
Conceitos fundamentais

1. PARTÍCULAS SUBATÔMICAS

Toda matéria constituída por partículas chamadas de átomos. Desde Grécia antiga, OS filósofos tentavam o átomo. Hoje, é sabido que nele existem duas regiões, o núcleo e a eletrosfera. disso. praticamente átomos possuem três partículas subatômicas fundamentais (prótons, elétrons e nêutrons), as quais são descritas na tabela abaixo:

Partículas	Localização	Carga elétrica	Massa absoluta / g	Massa relativa
Prótons	Núcleo	+1	1,672 x 10 ⁻²⁴	1
Nêutrons	Núcleo	0	1,675 x 10 ⁻²⁴	1
Elétrons	Eletrosfera	-1	9,109 x 10 ⁻²⁸	1/1836

2. NÚMEROS QUÍMICOS

2.1- Número atômico (Z)

O número atômico nos fornece o número de cargas positivas do núcleo do átomo de qualquer elemento químico.

Lembre-se de que a carga nuclear (Z) é o número de prótons, sendo ele representado junto com o sinal positivo.

2.2- Número de massa (A)

A massa de um átomo pode ser calculada pela soma do número de prótons e do número de nêutrons que constituem o núcleo.

A = Z + N

2.3- Elemento químico

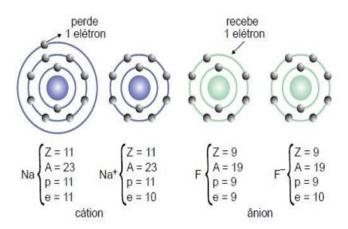
É um conjunto de átomos de mesmo número atômico. Os elementos químicos estão organizados na tabela periódica por ordem crescente de número atômico.

O elemento químico, geralmente, é representado da seguinte forma:

obs.: deve-se ter em mente que o número de massa é sempre igual ou maior que o número atômico.

3. ÁTOMOS

São partículas eletricamente neutras, ou seja, que possuem quantidades iguais de cargas positivas (prótons) e cargas negativas (elétrons).


Ex: 11Na possui 11 prótons e 11 elétrons.

4. ÍONS

São espécies químicas eletricamente carregadas. Os íons positivos são chamados de cátions, e os negativos, de ânions.

Quando um átomo perde elétrons, ele se transforma num cátion. Quando um átomo ganha elétrons, ele se transforma num ânion.

Exemplos:

5. SEMELHANÇAS ATÔMICAS

5.1-Isótopos

Isótopos são átomos de um mesmo elemento químico (mesmo número atômico - Z) e diferentes números de massa (A) e nêutrons (N). Possuem propriedades químicas iguais e diferentes propriedades físicas.

Ex: 1H¹, 1H² e 1H³.

5.2-Isóbaros

Isóbaros são átomos de elementos diferentes (diferentes números atômicos - Z) que apresentam o mesmo número de massa (A e diferentes números de nêutrons (N). Apresentam diferentes propriedades químicas e diferentes propriedades físicas.

Ex: 20 Ca40 e 18 Ar40

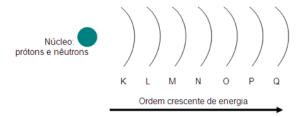
5.3-Isótonos

Isótonos são átomos de elementos químicos diferentes (diferentes números atômicos - Z) e mesmo número de nêutrons (N) e diferentes números de massa (A). Possuem diferentes propriedades químicas e diferentes propriedades físicas.

Ex: ₂₀Ca40 e ₁₉K19

5.4- Isoeletrônicos

Espécies isoeletrônicas são espécies químicas diferentes que possuem o mesmo número de elétrons.


Exemplos:

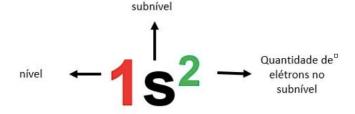
6. NÍVEIS DE ENERGIA

Niels Bohr, em 1913, propôs que a eletrosfera era dividida em níveis (camadas) de energia, os quais são regiões ao redor do núcleo atômico onde o elétron poderia se movimentar sem perder ou ganhar energia.

