A derivada f'(1) da função $f(x) = \log_2 x^3$ é:

- a) *ℓ*n2
- b) 0
- c) 3
- d) 3 ℓn2
- e) $\frac{3}{\ell n^2}$

2) Escola Naval 1982

A derivada de ordem **n** da função $f(x) = x.e^x$ para x = 1 é:

- a) e
- b) 2ne
- c) (n+1)e
- d) ne
- e) (n+1)e

3) Escola Naval 1985

Os valores mínimo e máximo de $f(x) = xe^{-x^2}$ no intervalo |0,1| são respectivamente:

- a) 0 e $\frac{1}{e}$
- b) 0 e $\frac{1}{\sqrt{2e}}$
- c) $\frac{1}{e}$ e $\frac{1}{\sqrt{2e}}$
- d) 0 e $\frac{1}{2e^4}$
- e) 0 e e

4) Escola Naval 1985

O contradomínio da função $y = x + 4/x (x \neq 0)$ é:

- a) $\{y \in \Re / |y| \ge 4\}$
- b) $\{y \in \Re / |y| = 4\}$
- c) $\{y \in \Re / |y| \le 4\}$
- d) $\{y \in \Re / |y| > 4\}$
- e) $\{y \in \Re / |y| < 4\}$

5) Escola Naval 1985

O valor de **a** para qual as curvas de equações $y = a - x^2$ e xy = 16 são tangentes é:

- a) 12
- b) -4

- c) 4
- d) 2
- e) 1

Para x > 0, o valor mínimo de x^x é obtido para x igual a:

- a) $\frac{1}{10}$
- b) $\frac{1}{3}$
- c) $\frac{1}{e}$
- d) $\frac{1}{2}$
- e) 1

7) Escola Naval 1986

A equação da reta que é tangente á curva $y = \frac{2x+3}{x-1}$ e que contém o ponto (3,2) é:

- a) y = -5x/4 + 23/4
- b) y = -4x + 14
- c) y = -3x + 11
- d) y = -2x + 8
- e) y = -x + 5

8) Escola Naval 1986

O volume do cone da revolução de volume máximo que pode ser inscrito em uma esfera de raio R é:

- a) $\frac{16\pi R^3}{81}$
- b) $\frac{\pi R^3}{3}$
- c) $\frac{32\pi R^3}{81}$
- d) $\frac{16\pi R^3}{27}$
- e) $\frac{32\pi R^3}{27}$

9) Escola Naval 1987

No intervalo |-1,2|, o menor valor e o maior valor da função $f(x) = x^4 - 3x^2 + 1$ são respectivamente:

- a) -1,25 e 5
- b) -1,25 e 1
- c) -1 e 1
- d) -1e5
- e) 1e5

10)Escola Naval 1987

Calcule A reta y = mx + 3 tangência a elipse $x^2 + 4y^2 = 1$ se e só se

a)
$$m = \pm \frac{\sqrt{23}}{2}$$

b) $m = \pm \frac{\sqrt{29}}{2}$

b)
$$m = \pm \frac{\sqrt{29}}{2}$$

c)
$$m = \pm \frac{\sqrt{31}}{2}$$

d)
$$m = \pm \frac{\sqrt{33}}{2}$$

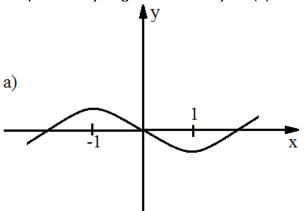
e)
$$m = \pm \frac{\sqrt{35}}{2}$$

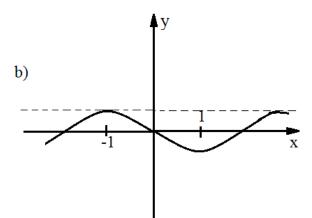
11) Escola Naval 1988
Se $f(x) = tg^3$ 2x podemos afirmar que f' $(\pi/6)$ é igual a:

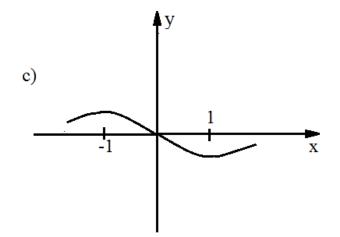
- a) 0
- b) 72
- c) 144
- d) 96
- e) 24

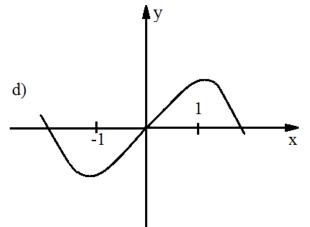
12)Escola Naval 1988

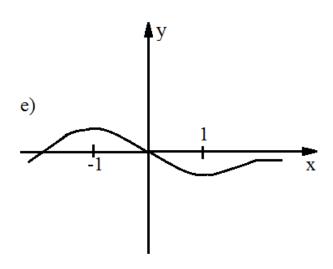
A representação gráfica da função f(x) =x - 2 arc tgx é:











A derivada da função $f(x) = x/e^x \ \acute{e}$:

a)
$$f'(x) = 1/e^x$$

b) f'(x) =
$$\frac{1-x}{e^x}$$

c) f'(x) =
$$\frac{x-1}{e^x}$$

d) f'(x) =
$$\frac{x}{e^{2x}}$$

e) f'(x) = x + 1/ e^{2x}

e) f '(x) = x +
$$1/e^{2x}$$

14) Escola Naval 1990

O mínimo valor de $\frac{x^4 + x^2 + 5}{(x^2 + 1)^2}$, real, é:

- a) 0,50
- b) 0,80
- c) 0,85
- d) 0,95
- e) 1

15) Escola Naval 1990

Se $f(x) = 1n \text{ sen}^2 x \text{ determine } f'(\pi/4)$

- a) In 2
- b) 1
- c) $\pi/4$
- d) 2
- e) $2\sqrt{2}$

16) Escola Naval 1990

As tangentes á curva de equação $y = x^2$ que passam pelo ponto P (-2,0) formam ângulo α . Determine α .

- a) 1
- b) 2
- c) 4
- d) 6
- e) 8

Se $f(x) = \frac{x}{x^2 + 1}$ então f ' (2) vale:

- a) -0,4
- b) -0,12
- c) 0
- d) 0,12
- e) 0,4

18) Escola Naval 1992

A área do triângulo formada pelos eixos coordenados e pela tangente á curva $y = 4x^2$ no ponto (1,4) vale:

- a) 8
- b) 4
- c) 2
- d) 1
- e) 1/2

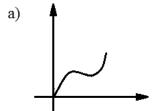
19)Escola Naval 1992

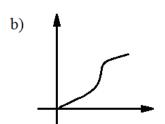
Se f(x) = In $\left(\frac{1+x}{1-x}\right)$, o valor de f' $\left(\frac{1}{2}\right)$ é:

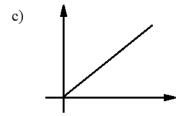
- a) 0
- b) 1/3
- c) 2/3
- d) 4/3
- e) 8/3

20) Escola Naval 1992

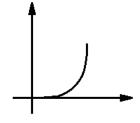
Um reservatório tem a forma de uma esfera com uma pequena abertura na parte de cima. enche-se o reservatório por intermédio de uma torneira de vazão constante. O gráfico que melhor representa a altura da água no reservatório em função do tempo é:



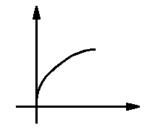




d)



e)



21) Escola Naval 1993

A menor distância entre um ponto da parábola $y = 1 - x^2$ e a origem é igual a:

- a) 1

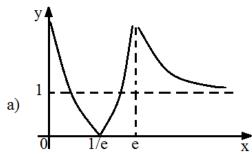
22) Escola Naval 1996

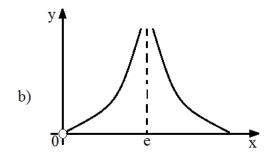
A derivada de $y = 1/2 tg^2x + \ln(\cos x)$ é a) $\sec^2x - tgx$ b) $(\cos x - 1) / \cos^2x$ c) tg^3x

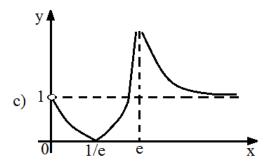
- d) $(senx cos^2x) / cos^3x$
- e) 0

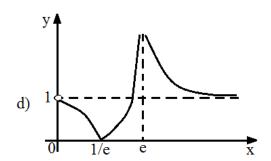
23) Escola Naval 1996

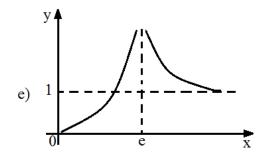
O gráfico da função $f(x) = \left| \frac{\ln x + 1}{\ln x - 1} \right|$











24) Escola Naval 1997
A função $f(x) = x.e^{1/x}$ é decrescente no intervalo:

- a)]1, +∞[
- b)]-∞, 1[
- c)]-∞, 0[
- d)]0, $+\infty$ [
- e)]0, 1[

25) Escola Naval 1997

Considere r a reta tangente ao gráfico da função y = f(x) no ponto (1,f(1)). Sejam f(1) = 3 e f'(1) = 2. Se r intercepta o gráfico da função $g(x) = x^2 - 3x + 7$ nos pontos (x_1,y_1) e (x_2,y_2) então os valores de y₁ e y₂ são respectivamente:

- a) 1 e 2
- b) 2 e 3
- c) 3 e 5
- d) 5 e 7
- e) 7 e 9

Seja y = x^3 - 3x + 5, onde x = g(t), g'(2) = 3 e g(2) = 4. A derivada de y no ponto t = 2 é:

- a) 9
- b) 27
- c) 45
- d) 90
- e) 135

27) Escola Naval 1997

A derivada da função $f(x) = arc tg(1/x) \ \acute{e}$:

a)
$$\frac{x^2}{x^2+1}$$

b)
$$\frac{1}{1+x^2}$$

c)
$$\frac{-1}{1+x^2}$$

$$d) \frac{-1}{x^2(1+x^2)}$$

e)
$$\frac{1}{x}$$

28) Escola Naval 1998

A equação do movimento de um projétil que se desloca ao longo do eixo x é x(t) = e $-\left(t-\frac{\pi}{4}\right)$. sent + cot² t , t ≥ 0 . A aceleração do projétil no instante t = $\pi/4$ é:

