. At angles close to the minimum, where the curve varies very
slowly, several impact parameter values contribute. Consequently, there is a sharp
intensity maximum (see Fig. 4.15 on the left). In reality, the light is not
monochromatic, as we thought up until now. We must consider that the refractive
index is a (slowly) increasing function of the frequency. Consequently, the various
monochromatic components of the white light are deflected more and more for
larger and larger frequencies (the blue is deflected more than the red) and the
intensity peaks appear in slightly different directions for the different colors, with
blue being lower than red.

The reason for the bow shape is as follows. The rays of certain color are
deflected at a certain angle, i.e., from a certain angle with the incident direction.
Consequently, they lie on a cone, the axis of which is the incident direction. We
observe a section of that cone, and hence, see an arc in the sky.

We have thus found that the dispersion of the light in its monochromatic
components is at the origin of the rainbow. The study of the dispersion is originally
credited to Isaac Newton (UK, 1643–1727), who published his “Opticks” treatise in
1704. Starting from his measurements of the refractive index at different wave-
lengths, Newton calculated the rainbow angle to be 137˚58ʹ for the red and 139˚43ʹ
for the violet, in agreement with the measured values.

The explanation for the secondary bow is similar, with the difference being due
to the 4th class rays. From Fig. 4.14b, we have

Class 3

Class 4

Scattered intensity 0 0.86 0.95 1.0
b/R

Δ
180˚

160˚

120˚

80˚

40˚

0˚

Fig. 4.15 Scattering angle as a function of the impact parameter to radius ratio for 3rd class and
4th class rays and scattered light intensity versus scattering angle
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D ¼ i� rþ p� 2rþ p� 2rþ i� r ¼ 2pþ 2i� 6r:

At the zero impact parameter (i.e., for i = 0), the ray is scattered at 0° after
having crossed the drop three times on its diameter. When b increases, the
deflection D increases, reaches a maximum and then decreases. It is easily found
that the maximum deviation is reached at i = 72°, corresponding to r = 45.5°. The
maximum deflection angle is consequently Dmax = 360° + 144° − 270°, or, mod-
ulo 360°, Dmax = 130°.

QUESTION Q 4.2. Compare the rainbow angle (of the primary bow) for fresh water
(n = 1.333) and seawater (n = 1.340). (N. B. indicative values; they depend on
temperature) ⃞

QUESTION Q 4.3. Calculate the maximum deflection angle for 5th class rays.
Is there an extreme for the 5th class rays? Is it a maximum or a minimum?
Calculate it. ⃞

Notice in Fig. 4.15b that an observer, being located lower than the sun relative to
the drop, sees the scattered light hitting the drop below its axis. As a result, the blue
appears higher than the red, as can be observed in that figure.

We also notice that no light is scattered between 130° and 138° in rays of 3rd
and 4th classes. In addition, as we mentioned, the higher class rays are extremely
faint. This explains Alexander’s dark band.

Notice finally that the scattering angles at a given impact parameter are, for each
class, independent of the radius of the drop. Water drops of different diameters,
such as those within rain, contribute to the rainbow in the same manner. Also, the
geometry of the scattering is the same for the small raindrops, and the water spheres
of Ibn al-Haytham, Theodoric and Descartes.

We have discussed the showiest characteristics of the rainbow here. However,
the physics of the phenomenon is much richer than that. We shall now give some
hints.

The light of the rainbow is polarized “by scattering” , a phenomenon we shall
discuss in Sect. 6.5. It can be easily observed by looking at the rainbow through
polarizing sunglasses and turning them by 90° (see Sect. 6.4).

One can sometimes observe a few colored bands below the principal arc, in
general rose and green, called supernumerary bows. They appear when the diam-
eters of the raindrops are fairly equal to one another and are clearly visible in
Fig. 4.12. The supernumerary bows are due to an interference phenomenon (we
shall study the interference in Chap. 5).

In the geometric optic approximation we have taken, Alexander’s dark band
should be completely dark. But it is not so due to the diffraction phenomenon (see
Chap. 5).

The left part of Fig. 4.15 can be interpreted as a diagram showing the probability
of light being scattered as a function of the scattering angle (separately for the 3rd
and 4th classes). Similarly, scattering experiments are powerful tools for the study
of quantum systems like atoms, nuclei and elementary particles.
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4.5 Wave Interpretation of Reflection and Refraction

We shall now show how the wave nature of light explains reflection and refraction,
as first done by Christiaan Huygens (The Netherland, 1629–1695) in 1690. We
shall see how, in addition, the explanation foresees new phenomena that are not
explained by the geometrical optics. Let us consider a plane monochromatic wave
incident on the plane surface separating two homogeneous and isotropic transparent
media. We choose a reference system with the origin and the y-axis on both the
interface and the plane of incidence, the z-axis normal to the interface in the
direction of the semi-space of the incident wave and the x-axis on the interface to
complete the frame. Let ki be the wave vector of the incident wave and xi its
angular frequency. With our choice of axes, ki belongs to the y,z plane.

The electric incident field is

Ei r; tð Þ ¼ E0iei xi t�ki�rð Þ: ð4:24Þ

We use the footers r and t for the reflected and transmitted (namely refracted)
waves. Their fields are then Er and Et and are given by

Er r; tð Þ ¼ E0rei xr t�kr �rð Þ: ð4:25Þ

and

Et r; tð Þ ¼ E0tei xt t�kt �rð Þ: ð4:26Þ

Notice that we have represented the angular frequencies and the wave vectors in
the two media with different symbols, to avoid making any a priori hypothesis on
the relationships between them. We want to find these relations. We know that the
tangential component of the total electric field parallel to the interface surface is
continuous. We are sure of this statement despite not knowing whether the surface
is charged or not. If it is charged, the discontinuity is in the normal component, not
in the tangential ones. We then impose the tangential field components (which we
indicate with the superscript ||) on the two sides of the interface (the plane z = 0) so
as to be equal to one another, namely

Ejj
0i
ei xi t�kixx�kiyyð Þ þEjj

0r
ei xr t�krxx�kryyð Þ ¼ Ejj

0t
ei xt t�ktxx�ktyyð Þ; ð4:27Þ

which must be identically valid. In particular, at r = 0, we have

Ejj
0i
eixi t þEjj

0r
eixr t ¼ Ejj

0t
eixt t;

which must hold for any t. Consequently, as we had anticipated in the previous
section, the three frequencies are equal, and we can represent them with a single
symbol, namely with x (Fig. 4.16).
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Similarly, at t = 0 and z = 0, taking into account that kix = 0, the continuity
conditions gives us

Ejj
0i
ei �kiyyð Þ þEjj

0r
ei �krxx�kryyð Þ ¼ Ejj

0t
ei �ktxx�ktyyð Þ;

which holds for every x and y. This can happen only if all the exponents are
identically equal, namely if

kiyy ¼ krxxþ kryy ¼ ktxxþ ktyy: ð4:28Þ

In particular, for y = 0 and arbitrary (but not zero) x, the conditions become

0 ¼ krxx ¼ ktxx:

Hence, in conclusion, it must be

krx ¼ ktx ¼ 0:

This tells us that both the reflected and the refracted rays belong to the incident
plane.

The continuity equation in Eq. (4.28), now for x = 0 and arbitrary (but different
from zero) y, becomes
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Fig. 4.16 Incident, refracted
and reflected waves at the
interface between two media
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kiy ¼ kry ¼ kty:

We can read these equations by saying that the distance between two consec-
utive crests on the interface must be the same for all the waves. Let hi be the angle
of incidence (namely the acute angle between ki and the z-axis) and hr the angle of
reflection (namely the acute angle between kr and the z-axis) and ht the angle of
refraction (namely the acute angle between kt and the z-axis). Then, the last relation
can be written as

kij j sin hi ¼ krj j sin hr ¼ ktj j sin ht: ð4:29Þ

Being that the incident and reflected waves are in the same medium, the mag-
nitudes of their wave vectors are equal. Then, the first equation tells us that hr = hi.
This is the law of reflection: the angle of reflection is equal to the angle of
incidence.

In the second equation, we take into account the dispersion relation in the two
media, which are

kij j ¼ n1
c
x; ktj j ¼ n2

c
x ð4:30Þ

and immediately obtain

n1 sin h1 ¼ n2 sin h2:

This is Snell’s law. We have now shown how all the reflection and refraction
laws stem from the wave nature of light. We have learned that they are conse-
quences of the different wave velocities in the two media and of the continuity of
the wave field through the interface. Note that the last condition can be satisfied
only if all three waves are present. The same conclusions hold for every type of
wave.

In the previous section, we saw that, in the passage from a more refrangent to a
less refrangent medium, under the condition of total reflection, namely for incidence
angles larger than the limit angle, there is no refracted ray. How is it possible to
insure the continuity of the wave field if, in the second medium, there is no wave?
The answer is that a wave is indeed present in the second medium, near to the
interface, even if it does not correspond to any ray of the geometric optics. This is
called the vanishing wave. Let us see how it works.

We explicitly write the dispersion relations from Eq. (4.30) as

k2i ¼ k2iz þ k2iy ¼
n21
c2

x2; k2t ¼ k2tz þ k2ty ¼
n22
c2

x2: ð4:31Þ

Let us find kty from Eqs. (4.29) and (4.30). We obtain
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kty ¼ kiy ¼ kij j sin h1 ¼ n1
c
x sin h1: ð4:32Þ

Let us substitute it in Eq. (4.30) and find

k2tz ¼
x2

c2
n22 � n21 sin

2 h1
� �

: ð4:33Þ

We see that for angles of incidence larger than the limit angle, it is k2tz\0,
namely the component of the wave vector of the refracted wave normal to the
interface is imaginary. What does this mean? Introducing the real quantity
Ktz ¼ iktz, we can write the refracted wave as

Et r; tð Þ ¼ E0e�Ktzzei xt�ktyyð Þ: ð4:34Þ

This is a progressive wave moving in the y direction along the interface. Its
amplitude, E0e�Ktzz, is a function of z, namely of the distance from the surface
inside the second medium. Its amplitude reduces by a factor of 1/e on the distance
1/Ktz, which is on the order of the wavelength. This is the vanishing wave, which,
we summarize, propagates along the interface on the side of the “forbidden”
medium with amplitude that exponentially decreases with increasing distance from
the surface. It becomes negligible, “vanishes”, at a few wavelengths, namely at a
couple of micrometers for light. The presence of the vanishing wave is mandatory,
because no wave can disappear sharply and discontinuously. Figure 4.17a
schematically shows the ridges (continuous lines) and gorges (dotted lines) of the
incident and reflected waves, as well as those of the evanescent wave. In Fig. 4.17b,
the reflected wave is not represented to avoid confusion.
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k
t

yz

(a) (b)

Fig. 4.17 a The fronts of the incident, evanescent and reflected waves at the interface between
two media under internal total reflection conditions, b intensities of the same, omitting reflected
wave to avoid confusion
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The opposite case, namely of Ktz < 0, while mathematically possible, is not so
physically. Indeed, it corresponds to a wave of exponentially increasing amplitude,
something that would imply an infinite energy.

Let us check the presence of the vanishing wave as sketched in Fig. 4.18. We
use two thin and perfectly flat glass sheets and lay them parallel, with an air gap
between them of thickness d on the order of the wavelength. This is not easy to
achieve, but suppose we succeeded. We now send a light beam along the first glass
sheet at an angle greater than the limit angle for total reflection (at the exit to the
gap). Being that d is small enough, the amplitude of the evanescent wave in the gap
has not yet vanished completely at the surface of the second glass. Here, the
phenomenon opposite to that at the first interface happens. The vanishing wave acts
as an incident wave, even if with a reduced amplitude, and produces a refracted
wave (or ray) in the second glass. The wave vector of this wave has no imaginary
component. We have a “normal” ray. A fraction of the energy coming in from the
first glass has been able to cross the forbidden gap. The phenomenon can happen
only if the gap width is on the order of the wavelength. This is called, in optics, a
frustrated vanishing wave. However, we more often use the term that comes from
quantum mechanics, namely the tunnel effect. Indeed, in quantum mechanics, a
particle of a given energy can pass to a “valley” on the other side of an energy
“hill”, namely a region forbidden by energy conservation. The crossing of the
forbidden region is exactly the same phenomenon we just considered, as if a tunnel
was present under the hill,

An easy way to observe the effect qualitatively is as follows. Fill a glass having a
smooth surface with cold water from the refrigerator, wait for the air humidity to
condensate on the external surface, keep the glass between your fingers and observe
your fingertips looking through the water at an angle larger than the limit angle. The
pattern of your fingerprints appears brilliantly silvery. The silvery lines are where
the distance of the finger from the glass is larger than a few wavelengths, the pink
ones where the vanishing wave is frustrated.

n
1
= n n
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= nn

2
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d
Fig. 4.18 The tunnel effect
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Experiments are easier if we use a wavelength on the order of a centimeter
(k = 1 cm corresponds to m = 30 GHz in a vacuum). Figure 4.19 shows a
demonstration apparatus.

We produce two rectangular isosceles prisms of paraffin. This substance, which
is opaque at optical frequencies, is quite transparent in the GHz, where its index is
about n = 1.5. The corresponding limit angle is hlim = 41°. Figure 4.19 shows a
source of microwaves and two detectors. We shall send the wave beam through one
of the prisms and study its internal reflection at 45° where it is total. When the
apparatus is as in Fig. 4.19a, detector 1 detects a strong radiation flux, while
detector 2 does not detect anything. Indeed, the internal reflection is total. In
Fig. 4.19b, we put the second prism in contact with the first along the common
hypotenuse. The two blocks are seen by the wave as a single one, any possible gap

Microwave
generatoe

1

2

1

2

1

2

(a)

(b)

(c)

Fig. 4.19 Apparatus to
demonstrate the tunnel effect
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between the hypotenuses being much smaller than the wavelength. Detector 2 gives
a strong signal, detector 1 does not give any. If we now slowly separate the blocks,
gradually opening a gap between them, the signal of detector 1 gradually increases,
while that of detector 2 continues to decrease.

4.6 Reflected and Transmitted Amplitudes

As we have seen, at the interface between two media of different indices, the energy
of the incident ray is shared between the reflected and the refracted rays. The
relative proportions depend on the two indices and the incident angle. We shall only
consider the simplest case of normal incidence here (namely h1 = 0) in which
geometric complications are avoided, while keeping the physics insight.
Figure 4.20 shows the situation. The interface is a plane surface, i, r and t are,
respectively, incident, reflected and refracted rays. Let n1 and n2 be the refraction
indices of the first and second medium, respectively, and let n1 < n2. We now
request the continuity of the relevant components of both the electric and magnetic
fields through the surface.

We choose a reference frame with the z-axis in the direction of the incident ray,
namely normal to the interface surface, the x in the positive direction of the electric
field of the incident wave, and the y-axis in the positive direction of its magnetic
field. Let E0i and B0i be the amplitudes of the fields of the incident wave. Note that
the wave vector ki, which has the direction and sense of E0i � B0i, has the direction
and sense of the z-axis as well.

The wave vector kr of the reflected wave is directed opposite to ki, namely as
−z. Consequently, if E0r and B0r are the amplitudes of the fields of the reflected
wave, their cross-product E0r � B0r must be directed as −z as well. Hence, one of
the two fields must have changed direction relative to the incident waves, the other
one not. Let us assume that it is the electric field that changed signs. We then have
the situation shown in Fig. 4.21, with B0r in the y direction, E0r in the direction
opposite to the x axis, and kr in the direction opposite to z. Note that the hypothesis
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i r

n
1

n
2

z

y

Fig. 4.20 Incident, reflected
and refracted rays at normal
incidence
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we made does not change the substance of the argument. If it were the magnetic
field that inverted, we would have the x component of E0r as positive and the
y component of B0r as negative. In any case, the inversion of amplitude is equiv-
alent to an abrupt change by p of the phase at reflection. We have already
encountered this situation.

Let now consider the refracted wave. The direction and sense of the refracted
wave, namely those of E0r � B0r, are the same as those of the incident wave, as
shown in Fig. 4.21b. We impose the continuity of the components parallel to the
surface of both fields, by writing

E0i � E0r ¼ E0t; B0i þB0r ¼ B0t; ð4:35Þ

where we have taken E0r > 0 if directed opposite to the x-axis, as shown in
Fig. 4.21b. We need to express the second of these equations in terms of the electric
field. We already know that, in a vacuum, the ratio of the amplitudes of the electric
and magnetic fields is c. We anticipate that, in Sect. 4.8, we shall mention that a
similar relation exists in a normal dielectric limited to monochromatic waves, which
is the case we are considering. Well, under these conditions, the ratio of the
amplitudes of the electric and magnetic fields is the phase velocity in the medium,
namely c/n. We can then write

B0i ¼ n1
c
E0i; B0r ¼ n1

c
E0r; B0t ¼ n2

c
E0t;

The Eq. (4.35) relative to the magnetic field becomes n1 E0i þE0rð Þ ¼ n2E0t.
Together with Eq. (4.35) relative to the electric field, we have now a system of two
equations from which we can obtain E0r and E0t as functions of E0i. For conve-
nience, let us introduce the relative refractive index between the media, which is

n ¼ n2=n1: ð4:36Þ
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Fig. 4.21 The electric and magnetic fields of the a incident wave, b refracted wave, c reflected
wave
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and let us write our system as

E0i � E0r ¼ E0t; E0i þE0r ¼ nE0t: ð4:37Þ

We solve the system, obtaining

E0r ¼ n� 1
nþ 1

E0i ¼ n2 � n1
n2 þ n1

E0i; E0t ¼ 2
nþ 1

E0i ¼ 2n1
n2 þ n1

E0i: ð4:38Þ

We now recall that we are considering the case of n2 > n1, namely n > 1. From
Eq. (4.38), we see that if the incident field is in the positive direction of x, namely if
E0i is positive, E0r is positive as well. Namely, under the convention we have taken,
the electric field of the reflected wave has the opposite direction, consistent with our
initial assumption. The equations in Eq. (4.38) are valid in the case of n2 < n1 too.
They tell us, in this case, that if E0i is positive, E0r is negative, namely directed in
the same sense.

In conclusion, when a monochromatic plane wave is normally incident on the
plane interface between two media of different indices, the electric field of the
reflected wave is in phase opposition with the field of the incident wave if the index
of the second medium is larger than that of the first (i.e., if the phase velocity in the
second medium is smaller). In the opposite case, the two fields are in phase. The
situation is similar to that of the elastic string that we studied in Sect. 3.3. These
conclusions on the relative phases that we have found for normal incidence are, in
fact, valid for any incidence angle.

We now define the amplitude reflection coefficient r and the amplitude refraction
coefficient t as the ratios between the reflected and refracted amplitudes, respec-
tively, and the incident amplitude. From what we have just found, we can state that
the coefficients are given by

r ¼ E0r

E0i
¼ n2 � n1

n2 þ n1
; t ¼ E0t

E0i
¼ 2n1

n2 þ n1
: ð4:39Þ

Often, we are interested in the ratios of the intensities, rather than in the
amplitudes. These are called reflection coefficient R and refraction coefficient T. We
recall that the intensity of a monochromatic wave, meaning its average intensity, is
the average over a period of the energy crossing the unit surface normal to the
propagation direction in a second. This is given by the average over a period of the
Poynting vector S = (1/l0)E � B. On the other hand, in each of the waves we are
considering, the electric and magnetic fields are perpendicular to one another, and
both are perpendicular to the wave vector. Their magnitudes are proportional to one
another as B = nE/c. We can thus establish the following proportionality relations
for the intensities: Ii / n1=cð ÞE2

0i, Ir / n1=cð ÞE2
0r and It / nt=cð ÞE2

0t. The reflection
and transmission coefficients are then
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R ¼ Ir
Ii
¼ r2 ; T ¼ It

Ii
¼ n2

n1
t2:

Finally, we have

R ¼ n2 � n1
n2 þ n1

� �2

; T¼ 4n1n2
n2 þ n1ð Þ2 : ð4:40Þ

One verifies immediately that R + T = 1, as it should be for energy conservation.
Let us finally look into a couple of examples. For the reflection from air

(n1 * 1) to glass (n2 = 1.5), the reflection coefficient given by Eq. (4.40) is
R = 0.04 and the same is true for the inverse passage. In the passage from air to
water (n2 = 1.5) and vice versa, we have R = 0.02.

4.7 Origin of the Refractive Index

We have seen that the phase velocity of light, or the index, in a material medium is
different than that in a vacuum, and that it is frequency dependent. We shall try to
understand here the physical origin of the refractive index. The effect is due to the
electric charges within the molecules and to the polarization induced on these
charge distributions by the electric field of the incoming electromagnetic wave. This
is the dynamic analogous to the electrostatic polarization of a dielectric. Under the
action of an electric field, the charge distribution constituting a molecule stretches,
giving origin to an electric dipole. As we studied in the 3rd volume, the electric
field “acting” on a given molecule is the sum of the external, applied, field and the
fields due to all the sister molecules resulting from their polarization. The resulting
problem is quite complicated. In order to avoid unnecessary complexity and to
clarify the physical process, we shall limit the discussion to a sparse medium. We
shall assume the distances between molecules to be large enough so that their
interactions are negligible. This is the case for gases under normal conditions, in a
good approximation. Under this assumption, the electric field acting on each
molecule is the field of the incoming wave alone. We shall find the dependence of
the refractive index on the frequency, namely we shall formulate a theory of dis-
persion. The theory is valid only under the assumptions we have made, but is
general enough to be able to discuss the main physical characteristics of the dis-
persion phenomena. This approach was first proposed by Richard Feynman, in his
beautiful “Lectures on physics”, which we shall follow in our discussion.

Let us consider our homogeneous, low-density medium in the form of a plate
having faces of infinite area and a small thickness h between them. On the two sides
of the plate, there is a vacuum. We choose a reference frame with the origin and the
x and y axes on the first face of the plate and the z-axis perpendicular. We consider a
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progressive, monochromatic electromagnetic plane wave traveling in the positive
z direction. In addition, let it be linearly polarized with the electric field in the x-
direction, as shown in Fig. 4.22.

From a macroscopic point of view, we know that the wave inside the plate
propagates with a phase velocity different than that in a vacuum. From a micro-
scopic point of view, the plate is composed of a large number of charges, inside the
molecules. Between the molecules, we have a vacuum. Consequently, the incident
wave also continues with its velocity c in the medium. Why, then, is the phase
velocity different? The reason is obviously to be found in the presence of the
charges. The electric field of the incident wave transforms each of the molecules in
an electric dipole, whose charges oscillate in time, namely accelerate. Each
accelerating charge emits a small spherical electromagnetic wave. The important
point is that the phase of each emitted wavelet has a definite relation with the phase
of the incoming wave. In other words, all the secondary wavelets are locked in
phase with that of the incident. The sum of these wavelets and of the incident wave
is what we call the refracted wave, and the reflected wave as well.

We now consider a point P on the z-axis beyond the plate and compare the
electric fields there in the presence and in the absence of the plate. Let them be E1

and E2, respectively. The incident field on the plate is

E1 z; tð Þ ¼ E0e�i xt�kzð Þ; ð4:41Þ

which, on the first face of the plate, which is at z = 0, is simply

E1 0; tð Þ ¼ E0e�ixt: ð4:42Þ

In the plate, the phase of the wave advances at the speed of c/n, rather than
c. Hence, the difference between the time taken by the phase to cross the plate and
the time that it would have taken to cross the same distance in a vacuum is
Dt ¼ hn=c� h=c ¼ n� 1ð Þh=c. Hence, compared to the situation in a vacuum, the
phase at the second face of the plate lags behind by D/ ¼ x n� 1ð Þh=c.

What we have to explain, then, is that the sum of the field of the incident wave
and of the fields of the oscillating molecular charges is equal to E1 delayed in phase
by D/. Namely, we should we should show that the field

h

z

P

x

E
0
ei(ωt–kz)

Fig. 4.22 A plane
monochromatic
electromagnetic wave
normally incident on a
dielectric plate
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E2 ¼ E1e�ix n�1ð Þh=c ð4:43Þ

can be expressed as the sum

E2 ¼ E1 þEc; ð4:44Þ

Now, if h(n–1) is small enough, we can approximate Eq. (4.43) as

E2 ¼ E1 1� ix n� 1ð Þh=c½ 	 ¼ E1 � ix n� 1ð Þ h
c
E1:

Our thesis is now to show that the field resulting from the charges in the plate is

Ec ¼ �ix n� 1ð Þ h
c
E1: ð4:45Þ

Under the hypothesis of low density that we have made, the electric field acting
on the charges is given by Eq. (4.42). Note that our hypothesis is a realistic one for
gases at STP, as proven by considering that, for them, the refractive index is n � 1
and, in addition, the reflected wave has negligible amplitude. Contrastingly, it is not
a good approximation for a condensed medium.

We now look at the effects of the field of Eq. (4.42) on the molecules. We
imagine each molecule to be made of a central positive charge in which practically
the entire mass is concentrated, surrounded by a cloud of negative charge, made of
electrons. Let qe and me be the electron charge and mass. The motion of an electron
under the force FðtÞ ¼ qeE1 0; tð Þ is correctly described by quantum mechanics.
However, we would not be very wrong to consider a model in which the electrons
behave as classical matter points of mass me subject to an elastic restoring force. Let
x then be the displacement of a generic electron from its equilibrium position. The
equation of motion of an electron in the plane z = 0 can then be written as

d2x
dt2

þx2
0x ¼

qeE0

me
eixt: ð4:46Þ

We recognize the equation of a forced oscillator of proper angular frequency x0.
Note that in writing Eq. (4.41) for the incident field, we have implicitly assumed the
wave to be present for an infinite time. Consequently, we must look for the sta-
tionary solution to Eq. (4.46). In practice, “infinite time” here means a time much
longer than the duration of the transient of the oscillator. This is indeed the case
under usual conditions. The stationary solution is

x tð Þ ¼ x0eixt ¼ qeE0

me x2
0 � x2

� � eixt: ð4:47Þ
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Consider now an electron in the plane z = 0 at a distance q from the origin. Let
r be its distance from P, as shown in Fig. 4.23. Let us calculate the radiation field of
this accelerating electron in P. Considering that the distance r is much larger than
the wavelength, we can safely use Eq. (3.42). We need the acceleration at the
instant t − r/c. This is

a t � r
c

� �
¼ �x2x0eix t�r=cð Þ ¼ � x2qeE0

me x2
0 � x2

� � eix t�r=cð Þ:

We should now take the component of the acceleration perpendicular to the line
of sight, which is the line joining the considered point to P. However, in our case, it
is practically q << r, and we can approximate the normal component with the entire
absolute value and write the radiation field as

EeðtÞ ¼ qe
4pe0c2

x2x0
r

eix t�r=cð Þ: ð4:48Þ

The reader will have noticed that we are not considering the field to be a vector
quantity. This is indeed possible because the field has only one component, namely x.

We must now sum up the contributions of all the charges of the plate. Clearly,
due to the symmetry of the problem, the contributions of all the charges at the same
distance q from the z-axis are equal. Let dEc be the contribution of the circular ring
between q and q + dq. If ne is the number of electrons per unit volume, their
number in the ring is neh2pq dq. Their radiation field at P is then

dEc tð Þ ¼ qe
4pe0c2

x2x0
r

eix t�r=cð Þneh2pqdq: ð4:49Þ

To have the field in P due to the entire plate, we must now integrate on q from 0
to +∞. We write, taking out of the integral all factors independent of q (part of the
exponential included):

z
P

r
ρ

dρ

Fig. 4.23 Geometry on the
surface of the plate
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EcðtÞ ¼ qe
4pe0c2

x2x0neh2peixt
Z1
0

e�ixr=c

r
qdq:

Now, it is r2 ¼ q2 þ z2, and hence, qdq ¼ rdr, z being fixed. We then transform
the integral on q in an integral on r, changing the limits accordingly. We have

Z1
0

e�ixr=c

r
qdq ¼

Z1
z

e�ixr=cdr:

The integration immediately leads to

Z1
z

e�ixr=cdr ¼ ic
x

j
1

z
e�ixr=c ¼ ic

x
lim
r!1 e�ixr=c � ic

x
e�ixz=c:

Now, rigorously speaking, the limit on the right-hand side is indefinite. Indeed, it
is the limit of a complex number of unitary magnitude whose argument grows
indefinitely. You can think of a unit vector rotating indefinitely in the complex
plane. In practice, however, we can think of the limit as being zero. Indeed, the
surface of the plate is not infinite, but limited. Consequently, when we get our
integration close to the borders, the area of the ring will become smaller than 2pq
dq, because part of it will be outside, and shall tend smoothly to zero. In addition,
the difference between the normal component of the acceleration and its magnitude
shall start to become appreciable sooner or later, once more decreasing the inte-
grand relative to that which we have considered. The rotating vector we have
mentioned should then have a magnitude gradually decreasing to zero.

In conclusion, the radiation field in P resulting from the molecular charges in the
plate is

EcðtÞ � i
qe
2e0

xx0
neh
c

eix t�z=cð Þ ¼ qe
2mee0

� �
ne

x2
0 � x2

� �
� ixh

c

� �
E0eix t�z=cð Þ
h i

;

ð4:50Þ

where, on the right-hand side, we have collected the factors in parentheses into four
groups. They have different physical meanings that we shall now discuss. The last
factor depends on time and on the space coordinate. It tells us that we deal with the
field of a progressive wave in the positive direction of the z-axis at the frequency of
the incoming wave. This factor is none other than the wave field E1 that would be
the field in P in absence of the plate. We learn then that the field Ec is a plane
progressive wave, completely similar to the incident wave, with amplitude given by
the product of the remaining three factors on the right-hand side. We have so shown
one aspect of our thesis in Eq. (4.45). Another aspect of this thesis is the factor
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�ixh=c, which is present as well. It remains to be shown that the remaining two
factors in Eq. (4.50) can be identified as (n − 1) where n is the index of refraction
of the medium. For this to be the case, the factors must be functions of the char-
acteristics of the medium and of the frequency of the wave, but not of the position
of P. Indeed, it is so, and we can finally write

n ¼ 1þ q2ene
2mee0 x2

0 � x2
� � ð4:51Þ

We have found a dispersion formula, namely an expression of the refractive
index, which is a quantity determined with macroscopic measurements, in terms of
the microscopic characteristics of the medium (electron density, mass and charge),
of the proper angular frequency x0 of the molecular oscillators and of the angular
frequency x of the light wave. Let us now discuss it.

As a consequence of the assumptions we have made, Eq. (4.51) is valid only for
values of n not too different from the unit. Even under these limitations, however,
we can ascertain a number of physical aspects.

Let us state now that molecular oscillators are systems with several degrees of
freedom and consequently have a number of proper frequencies. To take that into
account, we rewrite Eq. (4.51) as

n ¼ 1þ q2e
2mee0

X
k

ne;k
x2

k � x2
� �; ð4:52Þ

This expression is substantially correct, being justified by the fact that it is equal
to the result of quantum mechanics (once the completion we shall soon discuss is
included). Quantum mechanics predicts the values of the quantities ne,k and xk as
well. Here, we must leave them as phenomenological parameters.

We start by observing that in the transparent gases, like air, the proper oscilla-
tions frequencies xk are in the ultraviolet. We know that in the visible, namely
x << xk, the refractive index is larger than 1 (namely the phase velocity is smaller
than in a vacuum) and is a slowly increasing function of frequency. This is also true
for condensed media like glasses and water, even if in these media, the approxi-
mations of our “theory” do not hold. Contrastingly, what we just said is not valid,
for example, for colored gases, which have resonances in the visible (see the
following).

We still need to add an element to our formula. Indeed, we know that no medium
is perfectly transparent. The amplitude of the electromagnetic wave gradually
decreases as it propagates in the medium. We easily interpret this fact by consid-
ering that the oscillating atomic electrons lose the energy they are emitting. This
means that an atomic oscillator, once initially excited, will oscillate for a definite
amount of time. We are dealing with damped oscillators. Calling ck the damping
coefficients, we take this into account by substituting x2 � x2

k in Eq. (4.52),
x2 � x2

k þ ickx. Our final dispersion formula is
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n ¼ 1þ q2ene
2mee0

X
k

ne;k
x2

k � x2 þ ickx
� �: ð4:53Þ

We have now got a complex diffraction index. What does this mean? We
understand this by looking at the field just after the plate, given by Eq. (4.43).
Calling nR and nI the real and imaginary parts of n, respectively, namely with
n ¼ nR þ inI , Eq. (4.43) becomes

E2 ¼ E1e�ix nR�1ð Þh=c
� �

e�xnIh=c: ð4:54Þ

We see that the factor in parentheses is the field beyond the plate if n had been
real (with nR in place of n). The second factor is an exponential with a real
exponent. The latter is negative, because quantum calculations show us that nI is
positive under ordinary conditions. Through this factor, the plate acts on the
amplitude of the wave rather than on its phase. It expresses the absorption phe-
nomenon. We can say that the amplitude of the wave changes in a thickness h of the
medium from, say E20 to E10, which are in the relation

E20 ¼ E10e
�xnIh=c: ð4:55Þ

We shall come back to this expression soon, after having discussed the real part
of the index.

Figure 4.24 shows the real part of Eq. (4.53) in an example with three reso-
nances. What matters here, for each resonance, is the elastic amplitude of the
resonance curve, which we discussed with reference to Fig. 1.13. In a frequency
interval below a resonance, and far enough from other resonances, the real part of
the index is larger than 1 and slowly increases with frequency. The situation is
equal to that which we discussed above in the absence of damping. Under these
conditions, namely when the index increases with increasing frequencies, we talk of
normal dispersion, because this is the usual case.

We encounter a new situation near a resonance, in a frequency interval on the
order of c. We see that the index of refraction decreases with increasing frequency.
This phenomenon is called anomalous dispersion. Just below a resonance, the real
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ωω
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Fig. 4.24 The real part of the
refractive index in the region
of three resonances
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part of the refractive index is nR > 1, while above the resonance, it is nR < 1,
namely the phase velocity is larger than c. This is not in contradiction with the
relativity principle, because the signals do not travel with the phase velocity.

The reason for the phase velocity being larger in the medium than in a vacuum is
simply a consequence of the fact that, at frequencies of the exciting force larger than
the resonance frequency, the displacement of an oscillator is in phase opposition to
the force. Consequently, for example, a positive charge moves in a sense opposite
to the direction of the incoming field. Under these conditions, the contribution of
the charge tends to increase that field, causing the phase velocity to increase. The
opposite happens below resonance where the field and displacement are in phase.
We notice in passing that, in a narrow region just above a resonance, not only is the
phase larger than c, but so is the group velocity. However, it has been shown,
analyzing the behavior of a “beginning sine” wave, that under these conditions, the
signal carrying information does not propagate with the group velocity, but rather
with a velocity smaller than c.

Let us now consider the imaginary part of the index. As we already stated, under
usual conditions, it is nI > 0 (we shall see an important exception at the end of the
section). As shown in Fig. 4.25, the dependence of nI on frequency is a resonance
curve. It is very large at each atomic or molecular resonance, but is negligible at a
few widths far from resonances (as a matter of fact, under these conditions, nI is
even smaller, by a significant amount, than what the figure shows). Namely, far
from resonances, the refractive index is substantially real. In resonance, as we
discussed in Chap. 1, the force, namely the electric field of the wave, is in phase, or
almost so, with the velocity, or, more precisely, the deformation rate of the elec-
tronic cloud, and consequently, it transfers power to the oscillator with high effi-
ciency. As a consequence, near every resonance, the medium strongly absorbs the
incoming radiation. We talk of absorption bands (meaning frequency bands). When
one of these bands is in the visible, the medium absorbs the corresponding color
and the light transmitted by a layer of a certain thickness appears as the comple-
mentary color when we look through it.

Let us now take a different point of view and consider a wave advancing in a
medium filling the semispace z > 0, rather than being a plate. Clearly, we can
reinterpret Eq. (4.55) as giving the wave amplitude at the depth of z = h inside the
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Fig. 4.25 The imaginary part
of the refractive index in the
region of three resonances
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medium. We understand that the amplitude of the field decreases exponentially with
increasing distance crossed in the medium. The wave intensity, which is propor-
tional to the square of the amplitude, decreases exponentially as well.

We define as the absorption distance, or alternately the attenuation distance, the
distance d on which the wave intensity decreases by a factor of 1/e. Hence, the
amplitude decreases by a factor of 1/e along a distance twice as large, namely 2d.
Let a E0(0) and E0(h) be the field amplitudes at the entrance and at depth h,
respectively. The absorption distance is then, by definition, given by the equation

E0ðhÞ ¼ E0ð0Þe�h=2d : ð4:56Þ

Equation (4.55) gives us the absorption distance in terms of the imaginary part
of the index as

d ¼ c
2xnI

¼ k
4pnI

: ð4:57Þ

In nature, the absorption lengths of the transparent gases are on the order of
several kilometers. This means, according to Eq. (4.57), that the imaginary part of
the index is extremely small. For example, for typical values of d = 10 km and
k = 0.5 µm, we have nI = 4 � 10−10, which is a really small number.

We see that a positive imaginary part of the refractive index corresponds to a
decreasing amplitude of the wave propagating in the medium, namely to an
absorption of the wave energy by the medium. Figure 4.26a shows the wave
amplitude as a function of the crossed depth. We have drawn the figure for an
absorption length as not much larger than the wavelength to make the effect more
visible. It is possible to prepare certain classes of materials with the majority of their
atoms at an excited energy level. To do that, we have stored, or, as we say, pumped,
energy into the medium, which is in a metastable state, like a compressed spring
locked in that state but ready to snap. The electric field of the wave propagating in
the medium is capable of triggering the de-excitation of the molecules, provided its
frequency is equal to the resonance frequency of the molecules. In this case, the
amplitude of the wave grows exponentially with increasing distance z crossed in the
medium. This situation is shown in Fig. 4.26b. Equation (4.55) holds in this case

z z

n
I
<0n

I
>0

(a) (b)

Fig. 4.26 Quasi-monochromatic oscillation with a exponentially decreasing, b exponentially
increasing amplitude
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too, now with nI < 0. We talk of negative absorption and a negative imaginary
index. This is what happens in a LASER, which stands for Light Amplification by
Stimulated Emission of Radiation.

Notice that in a LASER, all themolecules’ oscillations are locked in phase, namely
they are such so as to remember the phase of the incident wave. Contrastingly, in a
usual source of light, called a thermal source, each excited molecule de-excites
independently of the others. Each emitted wavelet has a random initial phase. In other
words, in a LASER, the memory of the initial phase is conserved for a very long time,
while in a thermal source, it is so only for a time comparable with the decay times of
the atoms.We shall see some examples in Chap. 8 of how this important feature of the
LASER light can be exploited in image formation.

4.8 Electromagnetic Waves in Transparent
Dielectric Media

In Sect. 3.6, we found the wave equations of the electromagnetic field in a vacuum
starting from the Maxwell equations. These waves are non-dispersive. Their phase
velocity, the speed of light in a vacuum, is a universal constant of physics, which is
independent of the (inertial) frame. We shall find here the wave equation for the
electromagnetic waves in a normal (namely linear, homogenous and isotropic)
dielectric medium. We shall find these waves to be dispersive and to obey a
different wave equation. We shall find a dispersion relation valid for condensed
media.

We shall proceed in a manner similar to that which we used in a vacuum in
Sect. 3.6, taking into account, however, the existence of polarization charges and
currents. We shall, on the contrary, neglect any magnetic effect, because under the
largest fraction of the conditions encountered in practice, the magnetic suscepti-
bility is very small.

We start from the Maxwell equations in the fields E, D and B (See Volume 3,
Sect. 10.7), taking into account that the free charge density and the conduction
current are zero. The equations are

r � D ¼ 0; ð4:58Þ

r � E ¼ � @B
@t

; ð4:59Þ

r � B ¼ 0; ð4:60Þ

r � B ¼ l0
@D
@t

: ð4:61Þ
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To these, we must add the relation between E and D, which is

D ¼ e0EþP: ð4:62Þ

As in Sect. 3.6, we take the curls of both sides of Eq. (4.59), obtaining

r�r� E ¼ � @r� B
@t

:

We then use the vector identity r�r� E ¼ r r � Eð Þ � r2E and use
Eq. (4.61), obtaining

r r � Eð Þ � r2E ¼ �l0
@2D
@t2

: ð4:63Þ

We take the divergence of both sides of Eq. (4.62), taking Eq. (4.58) into
account. We find

r � E ¼ � 1
e0
r � P:

We substitute in Eq. (4.63) and eliminate D on the right-hand side using
Eq. (4.62), obtaining

@2E
@t2

� 1
e0l0

r2E ¼ 1
e20l0

r r � Pð Þ � 1
e0

@2P
@t2

: ð4:64Þ

This is the wave equation we were looking for (a similar equation holds for B,
but we shall not need it). We see that the left-hand side is the same as for the wave
equation in a vacuum, but we now have a non-zero right-hand side depending on
the polarization density P and on its variations in time and space.

To continue, we need a relation between polarization P (the effect) and electric
field E (the cause). In Volume 3 (Sect. 10. 7), we saw that such a relation does not
exist for fields with an arbitrary dependence on time. The physical reason is that
polarization induced by a given electric field intensity depends on how fast the field
is varying with time. The relation exists, however, when the time dependence is a
circular function (namely sinxt or cosxt). Under these conditions, we have

P ¼ e0veðxÞE; ð4:65Þ

where the electric susceptibility ve is a function of the angular frequency of the
field. As we know, under the action of the electric field, the molecules of the
medium are stretched and, if they have an intrinsic dipole moment, reoriented.
Well, when the frequency of the field increases, the time interval in which the field
inverts direction diminishes. The molecules have less time to react. Consequently,
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the net effect, namely the polarization, decreases. We must also consider that the
effect lags somewhat behind its cause. Consequently, the phase of P at a certain
instant is not the phase of E. This translates into the fact that the susceptivity ve(x)
is a complex number. Its magnitude gives the “size” of the polarization, and its
argument is the phase difference between E and P. Finally, being that the medium is
isotropic, P is parallel to E.

We are considering monochromatic and plane waves. Let us check if they are
solutions of the wave equation in Eq. (4.64). Let the electric field and polarization
be

E r; tð Þ ¼ E0ei xt�k�rð Þ ð4:66Þ

and

P r; tð Þ ¼ P0ei xt�k�rþ dð Þ; ð4:67Þ

where we have taken into account a possible phase difference d.
We can simplify Eq. (4.64) for monochromatic fields by showing that the

divergence of the polarization is zero (as it is in electrostatics). Indeed, we take the
divergence of Eq. (4.62), taking Eq. (4.65) into account, and obtain

r � D ¼ r � 1þ 1=veðxÞ½ 	P ¼ 1þ 1=veðxÞ½ 	r � P;

where, on the right-hand side, we took into account that, the dielectric being
homogeneous, the susceptibility does not depend on the coordinates.
Equation (4.58) then gives

r � P ¼ 0:

The wave equation Eq. (4.64) becomes

@2E
@t2

� 1
e0l0

r2E ¼ � 1
e0

@2P
@t2

: ð4:68Þ

Let us now substitute in this equation our tentative solution in Eqs. (4.66) and
(4.67). We obtain the equation

�x2E r; tð Þþ c2k2E r; tð Þ ¼ x2

e0
P r; tð Þ;

We substitute for P its expression of Eq. (4.65), obtaining

�x2E r; tð Þþ c2k2E r; tð Þ ¼ x2ve xð ÞE r; tð Þ:
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We can now simplify out E, which appears in all terms, obtaining

x2 ¼ c2

1þ veðxÞ
k2: ð4:69Þ

This dispersion relation in terms of the phase velocity is

tpðxÞ ¼ x
k
¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ veðxÞ
p ¼ cffiffiffiffiffiffiffiffiffiffi

jðxÞp ; ð4:70Þ

where, on the right-hand side, j is the dielectric constant of the medium relative to a
vacuum. Obviously, we can write the relation in terms of the refractive index as

n xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
j xð Þ

p
; ð4:71Þ

In this form, the relation can be verified experimentally by measuring, for a
monochromatic wave of angular frequency x, the dielectric constant and the
refractive index. We determine the dielectric constant by measuring the capacitance
of a condenser with the medium under study as a dielectric. This must be done
under dynamic, rather than static, conditions, namely polarizing the condenser with
an alternate emf at the angular frequency x. Note that this is feasible up to the
frequencies of microwaves, but not at those of light.

In Sect. 4.7, we discussed the relation between the refractive index and the
microscopic properties of a low-density medium, such as a gas. The equations
discussed in this section are valid for condensed media as well. Even in this case,
the polarization is the result of the stretching and reorienting of the molecules under
the action of the electric field. This is expressed by Eq. (4.46). However, in a
condensed medium, the electric field is not the field of the incoming wave alone,
because the fields of the other molecules also contribute. Consequently, Eq. (4.52)
does not hold for a condensed medium. The corresponding equation can be
obtained in a similar manner to that which we used under static conditions in
Sect. 4.8 of the 3rd volume.

In Sect. 4.6, we used the fact that, in a normal dielectric, the ratio between the
amplitudes of the electric and magnetic fields of a progressive monochromatic wave
is equal to the phase velocity, namely that E/B = tp(x). Here, we simply state that
the demonstration is identical to that which we conducted in Sect. 3.6 in a vacuum
to show that E/B = c, with the only difference being that one must start from Eq. (4.
59) or Eq. (4.61) and, obviously, remember that tp(x) = x/k.

Summary
In this chapter, we have studied several phenomena in which the phase velocity
depends on the wavelength. In particular, we learned the following important
concepts.
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1. In a dispersive medium, a harmonic wave propagates without deformations, but
its phase velocity x/k depends on the wavelength. A non-harmonic wave
changes shape while it propagates.

2. The group velocity of a wave packet is given by the derivative dx/dk at the
dominant wavelength of the group. Group and phase velocity are equal only in
the dispersive media.

3. The phase velocity of an electromagnetic wave in a dispersive medium is dif-
ferent from that in a vacuum. The refractive index is the ratio between the two
velocities. They both depend on wavelength.

4. The wave equation for an electromagnetic wave in a normal dielectric has a
left-hand side equal to the equation in a vacuum, but a different right-hand side

5. The sudden change of the index at the interface between two transparent media
is at the origin of the reflection and the refraction.

6. The phenomenon of the total internal reflection and the evanescent wave.
7. The microscopic origin of the refractive index.

Problems

4:1 Find the dependence on frequency of phase and group velocities for a piano
string having the dispersion relation x2 ¼ T0=qð Þk2 þ ak4.

4:2 Calculate the frequency dependence of the group velocity in the following
cases of dispersion relations (a is a constant): (a) tp = a (example: sound
waves in air), (b) tp = a √k (example: surface gravity waves on a water
surface), (c) tp = a/√k (example: capillary waves on a water surface).

4:3 The curve in Fig. 4.27 represents a dispersion relation. What are the relations
of the phase and group velocities for k = k0, with the angles a and b,
respectively? Line t is the tangent to the curve in P, line c joins P with the
origin of the axes. What should the curve be in order for the two velocities to
be equal to one another?

4:4 Calculate the limit angle for total internal reflection between a glass of index
n = 1.65 and air and between water (n = 1.33) and air.
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kk
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0
0

P

Fig. 4.27 A dispersion
relation
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4:5 What are the intensity reflection and transmission coefficients for normal
incidence at the interface between water (n1 = 1.33) and glass (n2 = 1.53)?

4:6 Give an estimate of the distance between the surfaces of two glass blocks in
air allowing for an appreciable tunnel effect (say, in order to have an
amplitude reduction by 1/10) if the index of the glass is n = 1.5, the vacuum
wavelength of light is 0.5 µm and the incidence angle is 45˚.

4:7 A lamp on the bottom of a swimming pool 1.5 m deep emits light. An
observer outside the water sees a light circle on the surface of 3.40 m
diameter. What is the index of water?

4:11 The fields of an electromagnetic wave are E ¼ E0 cos xt � kzð Þ and
B ¼ B0 sin xt � kzð Þ. It reflects on a plane surface normal to the propagation
direction at z = 0. Write down its fields.
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Chapter 5
Diffraction, Interference, Coherence

Abstract In this chapter, we study different types of interference phenomena.
Interference happens when two or more waves having a phase relation with one
another fixed in time overlap in a region of space. We study Young’s two-slit
experiment and then the coherence conditions, namely the conditions that must be
satisfied for interference phenomena to be observable. After having introduced
diffraction with Grimaldi’s discovery, we treat the phenomenon under Fraunhofer
conditions in the important cases of the slit, the circular aperture, randomly
distributed centers and the diffraction grating. Finally, we study the close relations
between the physics of diffraction and the mathematics of the Fourier transform.

In this chapter, we study different types of interference phenomena. Interference
happens when two or more waves having a phase relation with one another fixed in
time (during the observation) overlap in a region of space. Suppose, for example,
you take in your hands two sticks, each terminating with a small sphere like a tennis
ball, you lay them on the quiet surface of a pond and you move them rhythmically
up and down. You will observe two systems of expanding circular waves. At
certain points, the waves are constantly in phase with one another, at others, con-
stantly in phase opposition, etc. In the former positions, the crests of one system
arrive at the same time as the crests of the other and similarly for the throats. The
resulting oscillation amplitude is large (constructive interference). In other posi-
tions, the crests of one system arrive together with the throats of the other, and the
resulting oscillation amplitude is small or null (destructive interference).

To be detectable, any interference phenomenon should not change during the
observation time. In particular, two interference waves should be at least approx-
imately monochromatic with the same frequency and with a fixed phase difference
with one another. These conditions are called coherence conditions (Sect. 5.3). For
transverse waves, interference is between oscillations in the same direction.

Interference phenomena happen for waves of every type. Their mathematical
descriptions are similar. Contrastingly, the physical characteristics and the ways of
producing and detecting the phenomenon vary strongly from one case to another. We
shall only discuss the interference of light here. In this case, the coherence conditions

© Springer International Publishing AG 2017
A. Bettini, A Course in Classical Physics 4 - Waves and Light,
Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-48329-0_5

175



are often not satisfied in nature. However, when they are, we observe such beautiful
phenomena as the color of mother-of-pearl, those of the wings and elytra of certain
insects and the coronas about light sources in the presence of mist or ice in air.

Diffraction is similar to interference. It happens every time a wave that was
freely advancing meets an obstacle that delimits its front. In such a case, the wave
not only continues to move straight forward, but parts of the front of it go around
the obstacle, changing the direction of propagation in doing so. We shall also
discuss the scattering of light by illuminated objects. The scattered light is the result
of the infinite wavelets emitted by the different parts of the object, as excited by the
incident wave. One phenomenon explained by the dependence on wavelength of
the scattering probability is the blue color of the sky.

We shall limit our mathematical description of interference and diffraction phe-
nomena to the simplest conditions. These, called the Fraunhofer conditions, are
implemented by having both the primary light source and the system producing the
phenomenon and this system and the observation plane sitting at large distances from
each other. The “infinite distance” conditions can be obtained in practice using lenses.