O nível de energia ocupado pelo elétron caracteriza sua energia potencial, sendo que os níveis mais afasta-dos do núcleo possuem maior energia potencial.

Teoricamente, os átomos apresentam infinitos níveis de energia, porém é improvável que os níveis muito afastados do núcleo sejam ocupados por elétrons. Isso ocorre pois quanto mais afastado do núcleo, maior o risco de o elétron ser perdido pelo átomo.

Para átomos no estado fundamental, consideramos que existem 7 níveis de energia e, cada nível comporta uma quantidade máxima de elétrons, de acordo com a tabela a seguir:


Nível (n)	Camada	Número Máximo de elétrons
1	К	2
2	L	8
3	М	18
4	N	32
5	0	32
6	Р	18
7	Q	8

É recomendável que, antes de se fazer a distribuição em níveis de energia, faça-se a distribuição em subníveis de energia.

7. SUBNÍVEIS DE ENERGIA


No modelo atômico atual, considerase que o nível de energia (K, L, M ...) é constituído por um ou mais subníveis de energia, os quais são representados pelas letras s, p, d ,f.

	01111171010505	********	- Curavius	
CAMADA	QUANTIDADE DE	NÍVEL	SUBNÍVEL	PREENCHIMENTO
	ELÉTRONS			ELETRÔNICO
K	2	1	S	1s ²
L	8	2	s, p	2s², 2p ⁶
M	18	3	s, p, d	3s ² , 3p ⁶ , 3d ¹⁰
N	32	4	s, p, d, f	4s2, 4p6, 4d10, 4f14
0	32	5	s, p, d, f	5s2, 5p6, 5d10, 5f14
Р	18	6	s, p, d	6s ² , 6p ⁶ , 6d ¹⁰
Q	8	7	s, p	7s², 7p ⁶

8. DIAGRAMA DE PAULING

O cientista americano Linus Pauling (1901-1994) demonstrou, experimentalmente, que os elétrons estão distribuídos em ordem crescente de energia, conforme observado no diagrama a seguir:

Este diagrama é lido seguindo a sequência das setas. Elas mostram a ordem crescente de energia entre os subníveis.

Exemplo:

$${}_{1}H - 1s^{1}$$

 ${}_{2}He - 1s^{2}$
 ${}_{3}Li - 1s^{2}, 2s^{1}$
 ${}_{4}Be - 1s^{2}, 2s^{2}$
 ${}_{5}B - 1s^{2}, 2s^{2}, 2p^{1}$
 ${}_{11}Na - 1s^{2}, 2s^{2}, 2p^{6}, 3s^{1}$
 ${}_{19}K - 1s^{2}, 2s^{2}, 2p^{6}, 3s^{2}, 3p^{6}, 4s^{1}$

O subnível diferencial é o último a receber elétrons pela leitura do **diagrama de Linus Pauling**, ou seja, é o subnível mais energético.

₂₆Fe - 1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d⁶

O subnível de valência é o mais afastado do núcleo.

Pode-se fazer a distribuição eletrônica de duas formas: energética (ordem crescente de energia) ou geométrica (ordem crescente de distância do núcleo).

Atenção! o número de elétrons de valência de uma espécie química é o número de elétrons que se encontram no nível (ou camada) de valência e não no subnível.

Exemplo:

<u>Distribuição energética para o Sc (Z=21):</u>

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1$$

<u>Distribuição geométrica para o Sc (Z=21):</u>

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$$

Veja também, pelos dois exemplos anteriores, que nem sempre o subnível de valência coincide com o diferencial.

9. DISTRIBUIÇÃO ANÔMALA

Duas distribuições diferem do comportamento esperado.

Família do Cromo

A distribuição eletrônica para esses elementos termina em ns^2 (n-1) d^4 .

Entretanto, considera-se que um elétron do subnível s é transferido para o subnível d, tornando o átomo mais estável, logo, sua distribuição termina em s¹d⁵.

Exemplo: 24Cr

Previsto: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$

Real: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$

Família do Cobre

A distribuição eletrônica para esses elementos termina em $ns^2(n-1)d^9$.

Entretanto, considera-se que um elétron do subnível s é transferido para o subnível d, tornando o átomo mais estável, logo, sua distribuição termina em s¹d¹⁰.