- a) 16 $\sqrt{2}$
- b) 8 + $\sqrt{2}$
- c) 8 $2\sqrt{2}$
- d) 16 $2\sqrt{2}$
- e) 16 +2 $\sqrt{2}$

29) Escola Naval 1998

Um míssil, lançado verticalmente de uma fragata, é rastreado por uma estação de radar localizada a 3 milhas do ponto de lançamento. Sabendo-se que em certo instante a distância do míssil á estação de radar é de 5 milhas e que esta distância está aumentando á taxa de 5 mi/h, podemos afirmar que a velocidade vertical do míssil, neste instante é de:

- a) 4100 min/h
- b) 5250 min/h
- c) 5750 min/h
- d) 6100 min/h
- e) 6250 min/h

30) Escola Naval 1998

Supondo que y = f(x) seja uma função derivável e que satisfaz a equação $xy^2 + y + x = 1$, podemos afirmar que:

8

a)
$$f'(x) = \frac{-f(x)}{2xf(x)-1}$$

b)
$$f'(x) = \frac{-1 - (f(x))^2}{2xf(x) + 1}$$

c)
$$f'(x) = \frac{-(f(x))^2}{2xf(x)+1}$$

d)
$$f'(x) = \frac{-1 + (f(x))^2}{2xf(x) + 1}$$

e)
$$f'(x) = \frac{1 - (f(x))^2}{2xf(x) + 1}$$

Na confecção da raia de tiro para navios da Marinha, verificou-se que o alvo ideal seria um retângulo. As dimensões de um retângulo de área máxima com base no eixo x e vértices superiores sobre a parábola $y = 12 - x^2$ pertencem ao intervalo:

- a) [2,5]
- b) [0,3]
- c)]3,7]
- d) [4,9[
- e) [0,6[

32) Escola Naval 1998

A reta s passa pelo ponto (3,0) e é normal ao gráfico de $f(x) = x^2$ no ponto P(x, y). As coordenadas de x e y de P são, respectivamente,

- a) 2 e 4
- b) $\frac{1}{2}$ e $\frac{1}{4}$
- c) 1 e 1
- d) $\frac{1}{3}$ e $\frac{1}{9}$
- e) $\frac{5}{2}$ e $\frac{25}{4}$

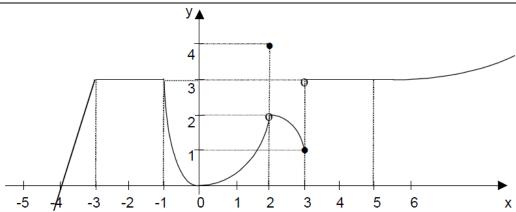
33)Escola Naval 1998

Um navio levará estocado um latão de óleo contendo 100 π dm³ de volume e deve ter a forma de um cilindro com base plana e a base superior hemisférica, conforme a figura abaixo. Desprezando a espessura do material, podemos afirmar que o raio r da base, para que seja gasto a menor quantidade possível de material para a confecção do latão é:



- a) 3√60
- b) $2\sqrt{15}$
- c) $4\sqrt{50}$

- d) 3³√15
- e) ³√60



Seja y = f(x) uma função real cujo gráfico está representado acima. Nas proposições abaixo, coloque C na coluna á direita quando a proposição for certa e E quando for errada.

- (I) f (x) é positiva e contínua $\forall x \in [-4,5]$
- (II) f(0) = f(-4) = 0 e f(2) = 2
- (III) f' -4) > 0 e f' (x) = 3 $\forall x \in]3,5[$
- (IV) f (x) é crescente $\forall x \in]-\infty, -3[\ \bigcup\]0, 2[\ \bigcup\]5, +\infty[$
- (V) $\lim_{x\to 3^{+}} (x) = 3$ e $\lim_{x\to 2} (x) = 2$

Lendo a coluna da direita de cima para baixo encontramos.

- a) E E E C C
- b) ECECE
- c) E E E C E
- d) C C E E E
- e) C C C C E

35)Escola Naval 1999

A reta tangente a curva de equação $\frac{x^2}{25} + \frac{y^2}{9} = 1$ no ponto $\left(3, \frac{12}{5}\right)$ é dada por

- a) 2y + 9x = 75
- b) 5y 5x = 3
- c) 5y + 15x = 51
- d) 20y 9x = 45
- e) y 5x = 75

36) Escola Naval 2000

A derivada de 2ª ordem da função real $f(x) = \sqrt{x} \ln x$ em x = 1 é:

- a) $\frac{-3}{4}$
- b) 0
- c) $\frac{1}{4}$
- d) 1
- e) -1

Sejam f e g funções definidas em \mathbb{R} e deriváveis em x = 0 tais que f(0) = 3; f'(0) = 4, g(0) = 1 e g'(0) =

- -1. Então $\left(\frac{2f+g}{f-g}\right)$ (0) é igual a:
- a) 21/6
- b) 7/5
- c) -21/4
- d) -21/5
- e) 21/4