We shall start in Sect. 5.1 by demonstrating simple examples as to how the
Huygens-Fresnel principle allows one to construct the propagating wave front
beyond an obstacle. In Sect. 5.2,we discuss the conceptually simplest (and historically
first) interference experiment, namely theYoung two-hole (or two-slit) experiment. In
Sect. 5.3, we define the conditions to be implemented in order to perform a successful
interference experiment, which are the coherence conditions. In Sect. 5.4, we shall see
how exceptionally interference phenomena are observable under unsatisfied coher-
ence conditions. The interference fringes are localized under these conditions.

We then address important cases of diffraction, namely diffraction by a slit, by a
circular opening, by randomly distributed centers, and by periodically distributed
centers. We shall come, in this way, to the diffraction gratings, which are an
important class of optical instrument, and study their most relevant properties.

In Sect. 5.10, we study the close relations between the physics of diffraction and
the mathematics of the Fourier transform.

5.1 Huygens-Fresnel Principle

We have already studied the propagation of a light wave in space in some important
cases, namely in a vacuum, in a homogeneous medium and through the interface
surface between two homogeneous media. These are quite simple situations in
which the approximations of geometrical optics can be safely taken. A completely
general and rigorous treatment of the wavefront propagation in three dimensions in
the presence of limiting obstacles or apertures of arbitrary form, is of considerable
mathematical complexity. Simpler methods exist, however, capable of treating the
simplest geometries with various degrees of approximation. The most important of
these, which we shall use in the following sections, is called the Huygens-Fresnel
principle.
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In 1690, Christiaan Huygens (The Netherlands, 1629–1695) published the
“Treaité de la lumière”, in which he was the first to advance a theory of light as a
wave phenomenon. With his theory, in particular, he correctly interpreted reflection
and refraction along the lines we studied in Chap. 4. Here, we are interested in the
recipe proposed by Huygens for a geometrical construction of wavefront propa-
gation. He proposed that every point of a wavefront at a given time becomes the
source of a hemispherical wavelet, the sum of these secondary wavelets being the
wavefront at any subsequent time. The Huygens principle was extended by
Augustin-Jean Fresnel (France, 1788–1827) in 1818 in his “Mémoire sur la
diffraction de la lumière”, including the interference (a phenomenon that we shall
discuss in the next section) between the secondary wavelets. In this way, the
principle became an extremely powerful tool, allowing Fresnel to explain all the
diffraction phenomena, as we shall see in the subsequent sections. To be complete,
we will just mention the further elaboration by Gustav Kirkhoff (Germany, 1824–
1887). His diffraction formula provides a precise mathematical prescription for the
propagation and diffraction, but we shall not need it.

Proceeding intuitively, let us consider, for example, a wave in a medium such as
on the surface of water. We might toss a stone into a calm pond and observe the
expanding circular wave pattern. Let us fix our attention on the outermost ring.
Beyond it, the water surface is still calm. How will the perturbation reach further
regions? Evidently, the oscillations of the different portions of the wavefront we are
considering induce movements in the water particles that are immediately in contact
with them in the external part of the wavefront. When these particles oscillate, it
will induce motions in the still forward water particles, and so on. This implies that
what matters for the future motion of the water beyond the considered wavefront is
only the motion of the wavefront itself in the instant in time being considered. In
other words, the boundary conditions determine the solution in the external space.
That is, everything proceeds as if all the points of the wavefront were small sec-
ondary sources of waves to the outside.

Let us now establish the Huygens-Fresnel principle. Consider a monochromatic
wave, of phase velocity tp, and suppose we know that the wavefront at the instant
t is the circle AB shown in Fig. 5.1, moving in the direction of the arrows. To
construct the wavefront at the subsequent instant t + Δt, we take the following
steps. (a) We consider every small element of the front AB as being a source of
secondary hemispheric wavelets emitted in the region external to the front. The
radiuses of the wavelets are tpΔt. Being that all the secondary sources are driven by
the same incident waves, the phases of the secondary waves emitted are equal to
one another, namely they oscillate coherently. (b) We draw the envelope of the
secondary wavelets, obtaining the wavefront at t + Δt (A1B1 in the figure).

It is easy to see that, if the wavefront AB is spherical at time t, at time t + Dt, the
front is spherical as well, with a radius larger by tpΔt. Similarly, if the wavefront AB
at t is plane, then A1B1 is plane as well, etc.

The Huygens-Fresnel principle finds its most relevant applications in the con-
struction of the wavefront beyond obstacles and openings that block a segment of
the wave. Consider, for example, a monochromatic plane wave reaching a screen
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normal to its propagation direction, in which an opening is present, as shown in
Fig. 5.2. We consider the wavefront in the aperture and apply the Huygens-Fresnel
construction. We see that the proper envelope of the secondary wavelets corre-
sponds to the light beam in the region of the geometrical light (as opposed to the
geometrical shadow).

A

B

A
1

B
1

Fig. 5.1 Wavefront
construction according to the
Huygens-Fresnel principle

Fig. 5.2 Huygens-Fresnel
construction at an obstacle

178 5 Diffraction, Interference, Coherence



Indeed, on the envelope, all the secondary wavelets add on in phase, enhancing
one another’s contributions. This produces a wave of large amplitude, as large as
the incident one. Note, however, that at both sides of the envelope, more wavelets
exist that expand into the region of the geometrical shadow. Their contribution is
small, but not negligible. Indeed, it was Fresnel who understood the importance of
the wavelets outside the region of geometric optics and calculated their contribu-
tion, developing the theory of diffraction, as we shall discuss in the subsequent
sections.

We shall also deal with apertures lying on surfaces different from a wavefront.
Consider, for example, a monochromatic plane wave coming in slantwise, as in
Fig. 5.3. In this case, we must extend the wavefront construction recipe a bit. We
consider the surface of the aperture as being the locus of the secondary sources.
Even if their phases are not equal to one another, they still have fixed relations
between them, determined by the incident wave, as shown in the figure.

Notice also that we constructed the hypothesis that the secondary wavelets are
hemispherical, rather than spherical. Indeed, in the latter case, it would have a
second front propagating backwards that does not exist. This hypothesis was
introduced by Huygens on the basis of physical sense. Later on, Fresnel found it
necessary to admit that the amplitude of each secondary wavelet is a maximum in
the forward direction and smoothly decreases for increasing angles to the incident
direction, vanishing at 90°. This is called the obliquity factor.

5.2 Light Interference

Interference and diffraction are two fundamental phenomena characteristic of all
waves. As a matter of fact, they are substantially the same phenomenon and the two
terms are almost synonymous. In any case, we have a number of contributing
sources. If this number is small, we talk of interference; if it is large, or infinite, we
talk of diffraction. In this book, we shall focus on light. Being that its wavelengths

Fig. 5.3 Huygens-Fresnel
construction at a slant
obstacle
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are very small, a fraction of a µm, compared with the usual dimensions, and its
frequencies very large, on the order of hundreds of THz, its wave characteristics are
not easy to observe. Historically, it was only in the XVII century that diffraction
was discovered by Francesco Grimaldi (Italy, 1618–1663). His observations were
published in the posthumous book De lumine in 1665. Here, Grimaldi also intro-
duced the term diffraction, from the Latin verb frangere, meaning to break, as he
was thinking of light as being an extremely fast moving fluid that breaks when it
encounters an obstacle. The title of the first proposition of De lumine, translated
from Latin, is:

Light propagates or diffuses not only directly, by reflection and by refraction, but also in a
fourth way, namely by diffraction.

The wave nature of light was discovered by Thomas Young (UK, 1773–1829).
The report of his first results to the Royal Academy in London in 1803 starts with
the sentences

In making some experiments on the fringes of colours accompanying shadows, I have
found so simple and so demonstrative a proof of the general law of the interference of two
portions of light (i.e. a light beam), which I have already endeavoured to establish, that I
think it right to lay before the Royal Society, a short statement of the facts which appear to
me decisive. The position on which I mean to insist at present, is simply this, that fringes of
colours are produced by the interference of two portions of light; and I think it will not be
denied by the most prejudiced, that the assertion is proved by the experiments I am to relate,
which may be repeated with great ease whenever the sun shines, and without any other
apparatus than at hand of every one.

The first important element for any diffraction or interference experiment is the
primary light source, which must be quite small, no wider than a few millimeters,
for reasons that will become clear in the next section. The source should also be
sufficiently intense. Grimaldi, Young and Fresnel conducted their experiments on
sunny days in a completely dark room, but for a pinhole in a window shutter
sending in a narrow sunbeam. Young additionally used a mirror to direct the
pinhole beam horizontally across the room, in order to work more comfortably.

QUESTION Q 5.1. Considering that the sun power in the visible spectrum on a
summer sunny day at intermediate latitudes is on the order of 500 Wm−2, calculate
the light intensity of a beam through a pinhole in a window shutter of 2 mm
diameter. ⃞

The second fundamental element is to have two (or more) sources with a fixed
phase difference with one another. This is done using the light waves originated by
a single source, namely the pinhole, and having them follow two different paths and
subsequently rejoin and interfere. In his first experiments, reported to the Academy
in 1803, Young used a 0.8 mm thick paper card to break the beam in two, similarly
to what Grimaldi had done with a wire. One part of the beam was passing on the left
and one part on the right side of the card. In a later experiment, the famous two-slit
experiment, Young used an absorbing screen, normal to the primary beam, in which
he had opened two narrow slits very close to one another. For simplicity, we shall
begin by considering two pinholes rather than two slits.
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Figure 5.4 shows the logic scheme of the two-hole experiment. The source S0
illuminates two small holes S1 and S2. We assume, for the moment, that S0 is
point-like and monochromatic. We shall discuss in the next section how and within
which limits these hypotheses can be relaxed.

For the Huygens-Fresnel principle, the radiation beyond the screen is equal to
that which would occur if, instead of the two holes S1 and S2, there were two
sources emitting hemispherical waves with a phase relationship determined by the
wave illuminating the holes.

If S0 is now exactly on the axis of the segment S1S2, the phases of the waves
incident on S1 and S2 are equal. Here, “exactly” means that the difference between
the distances from S0 to S1 and from S0 to S2 should be much smaller than a
wavelength. Indeed, a difference on the order of 200 nm is enough to have a phase
difference between S1 to S2 as large as p. Clearly, this is impossible in practice, but
fortunately, it is not necessary. Calling /1 and /2 the phases in S1 and S2,
respectively, we find that the time dependence of the electric fields radiated by the
two secondary sources are E1 ¼ A1cos xtþ/1ð Þ and E2 ¼ A2cos xtþ/2ð Þ. The
condition for observing the interference phenomenon is not that of /1 and /2 being
equal, but their difference must be defined and remain constant over a sufficiently
long interval of time.

We shall think here of an electric field of the wave always oscillating in the same
direction. We can treat it as a single, non-vector quantity.

Let us consider a point P beyond the plane of the holes and let r1 and r2 be its
position vectors relative to S1 and S2, respectively. The light intensity in P is pro-
portional to the average square of the electric field. The electric is the sum of the fields
due to S1 and S2 in P. Taking into account the proportionality to the inverse distance
from the source and the phase delay due to propagation k � ri, the field in P is

EðPÞ ¼ A1

r1
cos xt � kr1 þ/1ð Þþ A2

r2
cos xt � kr2 þ/2ð Þ: ð5:1Þ
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Fig. 5.4 Scheme of Young’s two-hole experiment
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The easiest way to calculate the average of the square of this expression

E2ðPÞ ¼ A1

r1
cos xt � kr1 þ/1ð Þþ A2

r2
cos xt � kr2 þ/2ð Þ

� �2

is to use the rotating vector representation of harmonic oscillations, as shown in
Fig. 5.5 at the instant t = 0. With time, the two vectors rotate with the same angular
velocity x, and the angle between them, which is the phase difference between the
two fields, remains constant. The magnitude of the resultant rotating vector is
consequently constant as well. From the geometry of the figure, we immediately
have that

E2ðPÞ ¼ A2
1

r21
þ A2

2

r22
þ 2

A1

r1

A2

r2
cos /2 � /1 � k r2 � r1ð Þð Þ

� �
cos2 xtþ að Þ;

where a is the initial phase of the resultant vector. We do not need to find it, because
we just need the average over a period of the only time-dependent factor, namely
cos2 xtþ að Þ, which is equal to ½ independently of a. In conclusion, the light
intensity in P is proportional to

E2ðPÞ� � ¼ A2
1

2r21
þ A2

2

2r22
þ A1

r1

A2

r2
cos /2 � /1 � k r2 � r1ð Þð Þ:

We now look for the physical meaning of the expression we have found. Let us
ask us what the intensities would be in P, say I1 and I2, if only one of the holes had

been open. Clearly, I1 and I2 are proportional to A2
1

2r21
and A2

2
2r22
, respectively. In con-

clusion, we can write

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cos /2 � /1 � k r2 � r1ð Þð Þ: ð5:2Þ

Let us now discuss the expression we have found. First of all, we note that the
total intensity is not simply the sum of the intensities I1 and I2 of the two sources,
but that the term 2

ffiffiffiffiffiffiffi
I1I2

p
cos /2 � /1 � k r2 � r1ð Þð Þ must be added to them. This is

called the interference term. Indeed, the superposition principle holds for the field,
not for the intensity.
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Fig. 5.5 Rotating vectors
representation of interference
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The interference term may be positive (constructive interference), null or neg-
ative (destructive interference), depending on the argument of the cosine in
Eq. (5.2). The latter is the phase difference in P and depends on two quantities: the
initial phase difference /2 − /1, which depends on the sources and is independent
of the position of P, and the term k(r2 − r1), which is independent of the phases of
the sources and depends on the position of P relative to them. At the points where
the interference is destructive, the intensity is less than the sum of the intensities
that would be in the presence of S1 and S2 separately. It is a minimum when the
argument of the cosine is an odd multiple of p. The two rotating vectors are
opposite or in phase opposition. In particular, if we adjust the system to have
I1 = I2, we have complete dark under these conditions. The corresponding rotating
vector representation is shown in Fig. 5.6a.

Contrastingly, at the points of constructive interference, the intensity is larger
than the sum I1 + I2, being at a maximum when the argument of the cosine is an
integer multiple of 2p, namely when the rotating vectors are in phase with one
another. If, in particular, I1 = I2, the intensity in the maxima is four times larger
than it would be in the presence of only one of the sources. The corresponding
rotating vectors representation is shown in Fig. 5.6b.

The intensity differences between maxima and minima exist, but are smaller
when I1 and I2 are different. It may be quite small if I1 � I2 or I1 � I2. Figure 5.7
shows an example.

Let us have a closer look at the maximum interference condition, which is given
by

/2 � /1 � k r2 � r1ð Þ ¼ 2np; with n ¼ 0; 1; 2. . . ð5:3Þ

This is the equation of the loci of the maxima in the semi-space beyond the
hole’s plane. The loci are rotation hyperboloids with foci in S1 and S2. To better
understand the situation, look at Fig. 5.8, which shows the crests of the circular
waves emitted by S1 and S2. You can observe a similar pattern on the quiet surface
of a pond. To this purpose, take two balls of equal size (tennis balls or similar) and

tωtω

(a) (b)

Fig. 5.6 Rotating vector diagrams for equal amplitudes a completely destructive interference,
b completely constructive interference
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attach each of them to two sticks. With both sticks in your hands, lay the balls on
the surface and then move them up and down in phase. The thicker curves in
Fig. 5.8 are the loci in which the two wave systems are in phase with one another.
There, the oscillation amplitude and intensity have their maxima. With time, the
two systems of circular waves expand, but the loci of maximum interference remain
stationary. We see that they are hyperbolas. These are the sections of the hyper-
boloids we have mentioned with the plane of the figure.

In practice, we can see the phenomenon using a white screen parallel to the plane
of the holes at a certain distance beyond them, such as the plane AA in Fig. 5.8. The
screen cuts the hyperboloids, showing a system of luminous hyperbolas with the
same foci, called interference fringes, separated by dark bands.

Particularly simple are the Fraunhofer conditions, named after Joseph von
Fraunhofer (Germany, 1787–1826), who made many contributions to optics. We
shall define these conditions precisely in Sect. 5.6. Under Fraunhofer conditions,
the interference pattern is collected at an infinite distance. In practice, we can go a
distance of several meters or we can use a convergent lens and locate the screen AA
in its back focal plane. Figure 5.9 shows the situation. Under these conditions, we
have r1 � r2 and, taking, for simplicity, A1 = A2, I1 = I2 as well.

We shall now find an expression for the interference pattern, namely for the
light intensity as a function of the position on the screen. We choose a system of
Cartesian coordinates on the screen with the origin O on the axis of the segment

tωtω

(a) (b)

Fig. 5.7 Rotating vector diagrams for different amplitudes a completely destructive interference,
b completely constructive interference
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Fig. 5.8 Interference of two
circular wave systems
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joining S1 and S2, the x-axis parallel to this segment and the y-axis perpendicular to
x. Let P be a point on the x-axis at the coordinate x. As we shall see in Chap. 7, the
radiation arriving in P if the screen is in the focal plane at the focal distance f from
the lens is the radiation emitted by S1 and S2 at the angle h, as shown in the figure.
In the approximation of small angles, this is approximately h � x/f. Notice that the
lens does not introduce any phase difference between the points on a surface normal
to the propagation direction.

Consider the dotted plane perpendicular to the propagation direction just before
the lens shown in the figure. To reach it, the waves from S1 must travel a path
longer than that from S2 by dsin h, where d is the distance between the holes.
Consequently, its phase delays relatively by kdsin h. After that, no further phase
difference develops. In conclusion, using I1 = I2 = i, the light intensity I on the
screen is

I ¼ 2i 1þ 2i cos /2 � /1 � kd sin hð Þ½ � ¼ 4i cos2
/2 � /1 � kd sin h

2
: ð5:4Þ

We see that, being the phase difference /2 − /1 between the two sources fixed,
the light intensity on the screen varies as a cosine square as a function of sin h, and
of x approximately as well, being that, for small angles, sin h � x/f. To understand
the dependence on y, we consider that the hyperbolic interference fringes will
appear almost as straight lines parallel to y about their vertex on a screen at a large
distance. In a first approximation, when the screen does not extend by much in the
y direction, light intensity is a function of x alone.

Now imagine using two parallel slits in the y direction in place of the two holes.
Each pair of elements of the slits will produce interference fringes that differ from
one another only by a shift in the y direction, nicely overlapping with one another.
In this way, we gain a lot in intensity. This was the two-slit experiment by Young.

The upper panel of Fig. 5.10 represents the light intensity in Eq. (5.4) as a
function of the sine of the angle, namely of sin h. This, for large distances and small
angles, is proportional to the coordinate x on the screen, as we have already noticed.
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Fig. 5.9 The two-hole experiment under the Fraunhofer conditions
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Figure 5.10 shows the particular case in which the two sources are in phase
(/2 − /1 = 0). Under these conditions, the maximum corresponding to the null
value of the argument of the cosine, namely, /2 � /1 � kd sin h ¼ 0, falls at x =
sin h = 0. This is called the central maximum or, alternatively, the maximum of
order zero. Notice that the maximum conditions are independent of wavelength for
the central maximum.

On the two sides, the light intensity varies periodically as a cosine squared.
Observe that the function is quite flat around both the maxima and the minima,
while it varies rapidly between a maximum and a minimum. Consequently, the
maxima appear as clear fringes separated by dark ones.

The lower panel of Fig. 5.10 is a photo of the two-slit interference pattern
obtained with a laser green light, monochromatic at k = 532 nm. The width of the
slits was 54 µm width and their distance d = 108 µm. No lens was used, and the
screen was at 8.5 m from the slits. The limited extension of the fringes in the
y direction is due to the limited diameter of the laser beam. The reader will notice
that the intensity of the maxima decreases on the two sides of the central one. This
is due to the finite width of the slits, as we shall explain in Sect. 5.9.

Coming back to the fringe pattern, we obtain its period, namely the distance
between two consecutive maxima or minima, remembering that the period of the
cos2 function is p. In the sin h variable, the period is then equal to k/d and, in x on
the lens focal plane (or at the large distance f), is kf/d. Note that it is independent of
/2 − /1. The luminous fringes on the two sides of the central one are found at
x = ±kf/d (first order fringes), x = ±2kf/d (second order fringes), and so on.

If /2 − /1 has a generic non-zero value, still being fixed by the positions of the
slits, the only difference is that the entire fringe pattern rigidly shifts in the x di-
rection. If, for example, it is /2 − /1 = p, then the central maximum is not at
h = x = 0 but the fringe period is the same as for /2 − /1 = 0.

sinθ0

I

–3λ/d 3λ/d–2λ/d 2λ/d–λ/d λ/d

Fig. 5.10 Upper panel two-slit interference intensity as in Eq. (5.4). Lower panel interference
fringes of two-slits of 54 µm width separated by d = 108 µm illuminated by laser light with
k = 532 nm. Photo A. Bettini
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Note that the positions of all the fringes, with the exception of the central one,
depend on the wavelength k. The distance between two contiguous fringes
increases when k increases. If we perform the experiment, as Young did, with white
light, we see the central fringe as white, and the lateral ones as composed of
different colors, with blue on the internal side and red on the external, because the
wavelength of the latter is larger. The width of the colored pattern increases with the
order, as understood immediately looking back at Fig. 5.10.

The physical process of observing the interference pattern with our eyes or
recording it with an instrument (for example, by taking a photo) requires integrating
the light intensity over a certain time interval. This interval depends on the
instrument, but is never zero (the exposure time for a photo). We can thus easily
understand that the phenomenon is only observable if the phase difference /2 − /1

remains constant during the observation time. Otherwise, the interference pattern
would move back and forth in the x direction and observation would become
impossible. For this reason, if we were to try with two independent, point-like
sources, for example, two LEDs (LED means Light Emitting Diode), in place of the
two holes S1 and S2, we would not observe any interference. Indeed, under these
conditions, the phase difference between the two sources varies, taking different
values at random over times much shorter than the integration time of our detector.
The argument of the cos2 function in Eq. (5.4) casually takes all possible values and
the function averages to ½, independently of the position on the screen. The light
intensity on the screen appears uniform, equal to 2i, namely the sum of the two
intensities. We shall come back to this important aspect after having discussed the
concept of coherence in the next section.

5.3 Spatial and Temporal Coherence

The two-slit experiment discussed in the previous section is logically a very simple
interference experiment. It was historically followed by many more experiments of
the same type with increasing levels of accuracy and sophistication up to the
present. In any case, a primary light source is necessary. This is the source we
called S0 in the two-slit experiment. We considered it to be point-like and
monochromatic. Neither one nor the other of these conditions can be rigorously
realized in practice. We shall now analyze the consequences of the fact that sources
always have non zero dimensions and are not perfectly monochromatic. More
precisely, we shall define the concepts of spatial coherence and temporal coherence
of the light source and quantitatively determine the values necessary for a given
interference experiment.

Let us start by discussing the geometrical dimensions of the primary source. Our
argument will be general, making reference to the Young two-slit experiment for
concreteness. If S0 is extended rather than point-like, we can consider it to be
composed of many point sources located at different positions within it. Let D be
the diameter of the source and l its mean distance from the holes. For simplicity,
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and without compromising the generality of the argument, we assume the center of
the source to be on the axis. The phase difference /2 − /1 between S2 and S1, a
result of the light waves coming from the center of S0, is equal to zero. However, S1
and S2 receive light from the other points of the source too, and for each of them,
/2 − /1 may be somewhat different. Consequently, the phase difference between
S2 and S1 becomes less and less defined the larger the extension of the source. This
results in an increasing confusion of the interference pattern beyond the holes.
Indeed, the maxima corresponding to a certain value of /2 − /1 may be in the
position at which another /2 − /1 has an intermediate value or even a minimum.
The maxima will not be as intense as in the ideal case and the minima will not be
completely dark. To describe the situation quantitatively, we define the concept of
fringe visibility. Calling Imax and Imin the intensity in the maxima and minima of the
interference pattern, respectively, the fringe visibility is defined as

c ¼ Imax � Imin

Imax þ Imin
: ð5:5Þ

One sees immediately that the visibility can have values between 1 in the ideal
case, in which Imin = 0, and 0 when Imax = Imin, namely the interference has
completely disappeared. Under the latter condition, all the values of /2 − /1

between 0 and 2p are present with equal probability. Consequently, the interference
term in Eq. (5.4), which is now averaged on all the values of /2 − /1, is zero
everywhere, and the intensity is simply the sum of the intensities due to the two
sources S1 and S2.

We understand how the fringe visibility is a measure of the degree of the
definition of the phase relationship between the two sources S2 and S1 or, in other
words, of the phase relationship between the wave field originated by S0 at the
points S2 and S1 in the same instant. We express this property by saying that the
fringe visibility defines the degree of spatial coherence between S2 and S1 of the
wave emitted by S0.

Let us now find the largest dimensions that the primary source can have so as to
produce an observable interference pattern.

Let us consider two points of S0, like 1 and 2 in Fig. 5.11, separated in the
longitudinal distance along the axis. Both of them are equidistant from the holes,
and thus, for both, /2 − /1 has the same value (it is zero, but it is the equality that
is relevant). We can then extend the source longitudinally as much as we want
without changing the phase relation between S2 and S1.

We reach the same conclusion extending the source in the direction parallel to
the segment joining the holes (namely perpendicularly to the plane of the figure).
Indeed, /2 − /1 maintains the same value (zero) moving in that direction.

Let us now move in the transverse direction and consider the two farthest points,
namely those on the border, like points 3 and 4 in the figure. Their distance is the
diameter of the source D. The waves they emit can be considered to be plane when
they reach the holes, being that l is always sufficiently large. The angle of the
wavefront emitted by 3 with the plane of the holes is approximately h � D/(2 l).
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The difference between the paths from 3 to S2 and to S1 is thus dsin h � dD/(2 l).
The phase difference /2 − /1, due to point source 3, is

/2 � /1ð Þ3¼ � kD
2l

¼ � pDd
kl

:

The two secondary sources S2 and S1 will then oscillate, when illuminated by
point 3, with this constant but not zero phase difference (/2 − /1)3. Similarly, the
phase difference between S2 and S1, due to point 4 of S0, say (/2 − /1)4, is

/2 � /1ð Þ4¼ þ pDd
kl

:

In the presence of both source 3 and source 4, two interference fringe patterns
are simultaneously present on the screen upon which we look for the phenomenon.
If D were null, we would have (/2 − /1)4 − (/2 − /1)3 = 0 and the two fringe
patterns would be exactly superposed one over the other; the fringe visibility would
be a maximum. Consider now gradually increasing D and observing the fringes on
the screen. What do we see? Initially, when D is still small, we practically do not
notice any difference. But increasing it further, we see each fringe splitting in two
and the distance between the two increasing as D increases. When the positions of
the maxima of one interference pattern coincide with those of the minima of the
other, the interference disappears. The fringe visibility is zero.

Having discussed the case of two point sources in S0 separated by the maximum
distance D, we now consider that S0 is composed of a continuous distribution of
such points at distances less than or equal to D. Considering that points 3 and 4 give
the maximally differing contributions, and that the points of S0 closer to the axis
give contributions that partially sum each other, we can state that D should be
smaller than the value for which the contributions of 3 and 4 cancel one another out.
If Dlim is such a value, this means that for D = Dlim, the difference between the
extreme phase differences (/2 − /1)4 − (/2 − /1)3 should be equal to half a
period, namely to p. This condition is expressed by the relation
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Fig. 5.11 An extended source illuminating a two-hole interferometer
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Dlim ¼ lk
2d

: ð5:6Þ

This is the condition on the transverse dimensions of the primary source, not
only in the case of the two-slit experiment, but also for every interference experi-
ment. In every interference experiment, there is a set of secondary sources, namely
the interference device, receiving light from a primary source. The condition in
Eq. (5.6) holds with d being the transverse dimension of the interference device and
l its distance from the primary source.

We see that an interference experiment can tolerate larger values of Dlim for
larger distances of the primary source S0 to the interference device (the two slits, in
the case of the Young experiment). Indeed, the condition for the fringes to be
visible depends on the angular diameter of the source, as seen by the interference
device. If we call C this angle, we have C = 2h � D/l, and the limit angle is

Clim ¼ k
2d

: ð5:7Þ

In conclusion, if the source is seen from the interference device under an angle
smaller than Clim, the observed interference pattern is indistinguishable from that of
a point-like source. We can thus state that the point-like source for the considered
device is a source seen under an angle smaller than Clim. Notice also that the
conditions we found in Eqs. (5.6) and (5.7) depend on k. The largest dimensions to
be a point sources are smaller for smaller wavelengths.

The general conclusions are as follows. You should never attempt an interfer-
ence experiment without a design capable of guaranteeing the spatial coherence
conditions. In the general case, d is the transverse size of the device that has to
produce interference. We can state such a condition in a form easy to remember by
heart by rewriting Eq. (5.7) as

lk
Dd

� 2; ð5:8Þ

which we read as: the ratio of the products of the two longitudinal lengths over the
two transverse lengths must be less than 2.

It is worth considering the orders of magnitude. Let us make two holes at the
distance d = 1 mm and let us operate with light of the typical wavelength of
k = 0.5 µm. The primary source can be considered point-like if its angular diameter
is less than Clim = 0.25 mrad. If it is located, for example, at l = 5 m from the
holes, its diameter should be smaller than 1.25 mm. As another example, consider
two holes at d = 1 cm, and the source at l = 10 m from them. Its diameter must be
less than a quarter of a millimeter.

QUESTION Q 5.2. In one of his experiments Young worked with a distance
between the interfering sources of d = 2.1 mm, at a distance from the primary
source of l = 813 mm. What was the maximum allowed diameter of the primary
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source? He writes: “I made a small hole in a window-shutter, and covered it with a
piece of thick paper, which I perforated with a fine needle.” He observed the fringes
on a wall at a distance of f = 5537 mm from the interfering sources. What was the
distance between the two dark fringes? ⃞

Let us now discuss the consequence of the second limitations, those due to the
fact that no source can be perfectly monochromatic. Indeed, the signal emitted by
any source has a limited duration in time. Correspondingly, its frequency spectrum
has a non-zero bandwidth. This bandwidth is inversely proportional to the duration
of the signal for the bandwidth theorem. Natural light sources, like the sun and the
stars, and the most common artificial ones, like lamps, basically consist of a
medium at high temperature. They are collectively called thermal sources.
A thermal source contains an enormous number of excited atoms that sponta-
neously decay, oscillating at a number of characteristic frequencies. The frequen-
cies in the visible spectrum are on the order of tenths of PHz. We can select with a
filter the light from one of these characteristic oscillations. We can think of it as a
sine with a damped amplitude and a total duration, say Dt. This Dt depends on the
atomic species, on the phase of matter, on the pressure and temperature of the
medium, etc. Its typical values range from picoseconds in a liquid to nanoseconds
in a gas. The limited duration has two consequences: (a) the wave has a bandwidth
Δx, related to the duration Dt by the bandwidth theorem in Eq. (2.65), namely
ΔxDt = 2p, (b) each of the atoms starts its emission independently of the others,
and consequently, the initial phases of their oscillations are randomly distributed.
The resulting total wave can be considered to be a chaotic mixture of damped or
interrupted sinusoids, having initial phases that are casually distributed. In other
words, the memory of the initial phase is maintained only over time intervals of Dt.
The duration Dt, within which the information on the initial phase is maintained, is
called coherence time.

From the operational point of view, the measurement of the coherence time of a
source (or of the radiation it produces) is the measurement of the degree of cor-
relation between the electric field emitted by the source in two different instants of
time at the same spatial point.

Figure 5.12 shows the concept of an experiment for measuring the temporal
coherence. The light produced by the source S is split in two beams by the
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Fig. 5.12 Conceptual configuration for measuring the temporal coherence
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semi-reflecting mirror M1. Semi-reflecting means it reflects half of the incident
light, and transmits the other half. Beam number 1 continues in a straight line, while
beam number 2 is reflected in sequence by the mirrors M3 and M4. The two beams
recombine at the semi-reflecting mirror M2. Call 2l the difference between the
distances travelled by the two beams. As they have the same phase at M1, at M2

they will have a phase difference of D/ = 2lk, where k is the wave number. If such
a phase difference is an integer multiple of 2p, the signal at the detector D has
maximum intensity, because the crests of one wave arrive at the same time as the
crests of the other. On the contrary, if the phase difference is an odd multiple of p,
the signal will be minimum, because the crests of one arrive together with the
valleys of the other. If we then slowly vary the distance l, the detector will see a
series of alternate interference maxima and minima (notice that the experiment is
ideal, because the variation of l between a maximum and the next minimum is a
quarter of a wavelength, i.e., on the order of a tenth of a micrometer). However, this
phenomenon does not go on forever when we increase l; rather, by increasing l, the
height of the maxima becomes smaller and smaller, that of the minima larger and
larger. Finally, the difference between maxima and minima becomes zero; the
interference phenomenon does not exist any more. The reason can be easily
understood. When l is small, the two wave trains are overlapped for their entire
length, or almost so. For larger values of l, the overlap becomes less and less
complete, and consequently the wave trains interfere for only a fraction of their
duration. When l is such that the difference between the times of the two paths,
which is 2l/c, is equal to or larger than the coherence time Dt, the succession of
maxima and minima ceases to exist.

Figure 5.13 represents schematically the situation approximating a damped
sinusoid with a truncated sinusoid of length Dt equal to five periods, for different
values of l. In practice, the number of oscillations is much larger, on the order of
millions for the light emitted by atoms.

Let us now go back to the interference experiment with two point-like sources.
We can now understand why the interference can be observed with two secondary
sources, illuminated by the same source, but not with two independent sources.
Indeed, let us consider two independent light sources S1 and S2. Each of them is
made of a large number of excited atoms (they might be two LEDs, for example). In
every instant of time, we can think of an atom in S1 emitting a wave with initial
phase /1, and one atom in S2 with initial phase /2. The two emitted waves last for a
time on the order of Dt. Within this time interval, the interference between them
does happen, and on the screen, the luminous and dark fringes are present.
Immediately afterwards, however, two other atoms, one in S1, the other in S2, would
emit light, with a phase difference /2 − /1 different from the previous pair. As a
consequence, the interference pattern on the screen will move perpendicularly to the
fringes.
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The phase difference, and consequently the position of the pattern, remains
constant only for a time Dt. If the detector we use to detect the interference inte-
grates over a time that is short compared to Dt, we will observe the phenomenon;
contrastingly, if it is much longer, it will produce an average at all the positions of
the fringes and the phenomenon will not be observed.

In practice, the coherence times of the common light natural sources are on the
order of picoseconds up to nanoseconds, which are much shorter then the inte-
gration times of the detectors we usually build. We thus say that independent
sources do not interfere. This language, however, is not very precise, because, as we
saw, the interference does happen, and whether or not we are able to observe it
depends on technology. As a matter of fact, experiments have been conducted in
specialized laboratories in which the experimenters were able to observe the
interference of two separate light sources.
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Fig. 5.13 Two waves five wavelengths long for different values of l
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We now go back to the Young holes and see how this experiment allows us, in
practice (as opposed to the ideal considered above), to measure the degree of
temporal coherence of the primary source S0 that illuminates the holes. Indeed, its
bandwidth determines the number of visible fringes. Let us look at the interference
pattern on a screen at the distance f beyond the holes (or in the focal plane of a lens
of focal length f). Figure 5.14 shows a scheme of the experiment. We suppose,
without compromising the general validity of the argument, that the phases of the
two holes are equal, namely that (/2 − /1) = 0.

As we have seen, the central fringe is in O, namely the point of the screen at the
same distance from the holes, independently of the wavelength. If S0 is
monochromatic with wavelength k, the fringes of order n are at distances nfk/d from
O (on both sides). Notice that the positions depend on k. If S0 is not monochro-
matic, we call x0 its mean angular frequency, k the corresponding wavelength and
Dx the bandwidth (corresponding to an interval Dk of wavelengths). We assume
Dx to be small compared to x0. We call the ratio Dx/x0 the specific bandwidth.
This is small under our hypothesis. The relation between k and x0 is

kx0 ¼ 2pc: ð5:9Þ

Differentiating this expression, we obtain, in absolute values,

Dx
x0

����
���� ¼ Dk

k

����
����: ð5:10Þ

If the source is not monochromatic, the fringes corresponding to different
monochromatic components (colours) fall into different positions, becoming
increasingly different with increasing order n. The central fringe is always white,
but the other, higher ones show colours (red farther than blue) with separation
increasing with n. Increasing n, we come to the point, call nmax the corresponding
value of n, at which the clear fringe corresponding to one of the bandwidth limits
falls into the same position as the dark fringe of the component at the other
bandwidth limit.
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1
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2

f

Fig. 5.14 Path difference between two interfering waves in the two-slit experiment
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If we now take a black and white photo of the screen (not to distinguish the
colours, which would effectively reduce the bandwidth), we will see only nmax

fringes on each side of the central fringe, namely 2nmax + 1 fringes in total.
We shall now calculate nmax. Consider a generic point P on the screen, as shown

in Fig. 5.14. Two light waves meet there, after having travelled the paths S0S1P and
S0S2P, respectively. We see the analogy with the situation in Fig. 5.12. When
P moves away from 0, the path difference, call it d, increases, and we observe
maxima or minima depending on whether d is an even or odd multiple of k/2.
Between P and O, we have n = d/k periods of the fringe system.

Notice now that when d increases, the difference d/c between the times taken by
the wave on the two paths also increases. If this difference is larger than the
coherence time Dt = 2p/Dx of S0, we can no longer observe the interference. This
means that, in order for the interference to be observed, d cannot be larger than the
maximum value

dmax ¼ c2p
Dx

¼ kx0

Dx
;

where we have used Eq. (5.10). In conclusion, the number of fringes we observe on
each side of the white central fringe is

nfmax ¼ dmax

k
¼ x0

Dx
¼ k

Dk
: ð5:11Þ

In other words: the number of observable fringes (on both sides) is equal to the
reciprocal of the specific bandwidth.

If the source S0 is white, the visible bandwidth is in the wavelengths between
0.38 µm in the violet and 0.78 µm in the red. Hence, Dk = 0.4 µm and the average
wavelength is k = 0.58 µm. We should then observe two fringes (multicolor) on
each side of the central one only. In practice, one observes four or five of them, for
two reasons. First, our eye is not very sensitive to the limits of the spectrum,
reducing the effective Dk to about 0.2 µm (see Fig. 7.34, which gives the sensitivity
of our eye to the different wavelengths); secondly, the perception of the colors helps
in distinguishing the fringes even when they are overlapped.

Thermal sources with different degrees of monochromaticity k/Dk can be
obtained starting from a white source. For example, with a colored filter, we can
select a specific bandwidth k/Dk on the order of dozens. We can do better selecting
a specific spectral line. Indeed, each type of atom or molecule has a series of normal
modes of oscillation, each with a certain proper frequency. The spectrum of such
molecules contains a series of lines (as they are called because they appear as such
when we observe the light decomposed by an interferometer or a prism after having
gone through a slit). In condensed matter, molecules are very close together, and the
interaction between them does not allow them to oscillate freely, thus the lines are
not observable. We can have lines if we operate with a gas at low enough pressures.
Even under these conditions, each line is never perfectly monochromatic, but its
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bandwidth is at least the one corresponding to the fact that the wave trains emitted
by an atom or a molecule have a limited duration (on the order of nanoseconds to
fix the ideas). This is called natural bandwidth (on the order of the GHz).

There are several effects that produce an increase in the bandwidth of the lines.
The principal ones are collisions and thermal motion. A collision during the
emission interrupts it, or, in any case, shortens the memory of the initial phase. In a
condensed medium, the mean time between collisions is on the order of picosec-
onds, much shorter than the typical lifetimes. This effect is called collision
broadening. We can reduce this effect working at low pressures. As for the second
effect, consider that, in their motion, some of the molecules approach the observer,
others go away in the opposite direction. The observed frequency depends on the
relative velocity between source and observer (Doppler effect, see Sect. 3.13), and
the line widens (Doppler broadening).

In conclusion, we can obtain light with a high degree of monochromaticity from
thermal sources, using filters, prisms, or systems of slits or interference devices to
select a frequency band in which a single line of the source is present, taking care to
choose particularly narrow lines (and we shall need to accurately prepare the
conditions we have mentioned above). In this way, it is possible to obtain values of
k/Dk on the order of 1000 with Sodium lamps, 10,000 with Mercury or Helium
lamps, 100,000 with Hydrogen lamps and 500,000 with the red line of Cadmium.

LASERs, which are easily available today, belong to another class of light
sources, as we already mentioned in Sect. 4.7. LASERs are not thermal sources in
which excited atoms de-excite randomly and independently of one another. In a
LASER, the de-excitation is by stimulated emission. This is a quantum process that
we cannot discuss here. It will be sufficient to know that the entire system of atoms
emits energy as a single oscillator in which all the atoms of the medium oscillate
with fixed phase relations to one another. Consequently, the degree of
monochromaticity of the emitted light is extremely high.

5.4 Interference with Non-coherent Light

The coherence conditions we established in the last section need to be guaranteed to
observe an interference phenomenon. For this reason, it is not very common to
observe natural interference phenomena, because the natural light sources, like the
sun and the atmosphere, are extended and not monochromatic. However, excep-
tional conditions exist in which interference phenomena are observed in white light
and with extended sources. For example, the colors of the elytra of certain beetles
and the wings of some butterflies are due to a type of interference phenomenon, as
one can understand observing that colors change when we change the angle under
which we look at the insect. Similarly, the colors observed on gasoline films on the
surface of water are due to interference. In these cases, the light source is the
atmosphere, namely a white extended source, and the interference takes place in a
thin transparent film. The consequence of the source not being monochromatic is
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that the fringes of different colors appear in different positions or under different
angles. The consequence of the source being extended is that the fringes are not
observable in any arbitrary position in space, but can only be seen in a definite
position, to be precise, only on the film. Thus, we talk of localized fringes.

We shall now study the interference in a thin film in two geometrically simple
cases, namely a film with plane and parallel surfaces and with plane and
non-parallel faces (a wedge). The first case is shown in Fig. 5.15

Let us consider a plane wave (hence spatially coherent) incident onto a film of
plane and parallel faces at the incident angle i. Let d be the width and n > 1 the
refractive index of the film. The incident ray is partially reflected and partially
refracted on the first surface. On the second surface, the refracted ray, in turn, is
partially refracted (transmitted ray) and partially reflected back to the first surface,
where it is again partially reflected and partially refracted out, and so on. In this
way, a set of reflected and a set of transmitted rays is produced. All the rays of one
set are mutually coherent, namely the phase differences between the corresponding
waves of each frequency have fixed values. Consequently, we have the conditions
to observe the interference in both sets of rays.

In practice, the incident angle is usually close to 90° and the reflection coefficient
is quite small. Under these conditions, only the very first rays give a perceptible
contribution. For example, as we saw in Sect. 4.7, at the air-water interface, the
reflection coefficient is about 0.04. Let us consider the reflected rays, namely the
case of the examples we have mentioned. Calling I0 the intensity of the incident ray,
the intensity of the first reflected ray is obviously I1 = 0.04 I0. The intensity of the
second reflected ray, which exits after two refractions and one reflection, is
I2 ¼ 0:96	 0:96	 0:04	 I0 ¼ 0:037	 I0, which is close to I1. But the intensity
of the third reflected ray is already much smaller, namely
I3 ¼ ð0:96Þ2 	 ð0:04Þ3 	 I0, which is 1/625 of I2. In conclusion, then, if the
reflection coefficient is small, the interference phenomenon is practically only due
to the first two reflected rays.

On the other hand, no interference is perceptible for the transmitted rays if the
reflection coefficient is small, because intensities are all very different from one
another. Indeed, under the just-considered conditions, the intensity of the second
ray is 1/625 of the first, the intensity of the third 1/625 of the second, and so on.
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Fig. 5.15 The geometry of
the multiple reflections by a
parallel face thin film
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Consider a monochromatic component of the incident plane wave. Under the
conditions we have discussed, the interference is determined by the phase difference
between the first and the second reflected waves. The corresponding rays are shown
in Fig. 5.16. We assume the first medium to be air, whose index we take to be equal
to 1. Let the index of the second medium be n > 1.

Consider the wavefront BD (normal to both rays, obviously) immediately out-
side the film. The paths the two rays must take to reach it are different. The first ray
reflects off the first surface and then travels the distance AB through the air. Looking
at the figure, we see that this distance is AB ¼ d tan r sin i. If k is the wave number
in air (or a vacuum), the corresponding phase delay is D/1 ¼ k2d tan r sin i. The
length of the path ACD of the second ray is 2AC ¼ 2d=cos r. Being that this path is
entirely in the medium, in which the wave number is nk, the corresponding phase
delay is D/2 ¼ nk2d=cos r. The phase difference between the two rays due to their
different paths is, in conclusion,

D ¼ D/2 � D/1 ¼
n2d
cos i

� 2d tan r cos i
� 	

k:

We can simplify this expression using the Snell law sin i = nsin r. We obtain

D ¼ 2d
cos r

� 2d
sin2 r
cos r

� 	
nk ¼ nk2d cos r:

However, we have not yet finished, because there is a further contribution to the
phase difference between the two reflected waves. We recall that in Sect. 4.7, we
saw that, at the interface between a less refracting and more refracting media, the
phase of a wave abruptly changes by p, while it does not vary in the opposite case.
In our case, we have a change of p only in the reflection off the first face (namely
for the first ray), and in conclusion, the phase difference between the two reflected
waves is

d ¼ nk2d cos rþ p; ð5:12Þ

Let us now see where maxima and minima shall appear. The maxima will do so
where the phase difference is an integer multiple of 2p, namely for d = m2p, with
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Fig. 5.16 Interference of the
first two reflected rays by a
thin parallel face film
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m = 0, 1, 2,…. The condition for destructive interference is d = (2 m + 1)p, where
we have the minima. These conditions can be written in terms of the vacuum
wavelength k0 as

2dn cos r ¼ mþ 1=2ð Þk0; m ¼ 1; 2; 3; . . .; maxima
2dn cos r ¼ mk0; m ¼ 1; 2; 3; . . .; minima:

ð5:13Þ

Let us now analyze a few phenomena observed in the thin films, on the basis of
the result just found.

Let us first assume the incident angle to be fixed (and the refraction angle
consequently to be fixed as well). It often happens that the thickness of the film is
not constant, but varies a little, with variations on the order of the wavelength from
point to point. Under these conditions, the loci of constructive and destructive
interference are the loci of equal thickness. In monochromatic light, we shall see
luminous curves alternated with dark ones. In white light, we see iridescent curves
of all the colors. These are called equal thickness fringes. This is what we observe
on the wings and elytra of insects and on the gasoline films on water surfaces. The
colors are beautiful and change with the relative position of the observer.

We must, however, ask ourselves how the assumed conditions of a fixed incident
angle are realized. Indeed, this is the condition necessary to observe interference in
this case. Let us consider the simplest case of variable thickness, namely a film with
plane surfaces forming a (small) angle. Figure 5.17 shows the geometry we are
going to discuss. Such a wedge can be easily made using a rectangular frame made
of a thin metal wire terminating in a handle. If you dip the frame into soapy water
and then raise it smoothly, a soapy film will form inside the frame. If you lay the
frame vertically, the soapy film gets thicker in its lower parts, under the action of
the weight. The equilibrium configuration is just a sledge, as one can deduce by
seeing horizontal equispaced straight interference fringes on the film.
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Fig. 5.17 Geometry of the
localized fringes
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Let us start by assuming the source illuminating the film to be point-like and let
us call it S0. We can think of the two interfering waves as originating from two
virtual sources, S1 and S2, which are the images of S0 resulting from the two
surfaces of the film acting as mirrors. From this point of view, the interference is
completely analogous to the Young two-hole experiment. We conclude that the
interference fringes are hyperboloids, having foci in S1 and S2. In order to have the
same geometry as in the Young experiment, consider now a screen, like the one
spanning AA in the figure, parallel to the segment S1S2 and to the edge V of the
wedge. Let d be the distance between S1 and S2, C the center of the segment S1S2,
O the foot on the screen of the perpendicular from C to the vertex V and l the
distance from C to O. Clearly, O is the center of the interference pattern on AA,
because it is equidistant from S1 and S2.

Let us now analyze how the situation changes if S0 is extended, which is what
happens in practice when S0 is the sun or the sky. To understand that, suppose
keeping S0 point-like and moving it in a direction parallel to S1S2. The images S1
and S2 shall move as well, the fringes on the screen AA shall translate perpendic-
ularly to their direction, and their period shall change as well. Indeed, the distance
between two contiguous fringes is p = lk/d. The distance d between S1 and S2
depends on the position of S0. Let us find out how. If b is the dihedral angle of the
sledge, then the angle under which V sees the two secondary sources is 2b. Being
that 2b is always very small, calling c the length VC, we can write d ¼ 2bc. In
conclusion, the period of the fringes is

p ¼ kl= 2cbð Þ:

This means that the fringes cannot be observed on an arbitrarily-located screen
AA when the primary source S0 is extended. Let us, however, move AA so that it
contains the vertex V of the sledge. In practice, we put AA on the sledge. Let us now
displace S0 as we did before. The lateral displacement of the fringe pattern does not
happen now, because its center must be in V anyway. In addition, the distance
between fringes p does not vary, because it is now c = l, which is independent of
the position of the point-source S0. As a consequence, when S0 is extended, the
fringe patterns on the sledge produced by all its points are superimposed on one
another. In conclusion, the interference fringes are observable on the sledge, but not
in other positions. We say that the fringes are localized on the sledge.

We are now ready to go back and discuss the phenomena of fringes of equal
thickness. We shall consider the usual circumstances in which the light incidence
on the film is normal or almost so. We can then take cos r � 1. According to
Eq. (5.13), the loci of the maxima are where the thickness d is such that
2dn ¼ mk0 þ k0=2, where, we will recall, k0 is the vacuum wavelength, n is the
refractive index and m is an integer number. The difference in thickness between
two contiguous fringes is then k0/2d. We see that thickness differences on the order
of several nanometers can be evaluated.
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In some cases, for example, when the film is a sledge, the thickness may be very
small at some points. Indeed, the interference is destructive, and we see a dark
fringe everywhere the thickness is d < k0/4n. Moving from those regions, the first
clear fringe appears at d = k0/4n. Under these conditions, we can not only measure
changes in the thickness, but the thickness itself, simply by counting the clear
fringes extending out from the first, dark one.

The interference phenomena have a number of applications in optics, allowing
us to appreciate thickness differences on the order of one hundredth of a wave-
length, namely a few nanometers, as we have already stated. We shall only hint at a
few of them here. A way to control the quality of the surfaces of a lens, for example,
is to look at the equally thick fringes in a layer of air between the lens itself and a
glass reference surface known to be perfectly plane. The surface of the lens under
control being spherical, the fringes should be a set of concentric circles. If, on the
contrary, a small anomaly were to be present at some point, say a small bump or a
small valley, the fringes would show that. Once the irregularity is detected, it can
usually be corrected, and the control then done again.

