Resoluções dos exercícios propostos

P.421 Da definição de densidade linear (μ), vem:

$$\mu = \frac{m}{l} \Rightarrow \mu = \frac{600 \cdot 10^{-3} \text{ kg}}{3 \text{ m}} \Rightarrow \mu = 200 \cdot 10^{-3} \text{ kg/m} \Rightarrow \mu = 0.2 \text{ kg/m}$$

A velocidade de propagação do pulso na corda depende apenas da intensidade da força de tração (T) e da densidade linear (μ) da corda, sendo dada por:

$$v = \sqrt{\frac{T}{\mu}} \implies v = \sqrt{\frac{500}{0.2}} \implies v = 50 \text{ m/s}$$

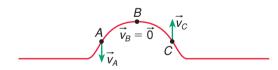
P.422 Dados: $d = 9 \text{ g/cm}^3 = 9 \cdot 10^3 \text{ kg/m}^3$; $A = 10 \text{ mm}^2 = 10 \cdot 10^{-6} \text{ m}^2$; v = 100 m/s

Do exercício **R.119**, temos: $v = \sqrt{\frac{T}{dA}}$. Assim, obtemos:

$$100 = \sqrt{\frac{T}{9 \cdot 10^3 \cdot 10 \cdot 10^{-6}}} \Rightarrow (100)^2 = \frac{T}{9 \cdot 10^{-2}} \Rightarrow \boxed{T = 900 \text{ N}}$$

P.423 Na figura abaixo, representamos o pulso no instante t_0 (linha cheia) e num instante imediatamente posterior (linha tracejada). A parte dianteira do pulso está se movendo para cima (\vec{v}_C é vertical e para cima) e a traseira, para baixo (\vec{v}_A é vertical e para baixo):

Assim, temos:

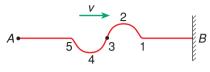


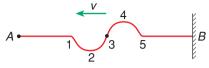
O ponto *B*, nesse instante, tem velocidade nula: $\vec{v}_B = \vec{0}$

2

Resoluções dos exercícios propostos

P.424 a) Ao incidir na extremidade *B*, fixa, o pulso sofre reflexão com inversão de fase. Observe que o trecho 1-2-3, que incide primeiro, volta na frente. Assim, temos:

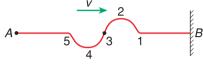




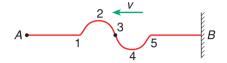
Pulso incidente

Pulso refletido

b) Sendo a extremidade B livre, o pulso reflete sem inversão de fase. Assim, temos:



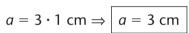
Pulso incidente



Pulso refletido (o trecho 1-2-3 incide primeiro e volta na frente)

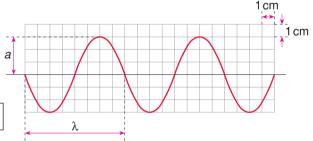
P.425 O pulso refratado não sofre inversão de fase. O pulso refletido também não sofre inversão de fase, pois o pulso incidente se propaga no sentido da corda de maior densidade linear para a corda de menor densidade linear. Assim, temos:

P.426 a) Na figura, temos:



$$\lambda = 8 \cdot 1 \text{ cm} \Rightarrow \lambda = 8 \text{ cm}$$

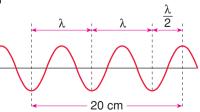
b) $v = \lambda f \Rightarrow 8 = 8 \cdot f \Rightarrow f = 1 \text{ Hz}$



P.427 Na figura, temos:

$$\lambda + \lambda + \frac{\lambda}{2} = 20 \text{ cm} \Rightarrow \frac{5\lambda}{2} = 20 \text{ cm} \Rightarrow \lambda = 8 \text{ cm}$$

Se cada ponto da corda executa uma vibração completa em 2 s, concluímos que o período da onda é T=2 s.



Como $v = \lambda f$, vem: $v = \frac{\lambda}{T} \Rightarrow v = \frac{8}{2} \Rightarrow v = 4 \text{ cm/s}$