38) Escola Naval 2002

De um ponto P dos cais, João observa um barco AB ancorado. Para um sistema de eixos ortogonais os pontos A e B têm coordenadas respectivamente iguais a (0, 20) e (0, 40), enquanto P encontra-se no semieixo positivo das abscissas. Se o ângulo de observação é máximo, então a abscissa de P é igual a:

- a) 20√2
- b) $20\sqrt{3}$
- c) 20
- d) 15
- e) 10

39) Escola Naval 2003

A função f(x) satisfaz a seguinte equação $sen\left(\frac{x}{2}+f(x)\right)=xf(x)-\frac{x}{2}+3$. Considere a função g,

definida por $g(x) = k \frac{f(x)}{x}$ com $x \ne 0$ e $k \in \mathbb{R}$. Sabendo que f(2) = -1, podemos afirmar que o valor da constante real k para que g(2) = f'(2) é:

- a) 1/2
- b) 3/4
- c) 4/3
- d) 8/5
- e) 2

40) Escola Naval 2003

Seja g(x) uma função real, derivável até a 3ª ordem para todo x real, tal que g'(0) = 0 e g''(0)=16. Se

 $f(x) \text{ \'e uma função real definida por } f\left(x\right) = \begin{cases} \frac{g(x)}{2x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases} \text{, então } f'(0) \text{ \'e igual a: }$

- a) 16
- b) 12
- c) 8
- d) 4
- e) 0

41) Escola Naval 2003

Considere a função real f definida por:

$$f(x) = \begin{cases} x^2 - 1 & \text{se } x < -2 \\ \frac{3}{x^2 - 1} & \text{se } -2 \le x < -1 \\ \frac{3}{x^2 - 1} & \text{se } -1 < x < -1 \\ \frac{3}{x^2 - 1} & \text{se } 1 < x < 2 \\ x^3 & \text{se } x \ge 2 \\ 2 & \text{se } x = 1 \\ 2 & \text{se } x = -p \end{cases}$$

A imagem da função f é o conjunto:

a)
$$]-\infty,-3]\cup[1,+\infty[$$

b)]-
$$\infty$$
,-1[\cup [2,+ ∞ [

c)]-
$$\infty$$
, -3[\cup]-1,1[\cup]1,+ ∞ [

d)]-
$$\infty$$
,-2[\cup]-2,-1[\cup]-1,+ ∞ [

e)
$$\mathbb{R} - \{-1,1\}$$

42) Escola Naval 2004

A equação da reta que passa pelo centro da curva $4x^2 + y^2 - 4x + 4y = 0$ e é normal a reta tangente ao gráfico da função real f (x) = arc sen \sqrt{x} no ponto da abscissa x = 1/2 é:

a)
$$2y - 2x + 3 = 0$$

b)
$$y - x + 3 = 0$$

c)
$$y + x + 1 = 0$$

d)
$$2y + 2x + 3 = 0$$

e)
$$y - x - 1 = 0$$

43) Escola Naval 2004

O valor das constantes reais a e b para os quais a função real
$$g(x) = \begin{cases} ax + b, & \text{se } x \le -1 \\ ax^3 + x + 2b & \text{se } x > -1 \end{cases}$$

seja derivável para todo x é

a)
$$a = 1/2 e b = 1$$

b)
$$a = 1 e b = -1/2$$

c)
$$a = -1/2$$
 e $b = 1$

d)
$$a = -1 e b = -1/2$$

e)
$$a = 1/2$$
 e $b = -1$

44) Escola Naval 2005

Dentre Sejam f e g funções reais de variável real. se

$$f(x) = \begin{cases} \frac{\sqrt{x} - \sqrt{7}}{\sqrt{x^2 + 15} - 8}, & \text{se } x \neq 7 \\ a & \text{se } x = 7 \end{cases}$$

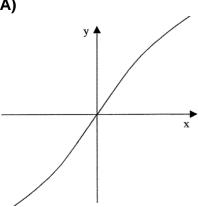
é contínua em x = 7 e $g(x) = ln^2 \left(2x + \frac{6}{7}\right)$, pode-se afirmar que $g(\sqrt{7}a)$ vale

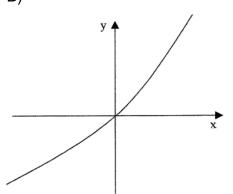
- a) 0
- b) In2
- c) 1
- d) In4
- e) 2

45) Escola Naval 2005

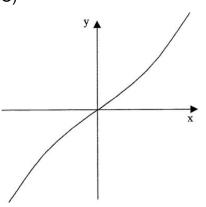
Dentre as opções abaixo aquela que melhor representa o gráfico a função real de variável real $f(x) = x + 2arctgx \acute{e}$

A)

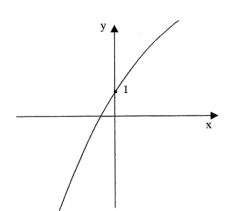




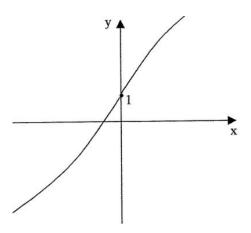
C)



D)



E)