Similar methods are used to accurately measure the dilatation coefficient of
materials with varying temperature or pressure and, again, for measuring the
refractive index.

Interference methods have been and are of utmost importance in all research
fields. Let us simply think of the measurements of the atomic spectra.

5.5 Diffraction

Diffraction exists whenever a propagating wave meets an obstacle in its path lim-
iting its extension by blocking or absorbing part of the front. After the obstacle, the
trajectories of each small segment of the front no longer necessarily move in the
original direction. This phenomenon is present for every type of wave. The
mathematical descriptions are similar, but the physical aspects may be very different
from case to case. When the size of the obstacle is on the same order of magnitude
as the wavelength, diffraction is most evident. This is the case, for example, for
surface waves on the sea. In the area just beyond a strait or the mouth of a harbor,
the wave motion does not simply project geometrically forward out of the aperture,
but rather invades regions of “geometrical shadow” as well. Figure 5.18 shows, as
an example, the diffraction of sea waves through the natural opening of Lulworth
Cove in the UK. Similarly, walking down a street, we hear the music produced by a
source in a nearby house through an open window above our heads, even when the
source of the sound is out of view inside a room. Indeed, the wavelength of the
sound waves is on the order of meters, comparable with the objects of everyday life
and an approximation with “geometrical acoustics” is not useful.

We shall deal here with the diffraction of light, which gives origin to phenomena
that are, even in their largest numbers, not easily observed, or recognized as such,
due to the very small wavelength. Indeed, the approximation of geometrical optics
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is very often adequate. As we have already mentioned, the diffraction of light was
discovered by Francesco Maria Grimaldi in the XVII century. He made his
observations in a room that was completely dark but for a small hole that he had
opened in the shutter of a window. He placed obstacles of different shapes in the
path of the light beam entering the room and looked carefully at their shadows on a
white paper, paying attention, in particular, to the transition border between shadow
and light. Imagine introducing the simplest obstacle into the path of a light beam, a
sheet of paper with a straight border, namely a semi-infinite obstacle. Figure 5.19
shows what we should expect from geometric optics. On the screen, at AA, we
should observe a white region and a dark region, separated by a sharp line, as long
as penumbra situations are avoided.

Let us analyze this phenomenon on the basis of the Huygens-Fresnel principle,
as in Fig. 5.20. Consider a wavefront, which we take to be a plane for simplicity’s

Fig. 5.18 Diffraction of sea waves in the Lulworth Cove, Dorset, UK. Photo by Chris Button
Photography

A

A

Fig. 5.19 Geometrical
shadow
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sake, reaching the obstacle at time t. We geometrically construct the wavefront
beyond the obstacle at time t + Δt, considering a number of elementary secondary
sources on the plane of the obstacle and the spherical wavelets they emit, as shown
in the figure. The figure shows the wavelets as dotted lines at t + Δt as well.

The important point is that the relation between the phases of all the secondary
wavelets at a certain time is fixed. Consequently, the infinite hemispherical wavelets
interfere where they meet. The resulting wave amplitude is the largest in the geo-
metrical light region, but is not zero in the geometrical shadow. Indeed, the wave
gets around the obstacle and widens more and more in the “shadow” as it gets
farther from the obstacle. Considering that the phenomenon is due to the interfer-
ence of the wavelets, we can imagine that colors may be observed both in the
geometrical shadow and in the geometrical light, near the border between them.
This is exactly what happens, as we shall now see.

Following Grimaldi, we can say that diffraction of light occurs whenever light
does not propagates rectilinearly for phenomena different from reflection and
refraction. As we have discussed, diffraction is just an interference phenomenon of
the infinite secondary Huygens-Fresnel wavelets on a wavefront and differs only for
the number of secondary sources from the two-slit Young experiment. In that case,
we had two of them, while we now have an infinite number. In conclusion, the
terms ‘interference’ and ‘diffraction’ are almost synonyms, the difference being in
the number of interfering sources.

The diffraction phenomenon, even in its simple form, as in Fig. 5.20, is not easy
to observe with natural light for several reasons. First, the hole in the window must
be small, no larger than a few millimeters, to guarantee spatial coherence,, and
consequently, the beam intensity is not high, only a few milliwatt. Second, the
colored fringes are very near to the shadow limit and to one another. For example,
in a typical configuration with, say, 3 m distance between the primacy source and
the obstacle and 3 m from the obstacle to the observation screen as well, the
distance between the first and second minima is about 1.3 mm for blue and 1.0 mm

Fig. 5.20 Huygens-Fresnel
construction after a
semi-infinite obstacle

5.5 Diffraction 203



for red. Contrastingly, the basic diffraction and interference phenomena considered
in this book are very easily observed with any laser beam, due to its very high level
of both temporal and spatial coherence.

We translate here some of Grimaldi’s text on the fringes he observed in the
geometrical light region.

In the illuminated part of the base (namely the white paper used for observations) a few
starches, or fringes, of colored light spread and separate, so that in each fringe the light is
very pure, and sincere, in the middle, while at its extremes is colored, namely blue on the
side closer to the shadow and red on the farther extreme. …The first (fringe) is wider than
the second and this one is wider than the third (and it never happens that more than three are
seen) and have a decreasing intensity of light and colors, in the same order as they get
farther from shadow.

Figure 5.21 shows what he should have seen.
He continues describing the clear fringes in the shadow:

It should also be observed that these colored light fringes appear sometimes in the shadow
itself. Their number is sometimes larger, sometime smaller….

As we already mentioned, Grimaldi did not interpret his observations as a proof
of the wave nature of light, neither did he perform systematic measurements. Both
of these must be credited to Thomas Young, who worked on interference between
1804 and 1807, as we already discussed, and to Augustin Jean Fresnel, who
completely clarified the diffraction phenomena with experiments and theoretical
interpretation between 1815 and 1827.

Fig. 5.21 White light
diffraction fringes in the
geometrical shadow after a
semi-infinite obstacle.
Photo C. Braggio
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We note here that the wave field diffracted by an obstacle depends, in general, on
both the distance from the obstacle and the considered direction. Its general
description requires rather advanced mathematics, and we shall not deal with it in
this book. As we already mentioned, in discussing the two-slit experiment, the
situations are simpler in a far field, namely at a large distance beyond the obstacle,
where the wave field depends on the directions alone. These are the Fraunhofer
conditions, which we will continue to discuss throughout the book (with the
exception of Chap. 8). The more general ones, in a near field, are called Fresnel
conditions. In the next section, we shall define the Fraunhofer conditions in exact
terms.

5.6 Diffraction by a Slit

In this section, we quantitatively analyze the diffraction of light by a slit under the
Fraunhofer conditions. This is a simple and practically very important case, and it
will give us the opportunity to show the principal characteristics of diffraction. We
consider a monochromatic plane wave of infinite extension normally incident on an
absorbing screen in which a slit is open. We take a reference frame with origin in
the center of the slit, the y-axis in the direction of the slit and the x-axis perpen-
dicular. Let D be the width of the slit (in the x direction) and let be it infinitely
extended in the y direction. Notice that, in general, the shape of an opening in a
screen depends on two coordinates. The simple case we are considering depends on
x alone. The screen is completely transparent for −D/2 � x � D/2, completely
absorbing everywhere else.

Fraunhofer conditions are satisfied when the diffraction pattern is observed at an
infinite distance or in the back focal plane of a converging lens, in other words,
when the propagation directions of the diffracted waves are parallel to one another.
In practice, the conditions are satisfied, even without using a lens, provided the
phenomenon is observed at a large enough distance L from the diffracting element.
To understand what “large enough” means, let us consider the arrangement shown
in Fig. 5.2, in which the diffraction pattern is viewed on a screen at a “large”
distance L from the slit as a function of the coordinate n parallel to the x-axis. The
Fraunhofer condition is satisfied if the phases of the Huygens-Fresnel waves that
originated in different parts of the slit are almost equal to one another at all points of
the diffraction pattern, like P in the figure. We can consider the phase differences
small enough if they are much smaller than 2p. This means that the path difference
dL to P from the extremes of the slit, which is the largest path difference, must be
much smaller than the wavelength k. Let h be the angle under which the center O of
the slit is seen from P. This angle being small, we consider it to be infinitesimal, and
we approximate at the first order in h, namely we neglect terms in h2 and higher. In
other words, we take tan h ffi sin h ffi h. At the same order, the length of the segment
AA in the figure, which is perpendicular to OP, is equal to D.
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Looking at Fig. 5.22, we see that dL ¼ D sin h � Dh and that h=2 � D= 2Lð Þ,
and we can write dL � D2=L. The Fraunhofer condition is then D2=L\\k, or

L[ [D2=k: ð5:14Þ

For example, consider the typical values D = 1 mm and k = 0.5 µm. The
Fraunhofer conditions are satisfied if we look at the diffraction, without using a
lens, at a distance L of a few meters. If Eq. (5.14) is not satisfied, we are under
Fresnel, or near field, conditions.

Let us now discuss the diffraction by the slit, as shown in Fig. 5.23, in which,
having assumed the Fraunhofer conditions to be satisfied, we have drawn the
propagation directions of the elements of the diffracted wave as being parallel.
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Fig. 5.22 Geometry for the
diffraction of a slit at a finite
distance L
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Fig. 5.23 Geometry for the
Fraunhofer diffraction of a slit
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Let us apply the Huygens-Fresnel principle to the wave surface across the slit.
We consider it to be a plane of secondary sources, oscillating with the same phase
emitting hemispherical waves in the semi-space beyond the slit. The light intensity
at point P at an infinite distance can depend only on the angle relative to the
incoming direction (assumed to be perpendicular to the slit), which we call h, under
which the point is seen by the slit. Indeed, at infinite distance, this angle is the same
for all the points of the slit.

Our calculation of the diffraction pattern as a function of h shall proceed with the
following steps: (1) divide the wave surface at the slit into infinitesimal elements,
which we take to be infinitely extended in the y direction and at a length of dx in the
x direction; (2) consider the field emitted by each of these elements in the h
direction; (3) take their sum (integral), (4) take the square of the sum; (5) take the
mean value over a period of the result.

The secondary sources emit waves of the same amplitude, say adx, because they
have equal areas proportional to dx, and with the same initial phase, because they
are all on the same wavefront. The secondary waves, however, will have phases
different from one another when they reach the observation point, because they
must travel different path lengths to reach it. Now, the distances between any two
planes perpendicular to the considered direction are equal. Consequently, the path
differences to be considered are between the secondary sources and a plane like AA
in the figure.

Taking as a reference the wavelet emitted at x = 0, consider the wavelet emitted
by the generic element between x and x + dx. The path length that the latter must
travel is longer by x sin h than that of the former, and consequently, the phase of the
latter will lag behind the phase of the former by kxsin h. Hence, the field emitted by
the element at infinite distance in the direction h is

dE ¼ ei xt�kx sin hð Þadx:

We obtain the total field, resulting from all the slit elements, by integration on
the slit width. We obtain

EðhÞ ¼ eixt
ZþD=2

�D=2

e�ikx sin hdx ¼ � aeixt

ik sin h
e�ikD2 sin h � eþ ikD2 sin h


 �

¼ Daeixt
sin k D

2 sin h
� 
k D

2 sin h

� �
:

It is useful to introduce the quantity

U ¼ k
D
2
sin h ¼ pD

k
sin h: ð5:15Þ
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The physical meaning of U is the phase difference at infinite distance in direction
h between the contribution of the center and that of a border of the slit. Namely, it is
one half of the maximum phase difference between contributions.

Taking the real part of the above equation, we have

EðhÞ ¼ aD
sinU
U

cos xtð Þ: ð5:16Þ

To obtain the intensity, we now take the mean value over a period of the square
of the field, obtaining

IðhÞ ¼ a2D2

2
sin2 U

U2 :

We immediately recognize the physical meaning of the factor a2D2/2. It is
clearly the maximum intensity, which is found in the forward direction, namely for
U = h = 0. Calling the maximum intensity Imax = a2D2/2, we have, in conclusion,

IðhÞ ¼ Imax
sin2 U

U2 : ð5:17Þ

In practice, we observe the diffraction pattern on a white screen at a large
distance L beyond the slit (or in the focal plane of a converging lens of focal length
L). Note that, in practice, D should be on the order of a millimeter or less in a
laboratory experiment, in order to have the condition L � D satisfied at distances
on the order of meters. Let n be the coordinate on the observation screen parallel to
x and with origin at the point corresponding to h = 0. The light intensity pattern we
observe on the screen is proportional to I, as a function of n.

In the majority of the situations, we are interested in small values of h. Indeed, as
we shall now see, the intensity becomes very small at large angles. Under these
conditions, we can take approximately

sin h � n=L; ð5:18Þ

corresponding to the approximate expression for U

U � p
D
k
n
L
: ð5:19Þ

Figure 5.24a shows the function sin2 U/U2 as a function of U. Being that U is
proportional to n under the approximation of Eq. (5.19), the same curve also rep-
resents the intensity as a function of n. Figure 5.24b shows the intensity on the
screen. Indeed, we see a high central maximum, and sequences of alternated
maxima and minima symmetrically on the two sides. Note that in Fig. 5.24b, we
have exaggerated the intensities outside the central peak to make them more visible.
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The positions of the minima, in which the intensity is zero, are easily found,
because it must be U = ±mp, with an integer of m, at those positions. Hence, in the
small angles approximation, the first zero is at

nmin �
Lk
D

: ð5:20Þ

As immediately checked, this is also the distance between two contiguous
minima.

The lateral maxima of the diffraction pattern, rigorously speaking, are the
maxima of the function sin2 U/U2. In practice, however, the denominator of this
expression varies very slowly compared with the numerator for varying n (or,
equivalently, for varying h). We can then safely look for the maxima of sin2 U.
Their positions are for U � (m + 1/2)p, with m = 1, 2,…. The intensity in the
secondary maxima is much smaller than that in the principal one. For example, for
the first one, we have

I

Φ

ξ
π π π πππππ 2 3 40−4 −3 −2 −

−3λL/D −λL/D λL/D 3λL/D

(a)

(b)

Fig. 5.24 The diffraction figure of a slit under Fraunhofer conditions. a The intensity curve, b the
diffraction fringes (the central fringe is over-exposed to enhance the visibility of the lateral ones)
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I1 ¼ Imax
1

3p=2ð Þ2 � 0:04Imax; ð5:21Þ

Indeed, the vast majority of the diffracted light is in the central peak.
QUESTION Q 5.3. Calculate the intensities of the second and third maxima ⃞.
Figure 5.25 is a photograph of the diffraction pattern on a screen at 2.45 m from

a 50 µm wide slit with monochromatic light of a laser of k = 532 nm wavelength.
The central maximum is overexposed to make the secondary maxima more visible.

Let us now discuss the quantity nmin, which is one half of the lateral extension of
the main part of the diffraction pattern. Equation (5.20) contains four linear
dimensions, namely nmin, L, D and k. The last quantity, namely the wavelength,
depends on the radiation we are employing. If we limit our considerations to light
and to the orders of magnitude, k is substantially fixed, on the order of 0.5 µm. Let
us then consider how the other lengths play.

If we are in a laboratory, the distance between the slit and the screen shall always
be on the order of a meter; let us take the typical value L = 2 m. Under these
conditions, if we want to be able to easily observe the diffraction pattern, we will
need to have nmin = l mm or larger. For that, we need a slit of width D = l mm or
less (see the conditions in Fig. 5.25, for example).

This does not mean that diffraction patterns of wider slits, even much wider
ones, are not observable. Indeed, we can observe them by moving to larger dis-
tances or, alternatively, by enlarging the diffraction pattern with a system of lenses.
We can, for example, observe the diffraction pattern of a slit so wide as to have
D = 5 cm, by observing at a distance L = 100 m, where we have nmin = l mm.

Consider now the following observations that can be done with a slit whose
width D can be varied by acting on a micrometric screw. We observe, on a screen at
a large enough fixed distance L, how the diffraction pattern varies when we vary
D. If the slit is initially quite open, then nmin is very small, and we do not see the
diffraction pattern. When we gradually close the slit, we observe the diffraction
pattern widening, as nmin increases. When we have reduced the width to the order of
the wavelength, the slit will practically have become a single secondary source of
negligible transverse dimensions, because its element radiates in phase one with
another in any direction. In practice, all the directions of observation are equivalent.
The source radiates light in all directions beyond the screen.

Fig. 5.25 Photo of the diffraction pattern of a slit under Fraunhofer conditions with monochro-
matic laser light at k = 532 nm. The width of the slit was 50 µm. No lens was used and the screen
was at 2.45 m from the slit. Photo by A. Bettini
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Up to now, we have considered the diffraction of a monochromatic light. What
happens if it is polychromatic? Under these conditions, each monochromatic
component produces a pattern on our screen similar to that in Fig. 5.24. The
position of the central maximum is independent of the wavelength and is conse-
quently the same for all the components. If light is white, the central fringe is white.
Contrastingly, the positions of the first and subsequent minima, and those of the
secondary maxima, depend on k. Consequently, the lateral fringes appear white in
their centers, where all colors contribute, and colored on their borders, with red
(which has the largest wavelength) at the external part, blue on the internal. This is
what Grimaldi described. Notice, finally, that the distance between the red and blue
parts of a fringe increases with the order of the fringe itself.

Before concluding the section, let us mention how the effect of diffraction
through a slit can be observed without any instrument at all. You merely have to put
the fingertips of your thumb and forefinger very close to one another and look
through the gap between them at a clear sky. When the fingertips are almost
touching, you will see a bridge suddenly appearing to join them, as shown in
Fig. 5.26. Carefully adjusting the distance between fingertips, you will see the
bridge splitting into a few darker and a few lighter fringes parallel to the tips. The
light source being a diffuse one, the fringes are localized.

5.7 Diffraction by a Circular Aperture

When a light wave encounters an opaque screen with an aperture of any shape,
diffraction takes place with characteristics similar to those of a slit. The diffraction
pattern depends on the shape of the aperture, but the general laws governing the
phenomenon are the same. As already mentioned, they were laid down by Augustin
Jean Fresnel between 1815 and 1827. In this section, we shall discuss a second
case, beyond the slit, namely the circular aperture. Its importance can be appre-
ciated by thinking about the fact that the majority of optical elements, such as
lenses, mirrors, diaphragms, filters, etc., are circular, namely they limit the incident
wave allowing only a circular part of it to go through.

Fig. 5.26 Diffraction
between two fingers. Photo by
A. Bettini
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Consider again a monochromatic plane wave incident in the direction perpen-
dicular to the aperture, as shown in Fig. 5.27. Let D be the diameter of the circle
and L the distance from the aperture to the screen on which we look at the
diffraction pattern, under Fraunhofer conditions. In this case, the geometry of the
problem is cylindrical about an axis perpendicular to the aperture (which is also the
incident direction) through its center O. We choose a polar cylindrical reference, as
shown in the figure, with origin in the center of the aperture and the z axis as the
symmetry axis. In general, the diffraction pattern depends on the distance from the
origin and on the polar angle h, but is independent of the azimuth as a consequence
of the symmetry of the problem. Under Fraunhofer conditions, the pattern depends
only on h, namely, on the screen, it is a function of the distance from that axis,
which we call r. Let this function be I(r).

The arguments leading to the diffraction pattern are similar to those we devel-
oped for the slit in the previous section. The same five steps shall be followed.
However, in this case, the integral encountered when summing up the contributions
of the secondary sources on the incoming wavefront, namely step 3, cannot be
expressed in terms of any simple function like sines and cosines. Indeed, the
integral is a higher transcendental function, known as a Bessel function, named
after Friederch Bessel (Germany, 1784–1846).

The function I(r) is shown in Fig. 5.28. It is similar to I(x) for the slit in
Fig. 5.24a, taking into account the cylindrical geometry. The diffraction pattern
features a bright central disc, called the diffraction disc or the Airy disc, containing
the largest fraction of the light. It is surrounded by a succession of alternated dark
and clear rings. The intensities of the rings are much lesser than that of the central
maximum, and decrease with increasing order. The first theoretical description of
the phenomenon was given by George Airy (UK, 1801–1892) in 1835.
Consequently, the diffraction pattern under Fraunhofer conditions of a circular
aperture and its central disc are also called the Airy pattern and the Airy disc, as we
just mentioned.

θ r
O

L
D

Fig. 5.27 Geometry of the Fraunhofer diffraction from a circular aperture

212 5 Diffraction, Interference, Coherence



There are quantitative differences relative to the slit. In particular, the distance
from the center of the first dark ring, which is the first minimum, namely the radius
of the Airy disc, is not equal to Lk/D as for the slit, but to

nmin � 1:22
Lk
D

: ð5:22Þ

The strange-looking factor 1.22 corresponds to the position of the first zero of
the Bessel function. Figure 5.28 shows the positions of the second and third minima
as well.

We can also say that the Airy disc is seen from the center of the aperture under
the radius

hmin � 1:22
k
D
: ð5:23Þ

The heights of the secondary maxima are extremely small, even smaller than for
the slit. Figure 5.28 reports, in the insert, the heights of the first secondary maxima
relative to the central one.

Figure 5.29 shows a reproduction of the diffraction pattern of a circular aperture
under Fraunhofer conditions. The images are credited to Rik Littlefield, Zerene
Systems LLC, obtained with a white LED shining through a pinhole at a distance of
about 5 m from the pinhole. In the right panel, the Airy disc has been given the
correct exposure. In the left panel, the exposure was twelve times longer, to make
the rings of the secondary maxima visible (and super-exposing the central disc). In
white light, the central disc is white, while the rings are colored on their borders,
with red on the external part, blue on the internal.

Given its importance, the diffraction pattern in monochromatic light by a circular
aperture at a large distance is called the fundamental diffraction pattern.

You can observe this diffraction pattern even in white light in the following way.
Make a round small hole in a piece of cardboard with the tip of a pin, with a

r0 1.22λL/D 2.23λL/D 3.24λL/D

7.8×10–54.2×10–3
1.75×10–2

IFig. 5.28 Intensity of
diffracted light by a circular
aperture under Fraunhofer
conditions. In the insert, the
first three secondary maxima
numbers are their intensities
relative to the principal
maximum
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diameter on the order of 0.5 mm. Look at a light source through the pinhole,
positioned right up against your eye (take off your spectacles, if you wear them).
The diffraction pattern will form on your retina with clearly distinguishable rings.
Indeed, the size of the pattern is on the order of magnitude of the diameter of the
central disk, which is, at a typical wavelength k = 0.5 µm, 2hmin ¼ 2:44k=D ¼
2:44	 5	 10�7m/5	 10�4m ¼ 2:44mrad. This is an order of magnitude larger
than the minimum angular distance the human eye can resolve (see Sect. 7.11).

When you do the experiment, you will notice that the diffraction pattern appears
to be around the light source beyond the pinhole. As a matter of fact, the diffraction
pattern is not in a definite place. This perception is due to a psychological mech-
anism in which the observed figure is located where we, as an observer, believe the
source to be located.

5.8 Diffraction by Random Distributed Centers

In the preceding sections, we discussed the interference of light waves coming from
two small (secondary) sources, Young’s pinholes (or slits) and the diffraction from
a single (secondary) source having an extension large enough to necessitate taking
into account the interference between the waves coming from its different points.
Young’s pinholes, as opposed to the slit and the circular aperture of the previous
sections, are point-like. What does this mean? Well, it simply means that the waves
radiating from all the points of the secondary source are, in any case, in phase with
one another independently of the position from which we look at the resultant wave.

Fig. 5.29 Photo of a Fraunhofer diffraction pattern by a circular aperture. Courtesy of Rik
Littlefield, Zerene Systems LLC. In the right panel, the exposure is correct for the Airy disc. In the
left panel, the Airy disc is over-exposed to make the ring visible
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In the following discussion, we shall call a single object that diffranges light a
diffraction center, and also a scattering center. It can be an aperture, like the slit and
the pinhole we have considered, but may also be a physical object, like a droplet of
water. Indeed, we shall now study the case of several diffraction centers (as
Young’s holes are), whose structure, however, is not necessarily point-like (as was
the case with the slit and the circular aperture). We shall limit our considerations to
a system of equal centers. For example, we can consider a system of circular
apertures of the same diameter D on the same plane, located regularly or irregularly
at various distances from one another (although they might be, for example,
squares, or stars, etc., equal in size and orientation). Once more, we shall work
under Fraunhofer conditions.

The diffraction pattern of the system of circular apertures is determined by the
interference between the waves from the different parts of the same aperture and
those emitted by all the different apertures. The resultant field in the generic
direction h can be expressed as a sum of one term for each aperture. Each of these is
the product of two factors. The first factor, which we call the form factor and
indicate with Ef(h), is due to the diffraction by the aperture. The second factor takes
into account the difference between the phases of the waves reaching the obser-
vation point from homologous points of the different slits. This factor corresponds
to the factor cos /2 � /1 � k r2 � r1ð Þ½ � that we encountered in the discussion of
Young’s experiment.

The form factor Ef(h) is equal for all the centers and can be factorized, and we
can conclude that the diffraction pattern of a system of equal (including orientation)
centers is the product of the form factor of a single center times a factor depending
on the relative positions of all the centers, which we shall call the structure factor.

The calculation of the structure factor is rather simple in two particular cases,
both of practical interest, namely when the centers are randomly distributed and
when they are periodically distributed. We shall treat the first case in this section,
the second in the following one.

Before starting, we note that, as we already mentioned, the centers may be
material objects like molecules, water droplets, powder grains or smoke particles.
The apertures we had considered are secondary sources according to the
Huygens-Fresnel construction, driven in phase with one another by the incoming
wavefront. A water droplet, a molecule, etc., contains a large number of electrons,
which are driven into oscillation by the electric field of the incoming wave. The
wavelets that these accelerated charges radiate have initial phases determined by the
incident wave. These are real, rather than virtual, secondary sources of the
Huygens-Fresnel construction, but the phenomena we are considering are similar,
being determined by the mutual coherence between the secondary sources.

Let us now consider one of the diffraction centers and let its diameter be D on the
order of several wavelengths of the incident monochromatic wave. The center
behaves, as we understand, similarly to the pinhole we have discussed, sending
light mainly within an angle of about ±k//D (times a numerical factor of the order
of one, depending on the shape of the center, which we can ignore here). If we look
at angles larger than k/D, we will see practically no light. Consider now centers of
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larger and larger diameter. Clearly, the forward cone in which the light is diffracted
becomes narrower and narrower. A homogeneous transparent medium, such as a
clear glass sheet, for example, can be considered to be a single diffracting center. Its
diameter is enormous when compared with the wavelength of light. The “dif-
fracted” light practically moves only in the same direction as the incident wave.
Indeed, these are the conditions we considered in Sect. 4.7, when we calculated the
refractive index (in a sparse medium). We say that an optically homogeneous
medium does not scatter light.

Let us then consider a monochromatic plane light wave incident on a system of
diffraction centers, equal to one another, that are causally distributed. To fix the ideas,
let us think of a slide having a black field on which a number of equal, transparent,
circular apertures, or holes, have been registered. The apertures are randomly dis-
tributed. Let the average distance between the holes be much larger than the wave-
length of the incoming wave. Otherwise, we would be dealing with an optically
continuous medium. Such a slide can be easily prepared with a computer code. Under
these conditions, the centers act incoherently with one another, and we talk of light
scattering rather than of diffraction, but the phenomenon is basically the same.

Let us recall the expression in Eq. (5.2) that we found for two pinholes, which is
valid for two narrow slits as well, namely

I ¼ I1 þ I2 þ
ffiffiffiffiffiffiffi
I1I2

p
cos /2 � /1 � k r2 � r1ð Þ½ �: ð5:24Þ

If the slits are wide (and equal), I1 and I2 are no longer constant, but rather a
function of the considered angle h, as given by Eq. (5.17). In the more general case
of equal centers (for example, squares or pinholes), the expression is the same, with
I1(h) and I2(h) being the form factor squared of the center being considered. Let us
now generalize this result to an arbitrary number N of randomly distributed, equal
centers. Calling ICðhÞ ¼ I1ðhÞ ¼ I2ðhÞ ¼ � � � ¼ INðhÞ, we have

IðhÞ ¼ I1ðhÞþ I2ðhÞþ � � � þ INðhÞ
þ 2

ffiffiffiffiffiffiffi
I1I2

p
cos /2 � /1 � k r2 � r1ð Þ½ � þ 2

ffiffiffiffiffiffiffi
I1I3

p
cos /3 � /1 � k r3 � r1ð Þ½ � þ � � �

¼ NICðhÞþ 2ICðhÞ cos /2 � /1 � k r2 � r1ð Þ½ � þ cos /3 � /1 � k r3 � r1ð Þ½ � þ � � �f g:

Now, the sum of the cosines on the right hand side is zero, because their
arguments have all possible values with equal probability, and finally, we have

IðhÞ ¼ NICðhÞ: ð5:25Þ

We found that the light-scattering pattern of a system of randomly distributed
centers, or particles, is equal to the scattering pattern of one of them multiplied by
the number of particles in the system. If we send a monochromatic beam along the
slide and we collect the transmitted light with a converging lens, we can observe the
diffraction pattern on a screen in the focal plane.
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The phenomenon of diffraction (or scattering) by casually distributed centers can
sometimes be seen in the form of an iridescent ring, called a corona, appearing
around a light source like a street lamp or the moon on a misty night. What we
observe is simply the diffraction pattern of a single mist droplet or ice crystal
present in the atmosphere, amplified by the factor N. As a matter of fact, the
scattering particles have different sizes, in general. Only when the distribution of
size is narrow enough does the pattern appear neat.

In general, quantitative measurements of the scattered light intensity as a
function of the “scattering” angle are a powerful means for reconstructing the shape
of the scattering object. Indeed, this is the method used to study the structures of
molecules, atoms and nuclei. A sample containing the objects to be studied is
“illuminated” with a beam of sufficiently short wavelength, ultraviolet, X-rays and
gamma-rays, respectively, and the intensity of the scattered radiation is measured as
a function of the angle.

The scattering of light by incoherent centers explains another everyday phe-
nomenon, namely why the sky is blue. In the highest levels of the atmosphere, at
100 km above sea level, the average distance between molecules is substantially
larger than the typical wavelength of light (namely than 0.5 µm). When illuminated
by the sunlight, the molecules behave as independent scattering centers (in the
visible part of the spectrum we are considering). Consider, for the moment, a
monochromatic component of the incoming wave at the angular frequency x. The
molecule behaves as a forced oscillator in its stationary oscillating motion at the
same angular frequency x.

For a given amplitude of the periodic force acting on the oscillator, which is the
electric field amplitude of the incoming wave, the amplitude of the forced oscil-
lation depends both on x and on the proper oscillation angular frequency x0 of the
oscillator. As we know, neglecting damping, the oscillation amplitude is propor-
tional to 1/(x2 − x0

2). Now, the proper angular frequencies x0 of the atmospheric
gases are in the ultraviolet part of the spectrum. Hence, in the visible (x � x0), the
molecules behave as forced oscillators at frequencies much smaller than the proper
one. Neglecting x in comparison to x0, the oscillation amplitude is independent of
x (hence, of the color of the incoming wave).

On the other hand, the amplitude of the electric field scattered by an oscillating
electron is proportional to the frequency and the electron acceleration, which is
proportional to x2. The intensity of the scattered wave, which is proportional to the
square of the electric field, is thus proportional to x4. Being that the frequency of the
blue light is about 1.7 times the frequency of the red, the intensity of the scattered
blue light is 1.74 ’ 10 times larger than that of the red one. This result is known as
the Rayleigh blue sky law, from John Strutt Lord Rayleigh (UK, 1842–1919).

At heights lower than those just considered (of about 100 km), the density of the
atmosphere becomes greater and greater, and the molecules oscillate with
increasing degrees of coherence with one another. At sea level, the average distance
between atmospheric molecules is on the order of nanometers, much smaller than
the wavelength. However, the densities of gas with volumes on the order of a
wavelength are not constant in time, but statistically fluctuate about their mean
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value. Consequently, the distribution of these elements can be considered to be a set
of independent centers and the above arguments apply once more, with density
fluctuation in the place of single molecules. Other important scattering centers are
the microscopic particles and aerosols that are always present in the atmosphere.

When we observe the atmosphere at sunset in the direction of the sun, the colors
we see are reds. This is because we are now receiving the fraction of sunlight that
has not been scattered by the atmosphere. We can observe that, on a clear day, the
sunset is not nearly as colorful. In order for it to be very colorful, small amounts of
smoke, dust or water particles need to be present in the atmosphere. These par-
ticulates diffuse the short wavelength radiation with much higher efficiency than
they do for the longer ones and with the same amount as the thickness of the
atmosphere crossed by the light. As the sun approaches the horizon, namely as the
light we receive has crossed atmospheres of increasing thicknesses, the color
becomes yellow, then orange and finally red.

These phenomena can be simply and spectacularly replicated by using sulfur
particles in a water suspension. Figure 5.30 schematically shows the apparatus. The
almost point-like source on the left should have a spectrum as similar as possible to
the solar spectrum. A white LED with a power of several watts is suitable. The
source is in the focus of a converging lens (L in the figure) that produces a parallel
light beam crossing a volume of a few liters of distilled water in a glass container.
The water should contain as few particulates as possible. The beam is received on a
screen S after having crossed the water.

The light beam in the water, assuming it to be perfectly clean and containing no
dust, would not be visible from the side. In practice, the presence of some powder is
difficult to avoid, and this makes the beam visible, through scattering. Its color is
white, because the dust particles are quite large.

We now melt into the water container about 5 g/l of Na2S2O3. We obtain the
formation of the sodium crystallites, pouring about 2 ml of concentrated sulfuric
acid into the water diluted with 100 ml of distilled water per 10 l of water in the
container and stirring it well.

A couple of minutes after having done that, we shall see the beam gradually
becoming blue. This is because of the growth of small sulfuric scattering centers.
After several minutes more, the entire container is now blue. Light has been
scattered several times before exiting the container (multiple scattering) by the
many centers that are now present.

L
S

Fig. 5.30 Demonstration apparatus for scattering by randomly distributed centers
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In this demonstration, the luminous circle on the screen S simulates the image of
the sun through the atmosphere. When the beam becomes blue, the “sun” appears to
be yellow, gradually becoming orange, and finally red, as the intensity of the
scattered light increases.

5.9 Diffraction by Periodically Distributed Centers

We shall now discuss the Fraunhofer diffraction by a system of periodically dis-
tributed centers, in particular, parallel slits. The device is called a diffraction grating,
more specifically, a Fraunhofer grating, when the width of the slits is much smaller
than their distance. Diffraction gratings are used in optics to split a white light beam
into almost monochromatic components traveling in different directions. In general,
they are optically flat, mirrored glass sheets, having ridges rather than dark lines on
them. Both the total number and the number per unit length of grooves are
important, as we shall see. Good gratings have on the order of several hundreds up
to one thousand grooves per millimeter, namely one every few micrometer.

Historically, the first diffraction gratings with 660 grooves per millimeter were
produced by Henry A. Rowland (USA, 1848–1901) in 1881, using the ruling
machine he had invented for that very purpose. The engine employed one main
screw to shift the diamond tip used to etch the grating by a very small distance
between each line. It is essential that the distance between the lines be kept con-
stant. Rowland succeeded in this, thanks to an ingenious mechanical design, a piece
of mechanical art that we shall not describe here. We shall, however, quote his
dictum: “No mechanism operates perfectly-its design must make up for imperfec-
tions”. Several non-mechanical techniques for fabricating diffraction gratings are
presently available. We shall give some information on the holographic gratings in
Chap. 8.

We shall now find the diffraction pattern of a diffraction grating under
Fraunhofer conditions for light, with arguments that are more generally valid,
namely for any periodic distribution of identical diffraction centers and for elec-
tromagnetic waves of any wavelength (for example, an array of parallel antennas
for microwaves).

Consider a plane grating consisting of N straight lines of thickness D equispaced
at a distance a and a plane monochromatic wave normally incident on the grating.
We study the diffraction pattern under Fraunhofer conditions, namely at a large
distance beyond the grating or in the focal plane of a converging lens, as shown in
Fig. 5.31. We want to find the light intensity as a function of the angle h relative to
the incoming direction (which is normal to the groove plane).

Each slit can be considered, according to the Huygens-Fresnel principle, as
being composed of secondary sources emitting hemispherical wavelets in the
semi-space beyond the grating. Being that the secondary sources are on a front
wave of the incident wave, they emit in phase with one another. We proceed in a
manner similar to the previous section by first adding up the contributions of the
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elements of a single slit and then adding up those of all the slits. The diffracted field
of the single diffraction center, which is a slit, is given by Eq. (5.15), which we
rewrite here for convenience:

Ef ðhÞ ¼ aD
sin U
U

eixt; ð5:26Þ

of which we shall take, as usual, the real part.
In adding up the contributions of the different slits, we must consider that the

lengths of their path are different. The path difference between the waves from two
contiguous slits is clearly a sin h. Consequently, their phase difference when they
meet is

/ ¼ ka sin h ¼ 2p
k
a sin h: ð5:27Þ

The resulting field is then

E hð Þ ¼ Ef ðhÞei/ þEf ðhÞei2/ þ � � � þEf ðhÞei N�1ð Þ/

¼ Ef ðhÞ ei/ þ ei2/ þ � � � þ ei N�1ð Þ/
h i

:

The result is a product of two factors, as in the previous section, but now the
various terms in the latter are not random, but rather linked to one another by a
definite phase relation. The sum on the right-hand side is of the type
S ¼ 1þ aþ a2 þ � � � þ aN�1, with a ¼ ei/. Namely S being the sum of the first
N terms of the geometric series. If the reader does not remember its value, he/she can
easily verify that the sum satisfies the relation aS� S ¼ aN � 1. Hence, we have

S ¼ aN � 1
a� 1

¼ eiN/ � 1
ei/ � 1

¼ eiN/=2 eiN/=2 � e�iN/=2
� 

ei/=2 ei/=2 � e�i/=2ð Þ ¼ ei N�1ð Þ/=2 sin N/=2ð Þ
sin /=2ð Þ :

θa

Fig. 5.31 Geometry of the
Fraunhofer diffraction of a
parallel lines grating
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Finally, the (complex) expression of the resulting field is

EðhÞ ¼ AD
sin U
U

sin N/=2ð Þ
sin /=2ð Þ ei xtþ N�1ð Þ/=2½ �: ð5:28Þ

To find the intensity, we must now, as usual, take the square of the real part of
this expression and average it over a period. In taking the real part, the exponential
factor gives us cos (xt + b), in which b is a constant that we might easily express,
but is irrelevant because, in any case, <cos2 (xt + b)> = 1/2. Calling If(h) the
intensity of a single slit, we conclude that the grating diffraction pattern is

IðhÞ ¼ If ðhÞ sin
2 N/=2ð Þ

sin2 /=2ð Þ ¼ If ðhÞ
sin2 Nka sin h

2

� 
sin2 ka sin h

2

�  : ð5:29Þ

We now discuss this expression. Let us first notice that the function I(h) is the
product of two factors. The first factor, If(h), depends on the shape of the slit, but
not on its position. This is the form factor. The second factor depends on the
number of slits and on how they are arranged. This is the structure factor.

Let us first consider the case in which the width of the slits is small compared to
their distance, namely D � a. Under these conditions, the form factor If(h) depends
only weakly on h (the central diffraction maximum is wide) and we can consider it
to be constant relative to the structure factor.

Let us consider, under this condition, the simplest case, namely having two slits,
N = 2. Equation (5.29) gives us

IðhÞ ¼ If ðhÞ sin2/

sin2 /=2ð Þ ¼ 4If ðhÞ cos2 /=2ð Þ ¼ If ðhÞ cos2 ka sin h
2

� 	
:

We have retrieved the diffraction pattern of the two-slit experiment by Young,
Eq. (5.4), with /2 − /1 = 0.

Let us now study, in the general case of N slits, the behavior of the structure

factor sin2 N/=2ð Þ
sin2 /=2ð Þ . First, we see that the interference is completely constructive, and

the intensity is a maximum, when the fields resulting from all the slits are in phase
with one another, namely when the phases of two contiguous elements differ by an
integer multiple of 2p, i.e., for / = 2pn, with n being an integer. All the terms in the
sum S thus have the same argument. In terms of the angle h, the condition is

a sin hmax ¼ nk: ð5:30Þ

This means that the condition for a maximum is having a path length difference
equal to the integer multiples of the wavelength. All the contributions being in
phase, the intensity in the maxima is
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I hmaxð Þ ¼ N2If hmaxð Þ: ð5:31Þ

We see that the maximum intensity is proportional to the square of the number
of diffracting centers. Consequently, it is very large. We recall that, for randomly
distributed centers, the maximum intensity is proportional to the number of centers.
Indeed, they are mutually incoherent in the latter case, coherent in the former.

These maxima are called the principal maxima (we shall immediately see why)
and n the order of the maximum.

Note that the total number of maxima is finite. The order is limited by the fact
that sin h in Eq. (5.30) obviously cannot be larger than one, and we have

n� a=k: ð5:32Þ

Notice that if, in particular, the distance between the lines a is smaller than the
wavelength, only the zero order maximum exists. Light is emitted in a narrow lobe
in the forward direction. At the limit at which the distribution of the centers
becomes continuous, the transmitted wave has the same direction as the incident
one.

Let us now analyze the behavior of the diffraction pattern near the principal
maximum of the generic order n, for which / = /max = 2pn. Let us represent each
term of the sum S as a rotating vector, as shown in Fig. 5.32 (using only eight
vectors, for clarity; in practice, there would be much more). The diffracted intensity
is proportional to the square of the resultant vector. In this representation, / is just
the angle between two contiguous vectors.

At the maximum, all the vectors rotate one on top of the other, being that their
phase difference is an integer multiple of 2p, as in Fig. 5.32a. As we move away
from the maximum, and as / becomes different from 0 or from a multiple of 2p, the
set of vectors open up like a fan (Fig. 5.32b). The resultant becomes smaller and
smaller and vanishes when the fan extends over the entire round angle, namely
when the difference between / and /max, say Δ/ = / − /max is D/ = 2p/N (see
Fig. 5.32c). Let hmin be the corresponding angle and hmax the angle corresponding
to the principal maximum considered. Then, we have

(a) (b) (c)

ΔφΔφ

Fig. 5.32 Rotating vector representation of the terms of S: a in a principal maximum, b between
the maximum and the nearest minimum, c in the nearest minimum
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D/ ¼ 2p
k
a sin hmin � 2p

k
a sin hmax ¼ 2p

N
:

If we call Dh the angular distance between the maximum and minimum, namely
Dh ¼ hmin � hmax, we have

sin hmax þDhð Þ � sin hmaxð Þ ¼ k
Na

:

We can interpret Dh as being the half-width of the principal maximum. We see
that the maxima are all the narrower the greater the number N of slits. If the
considered angles are small, as is often but not always the case, the above
expression simplifies as

Dh ffi k
Na

: ð5:33Þ

The angular half-width is inversely proportional to the total number of lines
under these conditions. Indeed, with increasing N, the height of the maximum
increases as N2, and its width decreases as 1/N. The area of the maximum, which is
proportional to the diffracted energy, is proportional to the number of slits, as
expected.

Consider now two consecutive principal maxima, located, say, at hmax,1 and
hmax,2. The angular separation between them is sin hmax2 � sin hmax1 ffi k=a, which
for small angles becomes

hmax 2 � hmax 1 ffi k=a: ð5:34Þ

Hence, for small angles, the half-width of the principal maxima is equal to their
distance Dh divided by the number of slits.

Let us now continue increasing h beyond the minimum. The resultant of the
rotating vectors increases from zero, reaches a first secondary maximum, decreases
to zero, increases to a smaller second secondary maximum and so on. In any case,
the intensities in the secondary maxima are much smaller than in the principal ones,
because the largest fraction of the rotating vectors is spread over the round angle,
canceling one another out, and only a small fraction of them can add up in a
non-zero resultant. In conclusion, we can state that the vast majority of the dif-
fracted light is in the principal maxima.

The principal use of diffraction grating in optics is analyzing non-
monochromatic light. Equation (5.30) tells us that, for every order, the angular
position of the principal maximum depends on the wavelength. Consequently, the
grating separates a non-monochromatic incident light in a set of diffracted waves at
different angles. The separation in the sines of the angles of two given wavelengths
is proportional to the order n. Hence, no separation exists for the 0th order. In white
light, the central maximum is white, while in the higher orders, colors are separated
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in a spectrum, with the red at larger angles than the blue (i.e., in an opposite sense
as that for the dispersion phenomena).

An important characteristic of a grating is its resolving power, which is a
measure of the capability of the grating to separate two wavelengths close to one
another. Consider a light containing two components of wavelengths of a small
difference, say k and k + dk, incident on the grating. For simplicity, consider the
light diffracted at a small angle (which is a good approximation for h < 20°). Let dh
be the angular separation of the maxima relative to the two wavelengths at the nth
order. We find dh by differentiating the maximum conditionh � sin h = nk/a,
obtaining dh ffi n:að Þdk. Taking into account that each maximum has a non-zero
half-width Dh given by Eq. (5.33), we can state that the two components are
distinguishable, namely are separated, if dh�Dh, namely if n

a dk� k
Na.

This condition is called the Rayleigh criterion. The resolving power of the
grating is defined as the reciprocal of the minimum resolvable specific wavelength
difference, namely as

k=dk ¼ nN: ð5:35Þ

We see that the resolving power increases with the total number of lines and with
the order of the considered spectrum.

For example, the resolving power of a grating with 500 lines per mm (namely
a = 2 µm) and a total of N = 50,000 lines is equal to 100,000 at the second order.
This means that it can separate two wavelengths differing by one part in one
hundred thousand.

Notice that the number of lines per unit length cannot be too large, that is, their
distance a cannot be too small if we want maxima of an order higher than zero.
Indeed, we can write Eq. (5.32) as a � kn. Hence, if we want, for example, to
have the second order maxima (n = 2) and we take in the round figure k = 0.5 µm,
we have a � 1 µm. In conclusion, gratings with more than 1000 lines per mm are
not useful for studying visible light.

Up to this point, we have studied the positions and the widths of the principal
maxima. We shall now consider their heights. These are determined by the form
factor If(h) in Eq. (5.29), evaluated at the angle of the considered maximum. We
recall that If(h) depends on the width of the single slits.

Figure 5.33 shows the Fraunhofer diffraction pattern of a grating for which, as
an example, the distance between lines is four times their width (a = 4D). The
dotted curve is If(h). The intensities of the maxima are modulated by the diffraction
pattern of the slit. In particular, the 4th order principal maxima (on the two sides)
are absent, because their positions coincide with those of the first minima of the slit
diffraction pattern.

Figure 5.34 shows two photos taken of a single slit of D = 54 µm and two equal
parallel slits of the same width illuminated with a laser of k = 532 nm at a distance
of a = 108 µm. One sees how the height of the maxima in the second photo follows
the behavior of the single slit diffraction pattern.
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In summary, the period of the grating determines the positions of the maxima,
the total number of lines determines the width of the maxima and their height, and
the shape of the slit (or, more generally, of the diffraction center) determines the
relative values of the heights of the maxima.

The considerations we have just developed are useful when we want to study a
periodic structure. Suppose we have a periodic structure of diffraction centers for
which we do not know the period and the shape. This might be, for example, a
crystal of a mineral. We can shine a monochromatic light of known wavelength on
the structure. Measuring the angular positions of the diffraction maxima, we can
extract the period of the crystal, while measuring their relative height, we gain
information on the shape of the centers.

To be precise, the crystal lattices are periodic structures in three dimensions.
Namely, the positions of the diffraction centers depend on three coordinates, rather
than one, as with a Fraunhofer grating. The diffraction centers are atoms that may
all be of the same type or of a few different types alternating one with the other. The
situation is more complex, but still basically similar to that which we have studied.
One understands how diffraction experiments using electromagnetic waves with
wavelengths on the order of the lattice spacing, namely X-rays, are powerful tools
for determining both the shape of the ladder and that of the atoms, or molecules,
which act as diffraction centers.

I

λ/a0
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sinθ–1

n
1 2 3 4 5–1–2–3–4–5
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f

0.5–0.5

Fig. 5.33 Fraunhofer diffraction pattern of a grating with a = 4D

Fig. 5.34 Fraunhofer diffraction patterns of a single slit of width D = 54 µm and of two slits of
the same width separated by a = 108 µm. Light source is a laser at k = 532 nm. Photo by A.
Bettini
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5.10 Diffraction as Spatial Fourier Transform

In this section, we shall take back the Fraunhofer diffraction patterns of the single
slit and the multiple slit grating. We shall see how they are just the squares of the
Fourier transforms of the transparencies, as a function of the coordinates, and the
corresponding diffracting systems (slit and grating, respectively). This conclusion
has a general character and will lead us to consider diffraction phenomena from a
different point of view, which we shall develop further in Chap. 8. We recall that, in
Sect. 2.7, we studied the spatial Fourier transform considering two examples that
will be useful now.

Let us start from the slit of infinite extension and width D illuminated by a plane
monochromatic wave at normal incidence. The plane in which the slit is open,
which we shall call the diaphragm, absorbs the incident wave outside the slit. We
take the orthogonal coordinates with the origin in the center of the slit, the y-axis in
the direction of the slit, the x-axis perpendicular to it in the plane of the slit and z in
the direction of the incident wave. The incident wave has the same phase, which we
call ai, and the same amplitude, which we call Ai, at all the points of the x y plane.
Let At be the amplitude of the wave immediately after the diaphragm. Clearly, At is
equal to Ai for �D=2� x�D=2 and zero outside this interval. We can say that the
effect of the screen with the diaphragm is that of multiplying the incident amplitude
by an amplitude transmission coefficient, which we define as the following function
of x:

TðxÞ ¼ 1 for � D=2� x�D=2; TðxÞ ¼ 0 for xj j[D=2: ð5:36Þ

We now generalize the concept, calling any surface having different levels of
transparency depending on the point a diaphragm. For simplicity, consider, for the
moment, a transparency function of x alone. This is, for example, the case of a
diffraction grating in which the transparency periodically varies between 1 (inside
the slits) and 0 (between the slits), as in Fig. 5.35a. We can also think of cases in
which T(x) varies through any value between 0 and 1, namely with different levels

(a)

(c)

(b)

Fig. 5.35 Examples of a and b amplitude diaphragm (front view), c phase diaphragm (side view)
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of grey rather than only black and white (as in Fig. 5.35b), and of cases in which
the function is not periodic. More generally, the function T depends on both
coordinates. Such is the case with, for example, black and white photos on a slide.
We call a diaphragm having the effect of multiplying the amplitude of the incoming
wave by a factor T(x, y), which is called the amplitude transparency of the dia-
phragm, an amplitude diaphragm. Note that the thickness of the sheet supporting
the amplitude diaphragm is ideally zero so as not to introduce any phase difference
between the incoming and outgoing waves.

