

Language: Portuguese

Day: 1

Quarta-feira, 7 de julho de 2010

**Problema 1.** Determine todas as funções  $f: \mathbb{R} \to \mathbb{R}$  tais que

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

para todos os números  $x, y \in \mathbb{R}$ . (|z| designa o maior inteiro que é menor ou igual a z.)

**Problema 2.** Seja ABC um triângulo, I o seu incentro e  $\Gamma$  a sua circunferência circunscrita. A recta AI intersecta novamente  $\Gamma$  no ponto D. Sejam E um ponto do arco  $\widehat{BDC}$  e F um ponto do lado BC tais que

$$B\hat{A}F = C\hat{A}E < \frac{1}{2}B\hat{A}C.$$

Seja G o ponto médio do segmento IF. Mostre que as rectas DG e EI se intersectam sobre  $\Gamma$ .

**Problema 3.** Seja  $\mathbb{N}^*$  o conjunto dos inteiros positivos. Determine todas as funções  $g \colon \mathbb{N}^* \to \mathbb{N}^*$  tais que

$$(g(m)+n)(m+g(n))$$

é um quadrado perfeito para todos  $m, n \in \mathbb{N}^*$ .

Language: Portuguese

Tempo: 4 horas e 30 minutos Cada problema vale 7 pontos



Language: Portuguese

Day: 2

Quinta-feira, 8 de julho de 2010

**Problema 4.** Seja  $\Gamma$  a circunferência circunscrita ao triângulo ABC e P um ponto no interior do triângulo. As rectas AP, BP e CP intersectam novamente  $\Gamma$  nos pontos K, L e M, respectivamente. A recta tangente a  $\Gamma$  em C intersecta a recta AB em S. Supondo que SC = SP, mostre que MK = ML.

**Problema 5.** Em cada uma de seis caixas  $B_1, B_2, B_3, B_4, B_5, B_6$  há inicialmente só uma moeda. Dois tipos de operações são possíveis:

- Tipo 1: Escolher uma caixa não vazia  $B_j$ , com  $1 \le j \le 5$ . Retirar uma moeda de  $B_j$  e adicionar duas moedas a  $B_{j+1}$ .
- Tipo 2: Escolher uma caixa não vazia  $B_k$ , com  $1 \le k \le 4$ . Retirar uma moeda de  $B_k$  e trocar os conteúdos das caixas (possivelmente vazias)  $B_{k+1}$  e  $B_{k+2}$ .

Determine se existe uma sucessão finita destas operações que deixa as caixas  $B_1, B_2, B_3, B_4, B_5$  vazias e a caixa  $B_6$  com exactamente  $2010^{2010^{2010}}$  moedas. (Observe que  $a^{b^c}=a^{(b^c)}$ .)

**Problema 6.** Seja  $a_1, a_2, a_3, \ldots$  uma sucessão de números reais positivos. Sabe-se que para algum inteiro positivo s,

$$a_n = \max\{a_k + a_{n-k} \text{ tal que } 1 \le k \le n-1\}$$

para todo n > s. Mostre que existem inteiros positivos  $\ell$  e N, com  $\ell \le s$ , tais que  $a_n = a_\ell + a_{n-\ell}$  para todo  $n \ge N$ .

Language: Portuguese

Tempo: 4 horas e 30 minutos Cada problema vale 7 pontos