Seja L a reta tangente ao gráfico a função real, de variável real, $y(x) = e^{\left(x - \frac{\pi}{2}\right)} cos\left(\frac{3\pi}{4} - 2x\right)$ no ponto

 $\left(\frac{\pi}{2}, \frac{\sqrt{2}}{2}\right)$. Se P e Q são pontos de intersecção de L com os eixos coordenados, a medida da área do

triângulo de vértices P, Q (0,0) é

a)
$$\frac{\sqrt{2}\pi(\pi+1)}{2}$$

b)
$$\frac{\sqrt{2}\pi(\pi+1)^2}{8}$$

c)
$$\frac{\sqrt{2}}{4} \left(\frac{\pi}{2} + 1 \right)^2$$

d)
$$\frac{\sqrt{2}(\pi-1)^2}{4}$$

e)
$$\frac{\sqrt{2}}{2} \left(\frac{\pi}{2} + 2 \right)^2$$

47) Escola Naval 2005

Sejam f e g duas funções reais e deriváveis tais que $f'(x) = sen(cos\sqrt{x})$ e $g(x) = f(x^2)$, $x \in \Re_+^*$.

Pode-se afirmar que $g'(x^2)$ é igual à

a)
$$2xsen(cos x^2)$$

b)
$$2x^2 \cos(\cos x^2)$$

c)
$$2x^2 sen(cos x^2)$$

d)
$$2x\cos(\cos x)$$

e)
$$2x^2 sen(cos x)$$

48) Escola Naval 2005

Um recipiente cilíndrico que deve ter 1 m³ de volume vai ser construído nas oficinas do Arsenal de Marinha, para atender a um dos navios da MB. na lateral e na tampa, será utilizado um material cujo preço é de R\$ 1000,00por m² e, no fundo, um material cujo preço é R\$ 2000,00 por m². Que dimensões deve ter o recipiente, para que a MB tenha a menor despesa possível?

a)
$$\frac{1}{\sqrt[3]{3\pi}}$$
 m e $\frac{1}{3\pi^2}$ m

b)
$$\frac{1}{3\sqrt[3]{\pi}}$$
 m e $\frac{1}{9\pi\sqrt[3]{\pi^2}}$ m

c)
$$\frac{1}{\pi\sqrt[3]{3}}$$
 m e $\frac{1}{\sqrt[3]{9\pi^2}}$ m

d)
$$\frac{1}{\sqrt[3]{3\pi}}$$
m e $\sqrt{\frac{9}{\pi}}$ m

e)
$$\frac{1}{\sqrt[3]{3\pi}}$$
m e $\frac{1}{\pi\sqrt[3]{9\pi^2}}$ m

A reta r tangente à curva de equação $x - \sqrt{xy} + y = 1$, no ponto P = (x,y), é paralela ao eixo das abscissas. Pode-se afirmar que o ponto P também pertence à reta de equação

- a) x = 0
- b) y = 1
- c) y x + 2 = 0
- d) y x 1 = 0
- e) 3y + 3x 1 = 0

50) Escola Naval 2006

O cone circular reto, de volume mínimo, circunscrito a uma esfera de raio R e apoiado em um plano diametral, tem por volume o número real

- a) $\frac{\pi}{3}R^3$
- b) $\frac{\sqrt{3}}{3}\pi R^{3}$
- c) πR^3
- d) $\frac{\sqrt{2}}{3}\pi R^3$
- e) $\frac{\sqrt{3}}{2}\pi R^{3}$

51) Escola Naval 2006

Sejam r e s retas do plano tais que:

- (i) r possui coeficiente angular positivo e não intercepta de equação $\frac{\left(x-2\right)^2}{9} \frac{\left(y-1\right)^2}{4} = 1$.
- (ii) s é tangente ao gráfico da função real f definida por $f(x) = e^{(x^2-1)} \cdot \sqrt{3x-2} + \ln[1+(x-1)^4]$ no ponto P(1,1).

Se I é ponto de interseção de r e s, então a soma de suas coordenadas vale

- a) $\frac{4}{25}$
- b) $\frac{11}{17}$
- c) $\frac{12}{25}$
- d) $\frac{21}{25}$
- e) $\frac{16}{17}$

52) Escola Naval 2007

Sejam L_1 a reta tangente ao gráfico da função real $f(x) = e^{\sqrt{x^2-3x}}$ no ponto P(-1,f(-1)) e L_2 a reta tangente ao gráfico da função y = f'(x) no ponto Q(-1,f'(-1)). A abscissa do ponto de intersecção de L_1 e L_2 é

- a) $-\frac{1}{9}$
- b) $-\frac{1}{3}$
- c) $\frac{1}{9}$
- d) $\frac{1}{3}$
- e) 1

O valor mínimo relativo da função f, de variável real x, definido por $f(x) = \frac{a^2}{sen^2x} + \frac{b^2}{cos^2x}$, onde

- $a,b \in \Re^*$, vale
- a) $(a + 2|b|)^2$
- b) $a^2 + b^2$ c) 2|ab|
- d) $(|a| + |b|)^2$
- e) $2(a+b)^2$