Consider, as an opposite case, a sheet of refractive index n, which is perfectly
transparent and consequently does not change the amplitude of the incident wave.
However, its thickness varies from point to point, as shown, for example, in
Fig. 5.35c. What is the effect of this diaphragm on our normally incident plane
monochromatic wave? The amplitude of the incident wave is

Ei x; y; z; tð Þ ¼ Aiei xt�kzþ aið Þ ¼ Aieiaiei xt�kzð Þ;

where, on the right-hand side, Aieiai is the complex amplitude. Consider the field in
the points x, y of a plane immediately beyond the plate. Its real amplitude is
unaltered, being Ai, but its phase is different from the phase at the entrance, because
the diaphragm has introduced a phase delay, which is a function of its thickness and
hence of the position. We call the phase delay between exit and entrance D/(x, y).
The transmitted wave is then

Et x; y; z; tð Þ ¼ AieiaieiD/ x;yð Þei xt�kzð Þ:

We see that the effect of the diaphragm is that of multiplying the incident
complex amplitude by the factor T x; yð Þ ¼ eiD/ x;yð Þ. We call this type of diaphragm
a phase diaphragm. We shall discuss an example of this in Sect. 7.12. The function
T is also called the amplitude transparency in this case.

Clearly, the most general diaphragm changes both the amplitude and the phase
of the incident wave. We thus speak of amplitude and phase diaphragms. Its
amplitude transparency has both an amplitude different from one and a phase
different from zero, both being functions of the coordinates.

We shall now discuss two simple examples of amplitude diaphragms having an
amplitude transparency function of one coordinate only (x). Consider a normally
incoming monochromatic plane wave of amplitude Ai and let At(x) be the trans-
mitted amplitude. The amplitude transmission coefficient is then

TðxÞ ¼ AtðxÞ=AiðxÞ: ð5:37Þ

Note that the transparency we see looking, for example, through a slide is
determined by the ratio between transmitted and incident intensities rather than the
amplitudes. It is proportional to the absolute square of T(x).
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Let us now go back to the slit that we consider to be an amplitude diagram of
amplitude transparency given by Eq. (5.36). As we saw in Sect. 5.6, the diffracted
amplitude in the direction h, under Fraunhofer conditions, is proportional to the
integral

ZþD=2

�D=2

e�ikx sin hdx;

where k is the wave number. Taking into account Eq. (5.36), we can write this
integral as

Zþ1

�1
TðxÞe�ikx sin hdx:

We now note that this expression is proportional to the diffracted field for every
diaphragm if we insert its amplitude transmission coefficient T(x). The expression is
general.

We now make the important observation that the x component of the wave
vector k of the diffracted wave in the direction h is kx = ksin h. This expression
appears in the integral we have written, and we can write that the diffracted
amplitude in the direction h is proportional to

G kxð Þ ¼
Zþ1

�1
TðxÞe�ikxxdx: ð5:38Þ

We immediately recognize this expression to be (apart from the irrelevant 2p
factor) the space Fourier transform of the amplitude transmission coefficient T(x). In
conclusion, the field diffracted in the direction h by a diaphragm of amplitude
transparency T(x) is proportional to the space Fourier transform evaluated at the
value of the component kx = ksin h of the wave vector in that direction. As in the
temporal Fourier transform, the variable conjugated to time is the angular fre-
quency, while in the spatial Fourier transform, the variable conjugate to x is the
x component of the wave vector.

Coming back to the slit of width D, the integral in Eq. (5.38) has already been
calculated in Sect. 2.7. The result is given by Eq. (2.77), which, apart from the 2p
factor, is

G kxð Þ ¼ D
sin Dkx=2ð Þ
Dkx=2

: ð5:39Þ
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We immediately recognize the amplitude of the diffracted field in Eq. (5.16).
A comparison of Fig. 5.24a with Fig. 2.23 shows that the curve in the latter is equal
to the square of the curve in the former.

The physical meaning of the result is as follows. The incident field is a plane
wave propagating in the z direction, which is the direction of its wave vector. The
x component of the incident vector has a well-defined value, namely kx = 0. The
diffracted field is not a plane wave, and it does not have a single propagation
direction; rather, it propagates with different amplitudes in different directions. We
can think of the diffracted field as being a linear superposition of an infinite number
of plane waves (the Fourier integral), each proceeding in its own direction, or, put
another way, one for each value of kx, with amplitudes specified by Eq. (5.39).

A difference with the temporal case is that, in the case of the spatial Fourier
transform, both positive and negative values of the Fourier variable (kx in this case)
have a direct physical meaning. They correspond to waves moving to the right and
to the left, respectively (thinking of the slit as being vertical).

The new point of view we have gained allows us to understand two important
aspects of diffraction phenomena.

We recall the bandwidth theorem established in Chap. 2 for a function of time.
The theorem states that the bandwidth of the Fourier transform is inversely pro-
portional to the duration in time. The bandwidth is the range of frequencies that
significantly contributes to the spectrum of the function. In the spatial case, consider
again the case of the slit. The narrower the slit, namely the narrower the limitation it
induces on the intercepted wavefront along the x coordinate, Dx = D, the wider the
interval of values of kx that are present in the diffracted wave. If we call this interval
Dkx, the relation given by Eq. (2.78) is

Dx � Dkx ¼ 2p: ð5:40Þ

The result is completely general. Whatever way the front of a wave is limited in
its transversal extension, the propagation direction, or, in other words, the corre-
sponding wave vector component, it is no longer completely defined, to an extent
that it is greater the narrower the limitation of the front. In quantum mechanics, the
propagation of a particle is described by an associated wave. The wave vector is
proportional to the linear momentum of the particle. The expression that exactly
corresponds to Eq. (5.40) is the position-momentum uncertainty principle.

A second aspect that we can now easily understand is the following. In Sect. 2.7,
we saw that the Fourier transforms of the amplitude transmission coefficient of a
diaphragm with opaque and transparent regions and a second one that is trans-
parent where the first is opaque and opaque where the first is transparent have equal
amplitudes. For example, the diffraction pattern of a slit and an absorbing strip
(Fig. 2.22) with the same width (Fig. 2.24) are equal. This statement is general and
is called Babinet’s principle after Jaques Babinet (France, 1794–1872).

The absolute square of the spatial Fourier transform of a diaphragm can be seen,
in a literal sense, through the following procedure. As we know, the diffraction
pattern under Fraunhofer conditions of a diaphragm can be seen on a screen in the
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focal plane of a converging lens located beyond the diaphragm. Figure 5.36 shows
the arrangement with a slit as a diaphragm, as an example. Let n and η be two
orthogonal coordinates on the screen parallel to x and y, respectively, and with
origin on the optical axis.

As known from elementary optics (and as we shall see in Chap. 7), parallel rays
incident on a lens at the angle h are focalized by the lens at a point of the focal plane
at a distance from the axis proportional to tgh. Under small angle conditions, we
can assume that distance to be proportional to sin h and then to n. Under these
conditions, n is proportional to kx = ksin h.

We can conclude that when we have a monochromatic plane wave (which is
spatially and temporally coherent) normally incident on an amplitude diaphragm of
amplitude transmission coefficient T(x, y) and we deploy a convergent lens beyond
the diaphragm, the amplitude of the field on the focal plane is the spatial Fourier
transform of T(x, y). A consequence is that the components of low spatial fre-
quencies are found near the optical axis, while those of higher frequencies are
farther from it. If we put a photographic film in the focal plane, the grey level
distribution resulting from its exposure is proportional to the light intensity, namely
to the absolute square of the Fourier transform. Clearly, the conclusion is valid in
general, for any T(x, y), not being limited to the example of the slit.

The following examples may be useful for grasping the physical meaning of a
spatial Fourier transform. Consider, as a diaphragm, a slide of a shot you have
taken. Remember that T(x, y) is the ratio between the amplitude of the transmitted
and incident waves. If the slide has high contrast images, like, for example, the
edges of an illuminated wall near black shadows or quite small objects, then T(x,
y) varies quite rapidly, at least at some parts of the slide, and its Fourier spectrum
contains important components at high spatial frequencies. Contrastingly, if the
images are smoother, for example, in a photo of a meadow, the spectrum of T(x,
y) is limited to a lower frequency bandwidth.

θ θ
D

f

x

y

z

η

ξk
x

Fig. 5.36 Geometry for observing the spatial Fourier transform of a diaphragm
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In Sect. 2.6, we also studied the Fourier transform of an infinite succession of
square pulses in time. Clearly, we can think of the analogous situation in space. We
have an infinite succession of slits, which is an idealized diffraction grating of
infinite extension. The system being periodic, its spectrum is discrete. Let us
compare Fig. 2.16, thinking of its analogous situation in space, with Fig. 5.33. We
understand that the different components of the spectrum are just the principal
diffraction maxima. They appear to be infinitely narrow, because they have been
produced by an unrealistic grating having infinite lines.

Let us finally consider the diffraction pattern of a grating with an amplitude
transmission coefficient, varying like a sine between 0 (fully transparent) and 1
(fully opaque), as in Fig. 5.35b, namely with

TðxÞ ¼ 1
2

1þ cos kxð Þ: ð5:41Þ

The Fourier transform of T(x) contains only a constant and the fundamental.
Consequently, the principal maxima in the diffraction pattern are those of the orders
0, +1 and −1 only. We shall come back to this issue in Chap. 8, where we shall see,
in particular, how such a grating can be fabricated.

Summary
In this chapter, we studied three types of phenomena: interference, diffraction and
scattering. They are consequences of the wave nature of light and, ultimately, are
substantially different aspects of the same phenomenon. The most important con-
cepts we have learned are the following:

1. Two (or more) monochromatic light sources having a fixed phase relationship
with one another produce interference. The total intensity is not the sum of the
two intensities, but an interference term that can be positive or negative must be
added. In practice, to have interference, one must start from a single source,
divide the produced beam in two, have both beams going through different
paths, and finally recombine the two of them.

2. The light intensity resulting from two independent sources is the sum of the two
intensities taken separately from one another.

3. Spatial and temporal coherence are necessary conditions for observing inter-
ference. The degree of spatial coherence between two points in a certain instant
is the degree of correlation of the field at the two points in that instant. The
degree of temporal coherence between two instants at a certain point is the
degree of correlation of the field in the two instants at that point. The bandwidth
theorem states that the degree of temporal coherence is inversely proportional
to the bandwidth.

4. Under particular conditions, interference is also observed when the coherence
conditions are not fulfilled. In these cases, the fringes are localized.
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5. Diffraction happens every time the front of an advancing wave is restricted by
an obstacle. Diffraction is when light does not propagate in a straight line for
reflection or refraction. Particularly relevant cases are diffraction by a slit and
by a circular aperture.

6. The pattern due to diffraction by a number of equal centers is the product of a
form factor (that is, the diffraction pattern of the single center) and a structure
function (that depends on the arrangement of the centers).

7. When the centers are casually distributed, the diffraction pattern is equal to the
form factor of the center multiplied by their number.

8. Diffraction gratings are important examples of centers periodically distributed.
9. The important properties of a Fraunhofer grating are:

a. The largest fraction of the diffracted light is in the principal maxima.
b. The angles of the principal maxima are increasing functions of the

wavelength.
c. The intensities of the principal maxima are proportional to the square of the

total number of lines.
d. The intensities of the principal maxima are proportional to the intensity of

the diffraction pattern of the single slit of the grating at its position.
e. The width of the maxima is inversely proportional to the total number of

lines and to the order.
f. The spectral resolving power is equal to the number of lines times the order

of the considered maximum.

10. The diffraction pattern under Fraunhofer conditions is apportioned to the square
of the Fourier transform of the amplitude transparency of the diaphragm.

Problems

5:1 Consider an ultrasonic monochromatic plane wave incident on a screen with
two narrow widths separated by 100 mm. The angular distance between
interference maxima is 9°. What is the wavelength?

5:2 We conduct the Young two-slit experiment with dichromatic light containing
the two wavelengths k1 = 450 nm and k2 = 550 nm. We observe the fringes
in the focal plane of a lens. What is the ratio of the distances from the axis of
the first order fringes for the two wavelengths? And for the fourth order
fringes? And for the zero order?

5:3 Can two harmonic oscillations of different frequency be coherent?
5:4 We want to perform the Young experiment with two pinholes separated by

2 mm and a source having 5 mm diameter emitting monochromatic light of
0.6 µm wavelength at 3 m from the pinholes. Will the experiment work?
What is the minimum distance we should locate the primary source, main-
taining the other conditions?

5:5 Consider a light monochromatic plane wave incident on the Young slits at
the h with the normal. Show that the smallest value of h, for which, in the
forward direction, there is an interference minimum, is k/2d.
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5:6 A parallel light beam of k = 650 nm is incident on a slit of 2 µm width. Find
the angles at which the intensity minima are observed.

5:7 With mercury light, which has the wavelength k = 546.1 nm, we observe,
with a Fraunhofer grating, the principal maximum of the first order, at 19°.
How many lines per millimeter does the grating have?

5:8 What is the maximum diffraction order one can obtain with light of wave-
length k = 0.5 µm and gratings of 0.1 mm, 0.01 mm e 0.001 mm in turn?

5:9 A grating of N = 500 lines is illuminated by a sodium lamp. The sodium
light contains a doublet (two nearby components) of k1 = 589.0 nm and
k2 = 589.6 nm. Are the two lines resolved at the first order? And at the
second order?

5:10 We perform the Young two-slit experiment with light of a bandwidth
between 450 and 650 nm. How many fringes can we observe?

5:11 State on which of the following characteristics the resolving power of a
Fraunhofer grating depends: the light wavelength, the period of the grating,
the number of slits, the order of the considered maximum.

5:12 What is the maximum order at which we can observe the sodium yellow light
(k = 589 nm) with a 2 µm period grating?

5:13 A vertical film of soapy water forming a sledge is illuminated by normally
incident white light. We observe the localized fringes through a red glass
(that transmits wavelengths around 630 nm), measure their distance and find
3 mm. What shall the period be if we observe the fringes through a blue
(k = 430 nm) glass?

5:14 What is the minimum number of lines for a grating to be able to resolve in
the first order the doublet in the potassium spectrum at k1 = 404.4 nm and
k2 = 404.7 nm?

5:15 A slit limits a plane monochromatic wave of wavelength k = 0.6 µm in the
x direction. In the diffracted wave, the values of kx range from −106 to +106

m−1. What is the width of the slit? How much is the angular width of the
diffraction maximum?

5.10 Diffraction as Spatial Fourier Transform 233



Chapter 6
Polarization

Abstract Polarization phenomena are characteristic of transverse waves, namely
when the wave function is a vector normal to the propagation direction. Our focus
will be on light waves, but the concepts discussed will have a general character. We
shall define the different polarization states of light and establish the relationship
between them. Light from thermal sources is not polarized. We then study the
phenomena of dichroism, scattering, reflection and birefringence, the structure of
the light wave in an anisotropic medium and, finally, optical activity.

To characterize several types of wave, a scalar function is not sufficient, but a vector
function is required. In other words, in addition to the amplitude, the wave function
also has a direction. So, while a sound wave is characterized only by its amplitude,
in the case of a vibrating string, we must also specify the direction of the vibration.
The string of a guitar, for example, can vibrate perpendicularly or parallel to the
soundboard. The vibrations in any other direction can be expressed as a superpo-
sition of those two.

Electric and magnetic fields in a vacuum and in the isotropic media are normal to
the propagation direction of the progressive electromagnetic waves. As we know,
we can only consider one of these fields, the other being known when the first is
known. We shall consider, as usual, the electric field. The polarization phenomena
depend on the direction of the electric field. We shall study some of them in this
chapter, considering, in particular, light waves. However, the concepts will have a
general character.

Note that the word “polarization” has several meanings in physics. Its meaning
here is different from the polarization of a dielectric medium.

In Sect. 6.1, we shall define the different polarization states of light and establish
the relationships between them. In Sect. 6.2, we shall see that light from thermal
sources is not polarized, namely it is not in any of the above-defined polarization
states. In Sects. 6.3, 6.5, 6.6 and 6.7, we study four phenomena leading to polarized
light, namely dichroism, scattering, reflection and birefringence. In Sect. 6.4, we
study the basic instrument capable of determining the polarization state, namely the
polarization analyzer, and in Sect. 6.8, the instruments capable of altering the phase

© Springer International Publishing AG 2017
A. Bettini, A Course in Classical Physics 4 - Waves and Light,
Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-48329-0_6

235



difference between components of polarized light. In Sect. 6.7, the study of the
structure of a plane monochromatic wave in a uniaxial anisotropic medium will
teach us that, in such a medium phase and group velocities differ not only in their
absolute values but in their directions as well. Finally, in Sect. 6.9, we shall study
optical activity, a phenomenon characteristic of the circularly birefringent media, in
which the phase velocities of circularly polarized light in clockwise and counter-
clockwise directions are different.

6.1 Polarization States of Light

Any transverse wave, like the elastic waves on a string and electromagnetic waves,
both progressive and stationary, may be polarized or not, and, in the former case,
can be in different states of polarization. Polarization is connected to relations
between different directions of the wave function. Consequently, we do not speak of
polarization for longitudinal waves, like sound, in which there is only one direction
of the wave function. We shall limit our discussion mainly to light and to plane
progressive monochromatic waves. The greater part of our conclusions, however,
has a more general validity.

Let us consider a progressive plane monochromatic electromagnetic wave
propagating in the positive z direction, and let us choose the x and y axes per-
pendicular to one another and to z. Let x be the angular frequency and k the wave
number of the wave. We shall now study phenomena connected to the direction of
the electric field vector. As we learned, the direction of the vector E in a vacuum
and in an isotropic medium is, at every point and in every instant, perpendicular to
the propagation direction z, namely in the x y plane. In general, this direction varies
along the propagation direction and with time. If we take a picture, so to speak, of
the electric field at a certain instant, it will show its tip describing a curve within the
space, which is, in general, not in a single plane. Similarly, if we look at the field at
a certain z, we will see its direction varying with time.

We say that a wave is linearly polarized or that it is in a state of linear polarization
if the direction of E is the same in every instant and at every point. Clearly, any
direction in the xy plane is a possible direction of linear polarization for an electro-
magnetic wave (in general, for any transverse wave). We define as base polarization
states the two states of linear polarization in the directions of the x and y axes, namely

Ex z; tð Þ ¼ E01 cos xt � kzþ/1ð Þ; Ey z; tð Þ ¼ 0 ð6:1Þ

and

Ex z; tð Þ ¼ 0; Ey z; tð Þ ¼ E02 cos xt � kzþ/2ð Þ: ð6:2Þ

We see that two constants are present in each of these expressions, namely the
oscillation amplitude, which we called E01 and E02, and the initial phases in the
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origin (namely for t = 0 and z = 0), which we called /1 and /2. As we shall
immediately see, every sum of the states in Eqs. (6.1) and (6.2) gives a linear
polarized wave (of the considered angular frequency and wave number), and,
reciprocally, any linear polarization state can be expressed as a sum of the states in
Eqs. (6.1) and (6.2) by suitably choosing the four constants. For these reasons, they
are called base states. Note that the choice of the directions x and y is clearly
arbitrary, as long as they are normal to the propagation direction and to one another.

We immediately notice that, in practice, there are three independent constants
rather than four. Indeed, we can arbitrarily fix one of the phases, because this
amounts to a change in the t = 0 instant. As usual, what matters is the phase
difference, not the absolute values of the phases. We now exploit this arbitrariness
so as to put one phase to zero, and write the base states as

Ex z; tð Þ ¼ E01 cos xt � kzð Þ; Ey z; tð Þ ¼ 0 ð6:3Þ

and

Ex z; tð Þ ¼ 0; Ey z; tð Þ ¼ E02 cos xt � kzþ/ð Þ: ð6:4Þ

We shall now study the polarization states obtained with different combinations
of the base states. We start by adding two base states with the same phase, which
we can take to be zero, and arbitrary amplitudes. We obtain

Ex z; tð Þ ¼ E01 cos xt � kzð Þ; Ey z; tð Þ ¼ E02 cos xt � kzð Þ ð6:5Þ

We see that both components of the field vanish in the same instants, which
means that we are dealing with a linear polarization state. The polarization direction
is determined by the ratio of the amplitudes on the two axes. More precisely, E02/E01

is the tangent of the angle of the polarization direction with the x-axis. Figure 6.1
shows three examples, with the black line representing the oscillation of the field.

In Fig. 6.1a, we have Ex z; tð Þ ¼ 0 and Ey z; tð Þ ¼ E0 cos xt � kzð Þ, with an
arbitrary E0. In Fig. 6.1b, we have Ex z; tð Þ ¼ E0 cos xt � kzð Þ and Ey z; tð Þ ¼
E0=2ð Þ cos xt � kzð Þ, and in Fig. 6.1c, Ex z; tð Þ ¼ E0 cos xt � kzð Þ and Ey z; tð Þ ¼ 0.
We also obtain a linear polarization state if the phase difference between the base

states is p. In this case too, the two components vanish at the same instant. Indeed,

x

y

x

y

x

y(a) (b) (c)

Fig. 6.1 Three examples of linear polarization. a E01 = 0, b E02 = E01/2, c E02 = 0
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changing the phase by p is equivalent to changing the sign of the amplitude. When
we talk of equal phases, we will always mean equal modulo p.

Let us now consider a second example, namely combining two base states with
the same amplitude and a phase difference of ±p/2. We have

Ex z; tð Þ ¼ E0 cos xt � kzð Þ; Ey z; tð Þ ¼ E0 cos xt � kz� p=2ð Þ: ð6:6Þ

To be concrete, let us consider the case with the plus sign, which we can write as

Ex z; tð Þ ¼ E0 cos xt � kzð Þ; Ey z; tð Þ ¼ �E0 sin xt � kzð Þ: ð6:7Þ

Let us look at the wave in the direction opposite to its propagation direction,
namely with the wave coming toward us, and to the trajectory, so to speak, of the
tip of the electric field projected onto the xy plane. This is given by Eq. (6.7) with
z = 0. Clearly, the curve is a circle made in a clockwise direction. Similarly, the
case of −p/2 gives us a circle in a counter-clockwise direction. These two states are
called circular polarization states. We define a state of right circular polarization as
being one in which we look at the source straight in the direction of the incoming
wave and see the electric vector rotating in a counter-clockwise direction, with left
circular polarization being the same, but clockwise. The reason for the adjectives is
that the definition can also be given by stating that, for right polarization, were you
to point the thumb of your right hand in the direction of propagation of the wave,
the electric vector would be rotating in the direction of your fingers, and similarly
for the left polarization. These two states are shown in Fig. 6.2. Note that this
convention is the most adopted one in physics, but unfortunately, it is not universal,
so that you can find the opposite one in a number of books.

In order to better understand how two linearly polarized waves combine with one
another to produce a circularly polarized wave, let us consider now the following
example. Figure 6.3a shows a snapshot of a monochromatic wave linearly polarized
in a vertical plane. You can think of the mechanical oscillation of a string, or of the
electric field of an electromagnetic wave. Figure 6.3b shows a monochromatic wave
of the same wavelength and amplitude polarized in the horizontal plane. The latter
precedes the former by a quarter of a wavelength. This means that, in a position in
which the former has a maximum, the latter is zero.

x

y

x

y(a) (b)

Fig. 6.2 Figures show the trajectories of the tip of the electric field with the propagation direction
normal to the figure towards the reader. a Right circular polarization, b Left circular polarization
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In the presence of both waves, being that the elastic medium and the electro-
magnetic field are both linear, the resulting motion of the string, or the resulting
electric field, is the sum of those of the two waves considered separately.
Figure 6.3c shows the resulting total displacement, or electric field. The magnitude
is constant, while the direction varies linearly with the position. The string has the
shape of a helix wrapped at a fixed distance from the axis. The pitch of the helix is
the wavelength k. If we now think of freezing the helix at a certain instant, we
obtain a screw. If we want to have the screw advance, we must turn it
counter-clockwise, as seen from the source, namely in the direction opposite to that
of a normal screw. This is the state we defined as being left. If the wave in (b) was
delayed one quarter wavelength rather than advanced, we would have obtained a
helix would like a normal screw. The polarization would have been right.

Let us now move to the immediately more complicated case, namely the sum of
two base states with a phase difference of ±p/2 and different amplitudes, namely

Ex z; tð Þ ¼ E01 cos xt � kzð Þ; Ey z; tð Þ ¼ E02 cos xt � kz� p=2ð Þ: ð6:8Þ

It easy to see that the trajectory of the tip of the electric field is now an ellipse,
having x and y as axes and semi axes E01 and E02. The rotation sense is like in the
cases of circular polarization. We say that the polarization is elliptical (right or left).
Figure 6.4 shows an example of right elliptical polarization.

As a matter of fact, elliptical polarization is the most general state of polarization
(linear and circular polarizations being special cases of elliptical polarization), when
the axes do not necessarily coincide with the x and y reference axes. We imme-
diately understand this to be true if we think of that fact that the most general
motion of a pendulum is about an ellipse and is the combination of two harmonic
motions with the same frequency on the two coordinate axes.

Let us prove this, namely that the most general combination of the base states
that

Ex z; tð Þ ¼ E01 cos xt � kzð Þ; Ey z; tð Þ ¼ E02 cos xt � kzþ/ð Þ ð6:9Þ

with arbitrary E01, E02 and / being an elliptical polarization. The easiest way is to
prove that the resulting “trajectory” of the tip of the electric field is a conic curve.
Indeed, we know that the field magnitude is limited (does not go to infinite) and the

λ

z z
z

(a) (b) (c)Fig. 6.3 Snapshot of an
elastic progressive wave on a
string; a vertical linear
polarization, b horizontal
linear polarization advanced
by a quarter wavelength,
c combination of (a) and (b)
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only limited conic is the ellipse. Now, it is clear that Ex and Ey can be expressed as
linear combinations cos(xt − kz) and sin(xt − kz) (the first one is already such).
These expressions, which are easy to find but unnecessary for our purposes, are a
system of two linear equations that, once solved, gives cos(xt − kz) and sin
(xt − kz) as linear combinations of Ex and Ey. If we now impose the condition
cos2 xt � kzð Þþ sin2 xt � kzð Þ ¼ 1, we obtain an expression of the type
AþBE2

x þCE2
y þDExEy ¼ 0, where A, B, C and D are constants that we do not

need to express, because this expression is, in any case, the equation of a conic.
Figure 6.5 shows several examples of elliptic polarization, all with amplitude in

the y direction twice as large as that in the x direction and different values of the
phase difference.

We have seen that all the polarization states can be expressed as linear combi-
nations, or, we can also say, superpositions, of two base states, which are the linear
polarization states along two axes normal to one another. However, the most
general polarization state can also be expressed as a superposition of other pairs of
base states. The most important are the circular polarization states. We shall not
demonstrate this statement, but we shall only show that a linear polarized wave can
be expressed as a superposition of two circular polarized waves, one right and one
left, having equal amplitudes.

Let us consider a right circularly polarized monochromatic wave moving in the
positive z direction. Let the components of its electric field at the point z = 0 be
given by

ER
x ¼ E0 cosxt; ER

y ¼ E0 sinxt:

x

y

E02

E01

Fig. 6.4 Right elliptical
polarization. Propagation
direction is toward the reader

Ex

Ey

φ = 0 φ = – π/4 φ = – π/2 φ = –3π/4 φ = π φ = 3π/4 φ = π/2 φ = π/4

Fig. 6.5 Examples of elliptic polarization with E02 = 2E01 and phase differences as in the inserts
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The generic left circularly polarized wave of the same amplitude (and same
frequency) is then

EL
x ¼ E0 cos xtþ að Þ; EL

y ¼ �E0 sin xtþ að Þ;
where we took into account a possible initial phase difference a. The resulting

field is

Ex ¼ EL
x þER

x ¼ E0 cos xtð Þþ cos xtþ að Þ½ � ¼ 2E0 cos xtþ a=2ð Þ cos �a=2ð Þ
Ey ¼ EL

y þER
y ¼ E0 sin xtð Þ � sin xtþ að Þ½ � ¼ 2E0 cos xtþ a=2ð Þ sin �a=2ð Þ

We see that the ratio Ey tð Þ=Ex tð Þ is independent of time, namely that it is

Ey tð Þ=Ex tð Þ ¼ � tan a=2: ð6:10Þ

We conclude that the resulting field is a linearly polarized oscillation at the angle
−a/2 with the x-axis.

6.2 Unpolarized Light

We have seen that the most general state of polarization of a wave is the elliptical
polarization. However, natural light, such as the light we receive from the sun and
the stars, is not usually polarized. Indeed, in the previous section, we considered a
monochromatic wave, which has, in particular, an initial phase that is defined once
and forever. Contrastingly, as we already discussed, the natural light emitted by
thermal sources is a mixture of an enormous number of elementary waves, each due
to the de-excitation of an atom or a molecule, each having a very short duration, on
the order of nanoseconds or less. In other words, natural light waves have a finite
coherence time Dt on the order of the duration of the elementary wavelets. As a
matter of fact, the light emitted by each atom is in a certain state of polarization. As
long as it lasts, there is a fixed phase difference between the two components of the
field on the base states. But this is not the case with the total light wave, which is the
sum of an enormous number of small waves, chaotically polarized independently of
one another, each lasting about Dt. In practice, our instruments take an average on
durations much longer than Dt. Under these conditions, we speak of unpolarized
light. We understand that an ideal perfectly monochromatic wave (Dt = ∞) is
always polarized.

The direction of the field of a linearly polarized light is constant in time. It is not
constant for an elliptically polarized light, but it varies in a regular and predictable
way. Contrastingly, the direction of the electric field of an unpolarized light varies
chaotically in all the directions normal to the propagation direction. All these
directions have the same probability. Intermediate cases are the states of partial
polarization. In this case, there is a direction, modulo p, in which the probability of
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finding the electric field is a maximum, while it is a minimum at 90° to it and
intermediate in between We shall see in Sect. 6.8 how to distinguish the various
cases operationally.

6.3 Dichroism

Dichroism is the property of certain materials, known as dichroic, to present dif-
ferent absorption coefficients to light polarized in the two base polarization states.
We can distinguish linear dichroism when the absorption coefficients are different
for light linearly polarized with directions at 90° to one another, and circular
dichroism when the absorption coefficients are different between right and left
circular polarized light. Here, we discuss linear dichroism, and will discuss circular
dichroism in Sect. 6.9.

Some linear dichroic materials are suitable for preparing polarizing sheets of
large dimensions (up to several square meters) and consequently are often used in
practice. The most important example is the polaroid, which is now a common
name, owing to it being a trademark of the Polaroid Corporation, produced in the
form of a synthetic plastic film. This is one of the outstanding inventions of
Edwin H. Land (USA, 1909–1991), who developed it over a period of a few years
starting in 1929. In its original form, a polaroid contains submicroscopic crystals of
herapathite, which is a salt of iodine and quinine (iodoquinine sulfate, to be exact).
The crystals are shaped like needles, about one micrometer long and a dozen of
picometers in diameter. The fact that the diameter is much smaller than the light
wavelength is very important for minimizing the loss of light through scattering.

The crystals are embedded in a transparent nitrocellulose bath and aligned
through stretching during the manufacturing of the film. Basically, one starts by
preparing a colloidal dispersion of submicroscopic needles of herapathite in the
form of a very viscous mass, which is then extruded through a long and narrow slit.
A preferred direction now exists on the film, the crystallites having oriented
themselves preferentially in the extrusion direction.

A second type of polaroid invented in 1938 by E. Land is a film of polymer
molecules of polyvinyl alcohol (PVA) impregnated with iodine. Once more, the
polymer chains are aligned during manufacturing through stretching.

The iodine atoms, present in both cases, have the essential role of delivering
electrons that are free to move along the herapatite needles or the polyvinyl chains,
making them similar to conducting wires.

We now choose a reference system on the film with the x-axis in the preferred
direction of the “wires” and the y-axis normal to them. Consider a plane light wave
normally incident on the film. The direction of its electric field E is, in any case, on
the xy plane. The effects of its components Ex and Ey are different. The Ex com-
ponent acts in the direction in which electrons are free to move over distances much
longer than the wavelength. These electrons are accelerated by Ex absorbing energy
from the wave. Colliding with other particles or impurities, the electrons re-emit
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light in all directions, a very small fraction of which is forward. Consequently, the
absorption coefficient is large. Contrastingly, Ey is practically unable to accelerate
electrons, being incapable of moving in directions perpendicular to the crystals, or
to the polymers, because their diameters are much smaller than the wavelength.
Consequently, the absorption coefficient is small.

An ideal linear polarizer transmits without any absorption, namely unaltered, a
normally incident plane wave linearly polarized in a certain direction, called the
polarization axis of the polarizer, and completely absorbs a wave linearly polarized
perpendicularly to the polarization axis. Notice that, with the term polarization axis,
we mean a direction on the film, rather than a particular line. Namely, in an ideal
polarizer, the ratio between the former and the latter absorption coefficient is zero.
While such a perfect polarizer cannot be made in practice, the ratio of the absorbing
coefficients of a good polarizer can be as small as 1/100 or even less.

In general, the ratio between the absorption coefficients depends on the wave-
length. In particular, it grows sharply when the wavelength decreases to the order of
magnitude of the diameter of the “wires”.

A linear polarizer based on the same concepts can be easily prepared for elec-
tromagnetic waves of much longer wavelengths, for radio waves, for example. In
this case, we can use an array of multiple straight conducting wires (real macro-
scopic wires now) stretched parallel to one another, having diameters and distances
much smaller than the wavelength of the wave to be polarized.

As a matter of fact, Heinrich Hertz in, in his study of the electromagnetic waves
that he had recently discovered, was the first, in 1888, to use such arrays to polarize
and analyze the polarization state of the waves. He discovered that an array of
copper wires of 1 mm diameter, spaced 3 cm apart, transmitted the incident radio
waves of a 66 cm wavelength if the electric field of the radiation was perpendicular
to the wires, but did not transmit them if the field was parallel to the wires.

6.4 Analyzers

We shall now start discussing the problem of analyzing the polarization state of a
given light wave. Here, we consider linear polarization and non-polarization states,
namely the linear polarization analyzers. We shall consider the other polarization
states later in the chapter, after having discussed the relevant physical phenomena.

As a matter of fact, any (linear) polarizer is also a (linear) analyzer. Indeed, if we
have a linearly polarized light wave normally incident, for example, on a polaroid
with the electric field of amplitude E0 at the angle h with the axis of the polaroid,
only the component E0 cos h is transmitted. In the arrangement shown in Fig. 6.6,
the first polaroid linearly polarizes the unpolarized incident light, while the second
polaroid, whose axis is at the generic angle h to the first one, analyzes the polar-
ization state. If we vary the angle h between the axes, the intensity of the light
transmitted by the second polarizer varies as
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I hð Þ ¼ I0 cos2 h; ð6:11Þ

where I0 is the incident intensity (proportional to E2
0). This is known as Malus’ law,

after Étienne-Louis Malus (France, 1775–1812), one of the scientists who made the
greatest number of contributions to the study of light polarization phenomena.

In a typical experiment, such as the one we have just described, we use two
instruments; the first one to prepare the polarization state (the polarizer), the second
to analyze it (the analyzer).

To analyze the polarization state of a light wave, we can use a polaroid as an
analyzer. We place it normally to the beam and rotate its axis, measuring the
transmitted intensity as a function of the angle of the axis with a fixed direction. If
the light is linearly polarized, we observe the transmitted intensity going through a
maximum, a minimum, another maximum and another minimum, each separated by
90°. The intensity in the minima is compatible with zero. If the light is partially
polarized, the intensity in the minima is not zero and that in the maxima is smaller
than in the previous case. The degree of polarization is defined as the difference
between maximum and minimum intensities, divided by their sum. If the light is
unpolarized, the transmitted light intensity is the same at every angle. Notice,
however, that we would observe the same behavior in the last two cases if the light
were elliptically or circularly polarized, respectively. We shall see in Sect. 6.8 how
these cases are distinguished.

Polaroid polarizers/analyzers are easily available in the form of polaroid sun-
glasses. They are produced because, as we shall discuss in the following sections,
light reflected from surfaces, such as smooth water, but also a flat road, are gen-
erally horizontally polarized. This may create an annoying glare, which is elimi-
nated by the polaroid glasses, whose “lenses” are linear polarizers with vertical
axes.

6.5 Polarization by Scattering

In Sect. 5.9, we discussed the scattering of sunlight by molecules in the atmosphere
or, at lower altitudes, by density fluctuations, and found the explanation given by
Lord Rayleigh for the blue color of the sky. We come back to this process now,

Polarizer Analyzer

Fig. 6.6 Linear polarizer and
analyzer set-up
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because it also has the effect of polarizing light. It is an example of a phenomenon
called polarization by scattering.

We briefly repeat here the arguments in Sect. 5.9. Consider an approximately
monochromatic light wave incident on an atom. As we have already done several
times, we think of the atom as a spherical cloud of negative charge with a massive
point at the center of equal and opposite charge. Under the action of the harmon-
ically oscillating electric field, the negative charges are displaced relative to the
positive one, in the direction opposite to that of the electric field. This is opposed by
the restoring forces internal to the atom. Under these conditions, the atom behaves
as a forced oscillator in its stationary motion. Hence, the charge of the atom
oscillates at the frequency of the incoming wave.

Each accelerating charge of the atomic oscillators produces an electric field,
which, under the conditions we are discussing (here and in the rest of the chapter),
is given by Eq. (3.42). We rewrite it here for convenience:

Erad ¼ � q
4pe0

an t � r=cð Þ
rc2

: ð6:12Þ

We stress, in particular, that the direction of the electric field of the wave emitted
by the oscillating charge is equal to that of the projection of its acceleration on the
plane normal to the line of sight, which is the direction joining the atom with the
observation point. Clearly, the acceleration itself has the direction of the electric
field of the wave incident on the atom.

Consider a group of atoms at the origin of the axes and let us choose the z-axis in
the direction, and sense, of the incoming wave. The direction of its electric field
belongs, in any case, to the xy plane, and so, consequently, does the acceleration.
Consider an observer looking at the charge from a direction perpendicular to that of
the incident wave (in the z direction), say, for example, from the x direction. The
electric field of the wave coming from the charge is then normal to the x-axis. On
the other hand, the field is in the xy plane, and consequently, it must be in the
y direction. Under these conditions, the light wave is linearly polarized. This pro-
cess is called polarization by scattering.

An everyday example is the light coming from the sky, which is the sunlight
scattered by the air molecules, or density fluctuations. If we look in a direction in
which light comes to us after having being scattered by 90°, we “see” it completely
linearly polarized normally to the scattering plane. Figure 6.7 shows two of these
directions, along with a direction of non-polarization and one of partial polarization.
In addition, the figure shows the direction of the primary rainbow. In this case, the
scattering is by water droplets, but the arguments we have developed still hold. One
sees that the angle is such that the polarization is almost complete.

The phenomenon cannot be observed with the naked eye, because our eyes are
not very sensitive to polarization. We must look through a polarization analyzer,
using, for example, a pair of polaroid sunglasses. Remember that their transmission
axis is vertical. If we take the sunglasses in our hand and look through them
towards the sky in one of the directions at 90° with the sun, as shown in Fig. 6.7,
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and then turn the sunglasses, we observe, in a complete turn, two intensity maxima
and two minima separated by 90°, according to Malus’ law. If we look in directions
corresponding to scattering angles other than 90°, the light is partially polarized. At
a zero scattering angle (taking care not to look directly into the sun), the light is not
polarized. Similar observations can be done with the light of a rainbow.

Several animals, including bees, ants and a number of crabs, have eyes sensitive
to polarization and exploit the polarization of the sky for purposes of for orien-
tation. At the end of the 1940s, the Austrian zoologist Karl von Frisch (Austria,
1866–1982) observed that bees were able to orient themselves even when the sun
was not visible. A small clear sky area was enough for the insects. As proof, von
Frisch inserted a polarizing filter between the eyes of the insects and the skylight.
He observed that when he turned the polarizer, the insects’ sense of direction was
systematically altered. In this way, he was able to demonstrate that it was just the
light polarization being exploited by the bees. Other scientists observed similar
behavior in other animal species after him.

6.6 Polarization by Reflection

A third phenomenon capable of polarizing light is the reflection. Consider, for
example, two media, air and glass or air and water, separated by a flat surface, as
shown in Fig. 6.8. We can consider an unpolarized ray incident on the interface as a
superposition of two components, each linearly polarized in a direction at 90° to
one another, one with the electric field normal and one parallel to the incidence
plane (Fig. 6.8a and b, respectively).

In the situation shown in Fig. 6.8a, the field of the incident wave oscillates
normally to the incidence plane, which is the plane of the figure. The sources of the

not polaried

pa
rti

all
y p

ol
ar

ied

pr
im

ar
y 

ra
in

bo
w

to
ta

lly
 p

ol
ar

ie
d

totally polaried

Fig. 6.7 Sunlight scattered
by the atmosphere through
different angles, and
corresponding polarization.
The direction of the primary
rainbow (Sect. 6.4) is also
shown. Linear polarization is
normal to the page
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refracted and reflected waves are the oscillating charges in the second medium,
namely the glass (or the water). Being that they oscillate as forced to by the incident
wave, the direction of oscillation is normal to the plane of the figure as well. This is
then also the direction of the electric field of the refracted and reflected waves. The
conclusion is independent of the incident angle and, consequently, we do not expect
anything peculiar to happen when it varies.

Consider now the component of the incidence wave with the electric field
oscillating in the incidence plane, namely the plane of the figure, as in Fig. 6.8b.
Clearly, the oscillation direction of the molecules in the glass is in the same plane,
but in which direction in this plane? To answer the question, we must fix our
attention on the refracted wave. Its electric field is not only in the plane of the
figure, but also normal to the propagation direction of the wave. But this must also
be the direction of the oscillations of the atomic charges, being that it is parallel to
the field in the glass (Fig. 6.8b). Considering now the field of the reflected wave,
and remembering Eq. (6.12), we see that it is smaller the smaller the component of
the molecule acceleration normal to its propagation direction.

Consider, in particular, the incident direction for which the angle between
refracted and reflected rays is exactly 90°, as shown in Fig. 6.9. This is called the
Brewster angle, after David Brewster (Scotland, 1781–1868), who discovered the
effect in the first years of the XIX century. Clearly, the intensity of the reflected ray
is zero under these conditions, because the projection of the accelerations of the
charges originating the reflected wave on the normal to that direction is null. Under
these conditions, the reflected light, from unpolarized incident light, is completely
polarized in the direction perpendicular to the incidence plane. For incident angles
different from the Brewster angle, the reflected wave polarization is partial.

The Brewster angle, hB, is easily calculated starting from the condition i + r =
90°. If we call n1 and n2 the refractive indices in the first and second medium,
respectively, the Snell law gives us n1 sin i ¼ n2 sin r. For i = hB, we have

i

r

i i i

r

(a) (b)

Fig. 6.8 Incident, refracted and reflected rays linearly polarized a normally to the incidence plane,
b parallel to the incidence plane
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n1 sin hB ¼ n2 sin 90� � hBð Þ ¼ n2 cos hBð Þ;

which gives us

hB ¼ arctan n2=n1ð Þ: ð6:13Þ

The Brewster angle for the air-glass interface is 56°. The phenomenon can be
observed by looking at images reflected on a glass surface, like that of a window or
of a showcase, through a pair of polaroid sunglasses and rotating the glasses.
A more quantitative check can be done by measuring the intensity of the reflected
ray as a function of the incident angle of a beam of light linearly polarized in the
incidence plane. One notices a clear minimum at the Brewster angle. Repeating the
measurement with an incident beam polarized normally to the incidence plane, no
minimum is found.

QUESTION Q 6.1. Calculate the Brewster angle at air-water and water-glass
interfaces. ☐

6.7 Birefringence

Up to now, we have implicitly considered the concepts of the polarization of a wave
and the polarization of the corresponding light ray as being equivalent. However,
the two concepts are different in principle and coincide only in isotropic media, not
in anisotropic media, as we shall now discuss. We start by recalling that, in Chap. 4,
we defined and discussed, for a monochromatic wave, the concepts of phase
velocity and group velocity. We saw them to be different from one another in a
dispersive medium. We were then considering isotropic media, in which we found
that the two velocities generally differ in magnitude. In an anisotropic medium, the
two velocities generally differ in direction as well.

Let us fix our attention on these directions, considering a progressive plane
monochromatic wave. The direction of the phase velocity at every point is normal

i i

r

90˚

Fig. 6.9 Brewster angle
conditions; polarization in the
incidence plane
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to the wave surface through that point. Indeed, moving along the phase surface, the
phase does not vary by definition. The direction of the group velocity is the
direction of propagation of the energy transported by the wave. In an isotropic
medium, energy propagates normally to the wavefronts. Indeed, this is what intu-
ition suggests, but it is valid only in an isotropic medium.

In this section and the next, we shall analyze the behavior of plane monochro-
matic and linearly polarized waves progressing in an anisotropic medium. We
consider, in particular, the birefringent (or birefractive) media, in which the phase
velocity (or, equivalently, the refractive index) depends on the propagation direc-
tion and the state of linear polarization. These media have two refractive indices,
one for each properly chosen linear polarization base state.

We start with a mechanical example of birefringent medium for elastic waves.
Figure 6.10 shows a long elastic slab, several centimeters wide and a few mil-
limeters thick. Clearly, the restoring forces for a given displacement are much larger
in the horizontal than in the vertical direction. Consequently, the phase velocity for
vertically polarized waves is much smaller than that for horizontally polarized ones
of the same frequency. The situation is similar for electromagnetic waves in bire-
fringent media.

The analysis in Sect. 4.7 showed us that when a plane light wave travels in a
transparent dielectric medium, its electric field induces an oscillating dipole
moment p in the atoms of the medium. The oscillating dipoles emit electromagnetic
waves. The sum of all these waves and of the incident one is still a plane wave, as is
the incident wave alone, but its phase velocity is not c but rather tp = c/n, where
n is the refractive index. In Sect. 4.7, we were considering an isotropic molecular
charge distribution. As a consequence, the displacement of the charges that we
called x was parallel to the direction of the field of the incident wave. The same was
true for the dipole moment p = qx induced in every molecule and for the induced
dipole moment per unit volume, namely the polarization,1 P = npp dove np is the
number of molecules per unit volume.

Fig. 6.10 An elastic slab, a
birefringent medium for
elastic waves

1Unfortunately, the world “polarization”, used in physics, has several different meanings. In this
chapter, we are dealing with the “polarization” of light, which we have defined. In this sentence
and in the following discussion, “polarization” is also the electric dipole density in the dielectric.
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Consider now a non-isotropic molecule. Think, for example, of a diatomic one,
made of a negative charge distribution around two massive point-like positive
charges at a certain distance from one another. We can imagine that the deformation
of the molecule due to a certain value of an applied electric field should be different
if the field is in the direction of the line of the two nuclei (the bound) or normal to
that. And indeed, it is so. Under these two conditions, when the applied field is
parallel or normal to the bond, the displacement is in the direction of the field.
However, this is only the case for these directions. If the field is neither normal nor
parallel to the bond, the displacement has a direction different from that of the field.

This fact can be easily understood considering the mechanical model shown in
Fig. 6.11a. A bead is connected to a rigid standing frame by two pairs of springs.
The elastic constants of the springs of each pair are equal to one another, but those
of the two pairs are different, say, k1 in the x-direction and k2 in the y-direction.
Consider, for example, that k2 = 2k1. If we now apply the electric field force at, say,
an angle of 45° with the axes, the displacement component in the x-direction will be
twice as large as that in the y-direction, as shown in Fig. 6.11b. The resultant
displacement direction is different from that of the electric field. We see that only in
the direction of one of the spring pairs do the field and displacement have the same
direction. In general, the displacement and induced dipole moment p have a
direction different from E.

Even if the majority of the molecules are not isotropic, the anisotropy usually
does not appear at the macroscopic level. This is because in gases, liquids and
amorphous materials, the directions of the molecules are chaotically distributed.
Consequently, even if the induced dipole moment p in each of them is not parallel
to E, the dipole moment per unit volume P is parallel to E. Indeed, the components
normal to E add up to zero. As a matter of fact, this happens in crystals too, when
the molecules are symmetrically arranged, as in cubic crystals.
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Fig. 6.11 a Mechanical model: a bead and two pairs of springs, with elastic constants k2 = 2k1.
b displacement for an electric field at 45°
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The media we shall deal with can be considered, in any case, to be linear
dielectrics, in which P is proportional to E. We now consider macroscopic uniaxial
crystals, namely crystals having a single symmetry axis. In this case as well, an
“axis” means a direction. A typical case is calcite, which is a calcium carbonate
(CaCO3) whose crystal cell is a hexagonal right prism. The symmetry axis of the
prism is called the optical axis. Under these conditions, the macroscopic polariz-
ability is different along the optical axis on one side and in any perpendicular
direction on the other. If the field is parallel to the axis, the polarization P is parallel
to E with the proportionality constant, say e0vp. Namely, we have

P ¼ e0vpE: ð6:14Þ

If P is normal to the axis, it is still parallel to E, but with a different propor-
tionality constant, say, e0vn, namely we have

P ¼ e0vnE: ð6:15Þ

Hence, the medium has two electric susceptibilities, vp and vn. For reasons of
symmetry, it is clear that vn is independent of the direction in a plane normal to the
axis. As in the mechanical example we gave, if E is neither parallel nor perpen-
dicular to the axis, the polarization P is not in the direction of E.

An interesting example is the Iceland spar, which is a transparent calcite crystal.
Its electric susceptibilities for light are vp = 1.21 and vn = 1.74. Consider, for
example, the wave electric field to be directed E at 60° to the axis. The components
of the polarization vector are Pp ¼ e0vpE cos 60� ¼ 0:61e0E and Pn ¼ e0vn
E sin 60� ¼ 1:51e0E. Hence, the angle of P to the axis is arctan(1.51/0.61) = 68°30′.
The angle between P and E is 68°30′–60° = 8°30′, as shown in Fig. 6.12.

We now come back to the general discussion and recall that the refractive index,
hence the phase velocity, is directly connected to the polarizability. The conse-
quence is that the refractive index in a uniaxial medium depends on the linear
polarization state. We shall now determine the structure of a progressive plane
monochromatic light wave in a uniaxial medium. The arguments will be similar to
those we followed in Sect. 3.6 to study the structure of such a wave in a vacuum.
We refer the reader to Sect. 10.7 of the third volume of the course for the Maxwell
equations in a linear dielectric medium. We shall, however, revisit the relevant
expressions here.