Resoluções dos exercícios propostos

P.428 a) A partir da definição de velocidade, obtemos:

$$v = \frac{\Delta s}{\Delta t} \Rightarrow v = \frac{250}{2} \Rightarrow v = 125 \text{ cm/s}$$

b) A distância entre duas cristas sucessivas é o comprimento de onda λ:

$$\lambda = 25 \text{ cm}$$

- c) De $v = \lambda f$, vem: $125 = 25 \cdot f \Rightarrow f = 5 \text{ Hz}$
- **P.429** a) Pelo esquema são produzidas 2,5 ondas em 2 s. Assim, a frequência pode ser calculada por regra de três simples e direta:

$$\begin{array}{c} 2 \text{ s} \longrightarrow 2,5 \text{ ondas} \\ 1 \text{ s} \longrightarrow f \end{array} \qquad \begin{array}{c} f = \frac{2,5}{2} \Rightarrow \boxed{f = 1,25 \text{ Hz}} \end{array}$$

b) Sendo v = 0.5 m/s, temos:

$$v = \lambda f \Rightarrow \lambda = \frac{v}{f} \Rightarrow \lambda = \frac{0.5}{1.25} \Rightarrow \lambda = 0.4 \text{ m}$$

P.430 a) A frequência não se modifica quando a onda muda de corda: $f = \frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$

Temos: $v_1 = 12 \text{ m/s}$; $v_2 = 8 \text{ m/s}$; $\lambda_1 = 1.5 \text{ m}$; logo:

$$\frac{12}{1.5} = \frac{8}{\lambda_2} \Rightarrow \lambda_2 = \frac{8 \cdot 1.5}{12} \Rightarrow \boxed{\lambda_2 = 1 \text{ m}}$$

b)
$$f = \frac{v_1}{\lambda_1} \Rightarrow f = \frac{12}{1.5} \Rightarrow \boxed{f = 8 \text{ Hz}}$$

- **P.431** De $v = \lambda f$, vem: 3,0 · 10⁸ = λ · 100 · 10⁶ $\Rightarrow \lambda = 3$,0 m
- **P.432** Comparando $y = 3 \cdot \cos \left[2\pi \cdot (20t 4x) \right]$ (x e y em cm e t em s) com

$$y = a \cdot \cos \left[2\pi \cdot \left(\frac{t}{T} - \frac{x}{\lambda} \right) + \varphi_0 \right]$$
, obtemos:

a)
$$a = 3 \text{ cm}$$

b)
$$\frac{1}{\lambda} = 4 \Rightarrow \boxed{\lambda = 0.25 \text{ cm}}$$

Resoluções dos exercícios propostos

c)
$$\frac{1}{T} = 20 \Rightarrow \boxed{T = 0.05 \text{ s}}$$

d)
$$v = \lambda f \Rightarrow v = \frac{\lambda}{T} \Rightarrow v = \frac{0.25}{0.05} \Rightarrow v = 5 \text{ cm/s}$$

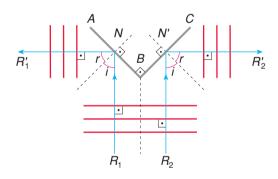
P.433 Comparando $y = 4 \cdot \cos \left[\pi \cdot (10t - 2x) + \pi\right]$ ou $y = 4 \cdot \cos \left[2\pi \cdot (5t - x) + \pi\right]$ ($x \in y \in x$ em cm e $t \in x$ em s) com $y = a \cdot \cos \left[2\pi \cdot \left(\frac{t}{T} - \frac{x}{\lambda}\right) + \varphi_0\right]$, vem:

$$f = \frac{1}{T} = 5 \Rightarrow f = 5 \text{ Hz}$$

$$\frac{1}{\lambda} = 1 \Rightarrow \lambda = 1 \text{ cm}$$

De
$$v = \lambda f$$
, vem: $v = 1 \cdot 5 \Rightarrow v = 5$ cm/s

P.434 Desenhamos os raios incidentes (R_1 e R_2) e os correspondentes raios refletidos (R_1' e R_2'). As frentes de onda refletidas são perpendiculares aos raios refletidos.



P.435 Em 5 s a frente de onda percorre a distância:

$$d = v \cdot \Delta t \Rightarrow d = 10 \cdot 5 \Rightarrow d = 50 \text{ cm} = 0.5 \text{ m}$$

Na **figura a**, representamos a frente de onda, no instante 5 s, se não houvesse as paredes; na **figura b**, representamos os arcos refletidos:

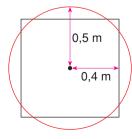


Figura a

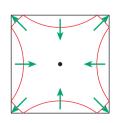


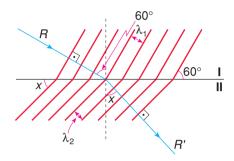
Figura b

OS FUNDAMENTOS

Resoluções dos exercícios propostos

P.436 a)
$$\frac{\text{sen } 60^{\circ}}{\text{sen } x} = \frac{\lambda_1}{\lambda_2} \Rightarrow \frac{\frac{\sqrt{3}}{2}}{\text{sen } x} = \frac{4}{2} \Rightarrow \boxed{\text{sen } x = \frac{\sqrt{3}}{4}}$$

b)
$$\frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2} \Rightarrow \frac{v_1}{v_2} = \frac{4}{2} \Rightarrow \boxed{\frac{v_1}{v_2} = 2}$$