54) Escola Naval 2007

A função real f, de variável real, é definida por $f(x) = \ln(x^5 + x^3 + x)$. Podemos afirmar que a equação da reta normal ao gráfico da função inversa f^{-1} no ponto $(\ln 3, f^{-1}(\ln 3))$ é

- a) $y 3x + 3\ln 3 = 1$
- b) $3y x + \ln 3 = 3$
- c) $y + 3x + \ln 27 = 1$
- d) $3y + x \ln 3 = -3$
- e) $y + 3x \ln 3 = 3$

55) Escola Naval 2007

Seja f a função real, de variável real, definida por $f(x) = \sqrt[3]{x^3 - x^2}$. Podemos afirmar que

- a) f é derivável $\forall x \in \Re^*$.
- b) f é crescente $\forall x \in \Re_+$.
- c) f é positiva $\forall x \in \Re_+ e (1, f(1))$ é ponto de inflexão.
- d) a reta 3y-3x+1=0 é uma assíntota do gráfico da f e (0,f(0)) é ponto de máximo local.
- e) f é derivável $\forall x \in \Re^*$ $\{1\}$ e 3y-3x-1=0 é uma assíntota do gráfico da f.

56) Escola Naval 2008

Nas posições abaixo coloque (V) na coluna à esquerda quando a proposição for verdadeira e (F) quando for falsa.

() O triângulo cujos vértices são obtidos pela interseção das retas y - x + 2 = 0, y + x - 8 = 0 e y = 0 é isósceles.

- () A equação da circunferência cujo centro coincide com o centro da hipérbole $2y^2 x^2 = 6$ e que passa pelos focos desta é $x^2 + y^2 = 8$.
- () Seja f uma função real de variáveis real. Se a pertence ao domínio da f e $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = b$, então f(a) = b.
- () Seja f uma função real de variáveis real. Se f possui derivadas de todas as ordens em um intervalo $I \subset IR$, $x_0 \in I$ e f" $(x_0)=0$, então $(x_0, f(x_0))$ é um ponto de inflexão do gráfico da f.
- () Se a, b e c, são respectivamente, as medidas dos lados opostos aos ângulos \hat{A},\hat{B} e \hat{C} de um

triângulo ABC, estão o determinante Δ a b c é nulo, para quaisquer a, b ,c em IR $^{\hat{}}$. sen \hat{A} sen \hat{B} sen \hat{C}

Lendo a coluna da esquerda, de cima para baixo, encontra-se

- a) V V V F V
- b) V V V F
- c)FFFVF
- d) F F V V V
- e) V F F F V

57) Escola Naval 2008

Considere a função real f, de função variável real, definida por $f(x) = x + \ln x$, x > 0. Se g é a função inversa de f, então g''(1) vale

- a) 1
- b) 0,5
- c) 0,125
- d) 0,25
- e) 0

58) Escola Naval 2008

Cada termo de uma sequência de números reais é obtido pela expressão $\left(\frac{1}{n} - \frac{1}{n+1}\right)$ com $n \in IN^*$.

Se $f(x) = x \ arcsen(\frac{x}{6})$ e S_n é a soma dos n primeiros termos da sequência dada, então f'

$$\left(\frac{301}{100}S_{300}\right) \text{ vale}$$

a)
$$\frac{2\sqrt{3} + \pi}{6}$$

b)
$$\frac{6\sqrt{5} + 5\pi}{30}$$

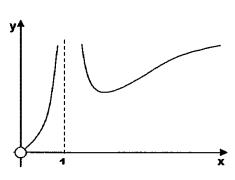
c)
$$\frac{\sqrt{3} + 2\pi}{18}$$

d)
$$\frac{4\sqrt{3}+3\pi}{12}$$

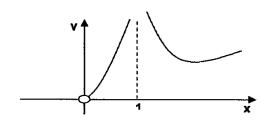
$$e) \ \frac{\sqrt{3} + \pi}{3}$$

A melhor representação gráfica para a função real f, de variável real, definida por $f(x) = \left| \frac{x}{\ln x} \right|$ é

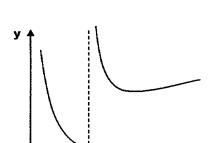
(A)



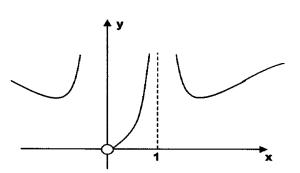
(B)



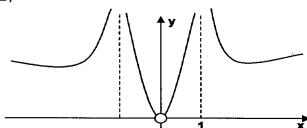
(C)



(D)



(E)



60) Escola Naval 2009

Sejam:

- a) f uma função real de variável real definida por $f(x) = arctg\left(\frac{x^3}{3} x\right), x > 1$ e
- b) L a reta tangente ao gráfico da função $y = f^{-1}(x)$ no ponto $(0, f^{-1}(0))$. Quando mede, em unidades de área, a área do triângulo formado pela reta L e os eixos coordenados?
- a) $\frac{3}{2}$
- b) 3
- c) 1
- $d)\frac{2}{3}$
- e) $\frac{4}{3}$

Considere a função real f de variável real as e as seguintes proposições:

- I. Se f é contínua e um intervalo aberto contendo $x = x_0$ e tem um máximo local em $x = x_0$ então $f'(x_0) = 0$ e $f''(x_0) < 0$.
- II. Se f é derivável em um intervalo aberto contendo $x = x_0$ e $f'(x_0) = 0$ então f tem o máximo ou um mínimo local em $x = x_0$.
- III. Se f tem derivada estritamente positiva em todo seu domínio então f é crescente em todo seu domínio.
- IV. Se $\lim_{x\to a} f(x) = 1$ e $\lim_{x\to a} g(x)$ é infinito então $\lim_{x\to a} (f(x))^{g(x)} = 1$.
- V. Se f é derivável $\forall x \in \Re$, então $\lim_{s \to 0} \frac{f(x) f(x 2s)}{2s} = 2f'(x)$.

Podemos afirmar que

- a) todas são falsas
- b) todas são verdadeiras
- c) apenas uma delas é verdadeira
- d) apenas duas delas são verdadeiras
- e) apenas uma delas é falsa

62) Escola Naval 2009

Considera as funções reais f e g de variável real definidas por $f(x) = \frac{\sqrt{e^{2x-1}-1}}{\ln(4-x^2)}$ e $g(x) = xe^{\frac{1}{x}}$

respectivamente, A e B subconjuntos dos números reais, tais que A é o domínio da função f e B o conjunto onde g é crescente. Podemos afirmar que A ∩ B é igual a

a)
$$\left[1,\sqrt{3}\right[\cup \left]\sqrt{3},+\infty\right[$$

b)
$$[1,2[\ \cup\]2,+\infty[$$

d)
$$1,\sqrt{3}$$
 0

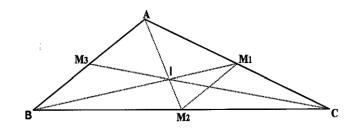
e)
$$\sqrt{3},+\infty$$

63) Escola Naval 2009

Considere o triângulo ABC dado abaixo, onde M_1, M_2 e M_3 são os pontos médios dos lados AC, BC e AB, respectivamente e k a razão da área do triângulo AIB para a área do triângulo IM_1M_2 e $f\left(x\right) = \left(\frac{1}{2}x^3 + x^2 - 2x - 11\right)\sqrt{2}$. Se um cubo se expande de tal modo que num determinado

instante sua aresta mede 5dm e aumenta à razão de $|f(k)^{dm}/min|$ então podemos afirmar que a taxa de variação da área total da superfície deste sólido, neste instante, vale em $\frac{dm^2}{min}$.

- a) 240 √2
- b) 330√2
- c) $420\sqrt{2}$
- d) $940\sqrt{2}$
- e)1740 $\sqrt{2}$

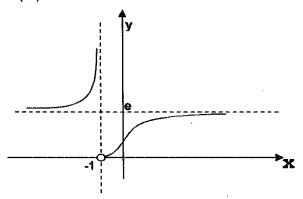


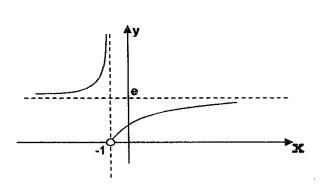
Seja L uma lata de forma cilíndrica, sem tampa, de raio da base r e altura h. Se a área da superfície de L mede 54π a²cm², qual deve ser o valor de $\sqrt{r^2 + h^2}$, para L tenha volume máximo?

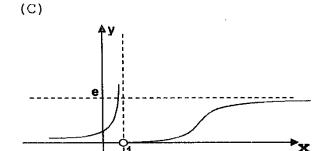
- a) a cm
- b) 3a cm
- c) 6a cm
- d) 9a cm
- e) 12a cm

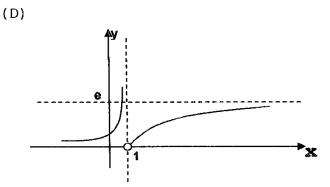
65) Escola Naval 2010

A figura que melhor representa o gráfico da função $y = e^{\frac{x}{x+1}}$ é (A)











66) Escola Naval 2010

Sejam f e g funções reais de variável real definidas por $f(x) = 2 - \arcsin(x^2 + 2x)$ $\frac{-\pi}{18}$ < x < $\frac{\pi}{18}$ e g(x) = f(3x). Seja L a reta normal ao gráfico da função g⁻¹ no ponto (2, g⁻¹(2)), onde g⁻¹ representa a função inversa da função g. À reta L contém o ponto

a) (-1,6)

b) (-4,-1)

c) (1,3)

d) (1,-6)

e) (2,1)

67) Escola Naval 2010

Considere o triângulo isóscele ABC inscrito em um círculo, conforme figura abaixo. Suponha que o raio do círculo cresce a uma taxa de 3 cm/s e a altura \overline{AD} do triângulo desce a uma taxa de 5 cm/s. A taxa de crescimento da área do triângulo no instante em que o raio e a altura \overline{AD} medem, respectivamente, 10 cm e 16 cm é.