60˚ 8˚30'

ax
is

E

P

Fig. 6.12 Direction of P for
E at 60° with the axis in an
Iceland spar crystal
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The relevant fields of an electromagnetic wave in a dielectric are the electric field
E, the magnetic field B, as in a vacuum, and, in addition, the auxiliary field D. The
latter is called the electric displacement and is given by

D ¼ e0EþP: ð6:16Þ

Under the conditions we are discussing, there are no free charges, but there are
polarization charges. We recall that the latter are not sources for D, but, as all the
electric charges are, are sources for E. Consequently, we have

r � D ¼ 0 ð6:17Þ

and

r � E 6¼ 0: ð6:18Þ

As for the magnetic field, its divergence is zero, as always, namely

r � B ¼ 0: ð6:19Þ

In addition, under all practical circumstances, B is the same in a vacuum and in a
dielectric, being that the magnetic susceptibility is very close to one. In the absence
of conduction currents, as is the case here, the curl of the magnetic field is given by

r� B ¼ l0
@D
@t

: ð6:20Þ

There are four more vectors to consider. Two of them, the wave vector k and the
phase velocity vp, are perpendicular to the wave surface in the direction of the
propagation. The group velocity vg has the direction of the energy propagation,
which, for an electromagnetic field, is the Poynting vector

S ¼ e0c
2E� B: ð6:21Þ

Let us consider, as we did in Sect. 3.6, a plane monochromatic wave. Its field
can be written as

E ¼ E0e
i xt�k�rð Þ; D ¼ D0e

i xt�k�rþ að Þ; B ¼ B0e
i xt�k�rþ bð Þ; ð6:22Þ

where we have allowed for the presence of initial phase differences between the
fields (even if it is irrelevant for our arguments).

Equation (6.18) gives us

k � E 6¼ 0: ð6:23Þ
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As opposed to in a vacuum, the electric field is not perpendicular to the wave
vector, or to the phase velocity.

On the other hand, Eqs. (6.19) and (6.20) give us

k � B ¼0; k� B ¼ �l0xD: ð6:24Þ

The magnetic field is, as in a vacuum, perpendicular to the wave vector, but as
opposed to in a vacuum, is perpendicular to the electric displacement D rather than
to E. Equation (6.24) also tells us that D is perpendicular to k, hence its direction
belongs to the wave surface.

In conclusion, all four vectors D, E, k and S are perpendicular to B, and con-
sequently belong to the same plane. It is thus convenient to look at them in this
plane, which is the plane of Fig. 6.13. In the figure, AA is the wave surface, on
which the vector D lays, as we have said. E and D have generally different
directions. Let / be the angle between them. The wave vector k is perpendicular to
D and S is perpendicular to E. Consequently, the angle between k and S, which is
the angle between the wave and group velocities, is / as well.

Namely, the angle between the wave and group velocities is

/ ¼ arccos
E � D
Ej j Dj j :

After the above discussion, it is clear that we must distinguish the concepts of
the linear polarization of a wave and the linear polarization of a ray, in which a ray
is the trajectory of energy. When we talk of a monochromatic plane wave, we think
of the propagation of a wave surface, like AA in Fig. 6.13. The direction of its linear
polarization is the direction of D that belongs to that plane. If the wave is linearly
polarized, the direction of D does not vary. The concept of polarization of the ray is
different, because we are considering the energy propagation. The linear polariza-
tion of the ray is the direction of E, which is normal to that propagation direction.

As we have already noticed, particular cases exist in which the deformation of
the molecules, and consequently the polarization P, is parallel to E. In these cases,

A

A

φ

φ
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k

E

D

Fig. 6.13 The four vectors
D, E, k and S in a plane
perpendicular to B. AA is a
wave surface
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D is parallel to E as well, for Eq. (6.16). This is the case when the electric field has
the direction of the optical axis (see Fig. 6.14a) or any direction perpendicular to
the axis (see Fig. 6.14b). In all other cases, the directions of E and D are different.

Consider a uniaxial crystal cut like a plate, with faces parallel to the optical axis
and a monochromatic plane light wave normally incident on its face, as in
Fig. 6.15. There are two cases that are the most relevant: (a) the polarization
direction is parallel to the optical axis, (b) the polarization direction is normal to the
optical axis. In the former case, E and, consequently, D are parallel to the axis,
while in the latter case, they are normal to the axis. In these two particular cases,
wave polarization and ray polarization coincide. This is not true for any other
polarization direction.

In the two cases, the polarizability being different, the refractive indices (and the
phase velocities) are also different. Let tp and np = c/tp be the phase velocity and
index in case (a) and tn and nn = c/tn the phase velocity and index in case (b). Note
that the footers n and p mark the orientation (normal or parallel) of the electric field
relative to the axis.

We shall come back to the crystal faces parallel to the axis in the next section.
Here, we consider a crystal whose faces have been cut neither parallel nor per-
pendicular to the optical axis. The plane of Fig. 6.15 is the plane made by the
optical axis and the incidence direction. The latter is perpendicular to the face of the
crystal. The direction of the optical axis is the oblique segment in the figure.

E D

B

S
k

S
k

E D
B

(a) (b)Fig. 6.14 The fields of a
plane monochromatic wave
with electric field a parallel to
the axis, b normal to the axis

(a) (b)

Fig. 6.15 Plane monochromatic wave incident on a uniaxial plate. The optical axis is in the plane
of the figure and is shown as an oblique segment. Electric field a normal, b parallel to the plane of
the optical axis
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In Fig. 6.15a, the polarization of the incident wave is perpendicular to the plane
of the figure. Applying the Huygens-Fresnel principle, we can consider every point
of a wave surface in the crystal as a source of secondary wavelets. Each segment of
a wavelet propagates in a different direction, but, in any case, normally to the axis.
Consequently, all of them have phase velocity tn. The trace of the wavelet in the
plane of the figure is thus a semicircle. The envelope of the wavelets is, conse-
quently, parallel to the wave surface (the surface of equal phase) and the ray has the
same direction as the incident ray. Under these conditions, the refracted ray behaves
“normally”, namely following Snell’s law, even when the incidence angle is dif-
ferent from zero, as can be shown. For this reason, it is called the ordinary ray.

Consider now the situation in Fig. 6.15b, in which the incident wave is linearly
polarized in a direction belonging to the plane defined by the optical axis and the
incidence direction. We again consider the points of the wavefront in the crystal as
sources of secondary wavelets. However, the different segments of a wavelet now
propagate at different angles with the optical axis and, consequently, with different
phase velocities. The phase velocity is tp for the segments having the field D (and
E) parallel to the axis, which, in an argument that requires we pay close attention,
propagate perpendicularly to the axis. It is tn for the segments having the field
D (and E) normal to the axis, which propagate in a direction parallel to the axis. The
phase velocity has intermediate values for the other segments. A more in-depth
analysis shows that the secondary wavelets are rotation ellipsoids. Figure 6.15b is
drawn in the case for tp > tn. We obtain the new wave surface by taking the
envelope of the wavelets, which is in the plane of D and B. We see that it is parallel
to the wave plane of the incident wave. The figure also shows the rays, namely the
energy trajectories. We see that the rays are not perpendicular to the wave surfaces.
Indeed, the direction of the ray is the direction of E � B, and E is not parallel to
D. Under these conditions, the refracted ray does not follow Snell’s law and is
called the extraordinary ray. This phenomenon is called anomalous refraction.
Under these conditions, the directions of the phase and group velocities are
different.

Figure 6.15 shows how the waves and the corresponding rays exist from the
plate after having crossed its thickness. If the incident ray is not polarized, it splits
into an ordinary and an extraordinary ray. The two rays, polarized at 90° with one
another, exit separately from one another, if the thickness of the plate is large
enough. We can easily verify their polarizations with an analyzer.

QUESTION Q 6.2. Draft the corresponding diagram in Fig. 6.15 b) for np > nn. ☐
An important example of a uniaxial crystal, which we have already mentioned, is

the Iceland spar, a transparent form of calcite. The refractive indices of the ordinary
and extraordinary rays are no = 1.658 and ne = 1.486, respectively (for yellow
light, to be precise). Such stones can be found in Iceland, as the name suggests.
According to a possibly true but not historically proven tale, Vikings used Iceland
spar crystals for navigational purposes. When the sun was invisible, being under the
horizon or covered by clouds, but some open spot of sky was available, they
measured the polarization of the light from that region of the sky and inferred the
position of the sun, much like the bees do.
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A curious effect of birefringence has been observed for centuries and used for
entertaining in living rooms. Crystals of Iceland spar placed over an image would
show it as being doubled (you can find nice images of that on the web).

Polarizers can be built by blocking one of the two rays. An historically important
example is the Nicol prism invented by William Nicol (Scotland, 1779–1851) in
1828. It is made of two prisms of calcite, smartly arranged in a way so that the
extraordinary ray is transmitted while the ordinary ray is deflected at an angle via
total internal reflection.

6.8 Phase Shifters

Let us go back and consider a plate of a birefringent medium whose faces contain
the direction of the optical axis. Consider a linearly polarized plane monochromatic
wave normally incident on the plate. Let z be this direction. We know that the phase
velocity in the crystal is tp if the electric field E of the wave is parallel to the optical
axis, tn if E is normal to the axis. This happens in any case in which the polar-
izability of the medium has a preferential direction, not only in the uniaxial crystals.
For example, the plastic films containing long molecular chains, which are arranged
with a certain degree of orientation as a result of the film having been produced by
extrusion or by passing it between rollers, are birefringent. A preferential direction
can also be easily induced in a plastic film simply by pulling it in that direction.

What happens if the electric field of the polarized wave is at a generic angle h
with the optical axis? To answer the question, we must consider the components of
E parallel and normal to the axis separately, namely Ep = E cos h and En = E sin h.
Initially, when they enter the medium, the phases of the two components are equal,
but they become different, with a difference increasing with the path in the medium,
because the two phase velocities are different. After having traveled a path Dz, the
phase difference is

D/ ¼ Dz � k � np � nn
� � ¼ Dz � 2p

k
� np � nn
� �

; ð6:25Þ

where k is the wave number and k is the wave length in a vacuum. As a super-
position of two linearly polarized waves at 90° to one another with different phases,
the resultant wave is elliptically polarized, as we learned in Sect. 6.1.

Clearly, if Dz is the thickness of the plate, Dɸ is the phase difference between the
two linearly polarized components at the point of exit from the plate, so that we can
obtain any polarization state starting from linear polarization, by suitably choosing
both Dz and h.

For example, if we want a circular polarization we chose h = ±45° (the sign
determines the handiness of the polarization), in order to have the two components
of the field on the axes be equal to one another, and Dz such that Dɸ is equal to p/2.
Such a plate gives a relative shift of the phases of the two components of a quarter
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of a period and is called a quarter-wave plate. We understand that if we want
circularly polarized light starting from unpolarized light, we must use, in sequence,
a linear polarizer (for example, a polaroid) and a quarter-wave plate with its axis at
45° to the axis of the polaroid. Depending on whether this angle is +45° or –45°, we
obtain the two circular polarization states. Circular polarizers, namely sandwiches
of the two elements glued together, are commercially available. Notice that they
work properly at a given wavelength, as one immediately understands by looking at
Eq. (6.25).

It is useful to look at the orders of magnitude. We have seen that the indices of the
Iceland spar are no = 1.658 and ne = 1.486, for yellow light. The difference, which is
called birefringence, is Dn = no–ne = 0.17 and is one of the largest amongst crystals.
The mica, which is a sheet polysilicate, has a birefringence Dn = 3.3 � 10−3.
Polymethil metracrylates (PMMA) (of which Perspex, Lucite, Plexiglas, etc., are
trade names) are transparent plastic plates. The plates have a small birefringence
with their axis normal to the face, as a result of the production process. This is
because the plastic mixture, still in a viscous state, is poured into basins having the
shape of the plate being produced. In the subsequent hardening process, the material
contracts, mainly in the vertical direction normal to its free surface, becoming
optically anisotropic. The difference between indices is very small, on the order of
Dn = 2 � 10−5. Hence, a quarter-wave plate for, say, k = 0.5 µm, if made of calcite,
should have a thickness Dz = 0.74 µm, which is too small to be practical. Using
mica instead, we need the thickness Dz = 38 µm, which is easily feasible. For this
reason, mica was widely used for the scope until the appearance of plastic materials,
which are much cheaper. In the somewhat extreme case of the PMMA, the thickness
of a quarter-wave plate is as large as Dz = 6.25 mm.

Figure 6.16 schematically shows the set-up of the crossed polarizers, which is
quite useful for studying the birefringence of transparent samples. On an optical
bench, one arranges two linear polarizers, two polaroids, for example, with their
axes at 90° to one another. The light source may be a common one that produces
unpolarized light, but it should be (approximately) monochromatic. The first
polarizer produces light linearly polarized at 90° with the axis of the second, which
does not let any light through. The two devices may be equal, but their function is
different, the first acting as a polarizer, the second as an analyzer. If we now insert a
birefringent material, for example, a cellophane or PMMA film, as in Fig. 6.16, we
see some light coming through the analyzer. If we rotate the plastic film around the
axis of the system, we see two directions at 90° to one another at which no light is
transmitted. This happens when the optical axis of the sample is parallel to the axis
of the polarizer or to that of the analyzer.

In order to learn more from this type of experiment, we observe that the changes
induced on the linearly polarized light by the sample depend on two factors: the
angle h between the electric field E of the wave and the optical axis of the sample
and the phase shift Δɸ given by Eq. (6.25). The polarization state of the transmitted
light after the sample can be one of the following.

6.8 Phase Shifters 257



(a) Light is still linearly polarized but possibly in another direction. We can
determine if this is the case by turning the analyzer. We should find two
positions of maximum intensity 180° from one another, separated (at 90° from
each of them) by minima of zero intensity.

(b) Light is elliptically polarized. Acting as in the previous case, we should find a
qualitatively similar result, but now the intensity in the minima is not zero. The
intensity of transmitted light never vanishes.

(c) Light is circularly polarized. Turning the analyzer, the transmitted intensity is
constant.

In each case, we can, in an equivalent manner, turn the sample instead of the
analyzer.

Since the phase shift Dɸ depends on the wavelength, when we operate with a
white source and look at the sample through the analyzer, we see it colored. If its
thickness is uniform, within a fraction of a wavelength, its color should be uniform
as well. There are, however, almost always small thickness variations from point to
point, and we see bands of different colors that are the loci of equal thickness.
Similar images are seen when the stresses, which are often present as well, have
caused small variations in the refractive indices across the sample. This phe-
nomenon is called stress induced birefringence. As a matter of fact, one can study
the stresses in parts of buildings and in engines making plastic models of these parts
and observing them under a load between crossed polaroids. In this way, one learns,
even if in a qualitative way, where the stresses are most important.

A spectacular show can be achieved by preparing the environment necessary to
grow a crystal and then observing it grow between crossed poloaroids. Shadows
and lights of different brilliant colors evolve before your eyes as the crystal takes
form.

The device we have discussed essentially consists of an element that prepares the
incident beam in a state of known polarization, a birefringent sample to be studied,
which is crossed by the beam, and an analyzer to determine how the sample has
changed the state of polarization.

A similar set-up, with a birefringent sample of known characteristics and the
light incident on it of unknown polarization, allows us to determine the latter.
Consider, in particular, the birefringent sample being a quarter-wave plate, with an
axis of known direction. By turning the plate, we can distinguish whether the light
is elliptically polarized (circularly, in particular) or partially polarized (or not
polarized at all).

Another interesting phenomenon is the birefringence induced by an electric field,
which is called the Kerr effect, after John Kerr (Scotland, 1824–1907), who dis-
covered it in 1875. Consider a transparent liquid whose molecules have a sizeable
permanent electric dipole. When we apply an electric field to the liquid, the dipoles
tend to orient in the direction of the field, and the medium becomes optically
anisotropic. The effect can be observed by placing the liquid, once again, between
crossed polarizers, as in Fig. 6.17.
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With this arrangement, we can study how the index difference Dn = no − ne
varies as a function of the applied electric field intensity E. As a matter fact, the
direct observable is the induced phase difference shift Dɸ, which is found to be
proportional to the applied field intensity squared, namely as

D/ ¼ Dz2pbE2; ð6:26Þ

where Dz is the length of the liquid in the field and b is a constant characteristic of
the liquid (and of its thermodynamic state) called the Kerr constant (the factor 2p is
there for historic reasons). A liquid with a very high Kerr constant is nitrobenzene,
for which b = 2.4 � 10−12 mV−2.

Consider, for example, a capacitor Dz = 10 cm long, having nitrobenzene
between the plates. What is the field needed for the system to act like a

quarter-wave plate? This is E ¼ 4bDzð Þ�1=2¼ 1 MV/m, which is not a difficult
value to achieve. For example, if we build the capacitor with a 1 mm gap between
the plates, we should apply a potential difference of 1000 V between them.

An important application of the Kerr effect is in transforming oscillations of an
electric field into oscillations of light intensity. Indeed, the effect is quite fast,
because the typical time taken by the molecules to orient in the varying field is on
the order of the nanosecond.

6.9 Optical Activity

Optical activity is the property of certain substances to rotate the polarization
direction of a linearly polarized light wave that crosses them. This phenomenon was
discovered in 1811 in quartz by François Arago.

Consider again the set-up of crossed polarizers and a sample of the optically
active substance under study between them. Under these conditions, we observe
light going through the analyzer (which, we must remember, has its axis at 90° with
the polarizer). If we now turn the axis of the analyzer, we reach an angle, say, a, at
which the light extinguishes. We also find that the a is proportional to the thickness
of the medium Dz as a = qDz, where the proportionality constant q is a charac-
teristic of the substance and its thermodynamic state, called the specific rotation

Polarizer AnalyzerBirefringent sample

Fig. 6.16 Analyzing the birefringence with crossed polarizers
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constant. “Specific” because it is per unit length, “rotation” referring to the plane of
the linear polarization. Its usual units are the degree per millimeter.

The phenomenon shows dispersion, namely that q is a function (generally
decreasing) of the wavelength. For several substances, the phenomenon is con-
spicuous, with values of q on the order of a dozen degrees per millimeter.
Particularly active are the solutions of several organic molecules in water, notably
the sugars. For the solutions, the rotation of the polarization direction is propor-
tional to the concentration c of the solute, namely a ¼ ccDz, where c is charac-
teristic of the solute, depending on its thermodynamic state. The optical activity of
the sugars is employed to control their production, while they are still in the
solution, with the optical saccharometers. These instruments determine the sugar
concentration in the solution, for example, the glucose in the molasses obtained
from sugar canes or beets, from the angle of rotation of the polarization direction of
a light beam.

The common property of the optically-active substances is the presence of
molecules, or elementary cells if they are crystals, that are not mirror symmetric.
This means that the shape of the molecule, or cell, and its mirror image are different,
as with, for example, a hand or a screw. For this reason, they are called chiral
molecules, from the Greek “chir” for hand. Chiral molecules come in two different
types (mirror images of one another) called optical isomers and denoted with the
symbols D (for dextro = right) and L (for laevo = left). A substance with
right-handed molecules, namely D, rotates the polarization direction to the right,
while a substance with left-handed molecules rotates it to the left. By “toward
right”, we mean that an observer looking at the light coming toward him/her must
turn the analyzer to the right, meaning clockwise, to extinguish the light.

Optical activity exists both for liquids and solid state substances. There is, for
example, the levo-quartz and the dextro-quartz, the levotartaric acid and the dex-
trotartaric acid, etc. The chemical and physical properties of the pair at the
macroscopic level are equal, except for the fact of rotating light polarization in
opposite directions.

The inorganic optical isomers (like, for example, the dextro- and levo-quartz) are
found in nature with the same abundance. This is a consequence of the fact that the
forces in action when the crystal (or the molecule) is formed, which are electro-
magnetic, are invariant under the inversion of the reference axes. Contrastingly, the
optically active organic molecules synthetized by the living organisms are found as
only one of the isomers, while an artificial synthesis process produces both isomers

Polarizer Analyzer

+

–

Fig. 6.17 Arrangement of a
crossed polarizer for studying
the Kerr effect
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in equal amounts. Indeed, in 1849, Louis Pasteur (France, 1822–1895) discovered
that the living organisms produce tartaric acid only in the D form, while in his
laboratory, the chemical synthesis process resulted in a 50/50 mixture of the two
isomers. He also discovered the existence of microorganisms capable of feeding and
metabolizing only one of the two optical isomers. More examples are the
above-mentioned biological glucose that is in the D form (called dextrose) and the
biological proteins of all living organisms that are made of amminoacids, which are
always left isomers. All the DNA molecules are right helixes. How this happened in
the evolutionary process of life is clearly a fundamental question, to which, how-
ever, we do not yet have an answer.

Let us now give an explanation for the correlation between molecular handiness
and optical activity. We start by recalling that a linearly polarized state is the
superposition of two circularly polarized states, one left and one right. Consider
now a substance that is circularly birefringent, namely that has two different
refractive indices (or phase velocities), one for left circularly polarized light, one for
right circularly polarized light. Consider a plane monochromatic linearly polarized
light wave entering into such a medium. We can think of it as a superposition of
two circularly polarized waves with a certain phase difference. While advancing,
the phases of the two components proceed at different speeds, and consequently, a
phase difference Δɸ develops between them, proportionally increasing with the path
in the medium. However, as we learned in Sect. 6.1, the superposition of two
opposite circular polarization states having a phase difference Δɸ is a plane wave
with the electric field direction forming the angle Δɸ/2 with the x-axis. We can
conclude that the specific rotation, i.e., the rotation per unit path, is proportional to
the difference between the refractive indices for right and left circular polarizations.

Let us now try to understand the molecular origin of the effect, considering, for
example, a molecule having the shape of a helix, as is the case with several organic
molecules, such as that in Fig. 6.18. Let us consider a circularly polarized wave
advancing in the direction of the molecular axis, which we choose as the z-axis.
Clearly, in one of the two circular polarization states, the electric field direction
changes along the molecule following the direction of the molecular “wire”, and
consequently acts efficiently on the electrons and in regard to stretching the
structure. For this state, the electric polarizability is large. The same does not
happen for the opposite circular polarization state, and consequently, the polariz-
ability is smaller.

x

y

z

Fig. 6.18 A helix-shaped
molecule of an optically
active substance
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A deeper analysis shows that the same effect is present for any orientation of the
helix-shaped molecule and for every shape with specular asymmetry.

Summary
In this chapter, we studied the polarization phenomena of electromagnetic waves, in
particular, of light. We learned the following principal concepts.

1. The polarization state of a light wave can be expressed as a superposition of two
independent base states. We can take as base states two states of linear polar-
ization at 90° to one another or two circularly polarized states in opposite
directions. The most general polarization is elliptical.

2. Natural light from thermal sources (the sun and the stars, for example) is
unpolarized. These sources are made of a huge number of molecules that emit
light chaotically independently of one another. Consequently, the coherence
time is on the order of a nanosecond or less, namely much smaller than the
integration time of our sensors.

3. Unpolarized light can be polarized by one of the following processes:

(a) Dichroism (the property of materials with two absorption coefficients)
(b) Scattering (light from the sky or from a rainbow)
(c) Reflection (images on windows and water surfaces)
(d) Birefringence (the property of materials having two refractive indices)

4. The structure of a progressive plane monochromatic wave in a birefringent
medium. The phase and group velocities have different magnitudes and different
directions, the D field being normal to the former, while the E field is normal to
the latter.

5. How to build quarter-wave plates and, more generally, introducing a phase shift
between polarization states.

6. Optical activity, a property of the circular birefringent materials.

Problems

6:1. Consider the two polarization states Ex ¼ E0 cos xt � kzþ/1ð Þ and
Ex ¼ 2E0 cos xt � kzþ/2ð Þ. Draw the trajectory of the tip of the electric field
for the following different values of the phase difference: ɸ2–ɸ1 = 0°, 45°, 90°,
135°, 180°.

6:2. Find the Brewster angle for light reflection off a glass of index n = 1.57.
6:3. A beam of natural light goes through two polaroids, one next to the other. The

intensity after the second is ¼ of the incident of the first. What is the angle
between the polaroid axes?

6:4. How can you obtain circular polarized light when starting with unpolarized
light?

6:5. You measure the polarization of the sun rays reflected off the surface of a lake
and find it to be complete. What is the angle of the sun on the horizon?
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6:6. You insert, between two crossed polaroids, a third one with its axis at the
angle h with the first. What is the fraction of the light intensity transmitted by
the system under these conditions as a function of h?

6:7. A plate of birefringent material has been cut with faces parallel to the optical
axis. Let x be the direction of the axis and y be normal to it, both in the plane
of the plate. A plane monochromatic wave is normally incident (z direction).
Its field on the first face is E ¼ E0 cos xt � kzð Þ, with the origin of z at the
entrance to the first polarizer. E is directed at the angle a with the x axis. Let d
be the phase shift between the two linear components introduced by the plate.
What is the polarization state after the plate in the following cases: (a) a = 0°
and d = 180°, (b) a = 90° and d = 180°, (c) a = 30° and d = 180°,
(d) a = 30° and d = 90°, (e) a = 45° and d = 90°, (f) a = 045° and d = 180°.

6:8. The refractive indices of quartz are no = 1.544 and ne = 1.533 at 0.6 µm.
Calculate the thickness of the quarter-wave plate.

6:9. The intensity of a circularly polarized light incident on a circular polarizer is
I. What is the intensity at the exit?
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Chapter 7
Optical Images

Abstract In this chapter, we study the properties of optical images, constantly
taking into account the wave nature of light. After having defined the concept of the
image, we first discuss the plane mirror and the prism, and then curved mirrors and
thin lenses, finding their basic equations and properties. We then deal with aber-
rations, depth of field, the resolving power and the action of a lens on the phase of
the incident wave. We then discuss basic optical instruments, namely the magni-
fying glass, the telescope and the microscope. Finally, we give a few basic elements
of photometric concepts.

In this and the subsequent chapter, we study the properties of optical images. Light
consists of electromagnetic waves having wavelengths on the order of tenths of
micrometers, namely much smaller than those of everyday objects. Consider a
small segment of a wave surface propagating in a homogeneous and isotropic
medium. Its trajectory is rectilinear. At the interfaces between different media, it
reflects and refringes according to the Snell law, as we saw in Chap. 4. The
luminous rays are the trajectories of the energy, which coincide with the propa-
gation trajectories of the elements of the wave surface, because we are considering
an isotropic medium. The geometrical optics, or ray optics, is a good approximation
every time the dimensions of the surfaces met by light are much larger than its
wavelength.

However, even if extremely useful, ray optics is often insufficient for under-
standing the physical processes at the base of image formation. Indeed, the structure
of images is always determined by diffraction. The very concept of a ray is a
mathematical, rather than physical, concept. Indeed, thinking of a light ray, one can
imagine a narrow beam entering into a dark room through a small hole in a window.
The beam is a straight line of a certain diameter. However, if we attempt to further
define it to be a better approximation of a ray by making the pinhole narrower and
narrower, when its diameter is on the order of the wavelength, the beam spreads out
into a wide solid angle, as a result of diffraction. Trying to make the ray better
defined, we have destroyed it. Similarly, if we have a light beam incident on a
square mirror, we see the reflected beam. But if the size of the mirror is, say,
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1 µm � 1 µm, the reflected ray no longer exists. The reflection law of geometrical
optics does not hold under these conditions (again, due to diffraction).

In this chapter, we shall discuss the main aspects of image formation processes,
constantly taking into account the wave nature of light. However, we shall employ
geometrical optics when it is allowed and useful for simplifying the arguments. The
focus on the physical aspects will lead us, on one side, to overlook aspects, so to
speak, of the engineering of optics, and on the other, not to consider the psycho-
logical aspects of the image perception process. The latter should, however, be
taken into account under certain circumstances, because psychological processes
may cause us to locate images where they are, in fact, not present, and, contrast-
ingly, prevent us from perceiving images in some cases. We shall warn the reader
when we encounter these issues.

After having defined the concept of the image in Sect. 7.1, we shall discuss, in
Sect. 7.2, the image formation process in the simplest cases of the plane mirror and
the prism (including dispersion). In Sects. 7.3 and 7.4, we shall study the parabolic
and the spherical mirrors, and how they form the image of a point source on the
axis. In the remaining part of the chapter, we shall deal with thin lenses. We shall
study the image formation of point sources from Sects. 7.5–7.7 and subsequently of
extended objects under incoherent illumination conditions.

Lenses are subject to imperfections, called aberrations and irregularities, of
which we shall give the basic elements in Sects. 7.8 and 7.9. We shall also see that
optically “perfect” optical systems do exist.

Optical instruments produce two-dimensional images (on the retina or the image
sensor of a camera) of objects in the world that are three-dimensional. In Sect. 7.10,
we shall determine what the limits are for such images to be sharp.

Another relevant property of optical systems is their ability to give distin-
guishable images of two nearby points or, as we say, to resolve them. We shall
study resolving power in Sect. 7.11.

In Sect. 7.12, we shall analyze the action of the lens, considered to be a phase
diaphragm, on the phase of an incident plane wave. This action is more general, not
only of the lens, but also of other image-forming instruments.

In the final sections, we shall present elements of the simplest optical instru-
ments, namely the magnifying glass, the telescope and the microscope, and, finally,
a few basic elements of photometric concepts.

7.1 Preliminaries

We begin by noting that a precise definition of the concept of an optical image is far
from being trivial. Let us start from the observation that reflecting plane surfaces
and transparent prisms both deviate the path of an incident light wave, without
changing their curvature. Consider, for example, a point source S in the neigh-
borhood of a plane mirror. As Fig. 7.1 shows, the light waves emitted by the source
are deviated, reflected, in this case, by the mirror. When the reflected waves hit the
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eye of the observer, he/she, automatically thinking that the light has always traveled
in a straight line, sees a luminous point source S′ on the other side of the mirror.
There is no real source there, however, and we speak of an image of the source.

Hence, in this case, the image is the center of the spherical waves reaching the
eye of the observer after having been diverted along their path. If the waves were
not diverted, we would have spoken of an object, rather than of an image. Clearly,
very similar arguments hold for the action of a prism.

Curved, spherical and parabolic mirrors change the curvature of the incident
waves. Similarly, if we interpose a lens between a point source and the eye of the
observer, the waves reaching his/her eye do not have their curvature center at the
source, but at a different point, which is an image of the source. We conclude with
the definition of the optical image given by Vasco Ronchi (Italy, 1897–1988),
which is as follows: the image of a point source is the center of the light waves that
reach the eye of the observer after having been diverted or deformed along their
path. In this definition, we include plane waves, considering them to be spherical
with a center (the source or the image) at an infinite distance.

If instead of a point source, we have an extended light source (like the sun or a
lamp) or an illuminated object, we can think of it as being a set of point sources of
different intensities and positions. The image is the set of the images of all the
point-like elements of the source or of the illuminated body.

Note that the process of image formation in our eyes is not only a physical
process but also involves a number of psychological components. Due to these, the
observer does not always perceive an image properly. We shall give some examples
later on.

Lenses and mirrors have necessarily a limited size. Consequently, they always
intercept and transmit a segment of the incident wave, and the diverted or deformed
waves are not spherical or plane surfaces, but circular segments of a plane or sphere.
This fact implies that, in any case, diffraction phenomena are present, which are all

S

S'

Fig. 7.1 Reflection of light
waves from a point source
S and its image S′
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the more important the smaller the dimensions of the wavefronts are relative to the
wavelength. Hence, as we shall see, the image of a point is never rigorously a point,
but rather a fundamental diffraction pattern.

In this chapter, we consider the processes of image formation under the usual
conditions of having thermal light sources, in which the molecules emit their light
independently of one another. Images produced with coherent light, like holograms,
will be discussed in the next chapter.

The process of image formation by lenses or mirrors almost always only
involves light rays forming small angles with the direction of normal incidence on
the optical elements. In addition, the rays never stray very far from the axis of the
system. Under these conditions, we talk of paraxial rays. We shall now find a
simple geometrical formula, which is valid to a good approximation under paraxial
conditions. As a matter of fact, this is the only geometrical formula that we shall
need.

Consider an arc OA of a circle of center in C and radius l subtending the small
angle a, as in Fig. 7.2. We want an approximate expression of the distance D of the
extreme A of the arc from the line tangent to the arc in its other extreme O.

We choose the reference axes as shown in Fig. 7.1. The coordinates of A and
C are (D, h) and (l, 0), respectively. Imposing their distance as being equal to l, we
have

AC2 ¼ D� lð Þ2 þ h2 ¼ l2;

which we rewrite, dividing by h2, as

D
h

� �2

�2
l
h
D
h
þ 1 ¼ 0:

Now, D/h = tan(a/2) is small in our hypothesis of a being small and we can
neglect (D/h)2. At the first order in a, we then have
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Fig. 7.2 The geometry of
paraxial rays
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D ¼ h2

2l
;

which is the formula we were looking for. In addition, we shall also need an
approximate expression of the distance D′ (see Fig. 7.1), which is the difference
between the length of the hypotenuse and the longer leg of the rectangular triangle
OCB′. Indeed, at the first order in a, D′ is equal to D. We can expand this as

D ¼ D0 cos a ¼ D0 1� a2=2þ � � �� � ffi D0

In conclusion, we have

D ¼ D0 ¼ h2

2l
: ð7:1Þ

Also notice that, always at the first order in a, both distances OB and OB′ are
equal to h.

To get an idea of the orders of magnitude, let us consider, for example,
a = 10° = 0.17 rad. In Eq. (7.1), we have neglected terms on the order of a2, that
is, of (0.17)2 = 0.03 relative to the unit. Accuracy within a few percentage points
will be enough for our subsequent discussion, but the exact expressions should be
used when precision is requested.

7.2 Plane Mirrors and Prisms

There is not too much to say about plane mirrors. We simply recall here that they
change the propagation direction of light waves, leaving their curvature unaltered.
The image of an extended object consequently appears to be of the same shape and
size as the object, the well-known left/right inversion of the vertical mirror
apart. Note that the diverted waves are centered, but do not come from the images.
Under these conditions, we talk of a virtual image. Contrastingly, an image is real if
the waves come from its points.

We finally note that the position of the image is independent of the wavelength,
because the reflection law (Sect. 4.4) does not depend on wavelength.

Prisms, like mirrors, change the propagation direction of the light waves without
changing their curvature. Unlike mirrors, however, the deviation they induce does
depend on wavelength, as we saw in Sect. 4.4. Consequently, when the incident
wave is not monochromatic, after the prism, we have many (infinite) approximately
plane waves, each of a wavelength, propagating in different directions. This is the
phenomenon of dispersion by the prism that we have already encountered and that
we will discuss now quantitatively.

Consider a plane wave incident on a prism. The angle between the propagation
directions after and before the prism, which we shall call d, is known as a deviation.
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The deviation d depends on the incident angle, and it can be shown (exactly as we
did for a water drop in Sect. 4.5) that it initially decreases with increasing incidence
angle, reaches a minimum dm, and then increases. The minimum deviation condi-
tions happen, as shown in Fig. 7.2, when the incident and transmitted waves lay
symmetrically on the two sides of the prism (that does not mean being parallel to
the base).

For the sake of simplicity, we shall only consider the minimum deviation
condition.

The action of the prism is known once its dihedral angle a and refractive index
n are known, under the hypothesis, which we have adopted, that the index of the
media on the two sides of the prism is 1. As a matter of fact, we can measure the
refractive index of a material by measuring the minimum deviation of a prism of
that material.

Let us find the relation between n and dm. Consider two points like A and B on
the two faces of the prism at the same distance from the vertex V, which we call
l. The segment AV of the prism face intercepts a portion of the incident wave, of
which AA′ in Fig. 7.2 represents a wave surface. On the other side, BB′ is a wave
surface as well. Consequently, the times taken by the phase to travel the paths A′VB′
and AB should be equal. Now, the former is completely in air (index equal to 1),
and the latter is completely in the medium of index n, giving us A0V þVB0ð Þ=c ¼
AB= c=nð Þ: We can now write

AV 0 þVB0 ¼ 2A0V ¼ 2l cosAVA0 ¼ 2l cos
p� aþ dmð Þ

2
¼ 2l sin

aþ dm
2

and

AB ¼ 2l sin
a
2
:

In conclusion, we have

n ¼ sin aþ dm
2

sin a
2

; ð7:2Þ

which is the equation we were looking for. We shall now study the dependence of
the deviation by a prism on the wavelength. For the sake of simplicity, we shall
consider the case of the thin prisms, namely those having a � 1. In this case, the
minimum deflection condition corresponds to an almost normal incidence on the
prism. Under these conditions, dm is also small and we can approximate the sine
with the angle and write Eq. (7.2) as

dm ¼ n� 1ð Þa: ð7:3Þ
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When the wavelength varies from k to k + dk, the index varies, say, from n to
n + dn. We obtain the corresponding variation of the minimum deviation by dif-
ferentiating Eq. (7.3), obtaining

ddm ¼ adn: ð7:4Þ

We call the change of deviation per unit wavelength the angular dispersion of
the prism, namely

ddm
dk

¼ a
dn
dk

: ð7:5Þ

If the incident wave is not monochromatic, the components of each wavelength
are diverted to a different angle. The dispersion is greater the greater the index
dependence on k.

Consider, as an example, a glass prism with n = 1.5 and a = 20° (�0.35 rad).
The minimum deviation is dm = 10° (�0.17 rad). Indeed, this is an average value.
In a typical glass, the difference between the index of the blue (k = 0.45 µm) and
that of the red (k = 0.65 µm) is dn = 0.01 (see Sect. 4.4). The corresponding
difference in deviation is, for Eq. (7.4), dd = adn = 3 mrad. This means, to fix the
ideas, that placing a screen at 1 m distance from the prism causes the spectrum to be
3 mm wide from red to blue.

Notice also that, under normal dispersion conditions, namely dn/dk < 0, the
deviation increases with decreasing wavelength.

The simplified explanation we have just given is sufficient for understanding the
importance of the prisms for the analysis of the spectra of the radiation coming from
a given source. Such a study gives important pieces of information on the physics
of the source. Suppose, for example, we want to study the vibration frequencies of a
molecule. We can have a gas composed of these molecules in a transparent con-
tainer and excite the molecules, for example, with an electric discharge or by
heating the gas on a flame. We then limit the light emitted by the gas using a narrow
slit parallel to the dihedral angle of a prism located after the slit. In this way, we
have a narrow laminar beam incident on the prism. The components of different
wavelengths present in the beam are deflected by the prism in different directions,
which we can measure by looking at the prism through a telescope rotating on a
goniometer. In the case of gases, the observed spectrum consists of a number of
“lines” at wavelengths corresponding to the characteristic oscillation frequencies of
the molecules.

Coming back to the concept of image, let us consider observing a point source
S through the prism. If the source is monochromatic, the waves arrive at our eyes
deviated by a certain angle d, and we see an image of the source displaced on a
plane normal to the dihedral angle by a distance proportional to d (and to the
distance of the source). Even now, the image is virtual, and even now, the image of
an extended source is equal to the source, with the same geometrical dimensions.
However, unlike the plane mirror, if the source is not monochromatic, its image
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appears dispersed in monochromatic images, with different colors in different
positions.

7.3 Parabolic Mirror

In this section and in the subsequent one, we shall discuss the simplest properties of
two types of concave mirror, namely the parabolic and the spherical ones. They
have the property to change the curvature of the incident waves or, from the
geometric optics point of view, to focus the incident rays. We shall not address the
magnification, the aberrations or the resolving power of mirrors, which are similar
to those of the lenses that we will discuss in subsequent sections.

A parabolic mirror is a paraboloid of revolution.
The first important property of the parabolic mirror is the ability to transform a

plane wave incident along the axis in a spherical wave with the center in the focus
of the paraboloid. We choose the origin of the reference frame in the vertex O of the
paraboloid and the x-axis on the geometrical axis. Figure 7.3 represents a section of
the paraboloid in a plane containing the x-axis. Let F, having coordinates (f, 0), be
the focus and HH the trace of the plane normal to the axis at the distance f from
O on the other side with respect to the focus. This is the directrix of the parabola.

Consider a plane wave incident on the mirror from the negative x direction. We
can think that the different points of the mirror start emitting the reflected wave in
the instant in which they are touched by the incident wave. The greater the distance
from the axis, the sooner this takes place. For example, the path PA is shorter than
the path P′A′. It follows that the reflected wave is no longer plane, but is concave, as
is OD′D in the figure. We will now show that the reflected wave is spherical
(Fig. 7.4).

Consider the points D, D′, etc., of the reelected wave. They are such that

PAþAD ¼ P0A0 þA0D0: ð7:6Þ

Now, the points of the paraboloid are by definition equidistant from the directrixHH
and from the focus F, namely it is AB = AF, A′B′ = A′F, etc. On the other hand, obvi-
ously, we have PA + AB = P′A′ + A′B′, etc., and consequently PA + AF = P′A′ + A′F,
etc. Finally, takingEq. (7.6) into account, we conclude thatDF = D′F etc., namelyD,D′
etc., lay on a sphere with center F.
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Fig. 7.3 Minimum deviation
by a prism
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In conclusion, a plane wave incident on a parabolic mirror in the direction of the
axis is reflected in a spherical wave with the center in the focus of the paraboloid.
The energy transported by the wave concentrates around the focus. Pointing the
axis towards the sun, the energy concentration in the focus can be very large,
burning and destroying what is there. This is at the origin of the word ‘focus.’ The
geometry of the conic sections and the properties of the parabolic mirrors were well
known to the ancient Greeks. Archimedes from Syracuse (Sicily, 287–212 BC) is
said to have used parabolic mirrors to burn the Roman ships that were approaching
his city.

As we have seen, the reflected wave is a segment of spherical surface with the
center in F. The wave segment becomes smaller and smaller as it approaches the
center. After having passed the center, the wave becomes a divergent spherical
segment. Figure 7.5a shows the converging and diverging waves. Figure 7.5b
shows the same process from the point of view of the geometrical optics. The light
rays converge in the focus and subsequently diverge from it. The two points of view
are equivalent as long as the diffraction phenomena can be neglected.

According to the above given definition, in the focus F, we have an image of a
point source on the axis at infinite distance. The waves reaching the observer do
come from their center, and consequently, the image is real. As we have just
discussed, the energy density in the image is very large. As a matter of fact, it would
be infinite if the image were a geometrical point. This is clearly physically
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Fig. 7.4 A parabolic mirror,
an incident plane wave and
the reflected spherical wave at
the moment it leaves the
mirror
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impossible. Indeed, perfectly point-like images do not exist, because the mirror (and
any optical device) has a finite diameter. Consequently, it does not reflect the entire
incident wavefront, but only a segment of limited diameter. And we know that
diffraction always exists when a wave front is limited. The consequence is that the
size of the image can never be null. We shall deal with this issue in Sect. 7.11 in the
similar case of the lens.

We note here that an observer located beyond the image does not really see an
image, namely a bright spot, in F. His/her mind refuses to see something where
there is no physical body, but just a vacuum. However, if one puts a frosted glass in
F, or even a transparent one if it is not too clean, the luminous spot immediately
appears. The brain now knows that there is something physical there. This is, in
general, the case with real images.

The light coming from a star, and generally from astronomical bodies, is a plane
wave. We can thus build a parabolic mirror to concentrate all the light collected by
its surface in the focus and place the eyepiece there. The larger the diameter of the
mirror, hence, the more luminous the flux intercepted, the further away the stars that
one can detect will be. In practice, producing parabolic surfaces of optical quality is
extremely difficult, and consequently, telescopes have spherical mirrors, which we
discuss in the next section.

Another use of the parabolic mirror is to have it work in the opposite way. If we
position a light source in the focus, producing a spherical wave divergent toward
the mirror, the reflected wave is a plane wave leaving the mirror along the axis. For
this reason, parabolic mirrors are used in the headlights of our cars.

7.4 Spherical Mirror

As we already mentioned, in practical terms, the production of an optical quality
parabolic surface is very difficult and expensive, especially if the requested
dimensions are large. Spherical mirrors, which can be produced more cheaply and
more reliably, are used in their place. Indeed, as we shall now see, a spherical
mirror behaves similarly to a parabolic one for paraxial rays. The main difference is

FF

(a) (b)

Fig. 7.5 Light converging in the focus and subsequently diverging from it. a Wave view, b ray
view
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that spherical mirrors suffer from spherical aberration, as we shall see below, while
parabolic mirrors do not. As opposed to lenses, mirrors do not suffer from chro-
matic aberration, because the relation between the reflected and incident ray does
not depend on wavelength. The reason for the approximately equal behavior of a
spherical and a parabolic mirror is that a spherical cap does not differ much from a
parabolic cap if the subtended solid angle is small enough.

In this case as well, the mirror is concave, and consequently, a plane wave
incident along the axis touches the rim first. These points are the first to emit the
reflected wave, which is consequently concave.

Figure 7.6 shows the intersection of the spherical cap of the mirror with the
coordinate plane x, y, where we took the x-axis on the geometrical axis, similarly to
Fig. 7.5. A and A′ represent the traces of the rim of the mirror, which we assume to
be circular, C is the center of the sphere, R is its radius and O is the vertex of the
mirror.

Point A of coordinates (D, h) is reached by the incident wave first and first starts
emitting the reflected wave. When the wave reaches the vertex O, the wave
reflected in A has already traveled the path AD, the length of which we call D. This
is equal to AB as well. The reflected wave is not really spherical, but for small
values of the opening angle a, it is approximately so. Let f be the radius of this
sphere and F its center (which is obviously on the axis). Now, the distance of point
D of the sphere from the y-axis (see Fig. 7.6) is approximately 2D. We now apply
Eq. (7.1) to the arc OD, obtaining 2D ¼ h2= 2fð Þ, and to the arc OA, obtaining
D ¼ h2= 2Rð Þ: Putting these two results together, we finally get

f ¼ R
2
: ð7:7Þ
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The distance f of the focus from the vertex is the main property of the mirror and
is called the focal length. Equation (7.7) tells us that the focal length is equal to one
half of the curvature radius.

Indeed, the reflected wave is not exactly spherical, its difference from a sphere
being on the order of a2. As a consequence, the portions of the wave at different
distances from the axis converge at slightly different positions. The consequence is
a distortion of the image, called a spherical aberration, as we already mentioned.
We shall discuss this in the case of the lens in Sect. 7.8, which is completely
analogous. As with other aberrations, the spherical one can be corrected.

Consider now a point source S that is still on the axis of the mirror, but at a finite
rather than infinite distance. Let p be this distance from the vertex O and, to fix the
ideas, let it be larger than R. Figure 7.7 shows the reflected wave at the moment its
last point leaves the mirror and, along the dotted line, the incident wave as it would
have been in the absence of the mirror. Even now, when the incident wave touches
at O, the wave reflected at point A on the rim has already made the path AA″ of
length equal to AA′.

In this case too, the reflected wave is not spherical, although it is almost so for
small values of a. Considering it to be a sphere, let q be its radius and S′ its center.
We now apply Eq. (7.1) to three circle arcs; first to OA′, obtaining

A0B ¼ h2

2p
; ð7:8Þ
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then to OA, obtaining

AB ¼ h2

2R
; ð7:9Þ

and finally to OA″, considering AA″ parallel to BA, as is approximately true for
small values of a, obtaining

BAþAA00 ¼ h2

2q
: ð7:10Þ

On the other hand, it is AA′ = AA″ = BA − A′B; hence, we have
BAþAA00 ¼ 2BA� A0B ¼ h2= 2qð Þ. Substituting this expression in Eqs. (7.8) and
(7.9), we obtain

h2

2q
¼ 2h2

2R
� h2

2p
;

or

1
p
þ 1

q
¼ 2

R
:

But the right hand side is just the reciprocal of the focal length for Eq. (7.7), and
we write

1
p
þ 1

q
¼ 1

f
: ð7:11Þ

This important relation gives the relation between the position of the image and
the position of the source. It states that the sum of the curvatures at the mirror of the
incident and of the reflected waves is a constant, independent of the position of the
source, and equal to twice the mirror’s curvature.

1/f is called the optical power, or simply power, of the mirror, while the cur-
vatures at the mirror of the waves are called their vergences. Equation (7.11) is
called the mirror equation for vergences (we shall see that the same equation holds
for thin lenses) and is read by saying that the sum of the vergences of the incident
and reflected waves is constant and equal to the power of the mirror. Concave
mirrors are convergent, meaning that the vergence of the reflected wave is larger
than that of the incident wave. We shall not discuss convex mirrors, but simply note
that they are divergent. By convention, the focal length, and consequently the
power, is positive for converging, negative for diverging mirrors. Vergence and
power have the dimension of an inverse length; their unit is called a diopter, which
is equal to 1 m−1. We shall come back to that when discussing lenses.
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We shall not discuss here the action of the mirror on point sources that are not on
the axis, but only mention that Eq. (7.11) still holds. We also mention that the
images of extended sources are geometrically similar to their source, but of different
size (magnification of the mirror). These properties of mirrors are very similar to
those of the lens that we shall discuss in the next sections.

Nature has exploited mirrors in the eyes of certain animals. An example is the
Gigantocypris, a crustacean living at depths of 1000 m and more in the oceans,
where there is almost no light. This animal is one of the largest of its family,
measuring about 25 mm. Its head measures one half of its body, and hosts two large
eyes. To increase light collection, the eyes do not use lenses to focus the images on
the retina, but rather parabolic mirrors. Mirror eyes have a resolving power smaller
than lenses of the same aperture, but are able to produce images of higher lumi-
nance (see Sect. 7.16). Other species of mollusks and crustaceans at the same depth
have mirror eyes as well.

7.5 Thin Lenses

A lens, in its simplest form, is made of a piece of glass, plastic or another trans-
parent medium, limited by two spherical coaxial segments with radiuses R1 and R2.
Each of the two surfaces can be concave, convex or plane. A lens is said to be thin
if its maximum width d is small compared to the other geometrical dimensions,
namely the diameter D and its curvature radiuses. In this book, we shall deal only
with thin lenses.

A few historical hints will be useful. It has been known since ancient times that,
when viewed through almost spherical transparent gems or spherical glass con-
tainers full of water, objects appeared much larger and closer, but deformed. While
the geometry of mirrors had been fully developed by the Greeks, the first geo-
metrical theory of lenses is credited to Ibn Sahal (Bagdad 940–1000), who flour-
ished during the Arabic enlightening in the Abbasid court. As we already
mentioned, he discovered the law of refraction. In 984, he published the book On
the burning instruments, in which he developed the theory of lenses bound by
parabolic and hyperbolic surfaces. As the title suggests, Ibn Sahl’s aim was to focus
light on a point for burning purposes, as Archimedes had done with mirrors. As a
consequence, his theory dealt with the images of point sources on the axis. All these
important developments did not lead to any practical exploitation. In the following
centuries complete spheres were considered to try to produce images, with poor
results affected by severe aberrations. The situation changed with the discovery that
transparent bodies limited by spherical caps subtending small solid angles worked
much better than complete spheres. They were called lenses for their resemblance
with lentils.

The inventor of the lens is unknown, but manufacture and use of lenses to
magnify images, in the form of the magnifying glass, and to correct vision defects,
in the form of spectacles, became common in Italy in the second half of the XIII
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century. Two frescoes by Tommaso da Modena of 1352 portray two prelates of the
previous century, both reading, one using a magnifying glass and the other a pair of
pince-nez spectacles. The latter (Hugues de Saint Cher) is represented as a cardinal,
who is known to have served in this role in Italy from 1244 to 1263. We can
conclude that spectacles began to be used to correct sight by no later than the latter
date.

