

- $\stackrel{\text{\tiny (UNIFESP)}}{=}$ A equação $x^2 + y^2 + 6x + 4y + 12 = 0$, em coordenadas cartesianas, representa uma circunferência de raio 1 e centro
 - a) (-6,4)
 - b) (6,4)
 - c) (3,2)
 - d) (-3,-2)
 - e) (6,-4)
- (PUC) O ponto (2,b) pertence ao círculo de equação $x^2 + y^2 = 13$. Então, a soma dos possíveis valores de $(2+b)^2$ é:
 - a) 16
 - b) 26
 - c) 36
 - d) 46
 - e) 56
- (FGV) No plano cartesiano, a circunferência que passa pelo ponto P = (1,3) e é concêntrica com a circunferência $x^2 + y^2 + 6x + 8y 1 = 0$, tem a seguinte equação:
 - a) $x^2 + y^2 + 6x + 8y 40 = 0$
 - b) $x^2 + y^2 3x 4y + 5 = 0$
 - c) $x^2 + y^2 6x 8y + 20 = 0$
 - d) $x^2 + y^2 + 3x + 4y 25 = 0$
 - e) $x^2 + y^2 3x + 4y 19 = 0$
- 4) (PUC) A distância do ponto de ordenada três da reta de equação x-y-1=0 ao centro da circunferência $x^2+y^2-2x+2y=0$ é igual a:
 - a) 4
 - b) 5
 - c) 6
 - d) 7
 - e) 8

5) (FGV) A equação da circunferência que passa pelos pontos (3,3) e (-1,3) e cujo centro está no eixo das abscissas é:

a)
$$x^2 + y^2 - 2x = 12$$

b)
$$x^2 + y^2 - 2y = 10$$

c)
$$(x-1)^2 + y^2 = 25$$

d)
$$x^2 + y^2 + 4x = 46$$

e)
$$x^2 + y^2 = 1$$

- 6) (CESESP) Os valores de m para os quais a reta da equação x + y + m = 0 é tangente à circunferência de equação cartesiana $x^2 + y^2 = 25$ são:
 - a) 4 ou 7
 - b) 3 ou 4
 - c) 5 ou 5
 - d) $-5\sqrt{2}$ ou $5\sqrt{2}$
 - e) 10 ou 10
- (FGV) Uma das retas paralelas à reta r: 3x-4y=0 e tangente à circunferência de equação $(x-5)^2 + (y-1)^2 = 4$ tem por equação:

a)
$$3x - 4y - 20 = 0$$

b)
$$3x-4y-21=0$$

c)
$$3x-4y-22=0$$

d)
$$3x-4y-23=0$$

e)
$$3x-4y-24=0$$

(ITA) O ponto de circunferência $x^2 + y^2 + 4x + 10y + 28 = 0$ que tem ordenada máxima é:

$$a)\left(\frac{\sqrt{2}}{2}-2, -\frac{9}{2}\right)$$

b)
$$(\sqrt{2} - \sqrt{3}, -1)$$

c)
$$\left(-\frac{3}{10}, -1\right)$$

$$d)\left(\frac{\sqrt{2}}{2}-2,-2\right)$$

e) (-2, -4)

- (ESGRANRIO) As circunferencias $x^2 + y^2 8x + 6y = 0$ e $x^2 + y^2 16x 12y = 0$ são:
 - a) exteriores
 - b) secantes
 - c) tangentes internamente
 - d) tangentes externamente
 - e) concêntricas
- (2) 10) (VUNESP) A equação da circunferência com centro no ponto C = (2,1) e que passa pelo ponto P = (0,3) é dada por:

a)
$$x^2 + (y-3)^2 = 0$$

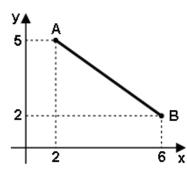
b)
$$(x-2)^2 + (y-1)^2 = 4$$

c)
$$(x-2)^2 + (y-1)^2 = 8$$

d)
$$(x-2)^2 + (y-1)^2 = 16$$

e)
$$x^2 + (y-3)^2 = 8$$

- (UFPA) As circunferências $C_1: x^2 + y^2 4x + 3 = 0$ e $C_2: x^2 + y^2 8x + 12 = 0$ são:
 - a) exteriores
 - b) tangentes exteriores
 - c) tangentes interiores
 - d) concêntricas
 - e) secantes
- (UFSM) O segmento AB da figura representa um diâmetro de uma circunferência. A equação dessa circunferencia é dada por:

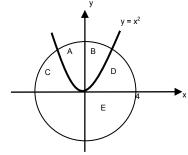

a)
$$x^2 + y^2 - 8x - 7y + 20 = 0$$

b)
$$x^2 - y^2 + 8x - 7y + 20 = 0$$

c)
$$x^2 + y^2 = 25$$

d)
$$x^2 + y^2 - 8x - 7y + 22 = 0$$

e)
$$-x^2 + y^2 + 8x + 7y - 22 = 0$$



- (UFSM) As retas r e s tangenciam a circunferência de equação $x^2 + y^2 4x + 3 = 0$, respectivamente, nos pontos P e Q e passam pelo ponto O = (0,0). A medida do ângulo PÔQ vale:
 - a) 15°
 - b) 30°
 - c) 45°
 - d) 60°
 - e) 90°
- (UNIFESP) A região do plano cartesiano, determinada simultaneamente pelas três condições

 $\begin{cases} x^2 + y^2 \le 16 \\ y \ge x^2 & \text{é aquela, na figura, indicada com a letra:} \\ x \ge 0 \end{cases}$

- a) A
- b) B
- c) C
- d) D
- e) E

- 15) Arnaldo, Beraldo, César e Danilo estão situados em um sistema cartesiano ortogonal com os eixos graduados em metros, nos pontos de coordenadas A = (2,0), B = (0,2), C = (2,4) e D = (4,2), respectivamente. Eles iniciam uma corrida andando no sentido horário, todos com velocidades iguais e constantes, sobre a circunferência de equação $(x-2)^2 + (y-2)^2 = 4$. No exato momento em que Beraldo tiver percorrido 127π metros, é correto afirmar que o César estará no ponto de coordenadas igual a:
 - a) (2,0)
 - b) (0,2)
 - c) (2,4)
 - d) (2,2)
 - e) (4,2)

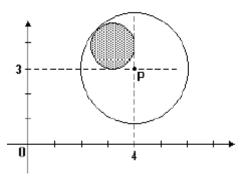
(4) (FUVEST) Sendo P = (a,b) um ponto qualquer da circunferência de centro na origem e raio 1, que

satisfaça b > 0 e $a \neq \pm b$, pode-se afirmar que $\log \left[\frac{b^3}{a^2 - b^2} \cdot \left(\frac{a^4}{b^4} - 1 \right) \right]$ vale:

- a) 0
- b) 1
- c) -log(b)
- d) log(b)
- e) 2log(b)

17) (UFC) O segmento que une os pontos de interseção da reta 2x+y-4=0 com os eixos coordenados determina um diâmetro de uma circunferência. A equação dessa circunferência é:

a)
$$(x-1)^2 + (y-2)^2 = 5$$


b)
$$(x-1)^2 + (y-2)^2 = 20$$

c)
$$(x-1)^2 + (y-2)^2 = 25$$

d)
$$(x+1)^2 + (y+2)^2 = 5$$

e)
$$(x+1)^2 + (y+2)^2 = 20$$

18) (PUC) A área da região assinalada na figura é 4π . A equação da circunferência de centro em P é, então:

a)
$$x^2 + y^2 - 8x - 6y - 7 = 0$$

b)
$$x^2 + y^2 - 8x - 6y + 17 = 0$$

c)
$$x^2 + y^2 - 8x - 6y + 21 = 0$$

d)
$$x^2 + y^2 - 8x - 6y + 13 - 8\sqrt{2} = 0$$

e)
$$x^2 + y^2 - 6x - 8y + 13 - 8\sqrt{2} = 0$$

- 19) (UEL) Na decoração de uma pré-escola são usadas placas com formas de figuras geométricas. Uma destas placas é formada por uma figura que pode ser definida por $x^2 + y^2 8x 8y + 28 \le 0$ quando projetada em um plano cartesiano xy, onde x e y são dados em metros. Esta placa vai ser pintada usando duas cores, cuja separação é definida pela reta y = x no plano xy. Considerando o plano cartesiano xy como referência, a região acima da reta será pintada de vermelho e a região abaixo da reta, de verde. Sabendo que a escola vai fazer 12 destas placas e que, é necessária uma lata de tinta para pintar 3 metros quadrados de placa, serão necessárias, no mínimo, quantas latas de tinta vermelha?
 - a) 12
 - b) 24
 - c) 26
 - d) 32
 - e) 48
- 20) (UFJF) Dadas a reta de equação 5x-3y+8=0 e a circunferência de equação $x^2+y^2+2x-4y+1=0$, a equação da reta perpendicular à reta dada, contendo o centro da circunferência, é:
 - a) 3x + 5y 7 = 0
 - b) -2x+3y-2=0
 - c) 3x + 5y 4 = 0
 - d) 4x + 6 = 0
 - e) -2x+3y+5=0

CIRCUNFERÊNCIA									
1) D	2) B	3) A	4) B	5) A	6) D	7) B	8) E	9) B	10) C
11) E	12) D	13) D	14) B	15) B	16) C	17) A	18) D	19) C	20) A