a) 78 cm²/s

b) 76 cm²/s

c) 64 cm²/s

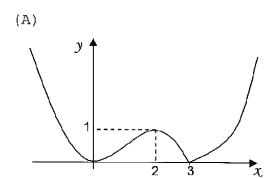
d) 56 cm²/s

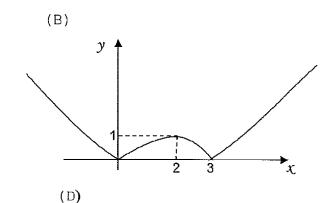
e) 52 cm²/s

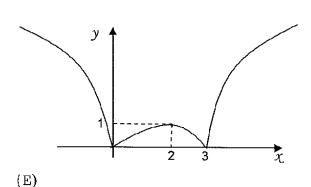
(C)

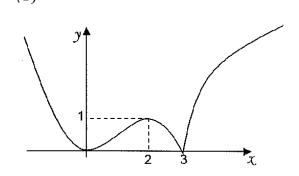
68) Escola Naval 2011

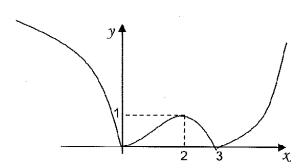
O gráfico que melhor representa a função f, definida por $f(x) = \frac{1}{4} |x^3 - 3x^2|$ é.











Em que ponto da curva $y^2 = 2x^3$ a reta tangente é perpendicular á reta de equação 4x - 3y + 2 = 0?

a)
$$\left(\frac{1}{8}, \frac{-1}{16}\right)$$

b)
$$\left(\frac{1}{4}, \frac{-\sqrt{2}}{16}\right)$$

c)
$$\left(1,-\sqrt{2}\right)$$

e)
$$\left(\frac{1}{2}, \frac{-1}{2}\right)$$

70) Escola Naval 2011

Ao meio dia o navio NE - Brasil encontra-se a 100 km a leste do navio Aeródromo São Paulo. O NE-Brasil navega para oeste com velocidade de 12 km/h São Paulo a 10 km/h. Em que instante. Em que instante, aproximadamente, os navios estarão mais próximos um do outro?

- a) 5,3 h
- b) 5,1 h
- c) 4,9 h
- d) 4,4 h
- e) 4,1 h

71) Escola Naval 2012

Considere a função real de variável real definida por f (x) = $3x^4 - 4x^3 + 5$. É verdade afirmar que a) f tem um ponto de mínimo em]-∞,o[

- b) f tem um ponto de inflexão em $-\frac{1}{2}, \frac{1}{2}$
- c) f tem um ponto de maximo em $[0,+\infty]$
- d) f é crescente em [0,1]
- e) f é decrescente em [-1,2]

72) Escola Naval 2012

Um ponto P (x,y) move-se ao longo da curva plana de equação $x^2 + 4y^2 = 1$ com y > 0. Se a abscissa x esta variando a uma velocidade $\frac{dx}{dt}$ = sen4t, pode-se a firmar que a aceleração ordenada y tem por expressão

a)
$$\frac{(1+x^2)sen^24t + 4x^3\cos4t}{8y^3}$$

b)
$$\frac{x^2 sen4t + 4x cos^2 4t}{16v^3}$$

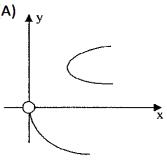
c)
$$\frac{-\text{sen}^2 4t - 16xy^2 \cos 4t}{16y^3}$$

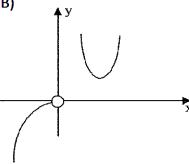
d)
$$\frac{x^2 \text{sen} 4t - 4x \cos^2 4t}{8y^3}$$

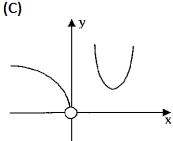
c)
$$\frac{-\text{sen}^{2}4t - 16xy^{2}\cos 4t}{16y^{3}}$$
d)
$$\frac{x^{2}\text{sen}4t - 4x\cos^{2}4t}{8y^{3}}$$
e)
$$\frac{-\text{sen}^{2}4t + 16xy^{2}\cos 4t}{16y^{3}}$$

A figura que melhor representa o gráfico $x = |y|e^{\overline{y}}$ da função é

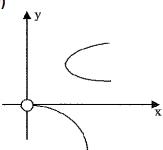
(A)



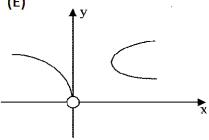




(D)



(E)



74) Escola Naval 2012

Considere f e f' funções reais de variável real, deriváveis, onde f (1) = f'(1) = 1. Qual o valor da derivada da função h (x) = $\sqrt{f(1+\sin 2x)}$ para x = 0?

- a) -1
- b) $-\frac{1}{2}$
- c) 0
- e) 1

75) Escola Naval 2012

Numa vidraçaria há um pedaço de espelho, sob a forma de um triângulo retângulo de lados 30 cm, 40 cm e 50 cm. Deseja-se a partir dele, recortar um espelho retangular, com a maior área possível, conforme figura abaixo. Então as dimensões do espelho são

- a) 25 cm e 12 cm
- b) 20 cm e 15 cm
- c) 10 cm e 30 cm
- d) 12,5 cm e 24 cm
- e) $10\sqrt{3}$ cm e $10\sqrt{3}$ cm