P.437

a) De
$$v_1 = \lambda_1 f$$
, vem: $10 = \lambda_1 \cdot 5 \Rightarrow \lambda_1 = 2 \text{ m}$

b) A frequência não muda na refração: f = 5 Hz

De
$$v_2 = \lambda_2 f$$
, vem: $5 = \lambda_2 \cdot 5 \Rightarrow \boxed{\lambda_2 = 1 \text{ m}}$

P.438 a) De
$$v = \sqrt{\frac{T}{\mu}}$$
, vem: $v = \sqrt{\frac{10^{-2}}{9 \cdot 10^{-2}}} \Rightarrow v = \frac{1}{3}$ m/s

b) Como $v = \lambda f$, temos:

$$\frac{1}{3} = \lambda \cdot 2 \Rightarrow \boxed{\lambda = \frac{1}{6} \text{ m}}$$

c) Sabemos que $\varphi_0 = 0$; a = 0.3 m; $T = \frac{1}{f} = \frac{1}{2}$ s; $\lambda = \frac{1}{6}$ m; logo:

$$y = a \cdot \cos \left[2\pi \cdot \left(\frac{t}{T} - \frac{x}{\lambda} \right) + \varphi_0 \right]$$

$$y = 0.3 \cdot \cos \left[2\pi \cdot \left(\frac{t}{\frac{1}{2}} - \frac{x}{\frac{1}{6}} \right) + 0 \right]$$

$$y = 0.3 \cdot \cos \left[2\pi \cdot (2t - 6x) \right]$$

ou

$$y = 0.3 \cdot \cos \left[4\pi \cdot (t - 3x) \right] \text{ (SI)}$$

OS FUNDAMENTOS

Resoluções dos exercícios propostos

As duas cordas estão submetidas à mesma força tensora \vec{T} . As velocidades v_1 e v_2 P.439 dos pulsos nessas cordas serão expressas por:

$$v_1 = \sqrt{\frac{T}{\mu_1}} \quad \textcircled{1} \qquad v_2 = \sqrt{\frac{T}{\mu_2}} \quad \textcircled{2}$$

$$v_2 = \sqrt{\frac{T}{\mu_2}} \quad ②$$

Dividindo (1) por (2), obtemos:

$$\frac{v_1}{v_2} = \frac{\sqrt{\frac{T}{\mu_1}}}{\sqrt{\frac{T}{\mu_2}}} \Rightarrow \frac{v_1}{v_2} = \frac{\sqrt{\frac{T}{\mu_1}}}{\sqrt{\frac{T}{\mu_2}}} \Rightarrow \frac{v_1}{v_2} = \frac{\sqrt{\mu_2}}{\sqrt{\mu_1}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{\mu_2}{\mu_1}}$$

Como
$$\frac{\mu_2}{\mu_1} = \frac{1}{2}$$
, vem: $\frac{v_1}{v_2} = \sqrt{\frac{1}{2}} \Rightarrow \frac{v_1}{v_2} = \frac{1}{\sqrt{2}} \Rightarrow \boxed{\frac{v_1}{v_2} = \frac{\sqrt{2}}{2}}$

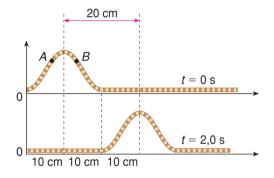
P.440 a) Na figura podemos observar que a crista da onda percorre 20 cm em 2,0 s.

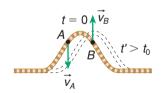
De
$$v = \frac{\Delta s}{\Delta t'}$$
 vem:

$$v = \frac{20}{2.0}$$

$$v = 10 \text{ cm/s}$$

b) Desenhando o pulso no instante t = 0e num instante t' imediatamente posterior, obtemos a figura ao lado.





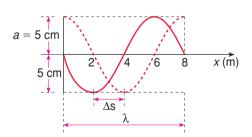
P.441 a) Na figura, temos:

$$a = 5 \text{ cm}$$

b) Também na figura é possível observar

$$\lambda = 8 \text{ m}$$

c) De $v = \frac{\Delta s}{\Delta t}$, vem:



Resoluções dos exercícios propostos

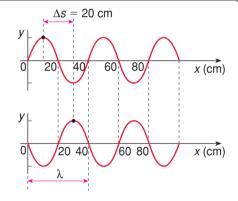
$$v = \frac{4-2}{0.5-0.3} \Rightarrow \boxed{v = 10 \text{ m/s}}$$

- d) Como $v = \lambda f$, temos: $10 = 8 \cdot f \Rightarrow f = 1,25 \text{ Hz}$
- P.442 No intervalo de tempo t_A o pulso se desloca $\Delta s_A = 20$ cm; no intervalo de tempo t_B , $\Delta s_B = 60$ cm.