These lenses were produced by glass artisans and masters without any knowl-
edge of the underlying theory. For the theory, we must wait until 1611, when
Johannes Kepler (Germany, 1571–1630) published his treatise, the Diotrice.

Figure 7.8 shows the most common geometrical types of lens. For each surface
the point on the axis is called its vertex (like V in Fig. 7.8b). To characterize the
action of the lens, it is further necessary to specify the refractive index n of its
material and of the two media before and after it. We shall limit our discussion to
lenses in air, for which we take the index to be unitary. If, as is usually the case,
n > 1, the lenses in Fig. 7.8a–c are convergent, while (d), (e) and (f) are divergent.
Convergent and divergent lenses are also said to be positive and negative,
respectively, from the sign of their focal length, as we shall see.

Let us start by discussing the case of (a), in which both surfaces are convex. Let
S be a point-like source on the axis at a distance p from the lens (more precisely,
from the vertex V of its first surface). Let R1 and R2 be the radiuses of the first and
second surfaces, respectively.

With reference to Fig. 7.9, Eq. (7.1) gives us

d1 ¼ D=2ð Þ2
2R1

; d2 ¼ D=2ð Þ2
2R2

;

and, being that the width of the lens is d = d1 + d2, we have

d ¼ D
2

� �2 1
R1

þ 1
R2

� �
: ð7:12Þ
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Fig. 7.8 Common types of
thin lens. a Biconvex,
b planoconvex, c positive
meniscus, d biconcave,
e planconcave, f negative
meniscus
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The point source S emits a divergent spherical wave, whose radius increases
during propagation. When it touches the lens in V, its radius is p and its periphery
has a distance from the plane normal to the axis through V of

d1 ¼ D=2ð Þ2
2p

:

After that, the central part of the wavefront enters the lens, while the periphery is
still moving in air. The phase velocity of the central part is now smaller than at the
periphery. The wave surface changes shape. Its curvature diminishes, while the
wave proceeds. At the exit from the lens, the wave curvature will consequently be
smaller than at the entrance. It might go down to zero and even change signs. In the
latter case, the center of curvature will move to the right of the lens, as in the
example shown in Fig. 7.9.

An analog situation can take place for macroscopic waves, such as those on the
surface of water. Think, for example, of a linear wave (analogous in two dimen-
sions to the plane wave in three dimensions) travelling along the surface of the
water in a pool. Suppose the depth of the water h to be on the same order as the
wavelength. Under these conditions, the phase velocity, according to Eq. (4.12), is
proportional to √h. We reduce the thickness of the water in a region of the pool,
positioning, on its bottom, an obstacle shaped like a small flat hill, all immersed in
the water. When the wave front reaches the “hill,” its motion is slowed down, the
more so the higher the hill. Beyond the obstacle, the wavefront is no longer a
straight line, but rather is concave, or circular if the shape of the obstacle is properly
designed.

Coming back to light, we notice that the wave surface after the lens is not exactly
spherical. However, it is so approximately for small values of D. Considering it to
be spherical, let q be its radius and S′ its center, which is on the axis. Figure 7.9
shows that, when the wave completely exits from the lens (namely touches it at V′),
the distance of its periphery from the plane perpendicular to the axis in V′ is

p q

δ
2δ
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S S'V V '

d
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d
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Fig. 7.9 Source S and image S′ for a converging lens
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d2 ¼ D=2ð Þ2
2q

:

We now impose the condition that the two spherical surfaces of centers in S and
S′ should be wave surfaces. This means that the time taken by the phase to cross the
path d1 + d + d2 at the speed c must be equal to that which it takes to cross the path
d at speed c/n. We then write

d1 þ dþ d2
c

¼ d n
c
:

Simplifying, we get

d1 þ d2 ¼ n� 1ð Þd: ð7:13Þ

By substituting in this equation the expressions of d1, d2 and d that we found, we
have

1
p
þ 1

q
¼ n� 1ð Þ 1

R1
þ 1

R2

� �
: ð7:14Þ

As we see, the right-hand side depends only on the characteristics of the lens and
not on the position of the source. We can then state that the sum of the curvatures,
namely the vergences of the incident wave l/p and of the outgoing one 1/q, is
constant for a given lens, namely independent of the position of S. In particular, the
outgoing wave may have zero curvature, namely be plane. We have then q ¼ 1.
We indicate with 1/f the curvature of the incident wave under this condition. From
Eq. (7.14), it is

1
f
¼ n� 1ð Þ 1

R1
þ 1

R2

� �
: ð7:15Þ

The length f is the focal length of the lens and its reciprocal 1/f is its dioptric
power, or simply its power. As we already mentioned, the unit for vergence and
dioptric power in the SI is the diopter (which is then 1 m−1).

We see immediately that if S is at infinite distance ðp ¼ 1Þ, namely if the
incident wave is plane, the center of the outgoing wave is at the distance a
q = f from V′ on the other side of the lens.

This first focus of the lens, F is defined as the point of the axis, which is such that
a spherical wave of center in F incident on the lens produces an outgoing plane
wave. The second focus F′ is the point of the axis that is the center of the spherical
outgoing wave when the incident on the axis wave is plane.

In the case we have considered, the two focuses are on the opposite sides of the
lens at the same distance from it. This is always the case when the mediums on the
two sides of the lens are the same. It can be easily seen, with arguments very similar
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to those we have just made, that if the mediums on the two sides are different (as,
for example, with the cornea of the eye or swimming under water), the two focal
lengths are different. We shall limit the discussion to the case in which the two
mediums are the same.

The focal length (or the power) is the fundamental property of the lens.
Equation (7.15) gives its expression as a function of the characteristics of the lens,
and is called the lens maker’s formula. Once the lens is made, its focal length is
defined, and this is what is needed to link the positions of the source and the image.
In fact, we can rewrite Eq. (7.15) as

1
p
þ 1

q
¼ 1

f
; ð7:16Þ

which is called the thin lenses equation or equation for vergences. We already
found this for the spherical mirror.

All the results we have just reached considering waves can also be easily reached
with geometric optics, in which one considers rays in place of waves, as we shall
see in Sec. 7.7. In an isotropic medium, such as those we are considering, the rays
are always normal to the wave surfaces. From the point of view of geometric
(ray) optics, the situation in Fig. 7.9 corresponds to that in Fig. 7.10.

The rays that leave the source S enter the lens at different points, but all of them
are deflected at S′. This can be shown using the Snell law at both surfaces, but we
shall not do that.

In conclusion, in the case we have considered, S′ is a real image of the source
S. As a matter of fact, the image is real, as in Figs. 7.9 and 7.10, only if the radius
p of the incident wave (namely the distance of the source S from the lens) is larger
than the focal length f. If we now move S closer and closer to the lens, namely we
increase the vergence l/p of the incident wave, the vergence 1/q of the outgoing
wave decreases. The distance q of the image S′ increases. Then S is in the first
focus, namely when 1/p = l/f the vergence of the outgoing wave is zero. Under
these conditions, the image S′ is at infinite distance. In the language of geometrical
optics, the outgoing rays are parallel to the axis.

If we take the source S still closer to the lens, namely we increase the vergence of
the incident wave even more, the lens, so to speak, is no longer able to invert the
wave curvature. The center of the outgoing wave is now on the left of the lens,
located farther from the lens than S. The outgoing wave is divergent.

V V ' S'S

Fig. 7.10 Source and image for a converging lens
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Equation (7.16) is still valid. In the just described situation in which p < f,
Eq. (7.16) tells us that q < 0. This situation is shown in Fig. 7.11a and, in the
language of geometric optics, in Fig. 7.11b. As we see, in this case, S′ is a virtual
image of the source.

In this section, we have implicitly adopted a few conventions on the signs of the
curvatures of the surfaces we have encountered. We shall make them explicit now.
First of all, we have considered the incident wave as coming from the left. In
addition, the expressions we found can be used, in general, if we take:

(1) the vergence l/p of the incident wave to be positive if its center of curvature is
on the left of the lens, negative if it is on the right;

(2) the vergence l/q of the incident wave to be positive if its center of curvature is
on the right of the lens, negative if it is on the left;

(3) the focal length f to be positive if the lens is convergent, negative if divergent;
(4) the curvature radius of a surface of the lens to be positive if the surface is

convex, negative if concave.

With these conventions, it is easy to extend the argument we made considering a
biconvex lens to all the other lens geometries shown in Fig. 7.8. In doing so, one
sees that the lenses of Fig. 7.8b, c are convergent, meaning that their action is to
decrease the vergence of the waves, or, in the language of geometrical optics, to
bend the luminous rays toward the axis. This happens in any case in which the lens
is thicker at its center than at its borders. Contrastingly, the lenses thinner at their
center are divergent. They increase the vergence of the light waves, or, in other
words, bend the luminous rays away from the axis. This is a consequence of the fact
that, in these cases, the periphery of the wave slows down more than its center. We
leave as an exercise to show that Eqs. (7.14), (7.15) and (7.16) are also valid for
divergent lenses (with the sign conventions we adopted).

It is also easy to show the path reversibility property of the lens. This means that,
if we put the point light source at S′ where we had the image, and consequently, if
the wave incident on the lens is equal to the wave that was outgoing, moving in the
opposite direction, then the outgoing wave is now equal to the one that was

q

S' SF
p

S' SF

(a) (b)

Fig. 7.11 Virtual image of a source closer to the lens than the focus
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incoming, moving in the opposite direction of that one. The image is formed at the
point at which we had S. Indeed, in our arguments, we have used distances and
times taken to cross them, which are independent of the direction of the crossing.

We shall not discuss thick lenses and the optical systems composed of several
lenses in this book. Full treatises have been dedicated to the subject. We simply
observe that these systems are treated starting with the construction of the image of
the first surface. This image is then taken as the source for the next surface and the
further corresponding image is found, and so on. In the next section, we shall
consider a simple, but useful, example of that.

7.6 Thin Lenses in Contact

Here, we consider the simplest optical system consisting of more than one lens. We
have a number of thin lenses, one next to the other in contact with one another,
centered on the same axis and all with the same diameter D. Figure 7.12 shows two
of them, but our arguments will be valid for any number. Let f1, f2, … be their focal
distances, n1, n2,… their refractive indices, and let the index of the medium in
which the system is immersed be equal to 1. Let d1, d2,… be their thicknesses.
Equation (7.1), with (7.15), gives us

d1 ¼ D2

8f1 n1 � 1ð Þ ; d2 ¼ D2

8f2 n2 � 1ð Þ ; . . .

We now impose the condition of having an outgoing spherical wave when the
incident wave is spherical, similar to what we did with Eq. (7.13) for a single lens.
The condition is now

d1 þ d2 þ . . . ¼ n1 � 1ð Þd1 þ n2 � 1ð Þd2 þ . . .;

p q

d
1 d

2

δ
1

δ
2

Fig. 7.12 Two thin coaxial lenses of equal diameters in contact
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which gives us

D2

8p
þ D2

8q
¼ D2

8f1
þ D2

8f2
þ . . .;

that is,

1
p
þ 1

q
¼ 1

f1
þ 1

f2
þ . . .:

We have thus found that the sum of the vergences of the incoming and outgoing
waves is independent of the position of the source, namely that it is a characteristic
of the system. Hence, the system of centered thin lenses in contact is equivalent to a
single lens with a dioptric power equal to the sum of the powers of its component
lenses, namely

1
F
¼ 1

f1
þ 1

f2
þ . . .; ð7:17Þ

7.7 Images of Extended Objects

Up to now, we have considered the image formation of a point-like source located
on the axis of the optical system. We shall now study how our eyes and optical
instruments produce images of extended objects. In this section, we consider
two-dimensional light sources, or illuminated objects, lying in a plane perpendicular
to the optical axis of the lens. In Sect. 7.10, we shall discuss three-dimensional
objects.

An extended object may be a primary light source, such as the sun or a street
lamp, or may be illuminated by a light source and scatter its light, like the moon, the
sky or common objects. In both cases, we can think of the object as being made of
many, as a matter of fact, infinite, point-like sources, each in a certain position,
having a certain intensity and a certain frequency spectrum (a certain color, we can
say). We then find the position of the image of each of these point sources and its
intensity. Finally, we build the extended object image as the set of these images. We
can perform this mental decomposition and recombination process because, under
the usual conditions of dealing with thermal sources, the point sources are inco-
herent with one another.

Contrastingly, coherence conditions exist when objects are illuminated by laser
light, but also, in some instances, in the microscope. The objects at which one looks
through a microscope are strongly illuminated from below by a device, called a
light condenser. The condenser consists of an intense light source, usually of small
dimensions, a diaphragm used to adjust the light intensity, and a lens that con-
centrates the light on the object. When the diaphragm is very narrow, the
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transmitted light is spatially coherent and the different details of the object scatter
light with fixed phase relations with one another. In this chapter, we shall discuss
image formation under the usual conditions of incoherent illumination. Coherent
illumination will be studied in the next chapter.

Obviously, if the object is extended, not all its points are on the axis. We start by
considering a point source S that is not on the axis and determine the location of its
image S′. This is shown in Fig. 7.13a from the wave point of view, and in
Fig. 7.13b, from the geometric optics view.

To fix the ideas, let us think of our source as having the shape of a luminous wire
normal to the axis. The point source S in Fig. 7.13 is a point of the wire, and S′ is its
image. To see the image, let us place a white screen on the other side of the lens
normal to the axis. We choose the distance considering that one of the points of the
object is on the axis and we know where its image falls. We place the screen in that
position. If we look at the screen, we see an image geometrically similar to that of
the wire, namely with the same shape, but possibly different dimensions. This
means two things: first that the light emitted by each point of the wire is focalized
by the lens at an image point, second that the geometrical relations between the
image points are geometrically similar to those of the corresponding ones in the
object.

We express this property by saying that the lens provides undistorted images of
the objects. This property is true under the hypothesis of dealing with paraxial rays.
We recall that this amounts to the following two assumptions; (a) the angle under
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Fig. 7.13 Image formation of an off-axis point source. a Wave view, b ray view
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which the object is seen by the lens (a in Fig. 7.13) is small, (b) the distance of the
rays from the axis is always small. We shall always work under these conditions
and continue to assume, in addition, as we did in the previous sections, that the
beam opening angles, namely the angles under which both the source and the image
see the lens, are small as well.

Let us now compare Fig. 7.13 with Fig. 7.9. The situations are similar, with the
line SOS′ being in the place of the axis in the former. Indeed, we obtain the situation
we are now considering by taking that in Fig. 7.9 and simply rotating the lens by
the angle −a. By intuition, we understand that nothing changes appreciably if a is
small. Clearly, we should continue to have an image in S′ when we rotate the lens a
bit.

Let us now see how to construct the image of the wire. In Fig. 7.14, the wire is
represented by a dotted arrow of length y. The simplest argument uses geometrical
optics. In Fig. 7.14, F and F′ are the focuses, and we have adopted the usual
convention to represent the (thin) lens as a double-arrowed segment normal to the
axis. Under this convention, the two tips are directed outside if the lens is con-
vergent, inside if it is divergent.

Let us look for the image of an off-axis point of our object, for example, its
extreme B. One ray that is easy to track is the one running parallel to the axis,
namely ray 1 in the figure. Indeed, we know that, beyond the lens, it goes through
the second focus F′. Well, the image must lie on the ray we have called 1′ in the
figure. To find it, we need a second ray. As a matter of fact, there are two other rays
that are easily drawn. We shall consider both of them for redundancy.

Ray 2 is the ray through the first focus F, which, we know, travels parallel to the
axis beyond the lens. This is 2′ in the figure. The image B′ of B must belong both to
1′ and 2′ and, consequently, is their intersection. An alternative way to reach the
same conclusion is to consider the ray through the center of the lens, which is 3 in
the figure. The lens does not deflect this ray, because its two surfaces are parallel
planes at the point where the ray crosses. Consequently, the emerging ray has the
same direction as the incident one, being only laterally displaced. But the lateral
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Fig. 7.14 Ray optic geometry for the image formation by a lens
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displacement is also negligible if the thickness of the lens is small, as it is, being
that the lens is thin. This is shown in Fig. 7.15.

Looking at the geometry in Fig. 7.14, we can find the thin lenses equation in
Eq. (7.16) with arguments from geometrical optics. The triangles CDB′ and COF′
being similar, we have

yþ y0

q
¼ y

f
ð7:18Þ

Triangles CDB and DOF being similar as well, we also write

yþ y0

p
¼ y0

f
: ð7:19Þ

Merging the two equations, we obtain

yþ y0ð Þ 1
p
þ 1

q

� �
¼ yþ y0

f
; ð7:20Þ

namely

1
p
þ 1

q
¼ 1

f
;

which is the thin lenses equation. But we can get more from the geometry. As we
see in Fig. 7.14, the length of the image, namely y′, is different from the length of
the object y. The ratio of the two, m = y′/y, is independent of the position of the
object and is called the transversal magnification of the lens. Indeed, taking the
ratio of Eqs. (7.18) and (7.19), we have

m ¼ y0

y
¼ q

p
: ð7:21Þ

We also notice that, under the discussed conditions, the image is inverted (upside
down) compared to the object. In other cases, which we leave to the reader as an

O

Fig. 7.15 A ray through the
center of the lens
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exercise, the image is erect. Equation (7.21) is valid in any case, provided we add
the following sign convention to the list from the preceding section: (5) the
transverse dimensions y of the objects should be taken as positive upwards and
negative downwards, those of the images y′ should be taken as positive downwards
and negative upwards.

The planes perpendicular to the axis through the focuses are called the focal
planes. The focal planes have two important properties that we now find using a
geometrical construction similar to that of Fig. 7.14.

Consider a point source S on the first focal plane at the distance y from the axis,
as in Fig. 7.16. The figure clearly shows that the light from S is transformed by the
lens in a parallel beam forming, with the axis, the angle h given by

tan h ¼ y
f
: ð7:22Þ

In the paraxial rays approximation, the angles are small, and we can write
approximately

h ffi y
f
: ð7:23Þ

The second property of the focal planes is relative to the opposite path direction.
Figure 7.17 shows a parallel beam incident at the angle h with the axis, namely
from a point source at infinite distance in that direction. The beam is focalized by
the lens at the point of the back focal plane at the distance y′ from the axis given by

y0 ¼ f tan h; ð7:24Þ

which becomes, in the paraxial rays approximation,
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Fig. 7.16 Source in the first focal plane at the distance y from the axis
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y0 ffi f h: ð7:25Þ

This is easily understood looking at Fig. 7.17 and is an immediate consequence
of the path reversibility.

7.8 Aberrations

The light waves we have considered up until now have been monochromatic and
perfectly spherical or plane. It will not be surprising to discover that these ideal
conditions are seldom met in practice. Indeed, any difference relative to the ideal
case may be relevant if it is on the order of the wavelength, which, as we know, is
about one half of a micrometer. We can distinguish two types of deviations from
perfection, called aberrations and irregularities. We shall discuss the former in this
section, the latter in the next one.

The study of aberrations in optical instruments is indeed one of the most
important chapters in optics. Every aberration can be controlled and corrected up to
the requested level by using appropriate combinations of optical surfaces and
media. Indeed, the objective lenses of a good microscope, telescope and
photo-camera are composed of several lenses with surfaces of different curvatures
and glasses of different refractive indices. Here, it will be enough to briefly discuss
the most important aberrations. In addition, we shall find a criterion for establishing
when the remaining differences from the perfect shape are so small as to be
irrelevant.

Let us start by considering the consequences of the non-monochromaticity of
light. As a matter of fact, under the majority of circumstances, light is white. In
Sect. 7.5, we found the image of a point source considering the phase velocity of
the wave in the lens. Equation (7.15) shows us that the power of the lens is different
for different wavelengths. Namely, upon exiting the lens, the waves corresponding
to different wavelengths have different curvatures. Their centers fall in different
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Fig. 7.17 Image of a parallel beam incident at an angle
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positions. As a result, a non-monochromatic point source has several (infinite)
images, each of a different color in a slightly different position. This unwanted
effect is known as chromatic aberration. Due to chromatic aberration, the image of
a white point appears as a luminous spot, white in the center, colored on the
borders. The simplest way to correct a chromatic aberration is using two lenses, one
positive and one negative, cemented together one next to the other, made of dif-
ferent glasses. The two glasses (crown and flint, to be precise) have different
dispersion properties and are designed so that the chromatic aberration of one
cancels out that of the other. This can be done exactly for two wavelengths, which
are chosen at the extremes of the spectrum, namely in the blue and the red. This
system is called an achromatic doublet. Its invention should be credited to John
Dolland (UK, 1706–1761), who patented it in 1758. This was almost one and a half
century after Galileo Galilei had given birth to astronomical observations with the
telescope and 82 years after the Cassini-Rømer astronomical determination of the
speed of light. The idea can be brought forward by building a triplet, with which the
chromatic aberration can be corrected exactly at three wavelengths.

In Sect. 7.5, we took the approximation to consider the wave outgoing from the
lens as spherical, but it is not exactly so. In fact, the outgoing wave does not really
have a single center. The lines normal to its surface, namely the rays in an isotropic
medium, do not converge at a single point, but envelope a surface called a caustic.
A section of the surface, which is clearly symmetric about the axis, is shown in
Fig. 7.18. Namely, the rays closer in angle to the axis (paraxial rays) meet at points
of the axis farther from the lens than those farther from the axis (marginal rays), as
shown in the figure. This is the spherical aberration. The aberration is all the more
important the larger the opening angle of the incident wave.

Fig. 7.18 The caustic
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We can easily observe the caustic on a sheet of paper near to the image point
having a beam of light of large angular aperture incident on a lens.

The spherical aberration can be corrected using systems of lenses one next to the
other, properly designed using the aberration theory, and computer codes based on
it.

Astigmatism is an aberration occurring, even with beams of narrow angular
aperture, when the incidence angle is large. To observe the aberration, we should
prepare a narrow parallel light beam and have it incident on the lens at a large angle
with the axis, as shown in Fig. 7.19. If the lens were perfect, all the rays would
converge at a single point in the back focal plane, which is Q in the figure. Indeed,
this does not happen. The figure shows a number of sections along the beam after
the lens. Initially, the section is an ellipse that, moving forward, gradually becomes
flatter up to the point of being a line element. Further forward along the beam, the
section is again an ellipse, whose minor axis gradually grows to become a small
circle. This is called the circle of least confusion. Beyond the circle, the section is
again an ellipse, now with the direction of the major axis, being that the one ahead
of the circle was the direction of the minor axis, and further down, a line segment
normal to the first one.

The coma aberration is a combination of astigmatism and spherical aberration,
which becomes important when the incident beam has both a large angular aperture
cone and an average direction at a large angle with the axis. The name comes from
the shape of the image of a point-source that appears as a blur, resembling a comet.

We shall not discuss further aberrations here, but shall pose the following
problem. The consequence of any aberration is a wave surface that is not perfectly
spherical, but rather differs from that to some extent. Clearly, the smaller this
difference, the smaller the aberration. Well, we shall now see that a value of this
difference exists below which the non-spherical wave cannot be distinguished from
the spherical one. Below this value, the aberration is not observable and, as a
consequence, is irrelevant.

Let us fix our attention on the physical meaning of a wave surface. We have
defined it as the locus of the points at which the phase has the same value.
However, this is a geometrical surface. To give it a physical meaning, we should

Q

Fig. 7.19 Astigmatism
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define the set of operations to be performed to localize it. The most accurate method
for doing that is to employ an interference phenomenon. We produce a “reference
wave,” of which we know the phase to be a function of position and time, and make
it interfere with the wave surface under examination. Looking at the resulting
interference pattern, we can determine the phase difference between the waves, and
hence the unknown phase, from our knowledge of the reference wave. In the
maxima of the interference fringes, the two waves have the same phase (modulo
2p), and in the minima, opposite phases. Suppose now that we change the phase of
the wave under analysis at all the space points by the same quantity Dɸ, without
changing the reference phases. We will see the entire system of fringes rigidly
shifting perpendicularly to their direction. If, for example, Dɸ = p, the dark fringes
will take the place of the luminous ones and vice versa. This is clearly observable.
However, if Dɸ is small enough, the lateral shift of the fringes is so small as to be
unobservable. The limit depends somewhat on the sensitivity of our instrument, but
in practice, a shift of the fringes of one quarter of the distance between two dark
fringes is at the visibility limit. We shall consequently define the minimum
observable phase difference as Dɸ = 2p/4 = p/2.

In conclusion, we are able to determine the phase at each point of a wave within
a precision of a p/2, but not smaller. Symmetrically, if we want to localize a point at
which the phase has a certain value, we can do so only with an uncertainty k/4 in
the direction normal to the wave surface. This means that, physically, the wave
surface is not a geometrical surface, but is defined within a thickness equal to k/4.
Hence, any surface differing from a spherical surface by elevations or depressions
of height smaller than k/4, as shown in Fig. 7.20, cannot be distinguished from the
perfect spherical surface. This statement is called the quarter-wave criterion and
was established in 1893 by John William Strutt, Baron of Rayleigh (UK, 1842–
1919).

In conclusion, if the aberrations of an optical system have been corrected to the
point that the resulting wave surfaces differ from the ideal ones by less than k/4, the
difference is not measurable. We say that the system is optically perfect. As a matter
of fact, “perfection” rarely exists in physics, but it does exist in optics, being a
consequence of the non-zero wavelength.

The quarter-wave criterion has a general validity and we shall use it in different
instances in the subsequent sections.

λ/4

Fig. 7.20 The irregular shape of a wave surface cannot be distinguished from the perfect one if
the differences are smaller than k/4
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7.9 Irregularities

The surfaces of lenses and mirrors must be worked with the precision needed to
avoid deforming the transmitted, or reflected, waves. In these cases, we speak of
irregularities instead of aberrations. It is a question of semantics, the substance of
the problem being the same.

We shall now employ the quarter-wave Rayleigh criterion to evaluate the
maximum value of the irregularities on the surface of a lens for optical perfection.

Consider, for the sake of simplicity, a plane wave normally incident on a plate
with parallel faces of refractive index n1. Let n2 < n1 be the index of the medium
after the lens (if it is air, then n2 ’ 1). Our arguments can be immediately extended
to spherical waves and spherical boundary surfaces. Suppose that the second sur-
face of the plate has an irregularity, say, a bump of height d (Fig. 7.21). The
segment of the wave beyond the plate corresponding to the top of the bump has
traveled a path length longer through its medium by d relative to the segments
outside the bump. On the length d, the velocity was c/n1, while the other parts of the
wave were traveling at the speed c/n2. It follows that the wave surface at the top of
the bump lags behind the rest by a length

d
c=n1

� d
c=n2

� �
c ¼ d n2 � n1ð Þ:

We can then state, for the quarter-wave criterion, that the deformation is not
observable if d n2 � n1ð Þ� k=4, namely if the irregularity is

d� k
4 n1 � n2ð Þ : ð7:26Þ

δ

Fig. 7.21 A surface
irregularity at the interface
between media and the
consequent distorted outgoing
wave surface
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For example, in the case of glass with the typical value n1 = 1.5 immersed in air
(n2 = 1), the condition is

d� k=2: ð7:27Þ

Namely, the irregularity should be corrected at better than about 0.2 µm.
Interferometric methods give us control if this is the case. Notice that the maximum
allowed value for d is that much smaller the larger the index difference (n2 − n1)
between the lens and the medium in front of it. Surfaces satisfying Eq. (7.27) are
called optical surfaces or optically perfect surfaces.

Here, we propose an interesting example. Nature has been unable to work out the
external surface of the cornea, which is the first lens of our eyes, as optically
perfect. Well, she then performed a trick; the first surface facing the air is not the
cornea, but a tear film, whose surface is made perfect by surface tension (and is
periodically renewed by blinking). In this way, the index difference between tear
film (n2 = 1.36) and cornea (n1 = 1.38) is as small as n2 − n1 = 0.02, and the
maximum allowed irregularity of the cornea surface is about 5 µm.

We will just mention here that modern interferometric measurements of the
objective lenses used by G. Galilei in the telescope he developed in 1609 and used
for his astronomical discoveries have shown them to be optically perfect at a single
wavelength (see Sect. 7.14).

With similar arguments, we can establish the tolerable limits for having an
optically perfect mirror surface. Let us consider a plane wave normally incident on
a plane mirror having a small bump of height d, as shown in Fig. 7.22.

The deformation of the reflected wave is clearly 2d. Hence, the surface is
optically flat if 2d � /k/4, namely if

δ

Fig. 7.22 A mirror surface
irregularity and the
consequent distorted reflected
wave surface

7.9 Irregularities 295



d� k=8: ð7:28Þ

We see that the limit is substantially more demanding than it would be for a lens
surface.

7.10 Depth of Field and Depth of Focus

Optical instruments, like lenses and mirrors, and the eyes of living beings are used
to produce images of three-dimensional objects on a two-dimensional sensitive
surface. Let us consider, to be specific, a thin lens. We know that if f is the focal
length of the lens and p is the distance between the lens and the sensitive surface,
only the points in the object space at the distance q, given by the thin lenses
equation in Eq. (7.16), should form a neat image, or, as we say, be in focus. The
images of the points of the objects farther or closer than p will fall in front or behind
the sensitive surface. As a consequence, the images of these points will be small
disks, rather than points, of larger diameters for larger differences from p of the
object point. However, in practice, in every image forming system, there is always a
larger or smaller interval of distances about the nominal value p within which the
images will appear of a good quality. As a matter of fact, both possible residual
aberrations and diffraction, which cannot be eliminated, result in the image of a
point never being a point, but rather a small disk.

We call the above-mentioned range of distances in front of the lens around the
nominal p containing the objects that produce an acceptable image on a sensitive
surface at the distance q after the lens the depth of field. Reciprocally, we call the
interval of distances behind the lens around the nominal q wherein the sensitive
surface can be placed to produce an acceptable image the depth of focus. The two
concepts are different, but closely correlated to one another. So much so that the
term ‘depth of focus’ is often used with both meanings.

Clearly, the definitions just given have a certain degree of arbitrariness.
However, the very fact that light is a wave puts a non-zero lower limit to the depth
of field (and of focus). Indeed, for a given optical instrument and a given wave-
length, it is impossible in principle to establish whether the distances of two point
sources are different or not, if this difference is smaller than a certain value, which
we shall now find.

Let us consider a lens of diameter D and two monochromatic point sources S1
and S2 on the axis at distances p1 and p2 from the lens, respectively. Let k be their
wavelength. The waves emitted by the two sources are spheres of radiuses p1 and p2
when they touch the lens on the axis, as shown in Fig. 7.23. The quarter-wave
criterion tells us that the two waves are indistinguishable if the maximum distance
between them is less than k/4. Under these conditions, the images of S1 and S2 are
not resolved. To find these conditions, we use, once more, Eq. (7.1) with reference
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to the two arcs in Fig. 7.23. Namely, we write d1 ¼ D2= 8p1ð Þ and d2 ¼ D2= 8p2ð Þ.
The quarter-wave criterion gives us the condition

d2 � d1 ¼ D2

8
1
p2

� 1
p1

� �
� k

4
: ð7:29Þ

A useful approximate expression can be written when p1 and p2 are not very
different from one another. In this case, let p be their mean value and Dp the
absolute value of their difference. We can approximate 1=p2 � 1=p1 � Dp=p2 and
Eq. (7.29) becomes

Dp� p2

D2 2k ¼ 2k
a2

where a ’ D/p is the angle under which the lens is seen from the sources, which we
have assumed to be small. In this approximation, the depth of field is

DOF ¼ p2

D2 2k ¼ 2k
a2

: ð7:30Þ

Let us discuss the result. The depth of field depends on two elements. It is
proportional to the wavelength of the light, because the uncertainty intrinsic to the
wave phenomena is larger for larger wavelengths. It is inversely proportional to the
square of the lens diameter, or, in other words, to the solid angle under which the
lens is seen by the object. In general, optical systems include an adjustable circular
diaphragm. Clearly, if we diminish the diameter of the diaphragm, we gain in depth
of field (losing luminosity).
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Fig. 7.23 The waves emitted
by two point sources on the
axis when they touch the lens
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Suppose now that the source S1 is at infinite distance, namely let us take
p1 ! 1. The wave incident from S1 is plane. Hence, the image of S1 falls on the
back focal plane of the lens. We now ask how close we can have another source,
say, S2, to have its image still be on the focal plane. This means that the incident
spherical wave of radius p2 must be indistinguishable from a plane wave. The
answer is given by Eq. (7.29) for p1 ! 1. We have

p2 	 D2

2k
: ð7:31Þ

Any object at a distance above this limit is, for the lens, at infinity. This distance
is called the hyperfocal distance. Once again, the hyperfocal distance is smaller
(closer objects are still in focus when the lens is focused at infinity) when its
diameter is smaller.

Let us consider, as an example, the hyperfocal length of the human eye. One of
the optical elements in the eye, the lens, has a focal length that can be adjusted
(within certain limits). We do that unconsciously, tightening the muscle that
changes its curvature. When the muscle is relaxed, the focal length is at its largest
and the images of far off objects fall on the retina. The question is, until when does
the muscle remain relaxed when the object gets closer and closer? (Indeed, at
shorter distances, the image remains in focus because we unconsciously change the
power o the lens). Note that the human eye has a diaphragm, namely the pupil,
whose opening varies depending on the illumination. Taking a typical D = 2 mm
and, in a round number, k = 0.5 µm, the hyperfocal length is 4 m.

QUESTION Q 7.1. What is the ratio of the hyperfocal distances of two lenses of
diameters 1 mm and 1 cm?☐

In concluding this section, we call the attention of the reader to the fact that the
definitions we gave of depth of field and hyperfocal distance have been based on the
limits imposed by the wave nature of light. In the presence of aberrations, the depth
of field is larger and the hyperfocal length is shorter.

7.11 Resolving Power

Consider a plane monochromatic wave incident on a lens in the direction of the
axis. The lens transmits only a part of the wavefront, namely a spherical cup having
the diameter D of the lens (or of the diaphragm, if smaller). As we know, diffraction
always exists when a waveform is limited. As a consequence, even in the absence
of aberrations, the wave surface after the lens is not exactly spherical with its center
in the focus. Indeed, in the focal plane, we have the Fraunhofer diffraction pattern of
the circular aperture that is the opening of the lens. If we put a white screen on the
focal plane, we do not see a point, but rather the fundamental diffraction pattern,
namely the bright Airy disk surrounded by the very weak rings of the secondary
maxima. In practice, the rings can be neglected under the usual conditions. We
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recall that the radius of the Airy disk, namely the radius of the first dark ring, is seen
from the lens under the angle

C ¼ 1:22
k
D
: ð7:32Þ

Being that k/D � 1, the radius of the disk is

R ¼ 1:22f
k
D
: ð7:33Þ

This radius is usually very small as well, and the Airy disk often appears almost
as a point. This is the case, for example, with the pictures we shoot with our
cameras. In principle, however, the wave nature of light implies that the images of
the objects are not made of points, but of Airy disks. The optical images have an
intrinsic granularity determined by diffraction. This implies that it is not possible to
resolve details smaller than a “grain” diameter.

Let us look more closely at this important issue. Consider two monochromatic
point sources at great distances, sending two plane waves to the lens, one in the
direction of the axis, one at an angle h with it, as shown in Fig. 7.24. The distance r
between the two images, which are on the focal plane, is r = hf. Now, if r is small
enough, the two Airy disks of the two images may overlap so much as to be
indistinguishable from a single disk. We say that the images are not resolved. The
criterion for the limit resolution was given, again, by Lord Rayleigh, and states that
“the images of two point sources of equal intensity are just resolvable when the
center of the diffraction pattern of one falls over the first minimum of the diffraction
pattern of the other.” We have emphasized “of equal intensity,” because when the
intensities are very different, more distance is needed to be able to resolve the
images.

Everything that we have said about plane waves is easily extended to spherical
waves. The only difference is that the image plane is not the focal plane, but a plane
at the distance q 6¼ f beyond the lens. The half aperture angle C given by Eq. (7.32)
does not depend on q and, as a consequence, the radius of the diffraction disk
varies, being equal to 1.22qk/D.

θ
θ f F

σ

δ

D/2

Fig. 7.24 Two incident plane waves, one along the axis, one at an angle h
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Figure 7.25a shows the diffraction intensity profiles for two equal point sources
at the resolution limit. Figure 7.25b is a photograph of the corresponding images.

In conclusion, the images of two point sources of the same intensity are resolved
if they are seen by the lens under an angle larger than C given by Eq. (7.32). We
call the reciprocal of this angle the resolving power of the lens, namely

1
C
¼ D

1:22k
: ð7:34Þ

Hence, the resolving power is higher if the diameter of the lens is larger and if
the wavelength is smaller. Even now, one factor depends on the instrument, one on
the light.

It is convenient to appreciate the orders of magnitude. Consider, for example, the
human eye. Let D be the diameter of the pupil of which we take the typical value to
be D � 2 mm. With k � 0.5 µm, the resolving power is C = 1.22k/D = 0.3 mrad,
which is about 1′. It is then said that the human eye resolves at 1 min. This means
that two points seen under an angle smaller than a minute are not resolved. The
images are formed on the retina, where the sensitive elements are cells of about
2 µm diameter. Indeed, the sensitive elements should be small in order to detect the
details, but it would be of no use to have them smaller than the Airy disk of a point
source. The dimensions of the sensitive elements of our eyes are just these.

QUESTION Q 7.2. What is the resolving power of a telescope having one meter
diameter objective?☐

From the discussion in which we have just engaged, we can answer another
question, namely what do we mean when we talk of a point source? Well, the
answer immediately follows from the above discussion: a point source is a source
seen under an angle smaller than 1.22k/D. Stars, for example, are very large objects,
but they are point-like to our telescopes, because they are very far away and the
angle under which we see their diameter is smaller than that limit.

We conclude the section with a further analysis of what we have established. Let
us go back to the situation shown in Fig. 7.24, in which two plane waves are

(a) (b)

Fig. 7.25 a Intensity profiles of the images of two point sources at the resolution limit;
b corresponding images
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incident on the lens and an angle h with one another. If h < 1.22k/D, the two
sources are not resolved, namely the two wavefronts are not distinguishable.

We have considered a similar situation in Sect. 7.8, in which we exploited
interference to distinguish two wavefronts and established them to be distin-
guishable if the maximum distance between them is larger than k/4 (quarter-wave
criterion). Here, we found a different criterion based on diffraction. Let us compare
the two criteria.

Figure 7.24 shows that the maximum distance between the two wavefronts is
d = Dh/2. We stated that they are distinguishable if h > 1.22k/D, namely if

d	 1:22
k
2
¼ 0:61k: ð7:35Þ

We conclude that the diffraction-based criterion is less sensitive than the
interference-based criterion by a factor of 2.44. This is a consequence of having
now considered only the central maximum of the diffraction pattern, neglecting the
rings. This, however, allows us to use white light, while the interference-based
methods require monochromatic light.

7.12 Nature of the Lens Action

In Sect. 7.5, we saw that the action of a lens on a light wave is to change the form of
the wave surface. This is the result of the phase velocity in the lens being different
from that in the surrounding medium and of the path length inside the lens being a
correct function of the distance from the axis. An in-depth analysis will now allow
us to understand the fundamental aspects of the processes leading to the image of a
point-like object (and of any object, by generalization). We shall then be able to see
how the process can be implemented with means different from those of a lens.

Consider a plane monochromatic wave normally incident on a thin lens, which
we take, to be specific, as plano-convex. Let R be the radius of its second surface
and d its thickness (in the center). We take the origin of the reference axes in the
center of the lens, the z-axis on the optical axis and the x and y axes on the lens
plane, as in Fig. 7.26. Let n be the refractive index of the lens and let the lens be
immersed in air (refractive index equal to 1). The electric field of the incident wave
can be written as

E ¼ E0ei xt�kzþ að Þ ¼ E0eiaei xt�kzð Þ; ð7:36Þ

where a is the initial phase and the quantity Ai ¼ E0eia is the complex amplitude of
the wave. Here, we consider the lens to be a phase diaphragm. Indeed, the lens is
transparent and does not change the absolute value of the amplitude; it has a radially
varying thickness, and consequently changes the phase as a function of the distance
from the axis q. The amplitude transmission coefficient is a function of q that we
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call T(q). Let us find it. The path of the wave runs partially through air and partially
through the glass. The latter, d in the figure, is a function of q. As usual, the angles
are small, and we can use Eq. (7.1), giving us d ¼ q2= 2Rð Þ. The phase delay Dɸ
introduced by the lens at q is then

D/ qð Þ ¼ kn d � dð Þþ kd ¼ k n� 1ð Þ q
2

2R
þ knd: ð7:37Þ

Calling Dɸ0 = knd the phase delay in the center, the complex amplitude at the
exit is

Ao qð Þ ¼ Aie
�i D/0 þ kq2

2
n�1
R

� �
: ð7:38Þ

Clearly, the effect of Dɸ0 is to introduce a phase delay independent of q that is
just like changing the initial phase everywhere, and is consequently immaterial in
the image formation process. The amplitude transmission coefficient is the ratio
between the amplitudes after and before the diaphragm. Hence, it is

T qð Þ ¼ e�i D/0 þ kq2

2
n�1
R

� �
:

Here, we recognize the expression of the focal length in Eq. (7.15), which, in the
present case, is f ¼ R= n� 1ð Þ, and write the transmission coefficient as

T qð Þ ¼ e�iD/0e�ikq
2

2f : ð7:39Þ

We have conducted our reasoning using a particular thin lens, but the conclusion
in Eq. (7.39) is valid for any of the shapes of Fig. 7.8, as is easily established.

ρ

δ

OC

R

zd

Fig. 7.26 A lens like a phase
diaphragm
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In conclusion, to obtain the focalizing effect, and the image formation as a
consequence, an instrument must produce a phase delay proportional to the square
distance from the axis.

A lens produces a phase delay by having a thickness function of the distance
from the axis. The same effect can be reached with a transparent plate or cylinder of
constant thickness, but with a refractive index varying proportionally to q2.
Figure 7.27 shows such a cylinder and two parallel beams incident at different
angles. Such an element is called a graded index lens, or GRIN.

Nature employs this principle for the eyes of some aquatic insects and crus-
taceans. In water, in fact, the difference between the refractive indices outside and
inside the eye may be too small to produce appreciable deviations of the rays by the
curvature of the eye surfaces. By 1891, Sigmund Exner (Austria, 1846–1926) had
already described the lateral eyes of the horseshoe crab Lumulus polyphemus. The
eye is composite, being an array of elementary imaging elements, called ommatidia,
as shown in Fig. 7.28. Each ommatidium is a graded index lens with a focal plane
at its end where the light sensor is located.

GRINs have several applications in modern technology as well. They are par-
ticularly useful where many very small lenses need to be mounted together on a
plane or other surface. This is the case, for example, with photocopiers and
scanners.

n

ρ

Fig. 7.27 A graded index lens and its effect on light beams incident in different directions. On
the left panel, the refractive index as a function of the distance from the axis

Fig. 7.28 Scheme of the
composite eye of the horse
shoe crab, showing the GRIN
elements and the sensors
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7.13 Magnifying Glass

Optical instruments are used to observe images as enlarged or with better resolution
than could be obtained with the naked eye. In this section and in the subsequent
two, we shall discuss the principles of the three basic instruments: the magnifying
glass, the dioptric telescope and the microscope. Indeed, magnification and reso-
lution are the two basic properties of any optical instrument. Both must be properly
considered. For example, it useless to magnify a photograph at increasing levels, in
hopes of seeing the leaves on very far trees. Even when the granularity of the film
can be ignored, above a certain magnification, the images of the details that we
magnify become blurred, because we are already observing the Airy disks, which
we keep magnifying as well.

The light waves emerging from an optical instrument enter into the eye of the
observer to produce the final image on his/her retina. Consequently, in any case, the
observer’s eye is an integral part of the optical system. Here, we can think of the
eye as being a converging system of lenses, one next to the other, and a sensitive
film, namely the retina. The system is equipped with a pupil, having a diameter
varying, depending on the illumination conditions, between about 2 mm and 1 cm.
The focal length of the eye can be adjusted within certain limits. Some quantitative
data, with reference to a “normal” eye, will be useful. When the system is relaxed,
the retina is on the focal plane, and we see sharp images of objects at distances
equal to or larger than the hyperfocal distance, which we saw to be about 4 m. The
eye can be adjusted to focus on retina objects as close as 150 mm, but below
250 mm, sight becomes difficult. To see the details of a small object, the best
distance at which to look at it is about 250 mm. Consequently, the least distance of
distinct view (LDDV) or, alternatively, the reference seeing distance (RSD), is
defined as Ld = 250 mm.

Let us consider the magnifying glass, which is a simple convergent lens, of focal
length f, placed before the eye that we use to look at small objects. Let y be the size
of the object. If we put it in the focal plane of the lens, the waves emerging from the
lens are plane and the eye can look in its relaxed state without effort. As shown by
Fig. 7.29, under these conditions, we see the object under an angle h0, which,
considering it to be small, is given by h0 ffi y=f . We now compare this angle with
the angle under which we would see the object if it were at the shortest distance for
a distinct view, which is, obviously, h ffi y=Ld .

Clearly, h′ > h if the focal length of the lens is smaller than Ld or, in other words,
if its power is larger than about four diopters. We define the angular magnification
of the magnifying glass as the quantity

J ¼ h0

h
¼ Ld

f
: ð7:40Þ

In practice, considering that the diameter of a magnifying lens is typically
several centimeters, it is difficult to produce lenses with very short focal lengths,
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say, smaller than one centimeter. The most common magnifying glasses have
dioptric power between 10 and 40 diopters, and consequently magnify between 2.5
and 10 times.

7.14 Telescope

The telescope, as the name suggests, is an instrument intended for the observation
of distant objects. There are basically two types of telescope: the catoptric tele-
scope, consisting of two lenses separated by a tube, the objective and the eyepiece,
and the reflecting telescope, having a converging mirror in place of the objective.
Here, we shall only discuss the former.

From the historical point of view, the origins of the telescope are unknown, but
they are certainly to be found outside the academic world. Very likely, some
spectacle maker, while testing the quality of his lenses, looking through two of them
one next to the other in his hands, noticed that objects far away appeared magnified.
Leonardo da Vinci (Italy, 1452–1519), in the Atlantic code, already mentions
“spectacles to make the moon larger,” and in 1538, Girolamo Fracastoro (Italy,
1478–1553) writes: “If somebody looks through two spectacle lenses, one above the
other, he will see everything much larger and closer”. The first written record of a
magnification system of two lenses, one positive and one negative, is found in the
1589 edition of the treatise “Magia naturalis” by Giovanni Battista Della Porta
(Italy, 1535–1615). In 1634, I. Beeckman (the rector of the Latin School of
Dordrecht, Holland) wrote that a spectacle-maker, from which he was receiving
lectures in optical technology, had reported to him of a telescope brought to the
Netherlands from Italy that bore the date of 1590. Subsequently, telescopes were
being built in the Netherlands by no later than 1604. These telescopes were basi-
cally toys, sold at fairs for amusement.1

Galileo Galilei (Italy, 1564–1642) was not the inventor of the telescope, but he is
the originator of the telescope as a scientific instrument. As soon as news reached

y

y

θ
θ '

f

250 mm

Fig. 7.29 An object view directly at the LDDV and through a magnifying glass

1For historical details and documents, see, e.g., A. Van Helden, The invention of the telescope,
Trans. Am. Phil. Soc., New Ser. Vol. 67, n. 4, pp. 1–67 (1977).
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him in 1609 of the Dutch gadgets, he understood he might be able to transform the
idea into a powerful scientific instrument. It was hard work, done without theo-
retical support in an experimental trial and error process, guided by logic and
profiting of the glass technology that was particularly advanced in Venice. He
finally succeeded in building and testing telescopes of magnification of 20 and even
30 and with diffraction limited lenses. The latter specification is of fundamental
importance for guaranteeing the resolving power corresponding to the diameter of
the lens, but required an ad hoc development of sophisticated technologies and
testing procedures.

The theory of the telescope is credited to Johannes Kepler (Germany, 1571–
1630). In 1610, having received one of the telescopes made by Galilei and used it
for astronomical observation, Kepler thought he had to explain how it worked.
Within a few months, Kepler published a treatise in 1611, Dioptrice, in which he
not only mathematically explained the operation of the Galilei telescope, but, more
generally, developed what we now know as geometrical optics. Among other
things, he invented a telescope consisting of a positive objective and a positive
eyepiece (the Keplerian telescope, also called an astronomical telescope), while the
Galilean configuration, as those of all its predecessors, was made of a positive and a
negative lens. We shall now describe the principles of the Keplerian telescope.

Like the magnifying glass, the telescope increases, by much larger factors, the
angle under which the objects are seen. Let us start from the magnifying glass,
whose magnification, as we saw, is limited by the maximum dioptric power feasible
in practice. Note that the image seen by the eye through the glass is virtual. In order
to obtain higher magnification, even with somewhat greater focal lengths, we might
think of looking instead at a real image. Figure 7.30 shows how this idea might be
implemented. The object is the segment S1S2 at the distance p from the lens. Its real
image S′1S′2 is at the distance q beyond the lens. If we observe this image from, say,
a distance r, we see it under the angle h′ � y′/r.

Let us compare this situation to that which would occur without the lens. The
eye would see the segment S1S2 under the angle h � y/(p + q+r). Considering that
we are now looking at far away objects and, hence, it is p 
 q + r, and we can
write in a good approximation h � y/p = y′/q. In conclusion, the angular magni-
fication under these conditions is
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Fig. 7.30 Geometry for looking at the real image of a lens
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J ¼ h0

h
¼ q

r
: ð7:41Þ

We see that the smaller the distance r from which we observe S′1 and S′2, the
larger their angular separation. However, in practice, we cannot bring our eye too
close, because it will not be able to adjust itself and the image will be blurry. We
can solve this problem by employing, beyond the converging lens considered so far,
which is called the objective, a second lens called the eyepiece, which we position
between the real image of the objective and the eye. The distance between the
lenses, namely the length of the instrument, depends, in general, on the distance of
the object to be observed (and on the sight of the observer). The two lenses are
soldered at the extremes of two tubes. One of the tubes enters into the other at their
open ends. We then adjust the length, sliding one tube inside the other. We shall
limit the discussion to the case of objects at infinity, namely the case of astro-
nomical observations, in which, as we shall now see, the distance between eyepiece
and objective is fixed. Figure 7.31 shows this situation.

Under these conditions, the objective produces the image on its back focal plane,
namely at the distance fo equal to its focal length. We position the eyepiece, of
which we call fe the focal length, such that its first focus coincides with the second
focus of the objective. In this way, the eye is reached by a plane wave, adjusted to
infinity and relaxed. Note that the diameter of the eyepiece is designed to intercept
the complete beam transmitted by the objective, and no more. Indeed, making it
larger would be useless, and making it smaller would reduce the resolving power, as
we shall now see.