Exemplo: 29Cu

Previsto: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^9$ Real: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$

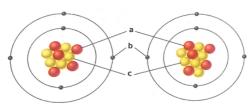
10. DISTRIBUIÇÃO EM ÍONS

Deve-se distribuir os elétrons para o átomo eletricamente neutro. E só depois retirar (do subnível de valência) ou adicionar elétrons (subnível diferencial).

Exemplos:

₂₆Fe²⁺:1s²2s²2p⁶3s²3p⁶4s²3d⁶

@ @ = @ = 1


₁₇CI⁻: 1s² 2s² 2p⁶ 3s² 3p⁵

 $1s^2 2s^2 2p^6 3s^2 3p^6$

EXERCÍCIOS

1) Sobre os dois átomos eletricamente neutros abaixo, responda:

- a) Indique os prótons, nêutrons e elétrons:
- b) O que os dois átomos têm de diferente?
- c) Eles pertencem ao mesmo elemento químico?
- d) Qual a semelhança atômica entre eles ?
- 2) Complete a tabela abaixo:

Espécie	Z	A	1P ⁺	e ⁻	nº	Carga nuclear	Carga atômica ou iônica
238U	9				13		
		31		18			3-
⁴⁰ Ca	20			18			

- 3) (UNCISAL) Átomos de um mesmo elemento químico têm números atômicos iguais, e quando os números de massa desses átomos são diferentes eles são chamados de isótopos. Exemplos de isótopos são os átomos de Carbono 12 e Carbono 14, esse último muito utilizado para a datação de fósseis, podendo datar objetos de milhões de anos. Com base nos conhecimentos da estrutura do átomo, dadas as afirmações abaixo,
- Dentre os isótopos do elemento Hidrogênio, o prótio é o mais estável.
- II. O ozônio é o isótopo mais importante do elemento oxigênio, pois a camada de ozônio protege a terra das radiações ultravioleta do sol.
- III. Átomos de diferentes elementos químicos e com mesmo número de massa mostram semelhanças em suas propriedades químicas.
- IV. O átomo de carbono 14 tem 6 prótons e 8 nêutrons no núcleo. verifica-se que estão corretas

- a) I, II, III e IV.
- b) lell, apenas.
- c) II, III e IV, apenas.
- d) le IV. apenas.
- e) I, II e III, apenas.
- 4) (UNITAU SP) A configuração eletrônica do Br (Z = 35) é
- a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$
- b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6 5s^2 5p^6 4d^1$
- c) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6 4d^9$
- d) $1s^22s^22p^63s^23p^64s^24p^65s^25p^66s^1$
- e) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^6 3d^9$
- 5) (UNIFICADO RJ) A distribuição eletrônica, no estado fundamental, do íon Al³⁺ é
 - a) $1s^2 2s^2 2p^6 3s^1$

 - b) 1s² 2s² 2p⁶ c) 1s² 2s² 2p⁶ 3s¹ 3p² d) 1s² 2s² 2p⁹

06) (PUC Camp SP/2019)

A propulsão nuclear pode ocorrer pela fissão do urânio -235, que essa reação ocorra nuclear, reator é necessário enriquecimento do urânio, que consiste em aumentar a proporção do urânio -235 em relação ao urânio -238, possui

- a) maior número de prótons.
- b) maior número de elétrons.
- c) maior número de nêutrons.
- d) menor número atômico.
- e) menor número de massa.

07 - (UERJ/2019)

Recentemente, cientistas conseguiram produzir hidrogênio metálico, comprimindo hidrogênio molecular sob elevada pressão. As propriedades metálicas desse elemento são as mesmas dos demais elementos do grupo 1 da tabela de classificação pe-riódica.