 $\Delta s_A = vt_A$ ① $\Delta s_B = vt_B$ ②

Dividindo ① por ②, obtemos: $\frac{t_A}{t_B} = \frac{\Delta s_A}{\Delta s_B} \Rightarrow \frac{t_A}{t_B} = \frac{20}{60} \Rightarrow \boxed{\frac{t_A}{t_B} = \frac{1}{3}}$

P.443 a) Na figura, temos: $\lambda = 40 \text{ cm}$



b) Observe que a onda avança $\Delta s = 20$ cm em $\Delta t = \frac{1}{10}$ s; logo:

$$v = \frac{\Delta s}{\Delta t} \Rightarrow v = \frac{20}{\frac{1}{10}} \Rightarrow v = 200 \text{ cm/s ou} v = 2.0 \text{ m/s}$$

De $v = \lambda f$, vem:

$$200 = 40 \cdot f \Rightarrow \boxed{f = 5,0 \text{ Hz}}$$

P.444 a) Observando o gráfico, concluímos que o período da onda é T=2 s. Sendo $\lambda=0.84$ m, vem:

 $v = \lambda f \Rightarrow v = \frac{\lambda}{T} \Rightarrow v = \frac{0.84}{2} \Rightarrow v = 0.42 \text{ m/s}$

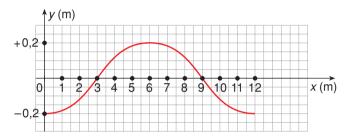
b) A velocidade da rolha é nula nos instantes em que há inversão no sentido do movimento. Isso ocorre nos instantes: 0,5 s; 1,5 s; 2,5 s etc.

Resoluções dos exercícios propostos

P.445 a) Do instante t=0 ao instante t=6 s, a bola completa $\frac{3}{4}$ de sua trajetória circular. Sendo T o período, vem:

$$\frac{3}{4} \cdot T = 6 \Rightarrow \boxed{T = 8 \text{ s}}$$

- b) De $v = \frac{\lambda}{T}$, sendo v = 1.5 m/s e T = 8 s, resulta: $1.5 = \frac{\lambda}{8} \Rightarrow \lambda = 12$ m
- c) Sendo o período T=8 s, concluímos que a posição inicial da bola no instante t=14 s é a mesma que no instante t=6 s (14 s -8 s =6 s). Portanto, sendo a=0,2 m a amplitude, para x=0 resulta y=-a=-0,2 m. O comprimento de onda é de 12 m. Assim, temos o esquema do perfil da onda para t=14 s:



P.446 a) De $v = \lambda f$, vem: 3,0 = 5,0 · $f \Rightarrow f = 0,60 \text{ Hz}$

b) Aumentando apenas a amplitude de vibração, a frequência, a velocidade de propagação e o comprimento de onda **não se alteram**. De fato, a frequência da onda é a frequência da fonte (vibrador) que lhe dá origem, e essa frequência não se altera. A velocidade de propagação depende apenas do meio em que a onda se propaga, e o meio continua sendo o mesmo. Assim, se a frequência e a velocidade não se alteram, o comprimento de onda também não se altera $\left(\lambda = \frac{v}{f}\right)$.

P.447 a) Quando ancorado: v = 2 m/s; $\lambda = 10$ m. Logo: $f = \frac{v}{\lambda} \Rightarrow f = \frac{2}{10} \Rightarrow f = 0.2$ Hz

O período é dado por: $T = \frac{1}{f} = \frac{1}{0.2} \Rightarrow \boxed{T = 5 \text{ s}}$

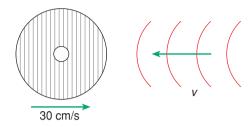
b) Se o barco se movimenta com velocidade de 8 m/s, a velocidade relativa das ondas em relação ao barco é: $v'=2+8 \Rightarrow v'=10$ m/s

Sendo
$$\lambda = 10$$
 m, vem: $f' = \frac{v'}{\lambda} = \frac{10}{10} \Rightarrow f = 1$ Hz

O período é dado por: $T' = \frac{1}{f'} = \frac{1}{1} \Rightarrow \boxed{T' = 1 \text{ s}}$