We are now in a situation similar to that of Fig. 7.30, with the eyepiece in the
place of the eye. The angular magnification is then given by Eq. (7.41) posing
q = fo and r = fe, namely it is J = fo/fe. For the similarity of the two triangles in
Fig. 7.31, we can also write the magnification in terms of the diameters Do and De

as

J ¼ fo
fe
¼ Do

De
: ð7:42Þ
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Fig. 7.31 The geometry of the Keplerian telescope
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In conclusion, the telescope allows us to observe two point sources under an
angle larger than that with which they would be seen with the naked eye by the ratio
of the diameters of the objective and the eyepiece. This is not sufficient, however, to
claim that the two points are perceived as distinguished, or, as we say, resolved. As
we saw in Sect. 7.11, to be resolved, the two points must be seen under an angle
larger than

C ¼ 1:22
k
Do

: ð7:43Þ

The resolving power of the telescope is larger the smaller this angle is, and
consequently is defined as equal to its reciprocal

1
C
¼ Do

1:22k
: ð7:44Þ

We see that the resolving power is proportional to the diameter of the objective.
The reason for this is that the objective transmits only a section of the incident
wave, which is a circle of diameter Do, producing diffraction. Clearly, in order not
to degrade the resolving power, the entire wavefront transmitted by the objective
must reach the retina of the eye (or the sensitive surface) without further limitations.
As we already noticed, and as seen in Fig. 7.31, the eyepiece is designed to transmit
the entire front. It is also evident that it is useless making the diameter of the
eyepiece larger than the pupil of the eye. These considerations fix, for a given
diameter of the objective, the minimum magnification of a telescope.

To fix the orders of magnitude, consider that the diameter of the pupil with good
illumination during the day is 2–3 mm, and in the dark at night, 6–8 mm. Consider,
for example, a telescope for astronomical nocturnal observations with an objective
diameter Do = 100 mm. Its minimum angular magnification is about 15.

In comparison with the naked eye, the resolving power of a telescope is larger in
the ratio of the diameters of its objective and the pupil of the eye. As objectives with
diameters on the order of meters can be manufactured, it is clear that resolving
powers hundreds of times larger than that of the eye can be reached. Consider, for
example, a quite small objective of Do = 100 mm. Its resolving power is 1.22k/Do

that, with k = 0.5 µm, is equal to 6 µrad, which is about one arcsec. The large
astronomical telescopes have a mirror in place of the objective, for which the same
arguments hold. Mirrors can be produced, in practice, with much larger diameters,
up to many meters, than the lenses.

Clearly, the entire above discussion holds under the hypothesis that objective
and eyepiece are diffraction-limited, namely optically perfect. All the aberrations
should be corrected at this level. This is achieved by designing systems of lenses.
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7.15 Microscope

Like the telescope, the compound microscope is composed of an objective and an
eyepiece, but unlike the telescope, is designed to magnify very near, small objects.

The far objects, like stars, are seen through the telescope at definite angles. Their
sizes and their distances are not directly measurable. As a matter of fact, astron-
omers always measure the angles between the different heavenly bodies.
Contrastingly, in the case of the microscope, the sizes of the objects are to be
defined precisely, while the angles under which they are seen may vary substan-
tially when the objects are approached or moved away even slightly. Note, in
addition, that in the microscope, the angles between the rays may be large.
Consequently, we cannot use the small angle approximation making the angles
equal to their sines or tangents, as we often have done.

We take here the approximation of considering both the objective and the
eyepiece as being thin lenses. They are not, but, as in the case of the telescope, this
simplifying hypothesis is enough for us to appreciate the operational principles.
Figure 7.32 represents the system from the geometric optics point of view.

The object of transverse dimensions y is positioned a little beyond the focal
plane of the objective, the focal length of which we indicate with fo, and we can
write p � fo. The objective forms the image at the distance q. Consequently, its
transverse dimensions are y′ = yq/p = yq/fo.

The objectives have small diameters, on the order of a millimeter, and short focal
distances, producing a sizeable magnification. In this case too, the real image
formed by the objective is seen through the eyepiece, which is located beyond the
image at a distance equal to its focal length fe. Under these conditions, it produces a
plane wave that can be seen without effort by a relaxed eye. The eyepiece produces
a further magnification. Indeed, the image is seen under the angle h′ given by

tan h0 ¼ y0

fe
¼ y

fo

q
fe

We now compare this, similarly, but not exactly, to what we did for the mag-
nifying glass, this tangent with the tangent of the angle under which we would have
seen the object without the microscope at the shortest distance of distinct view
Ld = 0.25 m, namely tanh = y/Ld. The magnification of the microscope is then
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Fig. 7.32 The geometry of
the compound microscope
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J ¼ tan h0

tan h
¼ Ld

fo

q
fe
: ð7:45Þ

The magnification is the product of two factors. The first one, Ld/fo, is due to the
objective, the second one, q/fe, to the eyepiece.

To realize the orders of magnitude, let us consider, for example, an objective of
focal length fo = 2 mm and an eyepiece with fe = 15 mm. If we take a typical value
q = 150 mm, the magnification of the objective is 125 and that of the eyepiece is
10, for a total of 1250.

As should be obvious by now, in order to see very small details, we need to have
an adequate resolving power, beyond magnification. Resolving power is, for the
microscope, the smallest distance R between two points at which they are seen as
distinct. As we already stated, the angles under which the objects are seen by the
microscope are not small in general, and we cannot express R as the product of the
angle C given by Eq. (7.32) times the distance p at which the object is located. It is,
however, useful to start from such a small angle approximation, as well as seeing
the difference with the correct result. In this rough approximation, the minimum
distance between two distinguishable point objects at the distance p is
R � 1:22kp=D, where D is the diameter of the objective. It is usual to express R as
a function of the angle a under which the object sees the radius D/2 of the objective.
This angle, which we are considering to be small, is approximately a � D= 2pð Þ,
and we have

R � 1:22k
2a

¼ 0:61k
a

:

Let us now find the correct expression, also valid when ɑ is not small. Let us
consider two point sources such as A and B shown in Fig. 7.33 and let ask ourselves
what is the minimum distance R between them so as to have their images resolved.
The figure shows the circular waves produced by A and B at the moment they touch
the lens. As we discussed at the end of Sect. 7.11, the optical system can distinguish
the two waves, provided their maximum distance is d > 0.61k, as in Eq. (7.35).

We see in Fig. 7.31 that, considering that R is small anyhow, the distances from
A to O and B to O are practically equal, and consequently, the two waves reach
O contemporarily. In that instant, their separation is a maximum near the edge of
the lens, namely it is AC–BC. This distance is equal to R sina. We then have

R ¼ 0:61k
sin a

;

which is now exact, reducing to the previously found expression for small angles,
namely for sin a � a.
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A “trick” to increase the resolving power of the microscope is to interpose a drop
of oil between the objective and the object, with refractive index of, say, n. Under
these circumstances, we must substitute the wavelength in the oil in the formula we
just found, namely k/n, in place of k, which would be in a vacuum. Finally, the
resolving power of the microscope is

R ¼ 0:61k
n sin a

: ð7:46Þ

The quantity

NA ¼ n sin a: ð7:47Þ

is called the numerical aperture of the objective.
R is the minimum distance between two object points to be resolvable. Its

reciprocal, namely R−1, is the resolving power of the microscope. Let us look at the
orders of magnitude. Since n is never larger than about 1.5 and sina is smaller than
one, with k = 0.55 µm, we can reach, under the best conditions, a resolving power
of R�1 ¼ 1=0:2ð Þlm�1. We see that we can resolve at better than half a
wavelength.

The resolving power can be increased by decreasing the wavelength of the
employed radiation. This explains the use of electronic microscopes, which employ
electron beams with wavelengths thousands of times smaller than light.

What we have stated is valid only if the aberrations of the objective and the
eyepiece are corrected at the diffraction limit. This cannot be done with thin lenses.
Both objectives and eyepieces are complex optical systems containing many optical
surfaces (up to a dozen for a good objective).
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Fig. 7.33 Geometry for two
point sources near one another
and the objective lens
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7.16 Photometric Quantities

An important chapter of optics deals with quantities that are related to the char-
acteristics of human vision, called photometric quantities. An “average” human eye
can sense electromagnetic radiation in a “window of visibility” extending in
wavelength from about 380 to 780 nm. Within this interval, the visual perception
for a given energy flux entering into the eye depends on the wavelength. We shall
define a sensitivity function that is substantially the ratio between the visual sen-
sation and the energy collected by the retina. The eye sensitivity function is not an
objective physical quantity, but contains physiological elements as well. First of all,
it is very different under daylight conditions and at low light levels, such as those
during the night. This is because different types of sensor cells are responsible for
the two types of vision, called cones and rods, respectively. Under low levels of
luminance, vision is provided by the rods, which are more sensitive but colorblind.
We do not see colors at night. This is called scotoptic vision. Under daylight
conditions, photoptic vision, as it is called, is provided by the cones (a more precise
definition will be provided later on). We have three types of cones, with peak
sensitivity in three different regions of the spectrum, providing us with the per-
ception of colors. The maximum sensitivity is at 437 nm for the “blue” cones, at
533 nm for the “green” cones, and at 564 nm for the “red” cones (as they are so
called, even if peak sensitivity lies more in the yellow than in the red). We shall
only deal with photoptic vision in the following.

In addition, the sensitivity function varies from individual to individual, and
also, for any given individual, as a function of fatigue, health status, age, etc.
However, a standard mean sensitivity function of the wavelength, V(k), has been
determined to be an average based on several measurements with light of different
wavelengths on “normal” individuals at rest and with eyes adapted at the daylight
level. This function is shown in Fig. 7.34. Its maximum is in the green at
k = 555 nm corresponding to 540 THz frequency. Notice, for example, that eye
sensitivity is two orders of magnitude smaller both in the red and the violet than in
the green, meaning that, in red and blue, we need a hundred times or so more
incoming energy than in green for the same level of perception. We shall come to
the right scale of the diagram soon.

In the following, we shall consider two sets of quantities, which are in one to one
correspondence with one another. The corresponding units are related by the
photoptic eye sensitivity function. The physical properties of light, and, more
generally, of electromagnetic radiation, are measured in radiometric units, such as,
for example, the energy flux (or radiant power) U. The corresponding photometric
quantities, such as, for example, the luminous flux UL, are measured in photometric
units that take into account the sensitivity function.

Consider a point light source in a transparent, homogeneous, isotropic and
indefinitely extended medium. Under these conditions, the wave surfaces are spheres
with centers in the source. The energy transported by the waves crosses surfaces
whose area grows as the square of the distance from the source r. Consequently,
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the wave radiant intensity, which is the energy flux through a surface divided by its
area, decreases as 1/r2. Since the energy propagation directions are radial, the energy
flux is the same through all the sections of a given solid angle with a vertex in the
source. We can then talk of the flux dU sent by the source in the solid angle dX. If dr
is the normal section of dX at the distance r, the energy intensity of the wave at the
distance r is, by definition,

I ¼ dU
dr

¼ dU
r2dX

¼ J
r2
;

where we have introduced the proportionality constant

J ¼ dU
dX

; ð7:48Þ

which depends on the source alone and is greater the greater the power emitted by
the source. J is called the radiant emission intensity of the source (not to be
confused with the wave intensity). Its physical dimensions are a power per unit
solid angle and its measurements units are W/sr.

The corresponding photometric unit is the luminous intensity of the source,
namely

JL ¼ dUL

dX
: ð7:49Þ
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Fig. 7.34 Human eye standard photoptic sensitivity function (left-hand ordinate) and luminous
efficacy (right-hand scale) versus wavelength. Note the logarithmic vertical scale
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In the general case of non point-like sources, the emission is not generally
isotropic, and J and JL are functions of the emission direction.

The luminous intensity is one of the seven base quantities of the SI. Its unit is the
candela, with the symbol cd. The other photometric units are derived from the
candela. The definition is:

The candela is the luminous intensity, in a given direction, of a source that emits
monochromatic radiation of frequency 540 THz and has a radiant intensity in that
direction of 1/683 W per steradian.

Note that 540 THz corresponds to the maximum of V(k), namely to k = 555 nm.
As a historical curiosity, the “candela” comes from the original, and now obsolete,
definition. One candela was defined as the luminous intensity emitted by a plum-
ber’s candle of specified dimensions and chemical composition. This candle was
similar to those used by plumbers in the XIX century to melt the lead solder when
joining water pipes. The value of 1/683 W sr−1 in the present definition was chosen
to have the new candela be as close as possible to the old one.

A connected photometric quantity is the luminous flux. The unitary luminous
flux is the flux sent in one steradian solid angle by a source having the light
intensity of one candela. The unit is the lumen, with the symbol lm. Its definition
then follows from the definition of the candela. It can be explicitly written as: a
monochromatic light source emitting a radiant power of (1/683) watt at 555 nm
has a luminous flux of one lumen (lm).

Note that a source of luminous intensity of 1 cd isotropically emitting in the
entire solid angle gives a luminous flux of 4p lm = 12.57 lm.

Spectral luminous efficacy is the ratio between any photometric quantity and the
corresponding radiometric quantity as a function of wavelength. It is usually
defined as the ratio between the photometric flux and radiant power in the same
solid angle, namely as

g ¼ UL

U
: ð7:50Þ

Its measurement unit is the lumen per watt (lm/W).
It follows from the definition of the candela that the spectral luminous efficacy

for monochromatic radiation of wavelength 555 nm (or frequency of 540 THz) is
exactly, namely by definition, 683 lm/W. The right vertical scale of Fig. 7.34
allows one to read the curve of luminous efficacy as a function of the wavelength.

Consider, for example, an incandescent light bulb, consisting of a glass bulb
containing, in a vacuum, a wire filament that is brought to high temperature by the
passing of an electric current through it. The bulb was invented by Thomas Alva
Edison (USA, 1847–1931) in 1879. These bulbs, after becoming commercial at the
beginning of the XIX century, have been the dominant electric light for more than a
century. The efficacy of an incandescent lamp is typically 16 lm/W, meaning that a
radiative flux of 1 W emitted in a given solid angle corresponds to a luminous flux
of 16 lm. Let us consider a lamp of luminous intensity of 40 cd, and let us assume,
in a rough approximation, that it emits isotropically. The luminous flux in the entire
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solid angle is then 4p � 40 � 500 lm, while the absorbed electric power is
500/16 = 31 W. Incandescent bulbs are presently being replaced by light sources of
much higher efficacy, like fluorescence bulbs and LEDs, which have typical effi-
cacy levels of 50–100 lm/W.

When we consider an image on a surface like the retina or the film in a photo
camera, the page of a book we are reading or the computer screen, an important
quantity is the illuminance of the surface, which is the luminous flux incident on the
unit area of that surface. Let dS be a surface element, not necessarily normal to the
light propagation direction, and dUL be the luminous flux through that element.
Illuminance is defined as

EL ¼ dUL

dS
: ð7:51Þ

The measurement unit of illuminance is the lux, which is one lumen per square
meter, lm m−2. Namely, one lux is the illuminance of a surface of one square meter
receiving a luminous flux of one lumen. For example, the illuminance under a full
moon is about 1 lx, under home lighting, between 30 and 300 lx.

The radiometric quantity corresponding to the illuminance is the irradiance,
which is the radiant power (or energy flux) per unit area of the surface, namely

E ¼ dU
dS

: ð7:52Þ

The irradiance is measured in watts per square meter (Wm−2).
Consider now a luminous source of non-zero surface. Let dS be an element of its

surface. Let dUL be the luminous flux emitted by dS in the solid angle dX about a
direction forming the angle h with the normal n to dS, as shown in Fig. 7.35.

It is experimentally found that, for many sources, dUL is approximately pro-
portional to dX and to the projection of dS on the normal to the considered emission
direction, namely to dr = dS cosh. We then have

dUL ¼ BdS cos hdX: ð7:53Þ

θ
ΩddS

nFig. 7.35 Geometry of light
emission by an element of the
source surface
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If the mentioned relation was of strict proportionality, the quantity we have
called B would be constant for the varying emission direction h. Such a source is
said to be a lambertian source. In practice, for the majority of sources, B is not
strictly constant, but varies slowly with h. In any case, this quantity, namely

B ¼ dUL

drdX
¼ dUL

dS cos hdX
: ð7:54Þ

is called the luminance in the considered direction of the source surface element.
The complete definition is as follows.

The luminance is the luminous flux emitted (directly or scattered) in a certain
direction per unit solid angle by the surface having unitary area projection on the
normal to the considered direction.

The measurement unit of the luminance is the candela per square meter, namely
cd m−2, which is called the nit (nt), from the Latin niteo, meaning ‘shining.’ For
example, the luminance of a computer display typically ranges between 100 and
500 cd m−2. As another example, the surfaces of LEDs that are on the order of a
square millimeter have luminance values ranging from the thousands to several
millions cd m−2.

We can now say that a photoptic vision regime is defined as the presence of
luminance levels larger than 3 cd m−2.

The radiant quantity corresponding to the luminance is the radiance.
QUESTION Q 7.3. Consider a 100 W incandescent light bulb giving a luminous

flux of 1600 lm. Assume the light to be emitted isotropically. (a) What is the
luminous efficiency of the bulb? (b) What is the illuminance on a desk located
2.0 m below the bulb? (c) Is the vision from the desk photoptic? (d) What is the
luminous intensity of the bulb?☐

An example of a lambertian source is the moon. Indeed, the disc of the moon
appears uniformly luminous. Let us consider two surface elements of the same
apparent areas, such as those shown in Fig. 7.36. We draw one of the elements near
the center of the disk. Its area is equal to the projected area. The element sends the
light received from the sun to our eyes and scattered in the direction normal to the
moon’s surface. The other element in the figure is closer to the border. The area of
the emitting surface is larger than the apparent area by the factor l/cos h. As we see
it with the same brilliance, we must conclude that the light emitted (scattered, in this
case) at the angle h is proportional to cos h.

Several of the most common furnishing lamps are lambertian as well. To achieve
that, architects enclose the light bulb in uniformly diffusing glass surfaces.

As we said, the measurement unit for luminance is the nit. To get an idea of its
value, consider that the luminance of the moon’s surface is 2.5 knit, while that of
the clear sky during the day is about 10 knit and that of the sun’s surface 1.5 Gnit
(do not look at it).

Table 7.1 summarizes the photometric and radiometric quantities and their units.
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7.17 Properties of Images

The purpose of the eyes and of optical instruments is the formation of an image.
The final image falls on a sensitive surface, such as the retina, in the case of the eye,
and photographic film or an electronic image sensor, in the respective cases of older
and more modern models of photo camera.

We can collectively call all of them image sensors. Their purpose is to detect and
convey (to our brain or to the electronic memory of the camera) the elements that
compose the image. Every sensor must collect a minimum amount of energy to
detect an image element. As we already mentioned several times, this implies that
the incident energy flux must be integrated over a non-zero area over a non-zero
time interval.

As a consequence of the former issue, the image, as recorded by any sensor, is
made of discrete picture elements, or pixels, for short. The consequence is a limited
resolving power for the image sensor, namely an upper limit on the detectable
spatial frequency. Consider, for example, taking a picture of a grating of alternated
black and white strips. Clearly, in the recorded image, the strips will not be resolved
if their spatial period is smaller than twice the pixel size.
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Fig. 7.36 Surface elements
of a Lambertian source

Table 7.1 Photometric and radiometric quantities and units

Photometric unit Dimensions Radiometric unit Dimensions

Luminous flux lm Radiant flux W

Luminous intensity lm sr−1 = cd Radiant intensity W sr−1

Illuminance lm m−2 = lux Irradiance W m−2

Luminance cd m−2 = nit Radiance W sr−1 m−2
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Examples of elementary sensors are as follows. The sensitive elements of our
retina, as already mentioned, are the cones and the rods, of about 2 µm diameter.
The image sensors of digital cameras are arrays of solid-state electronic elements
(of the CCD and CMOS types) that transform the energy deposited by the incoming
light into an electric charge pulse, which is subsequently amplified and processed
by microelectronic circuits. The typical size of a pixel is 2–10 µm, corresponding to
a resolving power of 500–100 mm−1. The photographic emulsion consists of silver
halide crystals dispersed in gelatin, coated onto a substrate of glass or film. The
light-sensitive elements are the halide grains. After exposure, the emulsion is
treated in a series of chemical processes that transform the grains that have received
sufficient luminous energy into metallic silver. Consequently, the grain size
determines both the sensitivity and the resolution, one inversely correlated to the
other. Emulsions for normal photographic purposes produce pixel sizes ranging
from 0.5 to 2 µm, corresponding to resolutions from 2000 to 500 lines per mil-
limeter. As we shall see in the next chapter, this is not sufficient for the recording of
holograms. For this purpose, holographic emulsions with grain sizes between 10
and 100 nm (spatial frequency up to 100,000–10,000 mm−1) are produced.

Once the area of the pixel is defined, the sensor element still needs to integrate
the incoming irradiance (or illuminance, in the case of the eye) over a certain time
interval Δt, called the exposure time. The radiometric quantity is the exposure,
which is

e ¼
Z
Dt

E tð Þdt: ð7:55Þ

Being that it is an energy, it is measured in joules (J).
The photometric quantity, which is relevant for the human eye, is the photo-

metric exposure

eL ¼
Z
Dt

ELðtÞdt; ð7:56Þ

which is measured in lux times second (lx s).
The sensitivity of a sensor is the minimum energy it needs to produce a signal.

This is called its energy threshold. For example, the energy threshold of the rods of
the human eye is, in order of magnitude, 10−17 J, corresponding to some 30 pho-
tons being absorbed. The thresholds of the electronic sensors (both CCD and
CMOS) range around similar values. The threshold of the photographic emulsion
depends strongly on the grain size, typically being between two and three orders of
magnitude higher.

With a complex instrument, beyond the final image, which we have discussed,
other intermediate images, real or virtual, exist inside the instrument itself. Think,
for example, of the telescope or the compound microscope. These intermediate
images produced by the first optical elements (the objective in the above examples)
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are also the sources of light waves for the subsequent elements of the instrument
(the eyepiece in the examples). For these intermediate sources, the most important
quantity is the luminance for the eye and the radiance for the instruments.

We shall now discuss the illuminance and luminance of the images of light
sources (which may also be illuminated objects, obviously). The situation is
completely different for extended sources endpoint sources.

Let us consider an extended source in front of a lens. In Fig. 7.37, y represents
the diameter of the source, which is at the distance p from the lens. Let q be
the distance of the image beyond the lens and y′ its diameter. As we know,
y′/y = q/p. Consider now the areas, normal to the axis, of corresponding elements of
source and image. Let us call them r and r′, respectively. Clearly, their ratio is

r0

r
¼ q2

p2
: ð7:57Þ

Calling X and X′ the solid angles under which the lens is seen from the source
and from the image, respectively, we have that

Xp2 ¼ X0q2 ð7:58Þ

and hence, for Eq. (7.57), we have

Xr ¼ X0r0 ð7:59Þ

Calling UL the luminous flux sent by the source to the lens, namely in the solid
angle X, the luminance of the source is

B ¼ UL

Xr
: ð7:60Þ

Similarly, the luminance of the image is

B0 ¼ U0
L

X0r0
: ð7:61Þ

where U′L is the luminous flux transmitted by the lens. If the lens were to transmit
the entire incident flux, U′L would be equal to UL. In general, it is somewhat smaller

Ω

y

Ω' 
p q

y'

Fig. 7.37 The source, the lens and the image
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due mainly to reflections at the surfaces and possibly absorption. We can say that
U0

L ¼ sUL, where s � 1 is the lens transmission coefficient. For Eq. (7.58), we
have

B0 ¼ sB: ð7:62Þ

This important equation states that the luminance (sometimes called the
brightness) of the image can never be larger than that of the source.

It is therefore pointless to try to produce, starting from a given source, images of
larger luminance. Indeed, it is possible to have an image of luminous intensity
larger than that of the source, but only at the price of increasing the apparent
emitting area or solid angle.

The illuminance of the image can be immediately obtained multiplying the
luminance by the solid angle of the incoming luminous flux, namely X′ in our case.
We then have that

E0
L ¼ B0X0 ¼ sBX0: ð7:63Þ

We see that the illuminance of the image is that much greater the greater the
luminance of the source and the solid angle under which the lens is seen from the
image.

Consider now a point source. In the above discussion of extended sources, we
have neglected the diffraction effects. Namely, we have assumed a rectilinear
propagation of energy. This is permissible for surface elements that are not too
small. It is no longer so for point sources, such as, for example, stars.

Figure 7.38 shows a point source and its image beyond the lens. The latter is not
a point, but a fundamental diffraction pattern. With a very good approximation, we
can consider it to consist of the Airy disk, in which the largest part of the energy is
located. For the sake of simplicity, we shall consider the Airy disk as being uni-
formly illuminated. If q is the distance of the image beyond the lens and D is the
lens diameter, the radius of the Airy disk is q ¼ 1:22kq=D. The area of the disk is
then

r0 ¼ 2:5pq2 ¼ 2:5p
k2q2

D2 :

Ω Ω'
p q 'σ

Fig. 7.38 A point source and its image, with the Airy disk
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Note that we can speak of the luminance of the image, because it is extended,
due to diffraction, but cannot speak of the luminance of the source, being that it is
point-like. The luminance of the image is

B0 ¼ U0
L

X0r0
:

Now, U0
L ¼ sUL and we can express UL as the illuminance EL0 of the lens due to

the source times the area S of the lens, namely as UL ¼ SEL0. But it is S ¼ X0q2,
and hence, we have

B0 ¼ U0
L

X0r0
¼ sEL0S

X0r0
¼ sEL0q2

r0
¼ sEL0D2

2:5pk2

In conclusion, the luminance of the image is

B0 ¼ sEL0D2

2:5pk2
: ð7:64Þ

We see that the luminance of a point source is proportional to the square of the
lens diameter, namely to its area, or also to the amount of light that the lens is able
to collect for a given illuminance. This is completely different from the case of the
extended source. In addition, we see that the source affects the image through the
illuminance EL0 it produces on the lens. Finally, in Eq. (7.64), the wavelength is
present to remind us that the phenomenon is ruled by diffraction.

Once more, we obtain the illuminance of the image by multiplying its luminance
by the solid angle of the incoming flux. We have

E0
L ¼

sEL0D2X0

2:5pk2
: ð7:65Þ

We understand how the telescope allows us to see objects too faint to be visible
with the naked eye. The illuminance of the retina at the point of the image of a star
produced by the optical system consisting of telescope plus eye is that much greater
the greater the useful diameter of the system. Take note of the fact that X′ is
practically fixed for the eye. Contrastingly, if we use the telescope to look at
terrestrial objects, which are always extended, their images appear enlarged but not
brighter (with higher luminance) than the objects themselves.

Summary
In this chapter, we studied the physical processes leading to the formation of images
under usual incoherent illumination conditions. The principal concepts we have
learned are as follows.

1. The concept of the image of a point source, which is the center of the waves
reaching the eye after having been redirected or deformed.
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2. The angular dispersion of a prism.
3. The focal length and the power of a lens.
4. The image formation of extended objects. Under the usual conditions, the

objects can be thought of as being composed of point sources independent of
one another.

5. The quarter wave criterion.
6. The aberrations and irregularities, and how to correct them for the purpose of

optical “perfection”.
7. The depth of field.
8. The resolving power.
9. The action of a lens on the phase of the light wave and the roots of the image

formation process.
10. The simplest optical instruments.
11. The basic photometric quantities and their relations with radiometric quantities.
12. The luminance of the images of the extended endpoint-like sources.

Problems

7:1. A tree has needle-like leaves at a distance of 1 cm from one another. What is
the maximum distance at which they are resolved by the naked eye?

7:2. Is the deviation angle of a glass prism larger for blue or red light?
7:3. Two lenses of power of +8 diopters and −4 diopters are in contact, one next

to the other. What is the focal length of the system?
7:4. From which of the following quantities does the resolving power of a tele-

scope depend? Light wavelength, distance of the object, power of the
objective, diameter of the objective, diameter of the eyepiece.

7:5. The eyepiece of a telescope contributes to the magnification. Can it help in
increasing the resolving power? Why?

7:6. Consider a converging thin lens of dioptric power of +4 diopters. Draw the
image of an arrow with the tail on the axis before the lens and normal to the
axis and in the following positions, p = 50 cm, 25 and 10 cm. Repeat the
construction with a lens of −4 diopters.

7:7. Does the parabolic mirror suffer from the spherical aberration?
7:8. Find the dioptric powers of the lenses of refractive index n = 1.5 with the

following surface radiuses. (a) R1 = 15 cm, R2 = 25 cm; (b) R1 = 15 cm,
R2 = ∞; (c) R1 = 15 cm, R2 = −25 cm.

7:9. Two biconcave lenses have the same shape, but different refractive indices,
equal to 1.5 and 1.7, respectively. What is the ratio of their focal lengths?

7:10. Does the field depth depend each of the following quantities? The wave-
length, the diameter of the lens, its focal length.

7:11. With the eye adjusted to infinity, one observes an object through a magni-
fying glass of focal length f = 5 cm located directly after the eye. What is the
angular magnification?

7:12. The point source S is located on the axis at the distance p = 1 m from the
lens. The image S′ is at the distance q = 1 m from the lens as well, as shown
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in Fig. 7.39. The radius of the lens is CA = 0.1 m. The refractive index of the
glass is n = 1.5. What is the thickness of the lens in C?

7:13. A thin lens forms the images of two point sources, one being red and the
other blue. What is, in a round figure, the ratio between the luminance of the
images?

7:14. The closest star is 4 � 1016 m away. Suppose we want to build a reflecting
telescope capable of seeing whether the star has a planet orbiting at the same
distance as the earth from the sun (about 150 Gm). What should the mini-
mum diameter of the mirror be?

7:15. A luminous source has a surface A. A lens collects the emitted luminous flux
in a cone of vertex angle of 10° and forms a real image whose area is 1/10 of
the source area. What is the opening angle of the light emerging from the
image?

7:16. A point source emits electromagnetic radiation of wavelength between 0.8
and 1 µm with radiant intensity of 600 W/sr. What is the luminous intensity?

S C

A

S'
p q

Fig. 7.39 A point on the axis
source and its image
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Chapter 8
Images and Diffraction

Abstract In this chapter, we discuss two subjects in which diffraction is the
dominant process in image formation. The first argument, developed in the first two
sections, is the Abbe theory of image formation. The theory is valid in general, but
is easier to understand under conditions of coherence. The second argument,
developed in the subsequent sections, deals with those actual three-dimensional
images known as holograms. In a hologram, both the amplitude and the phase of
the wave produced by the object are recorded, using coherent illumination.

In this chapter, we discuss two subjects in which diffraction is the dominant process
in image formation.

The first argument, developed in the first two sections, is the Abbe theory of
image formation. The theory is valid in general, but is easier to understand under
conditions of coherence. We shall start from the conclusions we reached in Sect. 5.
10, where we showed that the Fourier diffraction pattern of a diaphragm is
proportional to the square of the spatial Fourier transform of its amplitude trans-
mission coefficient. We shall show how the image formation process can be thought
of as the succession of a Fourier transform, in going from the lens to its focal plane,
and of an anti-transform, in going from the focal plane to the image plane. This
process has been summarized in the single sentence (quoted by Zernike): “the
microscope image is the interference effect of a diffraction phenomenon”.

The second argument deals with those actual three-dimensional images known
as holograms. A hologram is, in its true substance, a diffraction grating, on which
both the amplitude and the phase of the wave originated by the object are encoded.
In order to understand the processes of recording the hologram of an object, and
subsequently of reconstructing its image, we shall proceed step by step. We shall
start by dealing with the straight strips sine transparency grating that diffracts in the
first order only. We shall see how such a grating can be recorded in a photographic
process by having two monochromatic plane light waves incident at an angle with
one another interfere on a high-resolution photographic plate. We shall then see that
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the grating obtained by developing the plate can be used to reproduce one of the
light waves that we used to produce it.

We shall then study a circular grating, namely the Soret zone plate, which,
working with diffraction, has characteristics similar to a lens, but with many focal
lengths. We shall subsequently discuss the Gabor grating, which is similar, but with
sinusoidally varying transparency. It works like a lens, with only one focal length,
but one that is both positive and negative. It can be recorded with a photographic
process similar to the one previously considered, having now the interference on the
photographic plate of a plane wave and a circular one scattered by a point-like
object. We shall see that, again, we can reconstruct the image of the point object,
illuminating the grating with a plane monochromatic wave.

Finally, we shall describe how to record holograms of three-dimensional objects,
encoding both the amplitude and the phase of the object wave, and how to play
them back to reconstruct their three-dimensional images.

8.1 Abbe Theory of Image Formation

The purpose of optical instruments is to form optical images of objects. We shall
now examine the different stages of the image formation process in greater depth.
We shall consider the image formation process by a thin lens. This is the simplest
case, but is sufficient to highlight the fundamental aspects we want to discuss. We
shall assume here the light incident on the lens to be coherent. This is the case if the
light beam is produced by a laser and, under particular conditions, in a microscope.
As already mentioned, these conditions occur when the diaphragm in the light
condenser is narrow and intensely illuminated. We shall now discuss the simplest
elements of the Abbe theory of image formation that was developed in 1866 by Ernst
Karl Abbe (Germany, 1840–1905), just to improve the understanding and quality of
the images in a microscope. The Abbe theory can be generalized to illumination
under non-coherent light, but we shall not extend our discussion to that.

Let us consider a two-dimensional object, such as a common photographic slide
or a grating or a biological specimen on a microscope slide, and let us illuminate it
with a normally incident monochromatic plane wave. The light that passes through
the object is focused by the objective of the microscope, which we consider to be a
thin lens, forming the image.

In the language of Sect. 5.10, our object is a diaphragm. If it changes by a
position-dependent factor the amplitude of the incoming wave is an amplitude
diaphragm, if it changes the phase by a position-dependent phase-shift, it is a phase
diaphragm, and if it has the two effects simultaneously, it is an amplitude and phase
diaphragm.

To be specific, let the object be a grating with alternate absorbing and transparent
straight strips, shown in Fig. 8.1. As we already learned in Sect. 7.12, the amplitude
distribution on the back focal plane of the lens is proportional to the spatial Fourier
transform of the amplitude transmission coefficient of the object. In our case, the
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transmission coefficient is (almost) periodic and its Fourier transform consists of the
discrete sequence of the principal diffraction maxima. Their total number is
determined by the diameter of the lens. We show five of them in the example in
Fig. 8.1. Their spatial frequency is an increasing function of the distance from the
axis.

This is the first part of the Abbe theory. The second part tells us how the image is
formed starting from the Fourier transform.

Using the Huygens-Fresnel principle, we can think of the luminous wave beyond
the focal plane as originating from fictitious sources at the interference maxima. In
other words, the image plane receives light from the sources on the luminous
regions on the focal plane that are coherent with one another. The result of the
interference from these sources is the image of the object exactly at the distance
q beyond the lens, which is such that

1
p
þ 1

q
¼ 1

f
: ð8:1Þ

This can be rigorously demonstrated, but we will be satisfied with the result. We
see that the second process can be thought of as a spatial Fourier anti-transform.

We can draw this conclusion, which is valid in general. The image formation
process comes about in two stages. In the first stage, the lens produces the spatial
Fourier transform of the amplitude transmission coefficient of the object in its back
focal plane; in the second stage, the propagation of the wave from the focal to the
image plane performs the anti-transform, giving back an image that is similar to the
object. Abbe’s theory has been summarized in a single sentence (quoted by Zernike):
“microscope image is the interference effect of a diffraction phenomenon.”

Consider now some simple experimental consequences of the Abbe theory. We
first observe how the theory explains that a certain degradation of the image relative
to the object cannot be avoided. It is indeed clear that, due to the finite diameter of
the lenses, not all the Fourier components can get through an optical instrument.
The higher frequency components are too far from the optical axis and are lost in
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the subsequent image formation. As a consequence, for example, in the image of
the grating considered above, the edges between the transparent and opaque strips
will not be as sharp as in the object, due to the absence of the higher frequency
components. We can check this with the following simple experiment.

Using an optical bench, we put a circular iris diaphragm of variable diameter on
the focal plane of the lens and a white screen in the image plane to observe the
image. We start with the iris completely open and observe that the images of the
lines are quite sharp. When we close the iris gradually, we observe that every time a
diffraction order (namely a Fourier component) is excluded, the contrast of the
image suddenly decreases. When only the central and the two first order maxima
are let through, the image is a sine grating, namely the light illuminance is the
square of a sine function plus a constant. If we go further and exclude the first order
maxima too, letting only the central one through, the image disappears completely;
our screen is evenly illuminated. Indeed, the central maximum does not carry any
information at all on the image.

Let us now consider, as an object, a luminous point, for example, a pinhole
transmitting the light emanating from a source in front of it, as in a microscope. Its
Fourier transform extends up to very high frequencies, up to infinite frequencies in
the ideal case of a geometric point source.

We can consider the Fourier transform of the pinhole to be a constant on the
focal plane. The finite diameter of the lens allows the passage of spatial frequencies
up to a maximum value that we call kc and block the higher frequencies. The
subsequent process leading to the image will be the Fourier antitransform of a
function of k that is constant for k � kc and zero for k > kc. Remember now that
the antitransform operation is equal to the transform, an irrelevant sign apart here.
Clearly then, the image is the diffraction pattern of the lens’ aperture. We under-
stand better that every optical instrument has a limited resolving power, as we found
in Sect. 7.11.

Note that what we have said so far, and what we shall say in the following, is
valid only if the lens is diffraction-limited, not in the presence of larger aberrations.

Having learned where the Fourier transform is physically located, we can think
of modifying the image by acting on the transform, by depressing or boosting some
of the frequencies. This operation is called spatial filtering.

For example, if we want to enhance the contrast of the small details of the object
in the image, we can block or attenuate the lowest spatial frequencies by inserting a
transparent film into the focal plane with a totally or partially absorbing small disc
in the center. If you do that, you will see luminous images of the small objects of
enhanced contrast on a dark background. Indeed, you have eliminated not only the
lowest frequencies, but also the zero frequency Fourier component, which is
responsible for the background illuminance. As a matter of fact, dark field tech-
niques have been developed by microscopists, in particular, for the observation of
live and unstained biological specimens.

Conversely, if we want to make a photographic image smoother, namely to
reduce the contrast in comparison to the object, we can introduce an iris diaphragm
on the focal plane, of the proper diameter.
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We can also consider more complex filters. We could, for example, remove
unwanted spatial frequencies by placing a transparent slide in the focal plane with
an opaque annulus whose inner and outer radii define the frequency band that we
want to delete. One can use this method, for example, to eliminate the dithering
present in some images, such as those which appear in newspapers.

On the other hand, spatial filtering, which is always unwillingly present to some
degree, may alter the final image to such an extent as to bring in details that were
not present in the original. In this case, we speak of false details. As an example, let
us go back to the object consisting of a Fraunhofer grating. Suppose we block all of
the odd diffraction orders (or all the even ones but the zero-order) with suitable
obstacles in the focal plane. The resulting image is a grating with twice as many
lines as the original! The distance in the focal plane between two successive
interference maxima is, in fact, as we know, inversely proportional to the pitch of
the grating.

The examples we have given should be sufficient to convince the reader of the
many possibilities offered by the spatial filtering technique. In the next section, we
shall discuss an important example of application in the filtering of images in a
microscope, namely the phase contrast microscope.

8.2 Phase Contrast Microscope

As a relevant example of spatial filtering, we shall now discuss the working prin-
ciple of the phase contrast microscope, invented by Frits Zernike (Netherlands
1888–1966) in 1934.

The observation of microorganisms and other biological specimens under a
microscope almost always presents the problem that the object under observation is
transparent, often as much as the water in which it is immersed. Under these
conditions, the contrast is not sufficient to see the object. The most commonly used
procedure for making it visible is staining, meaning covering it with a dye that is
absorbed by its biological tissue. This procedure has several drawbacks, in par-
ticular, that it cannot be used to study living microorganisms, because the dye kills
them. The phase contrast technique is a brilliant solution to this problem.

First of all, we must operate the microscope under the coherent illumination
conditions of the specimen. As we already mentioned, we achieve that with a strong
illumination of the iris diaphragm in the condenser, closing it to a small diameter.
Under these conditions, the iris is a point source, S, located in the forward focus of
the converging lens of the condenser (see Fig. 8.4). As a consequence, the light
wave incident on the glass-plate supporting the specimen is a plane wave. The
phase of each monochromatic component of the light, which is white, does not
depend on its position on the plate.

Zernike started from the consideration that the specimens generally have re-
fractive indices that are different, even if not by much, from the index of the water
in which they are immersed. We can thus consider the glass-plate with the specimen
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to be a phase diaphragm that does not act much on the amplitude, but can act
substantially on its phase. Indeed, the phase of the transmitted wave at the points
where it crosses the microorganism, namely our specimen, is appreciably different
from that where it went through water alone, say from the background.

Figure 8.2a shows a cross-section of the glass-plate supporting a microorganism,
represented by a small ellipse in a water film. Let ns and nb be the refractive indices
of the specimen and of the water, respectively, and d the thickness of the specimen.
Consider two paths, s crossing the microorganism and b in the water. The phase
difference between them at the exit is

D/ ¼ ns � nbð Þk; ð8:2Þ

where k is the light wave number in a vacuum.
Now, the eye, and any other recording instrument, is sensitive to the amplitude,

but not to the phase. However, if we were able to transform the phase modification
in an amplitude modification, we could make the object visible. Figure 8.2b shows
the starting point, namely two rotating vectors representing the wave field after the
glass-plate; b at the points of water, which we call the background, and s at the
points of the microorganism, which we call the signal. The effect of the microor-
ganism is to introduce a phase difference, say D/, between the phase of the output
wave at and outside the microorganism. The amplitude remains substantially
unaltered. Then the effect of the microorganism is to add the vector PQ to the
background vector b, as shown in Fig. 8.2b. Being that D/ is always small, the
angle between PQ and b is about 90°. The magnitude of the signal vector s is not
very different from that of b. However, if we advance or delay the phase of the
background relative to the signal by 90°, we obtain one of the situations represented
in Fig. 8.3. The signal s = b + PQ now has an amplitude sensibly different from
that of the background, being brighter or darker in the two cases.

But how can we change the phase of the background relative to the signal? Here,
the Abbe theory helps us, allowing us to work in the spatial frequency domain
rather than in the space domain. Indeed, the Fourier transform of the background
contains mainly low spatial frequency components. Contrastingly, the Fourier
transform of the signal, being that of a small object, extends to much higher
frequencies. Consequently, in the back focal plane of the objective, the signal and
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the background are separated. The light of the background is near to the axis, while
the light of the signal extends farther out.

Figure 8.4 shows the situation from the point of view of geometric optics. On the
left, we have the light condenser. The point S is the strongly illuminated iris in the
focus of the lens producing the parallel illuminating beam, as we already mentioned.
The point P represents the microorganism on the microscope slide. Its distance from
the objective (which we approximate with a thin lens) is p. The rays crossing the slide
outside P, namely the background, join in the back focus of the objective. The rays
crossing P converge after the lens to the image Q at the distance q given by the thin
lens equation. As a consequence, they cross the focal plane spread over a wide zone.

We can produce a phase shift of p with a transparent plate, whose thickness d and
refractive index n are chosen to produce such a phase delay, namely with knd = p.
We insert this phase-strip, as Zernike called it, in the back focus of the objective.

Let Is and Ib be the signal and background intensities, respectively. We define as
the intensity contrast (between signal and background) the quantity

c ¼ Is � Ibj j
Is þ Ib

: ð8:3Þ

Note the absolute value in the numerator. Indeed, the intensity of the signal may
be larger (clear field) or smaller (dark field) than that of the background. The
intensities Is and Ib are proportional to the squares of the magnitudes of the vectors
s and b. Now, as seen in Fig. 8.2, it is PQ = bΔ/. Thus, in the case of Fig. 8.3a, for
example, we have s2 ¼ bþPQj j2¼ b2 1þD/ð Þ2ffi b2 1þ 2D/ð Þ, and thus

c ¼ 2D/; ð8:4Þ
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and similarly for Fig. 8.3b. Now, the human eye can distinguish an object on a
smooth background down to a contrast of 0.02, but for a comfortable observation,
one needs about c = 0.1. This corresponds to a phase difference of 50 mrad.
Hence, taking k = 0.5 µm, we have the condition ns � nbð Þd[ 4 nm. If the index
difference is, for example, ns − nb = 0.1, which is not an unusual condition, the
minimum observable thickness is 40 nm. This is a completely adequate value,
taking into account that the minimum observable size, at the limit of the resolving
power, is about one third of a wavelength, namely about 200 nm.

8.3 Sine Grating

In this section, we begin the study, which will continue until the end of the chapter,
of gratings that, if illuminated with light of appropriate characteristics, produce
images. We shall obtain such gratings through a photographic process, starting with
the objects of which we shall subsequently produce images. The images produced
in this way have encoded their complete information on the object wave, both on its
amplitude and on its phase. They are holograms.

Let us start by recalling a few concepts. In Sect. 7.12, we saw that a convergent
lens placed beyond a two-dimensional object, which we called a diaphragm, illu-
minated by a plane normally incident wave, produces the spatial Fourier transform
of the amplitude transmission coefficient of that diaphragm in its back focal plane.
From this point of view, if, for example, the diaphragm is a Fraunhofer grating, the
principal maxima of its diffraction pattern are the discrete components of the
spectrum of the transparency of the grating. To be precise, the Fourier spectrum
would be discrete, namely the maxima would have zero width, if the grating were
infinitely extended. In practice, the maxima have a width that is inversely pro-
portional to the number of lines, namely to the extension of the grating. Pay
attention to the fact that there are two maxima for each order, one for positive
spatial frequency and one for negative, one on the right of the central maximum and
one on the left.

Let us now look for a grating that produces only first order maxima (order +1
and −1). This is the Fourier transform of a grating, whose amplitude transparency
varies as a sine function. We already considered such a grating in Sect. 2.7 and
already noticed that, in practice, we must add a constant to the transparency
function to avoid it having non-physical negative values. The most general
expression of the amplitude transparency of such a sine grating, or diaphragm, is the
following

T xð Þ ¼ 1
1þ b

1� b cos hxð Þ: ð8:5Þ

Here, it is h = 2p/a, where a is the spatial period of the grating in x and,
obviously, 1/a is the number of periods per unit length x. Hence, h is the spatial
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frequency of the grating. The parameter b, which is, in any case, between 0 and 1,
represents the modulation of the diaphragm. It measures the relative importance of
the sinusoidal over the continuum component. Finally, the normalization coefficient
1/(1 + b) has been chosen in order to have 0 � T(x) � 1 in any case, as it should.

Let us now have a plane monochromatic wave normally incident on the dia-
phragm positioned in front of a lens, in order to be under the Fraunhofer conditions.
Equation (5.38) then tells us that the amplitude of the diffracted wave is propor-
tional to the Fourier transform of T(x), namely to

G kxð Þ ¼ 1
1þ b

Zþ1

�1
e�ikxx 1� b cos hxð Þdx: ð8:6Þ

Without any calculation, we observe that we are considering the transform of a
periodic function (if the grating is ideal and infinitely extended). The transform is
then discrete. The function is the sum of a constant term, whose transform falls at
kx = 0, and a term proportional to cos hx, whose transform has two equal values at
kx = +h and kx = −h. Clearly, the three terms correspond in the diffraction pattern to
the maxima of order 0, +1 and −1, respectively. The two first order maxima have
the same height. Clearly, the ratio between their height and the height of the 0 order
maximum is smaller the smaller the modulation b is.

In practice, the real gratings are not infinitely extended. The Fourier transform is
no longer discrete. The maxima are in the same positions as for the infinite grating,
but they have a non-zero width, which is larger for smaller grid extensions.

Let us now see how to produce physically a grating with the amplitude trans-
mission coefficient of Eq. (8.5) (beyond what we already found in Sect. 8.1). Pay
attention to the fact that Eq. (8.5) is for the amplitude. Namely, it is the amplitude,
not the intensity, which we want to be a sine function.

We shall manufacture the grating through a photographic method, producing an
image on a photographic plate capable of recording it. The plate is shown as a dark
vertical rectangle in Fig. 8.5 on the right. To produce the image, we need a coherent
monochromatic light wave of sufficiently wide front. As shown in Fig. 8.5, we start
from a laser beam, which is monochromatic and coherent, but is not wide enough.
Indeed, the typical diameter of a laser beam is on the order of a millimeter. A beam
expander is a system of two converging lenses, one next to the other, in the
geometry of the Keplerian telescope, namely with the back focus of the first lens
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Fig. 8.5 How to produce sine grating
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coinciding with the forward focus of the second, as shown in the figure. The beam
expander transforms an incident parallel beam in an outgoing parallel beam of
diameter larger by a factor equal to the ratio between the focal lengths. We shall
often use beam expanders in our subsequent work.

As shown in the figure, we divide the still narrow laser beam into two parts,
proceeding in different directions, using a beam splitter, and then expand both of
them with two beam expanders. One of the beams, which we shall call the reference
beam, is incident on the photographic film directly in the normal direction. The
second beam, which we call the object beam, is deflected by a mirror so as to have it
incident on the photographic plate at an angle, say, h, with the reference beam. The
reason for these names will soon be clear. We choose a reference frame with the z-
axis in the direction of the reference beam and x and y on the photographic plate.

The field of the reference beam is Erei xt�kzð Þ and that of the object wave is
E0ei xt�kz cos h�kx sin hð Þ. The field on the photographic film is their sum at z = 0,
namely

E ¼ E0ei xt�kx sin hð Þ þEreixt

The illuminance is obtained by taking the average over time of the square of the
real part. The real part at z = 0 squared is

ReEð Þ2 ¼ E0 cos xt � kx sin hð ÞþEr cosxt½ �2
¼ E2

0 cos
2 xt � kx sin hð ÞþE2

r cos
2 xtð Þ

þE0Er cos 2xt � kx sin hð ÞþE0Er cos �kx sin hð Þ

Now, taking the average over a period, we obtain

I / E2
r

2
þ E2

0

2
þErE0 cos kx sin hð Þ: ð8:7Þ

In practice, the intensity of the reference wave is always much larger than that of
the object wave, namely having E2

r � E2
o . Under these conditions, Eq. (8.7)

becomes approximately

I / E2
r

2
1þ 2

E0

Er
cos kx sin hð Þ

� �
: ð8:8Þ

We now expose the film to this illuminance for a time interval Dt long enough to
have the needed exposure and subsequently develop and fix the film with the
required chemical processes. The resulting developed film will be darker at the
points that have received more light. Without entering into the details of the
developing process, we simply state that it can be controlled to produce an am-
plitude transparency inversely proportional to the exposure, namely to I in
Eq. (8.8), in a good approximation. The amplitude transparency is then
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T / 1

1þ 2 E0
Er
cos kx sin hð Þ ;

Finally, as we have E0/Er � 1, we can write approximately

T / 1� 2
E0

Er
cos kx sin hð Þ: ð8:9Þ

So, we have obtained the sine grating, as we wanted. It has a (small) modulation
equal to

b ¼ 2
E0

Er
ð8:10Þ

and a period a ¼ 2p= k sin hð Þ, which is more usefully expressed in terms of the
wavelength of the light as

a ¼ k
sin h

: ð8:11Þ

We see that the period of our sine grating is small, on the order of the wave-
length. It is somewhat larger if we work with a small angle between the beams. For
example, if h = 15°, that is, sin h � 0.26, with k = 0.5 µm, we have a = 1.9 µm
or, as we say, 520 periods per mm. Clearly, one must use a very high-resolution
holographic emulsion (see Sect. 7.17).