Essa semelhança está relacionada com o subnível mais energético des-ses elementos, que corresponde a:

- a) ns^1
- b) np^2
- c) nd^3
- d) nf⁴

08 - (UFRGS RS/2019)

Assinale a alternativa que exibe uma série isoeletrônica.

a)
$$AI^{3+} - Si^{4+} - S^{2-} - CI^{-}$$

b)
$$CI^- - Br^- - Se^{2-} - O^{2-}$$

c)
$$Si^{4+} - Se^{2-} - Cl^- - K^+$$

d)
$$Ca^{2+} - Al^{3+} - Si^{4+} - Br^{-}$$

e)
$$K^+$$
 - Ca^{2+} - S^{2-} - CI^-

09 - (Escola Bahiana de Medicina e Saúde Pública/2017)

A realização excessiva de exames de maneira indistinta é vista hoje como um dos mais graves problemas da saúde pública. Além dos custos elevados, há questionamentos sobre o impacto real desses testes na mortalidade. Entre os exames questiona-dos estão o teste do antígeno prostático específico, PSA, feito pelo exame de sangue, para diagnóstico do cân-cer de próstata; a mamografia anual para as mulheres a partir de 40 anos; e, para avaliar o coração, procedimentos como tomografias, cintilografias, ecocardiografias; além da ressonância estresse farmacológico, realizada administração de medicação vasodilatadora, como a adenosina, e de contrastes intravenosos para realçar as imagens obtidas na ressonância, a exemplo de soluções constituídas por complexos químicos que apresentam íons gadolínio, Gd³⁺, na estrutura.

> Disponível em: http://istoe.com.br>. Acesso em: abr. 2017. Adaptado.

Considerando que a configuração eletrônica do de gadolínio, ₆₄Gd¹⁵⁷, em ordem crescente de energia, é representada de maneira simplificada por [Xe]6s²5d¹4f⁷,

Indique o número de prótons e de nêutrons no núcleo desse átomo.

Escreva a configuração eletrônica do íon Gd³⁺.

10 - (UEG GO/2008)

Isótopos são átomos do mesmo elemento químico que apresentam as mesmas propriedades químicas e diferentes propriedades físicas. Para a caracterização de um átomo é necessário conhecer o seu número atômico e o seu número de massa. Sobre esse assunto, considere os elementos químicos hipotéticos (a + 7)X^(3a) e (2a +2)Y^(3a + 2). Sabendo-se que esses elementos são isótopos entre si, responda ao que se pede.

- a) Calcule a massa atômica e o número atômico para cada um dos elementos químicos X e Y.
- b) Obtenha, em subníveis de energia, a distribuição eletrônica do íon X^{2+} .
- c) O íon X²⁺ deverá apresentar maior ou menor raio atômico do que o elemento X? Explique.

GABARITO

- 1) a) Prótons são representados pela letra a. Elétrons são representados pela letra b. Nêutrons são representados pela letra c.
- b) Quantidade de nêutrons e número de massa.
- c) Sim, pois possuem o mesmo número de atômico (Z=5).
- d) d) Isótopos.

2)

Espécies	Z	A	1 P ⁺	e ⁻	nº	Carga nuclear	Carga atômica ou iônica
238 U	92	238	92	92	146	+92	0
15 ³¹ P 3-	15	31	15	18	16	+15	3-
₂₀ ⁴⁰ Ca ²⁺	20	40	20	18	20	+20	2+

- **3)** D
- **4)** A
- **5)** B
- 6) E
- 7) A

8) E

09)

O átomo de gadolínio, ₆₄Gd¹⁵⁷, apresenta 64 prótons e 93 nêutrons.

A configuração eletrônica do íon

Gd³⁺ é representada de maneira simplificada por [Xe]4f⁷. Também serão consideradas as configurações:

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6$ 4f⁷ ou K-2, L-8, M-18, N-25, O-8.

10)

a) massa atômica e número atômico de X.

Z = 12

A = 15

massa atômica e número atômico de Y. Como X e Y são isótopos, então o número atômico de Y é igual a 12. A = 17

- b) Distribuição eletrônica do íon X^{2+} 1s 2 2s 2 2p 6
- c) O íon apresentará menor raio atômico em relação ao elemento X. Isso porque, quando o átomo de determinado elemento perde elétrons, se transformando em um íon positivo, a carga nuclear efetiva aumenta, resultando na diminuição do raio atômico. Alia-se a isso, o fato do íon X²⁺ apresentar um menor número de camadas eletrônicas que o elemento X.