Resoluções dos exercícios propostos

P.448 Se as ondas chegam de 10 em 10 segundos a um ponto da margem, concluímos que o período é: T = 10 s



A velocidade da boia em relação à onda (ou da onda em relação à boia) é 30 + v, sendo v a velocidade de propagação das ondas. Assim, se a bóia leva 5 s para ir de uma depressão a outra, transpondo 8 cristas, concluímos que a bóia se desloca 8λ . Logo: $(30 + v) \cdot 5 = 8\lambda$

Sendo
$$v = \frac{\lambda}{T} \Rightarrow v = 0,1\lambda$$
, obtemos:

$$(30 + 0.1\lambda) \cdot 5 = 8\lambda \Rightarrow \lambda = 20 \text{ cm}$$

P.449 O período da onda é o período com que as gotas tocam a superfície da água e esse é igual ao tempo de queda das gotas:

$$s = s_0^0 + v_0^0 t^0 + \frac{1}{2}gt^2 \Rightarrow s = \frac{1}{2}gt^2 \Rightarrow 3,2 = 5t^2 \Rightarrow t = 0.8 \text{ s}$$

Logo:
$$T = 0.8 \text{ s}$$

$$v = \lambda f \Rightarrow v = \frac{\lambda}{T} \Rightarrow 15 = \frac{\lambda}{0.8} \Rightarrow \lambda = 12 \text{ cm}$$

P.450 Com velocidade 2,0 m/s, em 1,5 s a crista AB percorrerá 3,0 m. Como está a 2,0 m da região tracejada, parte da crista será refletida pelas comportas:

$$(t = 0)$$
 $(t = 1.5 \text{ s})$

A

4.0 m

B

2.0 m

1.0 m

$$AB = A'C + CD + DB'$$

$$4.0 = 1.0 + A'B' + 1.0 \Rightarrow A'B' = 2.0 \text{ m}$$

Resoluções dos exercícios propostos

P.451 a) Para o meio 1, temos: $v_1 = 200.0 \text{ m/s}$; $\lambda_1 = 4.0 \text{ cm} = 4.0 \cdot 10^{-2} \text{m}$

De
$$v_1 = \lambda_1 \cdot f_1$$
, vem: $200 = 4.0 \cdot 10^{-2} \cdot f_1 \Rightarrow f_1 = 5.0 \cdot 10^3 \text{ Hz}$

A frequência não muda na refração.

Logo, para o meio 2, temos: $f_2 = f_1 = 5.0 \cdot 10^3 \text{ Hz}$

b) De $\frac{\text{sen }\theta_1}{\text{sen }\theta_2} = \frac{v_1}{v_2}$, sendo sen $\theta_1 = 0.8$, sen $\theta_2 = 0.5$ e $v_1 = 200.0$ m/s, vem:

$$\frac{0.8}{0.5} = \frac{200.0}{v_2} \Rightarrow v_2 = 125.0 \text{ m/s}$$

c) A distância d entre duas frentes de ondas consecutivas é o comprimento de onda λ_2 .

De
$$v_2 = \lambda_2 \cdot f_2$$
, vem:
 $125,0 = \lambda_2 \cdot 5,0 \cdot 10^3 \Rightarrow \lambda_2 = 2,5 \cdot 10^{-2} \text{ m} = 2,5 \text{ cm}$

- **P.452** a) A frequência das ondas que se propagam do meio *B* é **igual** à das que se propagam no meio *A*, pois a frequência de uma onda é a da fonte que a emite no caso, o vibrador.
 - b) Como $v_A = \lambda_A f$ ① e $v_B = \lambda_B f$ ②, dividindo ① por ②, obtemos:

$$\frac{v_A}{v_B} = \frac{\lambda_A}{\lambda_B} \Rightarrow \frac{340}{v_B} = \frac{\lambda_A}{\frac{\lambda_A}{2}} \Rightarrow \boxed{v_B = 170 \text{ m/s}}$$

- **P.453** a) De $v_1 = \lambda_1 f$, vem: 2,0 = 0,40 · $f \Rightarrow f = 5,0$ Hz
 - b) Na corda 2 a frequência da onda também é f=5,0 Hz. A distância entre duas cristas consecutivas da corda 2 é o comprimento de onda λ_2 . Sendo $v_2=1,0$ m/s, vem:

$$v_2 = \lambda_2 f \Rightarrow 1.0 = \lambda_2 \cdot 5.0 \Rightarrow \lambda_2 = 0.20 \text{ m} \Rightarrow \lambda_2 = 20 \text{ cm}$$

P.454 O som se difrata muito mais do que a luz, pois seu comprimento de onda é muito maior do que o da luz.