We conclude the section with an important observation, which will be useful in the
subsequent sections. Let us illuminate our grating with a plane monochromatic wave
equal to the reference wave during the recording process. Well, under these condi-
tions, and according to that which we stated at the beginning of the section, beyond
the grating, we have three approximately plane waves, those of the diffraction orders
0, +1 and −1. The zero order wave can be considered as the incident wave of reduced
amplitude. The wave of order +1 propagates in the exact same direction h under
which, in the recording process, the object wave was incoming. Namely, we have
reconstructed the object wave. As matter of fact, our grating is the simplest possible
hologram. It is the hologram of a point at infinite distance. In addition, the wave of
order −1 propagates in the symmetrical direction −h.

8.4 Fresnel Zones

In this textbook, we have discussed diffraction phenomena under the Fraunhofer
conditions, which we defined in Sect. 5.6, in particular, with Eq. (5.14). When these
conditions are not satisfied, namely in near field, we speak of Fresnel conditions.
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The description of the Fresnel diffraction phenomena is, in general, mathematically
more complex than in the Fraunhofer case. We shall consider here only one effect,
namely how images can be formed without using lenses, mirrors or GRINs. To
make the discussion simpler, we shall consider a monochromatic light, which we
can obtain using a laser. As we shall see, the images obtained in this way contain
the complete information both on the amplitude and on the phase of the object
wave. Contrastingly, the information in the images obtained with devices operating
with non-coherent light is limited to the intensity of the object wave. These are the
afore-mentioned holograms, which were theoretically developed by Dennis Gabor
(Hungary and UK, 1900–1979) between 1948 and 1950. Lasers had not yet been
invented at that point, but holograms became an important element of modern
optics the moment that laser coherent light became easily available.

A hologram is basically a diffraction grating under Fresnel conditions. We shall
start by considering a simpler grating, namely the zone plate, which is based on the
theory of diffraction developed by Augustin-Jean Fresnel between 1815 and 1819.

We start here by defining the Fresnel zones. Consider a monochromatic plane
light wave propagating in the positive direction of the z axis. The xy plane is then on
a wavefront. Consider the point C on the z axis of co-ordinates (0, 0, z), as in
Fig. 8.6. The light wave in C can be thought of, for the Huygens-Fresnel principle,
as being the result of the contributions of infinite secondary elementary sources on
the xy plane. All their phases are equal.

Due to the symmetry of the problem, all the sources laying at the same distance
q from the origin are under the same conditions. Consequently, we can divide the xy
plane into circular zones of radii q and q + dq centered on the origin. The
amplitude of the secondary wave emitted by each zone shall be proportional to 2pq
dq and shall reach C with the phase /(q), which is a function of q. The phase
depends on the length of path PC, which is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ q2

p
. What does matter, as

usual, are the phase differences, between, say, the wave corresponding to q = 0,
namely /(0), and the one at the generic q, namely /(q).

With reference to Fig. 8.6, we have / qð Þ � / 0ð Þ ¼ �k PQ where k is the wave
number. In all the interesting cases, q is small compared to z. Then, for Eq. (7.1),
we can write PQ ¼ q2= 2zð Þ, obtaining
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/ qð Þ � / 0ð Þ ¼ �k
q2

2z
: ð8:12Þ

We define the zones in which / varies by p as Fresnel zones relative to the point
C. In other words, the radius qm of the mth Fresnel zone is such that
/ qmð Þ � / 0ð Þj j ¼ mp, or

q2m ¼ 2pmz
k

¼ mzk ð8:13Þ

and, hence,

qm ¼
ffiffiffiffiffiffiffiffi
mzk

p
: ð8:14Þ

We see that the rays of the Fresnel zones increase as the square roots of the
integer numbers do likewise.

We now consider laying a screen on the xy plane that completely absorbs the
incident light. We then open a circular aperture in the screen centered in O, of
radius r, which we assume to be capable of varying. We measure the light intensity
in C while we gradually increase r.

Starting from r = 0, the light intensity in C initially increases, as we are
including an increasing number of contributions that are substantially in phase with
one another. Indeed, as can be seen in Fig. 8.6, the distance between the sphere of
center C and the plane xy is close to zero for small values of q.

When r reaches the radium q1 of the first Fresnel zone, the phase difference
between the contributions of the center and the periphery of our aperture reaches the
value of p. Consequently, if we increase r beyond q1, we start adding contributions
opposite in phase to those near O, and the intensity in C decreases. The decrease
continues up to the point at which r is equal to q2 of the second Fresnel zone. We
have a minimum here. Continuing beyond q2, we add contributions of the same
sign as those of the first zone. And so it goes on; increasing r, we obtain a sequence
of alternate maxima and minima.

To know the amplitudes of the contributions of the different zones precisely, we
should take into account the obliquity factor introduced, specifically by Fresnel, in
the Huygens-Fresnel principle. Without entering into the details, we simply men-
tion that the amplitude in C of the secondary wave emitted between q and q + dq
slowly decreases when q increases.

8.5 Zone Plate

In this section, we discuss the zone plate. The plate was described for the first time
by Jacques Louis Soret (Switzerland, 1827–1890) in 1875. A zone plate is a grating
with perfectly transparent zones alternated with perfectly absorbing ones, having
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radii equal to those of the Fresnel zones, namely q1, q2, q3,…. The plate blocks all
the even Fresnel zones and lets through the odd ones (or vice versa). In this way, the
phases of all the selected contributions interfere constructively in C and the
resulting intensity is high at that point. Figure 8.7 shows a zone plate.

As always, it is useful to look at the orders of magnitude. Let, for example,
z = 1 m be the distance of the reference point C and k = 0.5 µm the wavelength of
the light, and let us consider the radii of the 50th and 51st zones, which, for
Eq. (8.14), are, respectively, q50 = 5.00 mm and q51 = 5.05 mm. Hence, the dis-
tance between two consecutive zones at this order is only 50 µm and is clearly
smaller and smaller with increasing orders.

Recalling Eq. (8.14) giving the radii of the Fresnel zones, we state that a zone
plate is a circular grating with alternatively transparent and absorbing circular
zones, periodic in the square radius of the zones q2 with period (in q2) equal to

P ¼ 2zk ¼ 2q21: ð8:15Þ

The factor 2 corresponds to the fact that the period is of two Fresnel zones; z is
the distance of point C from the plate.

Inverting the argument, suppose now that we have a zone plate with a given
period P. The radii of the transparent and absorbing zones are in the sequence

qm ¼
ffiffiffiffiffiffiffiffi
mP
2

r
¼

ffiffiffiffiffiffiffiffi
mzk

p
: ð8:16Þ

If we now send a plane monochromatic light wave normally on our plate, the
wave will be focused at the point of the axis at the distance z. This distance is
implicitly given by Eq. (8.16) as a function of the radii of the zones. We see that the
action of the zone plate is similar to that of a converging lens with focal length z. In
analogy to the lens, we call this distance f1 (we shall soon see the reason for the

Fig. 8.7 The zone plate
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subscript). The focal length depends on the geometry of the plate and on the
wavelength. We can express the focal length in terms of the period or, equivalently,
of the first radius. Namely, it is

f1 ¼ P
2k

¼ q21
k
: ð8:17Þ

There are other similarities between the zone plate and the lens, but also dif-
ferences. The most important difference is that the plate has not one, but rather
infinite focal lengths, both positive and negative.

Indeed, going back to the arguments we made to maximize the intensity at a
given point C, we see that the effect can also be obtained letting the first three
Fresnel zones be open, the next three closed, and so on. Again, all the transmitted
contributions interfere constructively, but each of them will be in amplitude of
(about) 1/3 as before, because the contribution of the first third will cancel that of
the second approximately. The period in q2 of this plate is three times the period of
the previous one. Inverting the argument, a zone plate of a given period focuses a
plane wave incident on the axis not only at a point of the axis at distance f1 but also
at another one at the distance f2 ¼ f1=3. The intensity of the corresponding maxi-
mum is lower than that in f1 by a factor of (about) 1/9.

The same argument is obviously valid for any group of odd numbers of Fresnel
zones. We can then state that the plate has an infinite sequence of focal lengths. The
terms of the sequence are called orders. The focal lengths are given by the expression

fnþ 1 ¼ P
2 2nþ 1ð Þk ¼ q21

2nþ 1ð Þk n ¼ 0; 1; 2; . . . ð8:18Þ

The intensity of the maxima decreases rather quickly with the order n as 1/n2.
However, there is more. Indeed, there are as many focuses at the coordinates

−fn+1 on the negative z-axis, secularly symmetrical about the grating. In other
words, in the diffracted wave, there are both spherical waves converging towards
their centers at the distances of Eq. (8.18) with z > 0, but also spherical waves with
centers in the symmetric points with z < 0 that propagate as if they originated at
those points. We can state that the zone plate produces a sequence of real images (at
z > 0) and one of virtual images (at z < 0) of a point at a finite distance on the axis.

To prove what we have just stated, let us consider Fig. 8.8. The zone plate is in
the xy plane and a plane monochromatic wave is incident from the left along the z-
axis. Consider a spherical surface of radius f1 with center in C′ symmetric, with
respect to the plane xy, to the point C, which contains the first order focus. This
surface is not a wavefront, because there is no diffracted wave at the left of the
grating. However, if we propagate that surface as if it were a wavefront, it will
become real in the region z > 0. We can then consider our surface as a virtual wave
originated in C′. Looking at Fig. 8.8, one easily understands that the phase delay at
a point P of the plane x y is the same as that which we considered in the previous
section with reference to Fig. 8.6. There, the conditions for positive interference
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were present in C, and now the same is valid for C′. A similar argument is obvi-
ously valid for all the focuses.

There are also analogies between the zone plate and the Fraunhofer grating. To
see that, let us start by considering the zone plate divided into many sectors, each
under a small angle at the vertex. Each sector contains a series of circular arcs,
alternatively transparent and opaque. We approximate them as straight segments.
The sector is thus similar to a Fraunhofer grating with a varying period. We
intuitively understand that each sector gives a contribution similar to that repre-
sented in Fig. 8.9, and that we can obtain the total contribution of the zone plate by
rotating the figure around the z-axis.

Note that Eq. (8.18) shows that the focal lengths depend on the wavelength, as is
obvious considering that they are the result of an interference effect. Consequently,
the image of a white source at infinite distance on the axis is not unique, but
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dispersed in the different colors. In the language of the lenses, the zone plate suffers
from a strong chromatic aberration.

Finally, we notice that a zone plate having opaque and transparent zones in
inverted positions with respect to the one we just considered behaves similarly to
the latter. In particular, the focal lengths are equal.

The zone plate produces images by exploiting the diffraction phenomena. In the
next section, we shall see that it also behaves similarly to a lens for light sources at
finite distances, both on the axis and otherwise.

8.6 Action of the Zone Plate on a Spherical Wave

We have seen how a zone plate acting on a plane monochromatic wave incident on
its axis behaves like a “multiple” lens (i.e., with several focal lengths). This is the
case for axial and paraxial spherical waves as well, as we shall now see. Consider a
monochromatic spherical wave with center in A on the axis of the plate, at its left at
the distance p. The arguments will be similar to those we developed in Sect. 8.4 for
the plane wave. The geometry, analogous to Fig. 8.6, is now shown in Fig. 8.10.

Consider a generic point B on the axis on the right side of the grating, at a
distance that we call q. Using the Huygens-Fresnel principle, we can consider the
wave in B as being the result of the contributions of secondary sources on the xy
plane. We calculate the phase difference in B between the wave generated by a
secondary source at the distance q from the axis (point P in the figure) and the wave
generated by the secondary source in the center O.

The path difference between APB and AOB is the sum of the paths RP and PQ.
In the small angle approximation, we can now write

/ qð Þ � / 0ð Þ ¼ �k
q2

2p
� k

q2

2q
¼ �k

q2

2
1
p
þ 1

q

� �
: ð8:19Þ
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The following argument is identical to the one in Sect. 8.4, with (1/p + 1/q) in
place of l/z, as one sees comparing Eq. (8.19) with Eq. (8.12). We can thus con-
clude that a light wave with its source on the axis in A will be focused by a zone
plate in a series of points along the z axis with coordinates qn given by

1
p
þ 1

qn
¼ 1

fn
: ð8:20Þ

The zone plate behaves like a multiple focal length lens for spherical waves with
centers on the axis.

Notice that in Eq. (8.20), the images at qn > 0 are on the opposite side of the
zone plate relative to the object, and are real images, while those at qn < 0 are on
the same side as the object, and are virtual.

Consider now an off-axis source, like A in Fig. 8.11, at the distance p on the left
side of the zone plate. If all the angles of the rays with the axis are small, one can
show, in a manner similar to that which we used for the lens, that the interference
maximum is at the point B, on the line through A and O at the distance q1 from
O such that

1
p
þ 1

q1
¼ 1

f1
:

The zone plate forms a real image of A in B. In addition, it can be similarly
shown that that there is a succession of real images on the right side of the zone
plate and virtual ones on its left side along the line AB at the distances qn given by
Eq. (8.20). In conclusion, a zone plate behaves like a multiple lens with both
positive and negative focal lengths. As with a lens, it can produce an image, or,
more precisely, many images, of extended objects.

Zone plates are used, in practice, to form images of objects when dealing with
radiations for which lenses cannot be fabricated. This is the case with electro-
magnetic waves of wavelengths much larger than those of visible light, like
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microwaves (wavelengths on the order of centimeters), or much shorter ones, like
the extreme ultraviolet (100–10 nm) and X-rays (10–0.1 nm). At atomic and sub-
atomic scales, particles are associated with waves. A mono-energetic beam of atoms
or molecules is also a monochromatic atomic or molecular wave. Zone plates are
used as focusing elements for them. Other examples are those of acoustic waves, for
which zone plates also find applications for focusing purposes.

8.7 Camera Obscura

The simplest zone plate one can imagine consists of a single zone. Clearly, the
properties of the image-forming properties of the zone plate discussed in the pre-
vious sections remain valid, even with reduced luminance, if only one Fresnel zone
is open, say, the central one. This is simply a circular hole. Being that the hole is
usually small, but not necessarily, as we shall see, one talks of a pinhole camera.
The camera obscura is based on the same principles.

Figure 8.12 shows the basic concepts. Let r be the radius of the circular hole in
an opaque screen and let us have a monochromatic plane wave of wavelength k
normally incident on it. Under these conditions, only the first focal length, namely
f1, is relevant, and we call it simply f.

Beyond the screen, we shall have a segment of spherical wave converging to the
axis with curvature radius

f ¼ q21
k

¼ r2

k
: ð8:21Þ

The corresponding dioptric power, in terms of the diameter d of the hole, is

1
f
¼ 4

k
d2

: ð8:22Þ

f

Fig. 8.12 Action of a
pinhole on a normally
incident monochromatic plane
wave
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If the incident wave is spherical with its center on the axis at the distance p from
the hole, the outgoing wave will be approximately spherical with its center on the
axis at the distance q such that

1
p
þ 1

q
¼ 1

f
: ð8:23Þ

Let us look at the orders of magnitude. Equation (8.22) shows us that, in order to
have powers on the order of several diopters, the hole should be rather small. If, for
example, d = 0.5 mm and k = 0.5 µm, the dioptric power is about 8 m−1. Objects
at infinite distance (large distances, in practice) give an image at 125 mm beyond
the hole. If the diameter is ten times larger, d = 5 mm, its power is 0.08 m−1 and
the images of far objects are 12.5 m beyond the hole.

One difference between the pinhole and the zone plate is that the image produced
by the former is the result of diffraction, while that produced by the latter is due not
only to diffraction, but also to the interference between the waves coming from the
different zones. The interference maxima are narrower for larger numbers of zones,
as we have seen. Consequently, the focal lengths are more sharply defined if the
zones are great in number. Now, we consider a single zone, and the focal length
given by Eq. (8.21) is not sharply defined at all. In other words, the depth of focus
is large. As a consequence, even when pinholes are used in white light, as is usually
the case, the effect of the wavelength dependence of the focal length (chromatic
aberration) shown by Eq. (8.21) is not very relevant.

We also note that the imaging action also exists if the aperture is smaller than the
first Fresnel zone. Indeed, in this case too, for example, for an incident plane wave,
the Huygens-Fresnel wavelets from all the elements of the surface of the aperture
interfere constructively on the focal plane. Consequently, the hole can have any
shape, provided it is contained in the central zone.

We can easily observe the imaging capability of a pinhole by drilling a hole in a
card with a needle and then observing well-illuminated objects through the pinhole
in front of one eye. It will appear to works like a magnifying glass. You can also
fold one finger, leaving a small aperture between its joints and look through it.

The camera obscura (‘dark chamber’ in Latin) is an image-producing device
known since ancient times, based on the same principle. It is schematically shown
in Fig. 8.13.
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S

Fig. 8.13 The camera obscura principle
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The camera obscura is a light, tight box with a pinhole on one side and a frosted
piece of glass on the opposite side, created to enable looking at the images from the
outside. Alternatively, one can open a narrow hole in the window shutter of an
otherwise dark room and look at the images on the opposite wall.

Notice that the image formation in the camera obscura is a genuine diffraction
process, due to the wave nature of light, and not to the rectilinear propagation of
rays, as is often claimed. This conclusion can be easily reached with the experiment
represented in Fig. 8.13. Assuming the length q of the chamber to be on the order of
a few meters, we observe clear images with a hole about 0.5 mm in diameter. If the
diameter is 20–50 µm, the images are very imperfect, and there will be no image at
all, save for a uniformly illuminated screen, with a 1 µm diameter hole.

Let us now explain a common observation. Looking under a tree on a sunny day,
you observe shadows and illuminated regions. There are shadows that geometri-
cally replicate the shapes of the leaves and irregular light patterns projecting the
gaps in the foliage. The geometric similitude of the shadow is the case with the
leaves that are relatively close, in practice, within a few meters. However, if the tree
is tall enough, there are also luminous discs, several centimeters in diameter, as
shown in Fig. 8.14a. These are pinhole images of the sun. The “pinholes” are the
gaps in the foliage, located far enough apart to be equal or smaller than the central
Fresnel zone.

If you do not believe this, we can check it as follows. Wait for a partially
clouded sky. The light should be strong enough to produce shadows alternating
with bright regions, but the sun should be behind a thin cloud, making its image
very fuzzy. If you look behind trees under these conditions, you will see bright
regions and shadows, but no circular image.

Fig. 8.14 “Pinhole” images of the sun cast on the ground by the gaps between the leaves of a tree,
a under usual conditions. Picture by the author, b during a partial eclipse. Picture by Paul D. Maley
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More spectacular is the phenomenon that occurs during a partial eclipse. The
images are not round, but rather crescent-shaped, as is the sun. Figure 8.14b shows
an example. If you are really, very lucky and observe an annular eclipse, then you
will see luminous rings (easily found on the web).

QUESTION Q 8.1. Having observed images of the sun of diameter D = 5 cm under
a tree, estimate the height of the gaps generating those images [Hint. The sun is seen
under an angle of about ½° from earth].

8.8 Gabor Grating

The Gabor grating, which we shall now discuss, is one of the simplest possible
holograms, namely the hologram of a luminous point at finite distance. It is useful
here to recall three results we reached in previous sections. First, the Fraunhofer
diffraction pattern of a grating of parallel strips alternating between completely
absorbing and completely transmitting has an infinite discrete series of principal
maxima, which correspond to the spatial Fourier components of the amplitude
transmission coefficient of the grating. The transmission coefficient is a periodic
“square wave” with alternate values of 0 and 1. Second, the diffraction pattern of a
similar grating, but with amplitude transmission coefficient varying as a sine, plus a
constant, only has the first order maxima, beyond the central one, corresponding to
the components of its spatial Fourier transform. Third, the zone plate, which is a
grating of circular zones alternating between completely absorbing and completely
transmitting produces a series of diffraction maxima of increasing order on its axis.
We now observe that the amplitude transmission coefficient of the zone plate, which
depends on the distance q from the center, is, like the first case above, a “square
wave” periodic in q2 with alternate values of 0 and 1 (every half a period), as shown
in Fig. 8.15a.

In our discussion of the zone plate in Sect. 8.6, we only considered the phase
differences between the Huygens-Fresnel waves emitted by the different zones and
found the points on the axis where their interference is constructive. The reason for
the presence of the multiple focuses should be traced to the fact that the contri-
butions of the different parts of a single Fresnel zone are not exactly in phase with
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Fig. 8.15 Amplitude transmission of a a zone plate, b a Gabor grating
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one another. As a matter of fact, as one can imagine from the three points recalled
above, a zone plate with amplitude transmission coefficient T that is a sine (or
cosine) function of q2 produces only two diffracted spherical waves, namely the
waves on the order +1 and −1.

As usual, to avoid negative values of the transparency T, we must add a constant
term. Then, we have

T qð Þ ¼ a 1� b cos
2p
P

q2
� �� �

; ð8:24Þ

where P is the period in q2 and b is the modulation. Figure 8.15b shows the
transparency amplitude as a function of the distance from the center q relative to the
radius of the first zone, namely of q/q1. We shall call this zone plate a Gabor
grating.

We state, in conclusion, that a plane monochromatic wave of wavelength k
normally incident on a grating whose amplitude transmission coefficient is the same
as in Eq. (8.24) gives origin to two spherical waves with centers at two points of the
axis, symmetrically located about the grating. Their distance from the grating is

f1 ¼ P
2k

¼ q21
k
; ð8:25Þ

In addition, after the grating, there is also a plane wave that we may consider
simply to be a fraction of the incident wave. This wave is the consequence of the
constant term (order zero) in Eq. (8.24) and is more intense the smaller the mod-
ulation b is. The centers of the two spherical waves are two images, one virtual and
one real, of the source producing the incident wave.

How can we produce a Gabor grating? We can do that in much the same manner
as we produced the parallel lines sine grating with a photographic process in
Sect. 8.3. Now, we must produce interference between a plane wave and a spherical
wave. We start from a laser beam and expand it with a beam expander, producing a
monochromatic plane wave, which we show in Fig. 8.16. We position the photo-
graphic film perpendicularly to the propagation direction of the plane wave. We
chose the x and y axes of the reference frame on the film and the z-axis in the
direction of the incident wave. We put a small reflecting sphere at a point P on the
z-axis at the coordinate −zP in front of the film. Through diffraction, the small
sphere produces a spherical wave, which we shall call the object wave, that is
coherent with the incident plane wave, which we call the reference wave.

Let us calculate the illuminance of the photographic film exposed under these
conditions, due to the interference of the two waves. Figure 8.17 shows the relevant
geometry. Let ΔO be the phase difference of the two waves in O, which is a
constant, having no consequence in what follows. The phase difference between the
two waves at the generic point Q at the distance q from the axis is
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D/ ¼ DO þ k r � zPð Þ, where r is the distance between P and Q and k is the wave
number. For small angles, namely for small values of q, we can approximate as
usual, writing

D/ ¼ DO þ kq2

2zP
:

With a calculation completely similar to that developed in Sect. 8.3, one
establishes that the illuminance of the film as a function of q is given by

I / E2
r þE2

o þ 2ErEo cos
kq2

2zP
þDO

� �
; ð8:26Þ

where Er and Eo are the amplitudes of the reference and object waves, respectively.
This expression is analogous to Eq. (8.7) for the straight lines sine grating. Under
the usual conditions, the intensity of the object wave is much smaller than that of

P zO

y

L
as

er
 b

ea
m

Fig. 8.16 A plane and a
spherical wave for recording a
Gabor grating

Q

P

y

z

ρr

z
P

O

Fig. 8.17 Geometry of the
interference of the plane
(reference) and spherical
(object) waves

348 8 Images and Diffraction



the reference beam, namely Eo/Er � 1. Neglecting terms in (Eo/Er)
2, we can

approximate Eq. (8.26) with

I / E2
r 1þ 2

Eo

Er
cos

kq2

2zP
þDO

� �� �
:

Following the same photographic process we mentioned in Sect. 8.3, we obtain a
grating with an amplitude transmission coefficient inversely proportional to the
illuminance, namely

T / 1=I / 1� 2
Eo

Er
cos

kq2

2zP
þDO

� �
: ð8:27Þ

We have now the Gabor sine grating that we wanted. In particular, its period in
q2 is

P ¼ 2kzP; ð8:28Þ

which depends, as expected, both on the wavelength and on the distance of the
object from the grating.

We shall now use the Gabor grating to reconstruct the object wave that was
present in the recording process. To do that, we produce an expanded laser beam,
exactly equal to the reference wave we used in the recording process, and have it
normally incident on our grating, as shown in Fig. 8.18. We shall call it the re-
construction wave. According to the conclusions of the previous section, beyond
the grating, there are three waves, produced by diffraction. One is a fraction of the
incoming wave that is of no interest here, the others are two spherical waves with
centers in the two focuses, namely on the two sides of the grating, both at the same
distance

P zO

y

Virtual image Real imageHologramFig. 8.18 Reconstruction of
the wavefront
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zi ¼ P
2k

¼ zP: ð8:29Þ

The wave from the forward focus is from a virtual image which is exactly where
the object, namely the small sphere, was during the recording process. We have
reconstructed the wavefront of the object.

The grating that we have recorded is similar to a photogram and is called a
hologram of the point object P. If we illuminate it, as in Fig. 8.18, with a wave equal
to the reference wave, and we look through it from the positive z side, we see the
original object in the position it held when it existed during the recording process.

8.9 Holograms

We are now ready to record a hologram and subsequently to reconstruct the image
it encodes. In the previous section, we recorded the hologram of a point-like object.
Let us now substitute a three-dimensional object for the point source and illuminate
it, as we did previously, with a reference plane monochromatic wave. Each point of
the object will now scatter light as the small sphere in the previous section did,
producing its Gabor grating on the photographic plate. The hologram thus obtained
will hence be a coherent superposition of many Gabor gratings, each with its own
center, intensity and phase. The hologram does not resemble the original object in
any way, but contains complete information on both the amplitude and the phase of
the object wave. The distance from the hologram (namely the z coordinate) of each
point of the object is encoded in the period of the corresponding Gabor grating,
while the other two coordinates x and y are encoded in the position of the center of
the grating and the intensity in the modulation.

Let us now illuminate the hologram with the coherent reconstruction wave,
which is a wave equal to the reference wave in the recording process, as we did in
Sect. 8.9 for the point source. The wavefront of the light which was emitted by the
object during recording will be faithfully reconstructed. Two three-dimensional
images of the object, one real and one virtual, are formed at the two sides of the
hologram, as shown in Fig. 8.19.
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Fig. 8.19 Virtual and real images reconstructed in an online hologram
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The virtual image can be observed by looking through the hologram from the
side opposite to that of the incoming reconstruction wave, as shown in the figure.
The real image cannot be immediately seen, for the already mentioned psycho-
logical reasons. To observe it, one has simply to position a white paper sheet in the
image and scan through. Notice that, while the virtual image is a faithful recon-
struction of the object, the real image is somewhat “inverted”, but not like it would
be in a mirror. We say that the virtual image is stereoscopic and the real one
pseudoscopic.

Note that the virtual images (the interesting ones) that we observe are really
three-dimensional. If you look through the hologram to the virtual image and move
your head from the right to the left, you will see the image changing exactly as it
would in the case of a real object, due to the changing parallax. You will also be
able to see details that were not visible from the previous position, because they
were behind some other detail. That is, everything will proceed as if you were
observing a truly three-dimensional object through a window, which is the
hologram.

Note, in addition, that if, for example, you cover a portion of any of a diffraction
grating (Fraunhofer, Soret or Gabor) with a sheet of paper, the remaining portion
gives rise to the same diffracted waves of the complete pattern, only with a loss in
resolution (that is, with greater angular width of diffraction maxima). Hence, if you
cover a portion of the hologram with a sheet of paper (or illuminate that portion
only, reducing the diameter of the reconstruction beam), you will continue to see
the complete three-dimensional image of the object, just through a smaller window.
Even if, in particular, you leave free (or illuminate with the reference wave) only a
small portion of the hologram, you will still be able to observe the complete image
under different perspectives as if through a hole in a window.

The reason for all of this lies in the fact that the information contained in a
hologram is, as noted above, much greater than that contained in a common pho-
tograph. The photographic plate, in both cases, records the intensity of the incident
light wave. Consequently, a common photograph contains information on the
amplitude alone. The information on the phase has been lost. In the case of the
hologram, it is the existence of the reference wave and the state of its being coherent
with the object wave that allows for transforming, in an interference process, the
phase variations from point to point into amplitude variations. The consequent
illuminance pattern is recorded on the photographic plate. Hence, the hologram
records both the phase and the amplitude of the wave produced by the object, that
is, it encodes all information on the light wave it emits, unlike an ordinary pho-
tograph, which contains only a part of the information. Indeed, the word comes
from the Greek olos for “all, entire”.

The geometrical configuration of the beams we have considered so far in the
recording and subsequent observation of a hologram is called an in line configu-
ration. It is simple, but has the disadvantage that, in reconstruction, the waves from
both the virtual and the real images are present simultaneously in the same region of
space. Under these conditions, some degradation of the images cannot be avoided.
Consequently, in practice, one uses a somewhat different arrangement, in which
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there is a non-zero angle h between the reference beam direction and the average
one of the light from the object. Figure 8.20a shows how this can be done. As you
can see in Fig. 8.20b, in the subsequent reconstruction process, the two images, real
and virtual, are better separated.

Recording a hologram requires, in practice, some important cautions. In fact, a
hologram is the record of an interference pattern. The spacing of the fringes
resulting from the interference between object and reference beams ranges between
several micrometers and tenths of a micrometer (i.e., spatial frequencies ranging
from several hundred to several thousand lines per millimeter).

The recording medium should be able to fully resolve the fringes. There are
several recording media available, the most common one being the silver halide
photographic emulsion, which is the one with the best resolution (see Sect. 7.17).
Holography grade emulsions must be used, having a grain size in the 10–100 nm
range. The standard photographic emulsions cannot be used, because their reso-
lution is insufficient (see Sect. 7.17). In addition, the response of the recording
medium should be flat over the full range of spatial frequencies to be recorded.
Another important parameter is the exposure needed for recording. The exposure
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Fig. 8.20 a hologram recording process, b hologram viewing process
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per unit area is as low as 10–20 J m−2 for holographic film and much larger, about
1000 J m−2, for photoresists. All the optical components, the photographic plate
and the object itself, must be mounted rigidly, and any vibration during exposure
must be avoided. Just purposefully think that a k/2 shift of the photographic plate
replaces the clear fringes with the dark ones. A further caution concerns the
cleanliness of all the optical surfaces in the system. Just a speck of dust on the
surface of a lens or on a mirror is enough, with the waves they scatter, to corrupt the
even shape of the incident wavefront.

Summary
In this chapter, we studied two arguments, the Abbe theory of image formation and
how to record and look at holograms, which produce genuine three-dimensional
images. We learned the following principal concepts:

1. Image formation by a lens is a two-step process. The first step is the spatial
Fourier transform of the object luminance produced by diffraction in the back
focal plane, the second step is the anti-transform in the image plane produced by
the interference between the light coming from different orders of the diffraction
pattern.

2. The spatial filtering in the focal plane, the phase contrast microscope, in
particular.

3. We have reached the concept of the hologram through a step-by-step process,
considering, one after the other, the diffraction by a grating of parallel fully
absorbing and fully transmitting stripes, a grating of parallel stripes with sinu-
soidal transparency, a Fresnel zone plate with fully absorbing and fully trans-
mitting alternate zones, and a Gabor zone plate with zones of sinusoidal
transparency. We have seen how to photographically produce such gratings.

4. How to record and look at the holograms of three-dimensional objects.

Problems

8:1 What are the radii of the first five Fresnel zones and of the zones 100 and 101
for a plane wave of wavelength k = 500 nm and an observation point at the
distance of 0.5 m?

8:2. What is the focal length of a camera obscura having a pinhole with a 0.2 mm
diameter for light of 0.4 µm wavelength?

8:3. A Gabor grating focalizes a plane wave of wavelength k = 670 nm at 10 cm
distance. What is the radius of the first dark ring? And that of the thousandth
one?

8:4. What is the hyperfocal length of a circular aperture of 2 mm diameter at
0.5 µm wavelength?
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A
Abbe, Ernst Karl, 326
Abbe theory, 326, 330
Aberration, 290
Absorption band, 167
Absorption coefficient, 242
Absorption distance, 168
Absorptive amplitude, 17
Accelerating electric charges, 95
Achromatic doublet, 291
Airy disc, 212, 213
Airy disk, 298, 320
Airy, George, 212
Airy pattern, 212
Alexander of Aphrodisias, 145
Alexander’s dark band, 145
Amplitude and phase diaphragm, 227, 326
Amplitude diaphragm, 227, 326
Amplitude reflection coefficient, 159
Amplitude refraction coefficient, 159
Amplitude spectrum, 60
Amplitude transmission coefficient, 226, 228,

230, 301, 302, 326, 333, 346, 349
Amplitude transparency, 227, 334
Analyzer, 243, 245, 257, 259
Angle of incidence, 141
Angle of reflection, 144
Angle of refraction, 141
Angular dispersion, 271
Angular frequency, 6, 37, 49, 57, 62, 63, 67, 70
Angular magnification, 304
Anisotropic medium, 249
Anomalous dispersion, 166
Anomalous refraction, 255
Anti-nodes, 50
Arago, François, 138, 259
Archimedes, from Syracuse, 273
Astigmatism, 292
Atomic oscillator, 27

Attenuation distance, 168
Audible frequency, 111
Average intensity, 108, 111
Ayrton, William, 98

B
Babinet, Jaques, 229
Babinet’s principle, 229
Bacon, Roger, 145
Bandwidth, 64, 191, 194
Bandwidth theorem, 64, 66, 73, 191, 229
Base quantity, 314
Base states, 236, 237, 239, 240
Beam expander, 333
Beam splitter, 334
Beats, 68
Bessel, Friederch, 212
Bessel function, 212
Birefringence, 249, 256, 257
Blue sky law, 217, 244
Breit-Wigner curve, 21
Brewster angle, 247
Brewster, David, 247

C
Calcite, 251
Camera obscura, 343, 344
Candela, 314
Capacity coupled oscillating circuit, 43
Carrier wave, 128
Cassini, Gian Domenico, 136
Catoptric telescope, 305
Caustic, 291
Central fringe, 211
Central maximum, 186, 211
Characteristic impedance, 85, 114, 116, 117
Chiral molecule, 260
Chromatic aberration, 275, 291, 341
Circle of least confusion, 292

© Springer International Publishing AG 2017
A. Bettini, A Course in Classical Physics 4 - Waves and Light,
Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-48329-0

355



Circular aperture,, 211
Circular birefringence, 261
Circular dichroism, 242
Circularly birefringent, 261
Circular polarization, 238, 240, 257
Circular polarizer, 257
Clerk Maxwell, James, 95
Coax, 114
Coaxial cable, 114
Coherence time, 191, 241
Coherent illumination, 326
Collision broadening, 196
Colors, 143
Coma, 292
Complex amplitude, 7, 227
Complex Fourier amplitudes, 60
Compound microscope, 309
Cones, 312
Constructive interference, 183
Contrast, 328, 329
Convergent lens, 279, 283
Corona, 217
Coupled oscillators, 34
Crossed polarizers, 257, 259
Crown glass, 142

D
Damped oscillation, 10, 16, 65
Decay time, 13
Decibel, 111
Deep water wave, 132
Deflection angle, 143
Degenerate modes, 44
Degree of polarization, 244
Della Porta, Giovanni Battista, 305
Depth of field, 296, 297
Depth of focus, 296
Descartes, René, 147
Destructive interference, 183
Deviation, 269, 270
Diaphragm, 226, 228–230, 297
Dichroism, 242
Dichromatic wave, 127
Dielectric constant, 172
Diffraction, 180, 201, 203, 216, 298
Diffraction center, 215
Diffraction disc, 212
Diffraction grating, 219, 223
Diffraction of light, 202
Diffraction pattern, 74, 209
Digital camera, 318
Diopter, 277, 281
Dioptric power, 281, 285, 343

Directrix, 272
Dispersion, 160, 269
Dispersion curve, 27
Dispersion formula, 165
Dispersion of light, 142, 143
Dispersion relation, 49–51, 83, 94, 126, 132,

143, 169, 172
Dispersive medium, 82, 248
Dispersive wave, 126
Divergent lens, 279, 283
Dolland, John, 291
Doppler broadening, 121, 196
Doppler, Christian, 117
Doppler effect, 117, 118
Dynamic range, 111

E
Edison, Thomas, 314
Elastic amplitude, 17, 27, 166
Elastic constant, 4
Electric field, 245
Electric susceptibility, 170, 251
Electromagnetic wave, 95, 97
Elliptical polarization, 239, 241
Energy density, 109
Energy flux, 106, 107, 113
Energy of the mode, 52
Energy propagation speed, 130
Energy stored, 17
Energy threshold, 318
Equal phases, 238
Equal thickness fringes, 199
Equation, 116
Equation for vergences, 282
Exner, Sigmund, 303
Exponential, 14
Exposure, 318, 352
Exposure time, 318
Extended source, 319
Extraordinary ray, 255
Eye, 298, 300, 304, 312
Eyepiece, 307, 309

F
False details, 329
Faraday, Michael, 100
Feynman, Richard, 160
First focus, 281
Fizeau, Hippolyte, 97
Fluorescence bulbs, 315
Focal length, 276, 277, 281, 339, 340
Focal plane, 289, 298
Focus, 272
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Forced oscillator, 14, 245
Form factor, 215, 221
Foucault, Léon, 97, 138
Fourier amplitudes, 60
Fourier analysis, 52, 60
Fourier anti-transform, 327, 63
Fourier coefficients, 59
Fourier integral, 130
Fourier, Joseph, 29, 52
Fourier phases, 60
Fourier series, 29, 57, 59, 60
Fourier theorem, 56
Fourier transform, 29, 62, 63, 66, 228
Fracastoro, Girolamo, 305
Fraunhofer conditions, 184, 205, 206, 212, 213
Fraunhofer diffraction, 219
Fraunhofer diffraction pattern, 298
Fraunhofer grating, 219, 225
Fraunhofer, Joseph, 184
Free oscillations, 2
Frequency, 6
Frequency spectrum, 63
Fresnel, 204, 211
Fresnel, Augustin-Jean, 177, 336
Fresnel conditions, 205, 206, 335
Fresnel zones, 336, 338, 339, 343
Fringe visibility, 188
Frustrated vanishing wave, 155
Full width at half maximum, 19
Fundamental diffraction pattern, 213, 268, 298
Fundamental frequency, 50
FWHM, 19, 21

G
Gabor, Denis, 336
Gabor grating, 346, 347, 349
Galilean telescope, 306
Galilei, 135, 295
Galilei, Galileo, 135, 305
Geometrical optics, 140, 201, 306
Graded index lens, 303
Grating, 71
Grating resolving power, 224
Grimaldi, 203, 204
Grimaldi, Francesco, 180, 202
GRIN, 303
Group velocity, 127, 128, 132, 134, 139, 167,

248, 252

H
Half-width of the principal maximum, 223
Harmonic, 6
Harmonic analysis, 52, 60

Harmonic motion, 3
Harmonic oscillation, 2, 6
Harmonic oscillator, 5
Harmonic sequence, 50
Harmonic wave, 81, 92
Herapathite, 242
Hertz, 6
Hertz, Heinrich, 6, 100
Hologram, 335, 336, 346, 350, 352
Holographic emulsion, 318
Hook’s law, 4
Hubble, Edwin, 122
Huygens, Christiaan, 151, 177
Huygens-Fresnel principle, 176, 177, 202, 207,

255, 327, 336, 341
Hyperfocal distance, 298

I
Ibn al-Haytham, 145
Ibn Sahal, 141, 278
Iceland spar, 251, 255
Ideal gas, 91
Illuminance, 315, 318, 320
Image, 267, 269, 271, 277, 278, 282, 286, 288,

296, 304, 307, 309, 315, 317, 326, 328,
333, 343, 350

Image formation, 267, 285, 301, 326, 327, 343
Image sensor, 317
Impact parameter, 147
Impedance of the empty space, 109
Impedance of the free space, 109
Incandescent light bulb, 314
Incident ray, 141
Information propagation speed, 130, 167
Infrared band, 105
Initial conditions, 5, 35, 39
Initial phase, 6
In line configuration, 351
Intensity, 107, 113
Intensity contrast, 331
Interference, 177
Interference device, 190
Interference fringes, 184
Interference pattern, 184, 352
Interference term, 182
Irradiance, 315, 318
Irregularities, 294

K
Keplerian telescope, 306
Kepler, Johannes, 279, 306
Kerr constant, 259
Kerr effect, 258

Index 357



Kerr, John, 258
Kirkhoff diffraction formula, 177
Kirkhoff, Gustav, 177

L
Lambertian source, 316
Land, Edwin, 242
LASER, 169, 186, 196, 326
Least distance of distinct view, 304, 309
LED, 187, 192, 218, 315
Left circular polarization, 238
Lens, 278
Lens maker’s formula, 282
Leonardo da Vinci, 305
Light, 105, 135
Light beam, 140
Light condenser, 285
Light ray, 140
Light scattering, 216
Limit angle, 144
Linear dichroism, 242
Linear dielectric, 251
Linear differential equation, 27
Linearly polarized, 46
Linear operator, 28
Linear polarization, 236, 237, 240, 243, 249,

251
Linear polarization, ray, 253
Linear polarization, wave, 253
Linear systems, 34
Line of sight, 105
Localized fringes, 197, 200
Longitudinal oscillation, 46
Longitudinal wave, 89
Lorentz, Hendrik, 20
Lorentzian curve, 21
Lorentz transformations, 135
Lumen, 314
Luminance, 316, 319–321
Luminous efficacy, 314
Luminous flux, 314
Luminous intensity, 313
Lux, 315

M
Mage, 341
Magnification, 278, 307, 309
Magnifying glass, 278, 304
Malus, étienne-Louis, 244
Malus’ law, 246
Marconi, Guglielmo, 103
Matched termination, 88
Maximum of order zero, 186
Maximum order, 222

Maxwell equations, 94
Maxwell, James, 95
Mean absorbed power, 19
Mean value, 9
Meter, 135
Michelson, 139
Michelson, Albert, 98, 120
Michelson and Morely experiment, 118
Microscope, 326
Minimum deviation, 270, 271
Mirror equation for vergences, 277
Mirror eye, 278
Mode shape, 39, 44
Modulating wave, 128
Modulation, 333, 335
Molecular oscillator, 26
Monochromatic, 65
Monochromaticity, 195
Monochromatic wave, 81, 241
Moon, 315, 316
Morley, Edward, 120

N
Natural bandwidth, 196
Negative absorption, 169
Negative imaginary index, 169
Negative lens, 279
Newton, 143
Newton, Isaac, 149
Nicol prism, 256
Nicol, William, 256
Nit, 316
Nodes, 50
Non-dispersive medium, 82
Non-dispersive wave, 126
Normal coordinates, 41, 45
Normal dispersion, 166, 271
Normal modes, 37, 44, 48
Normal orthogonal functions, 57
Numerical aperture, 311

O
Object beam, 334
Objective, 307, 309
Object wave, 334, 347–349
Object wave reconstruction, 335
Obliquity factor, 179, 337
Observatoire des Paris, 136
Open system, 79
Optical activity, 259
Optical axis, 251, 254–256, 259
Optical image, 266, 267
Optical isomers, 260
Optically homogeneous medium, 216
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Optically perfect system, 293
Optical surface, 295
Order of the maximum, 222
Ordinary ray, 255
Ortho-normality, 58
Oscillating circuit, 3, 13, 24
Oscillation amplitude, 6, 19

P
Parabolic mirror, 272
Paraxial rays, 268, 286
Partial polarization, 241, 244, 245, 247
Pasteur, Louis, 261
Path reversibility, 283
Pendulum, 2
Period, 6, 53
Perry, John, 98
Phase, 6, 22, 81, 351
Phase contrast microscope, 329
Phase diaphragm, 227, 301, 326, 330
Phase opposition, 8
Phase-strip, 331
Phase velocity, 82, 126, 128, 132, 134, 139,

248, 252
Photographic emulsion, 318
Photometric exposure, 318
Photometric flux, 314
Photometric quantities, 312
Photometric units, 312
Photoptic vision, 312, 316
Picture element, 317
Pinhole, 345
Pinhole camera, 343
Pixels, 317
Plane mirror, 269
Plane of incidence, 141
Plane polarized, 46
Plane wave, 89, 92
Poincaré, Henri, 120
Point like source, 190, 192
Point source, 300, 320, 321, 329
Polarization analyzer, 243
Polarization axis, 243
Polarization by reflection, 246
Polarization by scattering, 150, 245
Polarization sensitive eyes, 246
Polarization state, 251, 257
Polarizer, 243
Polaroid, 242
Polymethil metracrylate, 257
Polyvinyl alcohol, 242
Positive lens, 279
Power, 277, 281
Poynting vector, 252

Primary bow, 145
Principal maxium, 222
Prism, 269
Progressive wave, 80, 81, 83
Proper angular frequency, 6, 39, 44
Proper frequency, 50, 121
Pseudoscopic image, 351
Ptolemy, Claudius, 141
Pulse, 127
Pupil, 300, 304
Pythagoras of Samos, 50

Q
Q-factor, 67
Quality factor, 67
Quarter-wave criterion, 293, 294, 296, 301
Quarter-wave plate, 257, 259

R
Radiance, 316, 319
Radiant emission intensity, 313
Radiant intensity, 313
Radiant power, 312
Radiation field, 104, 163
Radiometric units, 312
Radio transmission, 103
Rainbow, 27, 145
Ray, 253
Rayleigh, 217, 244, 293
Rayleigh criterion, 224
Rayleigh criterion for the limit resolution, 299
Real image, 269, 273, 282, 339
Reconstruction wave, 349–351
Redshift, 121
Reference beam, 334
Reference seeing distance, 304
Reference wave, 293, 335, 347, 350
Reflected ray, 144
Reflected wave, 86
Reflecting telescope, 305
Reflection, 85, 144, 151
Reflection coefficient, 159
Refracted ray, 141
Refraction, 141, 151
Refraction coefficient, 159
Refraction index, 140, 160, 165
Refractive index, 27, 249, 251, 270, 279, 329
Regressive wave, 81
Relativity principle, 135
Resolution, 318
Resolution limit, 300
Resolving power, 308
Resolving power of the microscope, 311
Resolving power of the telescope, 308

Index 359



Resonance, 23, 26, 45, 66
Resonance curve, 18
Response function, 18, 66
Restoring force, 4
Retarded time, 104
Retina, 318
Right circular polarization, 238
Rods, 312
Rømer, Ole, 136
Ronchi, Vasco, 267
Rotating mirror, 138
Rowland, Henry, 219
Ruling machine, 219

S
Saccharometer, 260
Scattering, 217, 244, 245
Scattering angle, 147
Scattering center, 215
Scotoptic vision, 312
Secondary bow, 145
Secondary maximum, 223
Secondary wavelets, 177
Second focus, 281
Secular equation, 39
Sensitive surface, 107
Sensitivity, 318
Sensitivity function, 312
Shallow water waves, 133
Shape of the mode, 48
SI, 314
Sign conventions, 283
Sine grating, 71, 231, 332, 335
Slit, 74, 205, 207, 208, 210
Small oscillations, 3, 46
Snell’s law, 141, 153, 255, 282
Snell, Willebord, 141
Soret, Jacques, 337
Sound, 118
Sound speed, 91
Sound wave, 88
Source, 282
Spatial coherence, 187, 188, 203
Spatial filtering, 328, 329
Spatial Fourier analysis, 70
Spatial Fourier transform, 71, 226, 229–231,

326, 328, 332, 346
Spatial frequency, 49, 64, 70, 73, 317, 333
Specific bandwidth, 194, 195
Specific rotation constant, 260
Spectacles, 278
Spectrum, 121, 271
Spherical aberration, 275, 276, 291
Spherical mirror, 274

Spring constant, 4, 26
Square-law detector, 111, 130, 107
Stationary motions, 37
Stationary oscillation, 16
Stationary solution, 16
Stationary waves, 51, 87
Stereoscopic image, 351
Stimulated emission, 106, 196
Stress, 258
Stress induced birefringence, 258
Structure factor, 215, 221
Supernumerary bows, 150
Superposition principle, 27, 37
Surface waves, 131
Symmetry axis, 251

T
Telescope, 305
Temperature, 91
Temporal coherence, 187, 191
Termination in the characteristic impedance, 88
Theodoric from Freiberg, 146
Thermal source, 169, 191, 195, 241, 268, 285
Thermic source, 106
Thick lens, 284
Thin lens, 278
Thin lenses equation, 282, 288
Thin lenses in contact, 284
Total internal refraction, 144
Total refraction, 144
Transformation ratio, 101
Transmission line, 88
Transmitted wave, 87
Transversal magnification, 288
Transverse oscillations, 46
Tsunamis, 133
Tuning fork, 65
Tunnel effect, 155
Two-hole experiment, 181
Two-slit experiment, 185

U
Ultrasound, 111
Ultraviolet band, 106
Uncertainty principle, 229
Uncertainty relation, 65, 74
Uniaxial crystal, 251
Unpolarized light, 241, 244, 246

V
Vanishing wave, 153–155
Vector diagram, 7
Velocity, 117
Velocity of light, 97, 98, 135
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Vergence, 277, 281
Vertex, 279
Vibrating string equation, 48
Virtual image, 269, 283, 339, 350
Viscous drag, 10
Visible, 105
von Frisch, Karl, 246

W
Wave, 253
Wave equation, 48, 79, 81, 90, 94, 97
Wavefront propagation, 176
Wave function, 79
Wave intensity, 107
Wave length, 49
Wave number, 49

Wave packet, 128
Wave surface, 92, 292
Wave vector, 93, 252
Wave velocity, 81, 114
Weakly coupled oscillators, 34
Window of visibility, 312

Y
Young, 190, 194, 204
Young modulus, 26
Young, Thomas, 180

Z
Zernike, Frits, 329
Zone plate, 337, 341, 343
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