

Adição em Alcenos e Ciclenos

Adição em alcenos e ciclenos

1- Alcenos

O ponto fraco de um alceno é a ligação π da dupla, portanto teremos o seguinte esquema qeral:

a) Hidrogenação

$$CH_3 - CH = CH_2 + H_2$$
 Pt ou Ni

b) Halogenação

$$CH_3 - CH = CH_2 + Cl_2$$

$$CH_3 - CH = CH_2 + Br_2$$

c) Adição de halogenidreto

Regra de Markovnikov

Na adição de um haleto de hidrogênio a um alceno, ou na hidratação deste alceno, o hidrogênio do haleto ou da áqua liga-se ao átomo de carbono mais hidrogenado da dupla ligação.

$$CH_3 - CH = CH_2 + HCl$$

$$CH_3 - C = CH_2$$
 + HBr \longrightarrow CH_3

Efeito Kharash ou anti Markovnikov

Aplica-se esta regra quando a adição de HBr (somente ele) ocorre em presença de peróxidos orgânicos (R-O-O-R). A adição de HBr aos alcenos dá-se com o hidrogênio sendo adicionado ao carbono menos hidrogenado.

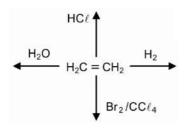
$$CH_3 - CH = CH_2 + HBr$$

Kharash

$$CH_3 - CH = CH_2 + H_2O$$

2- Ciclenos

a) Hidrogenação


b) Halogenação

c) Adição de halogenidreto

Oxidação em ciclenos

Exercícios

OI - (Uece) Obtido pelo petróleo, o eteno é o alceno mais simples, porém muito importante por ser um dos produtos mais fabricados no mundo. Analise o que acontece quando o eteno é tratado com os sequintes reagentes:

De acordo com o esquema acima, é correto afirmar que a reação do eteno com

- a) H_2O produzirá, em meio ácido, o etanol.
- b) H_2 é uma redução e não requer catalisador para ocorrer.
- c) Br₂/CCl₄ requer energia radiante (luz) para que possa ocorrer.
- d) *HCl* é uma reação de substituição.

02- (Ueg) Um mol de uma molécula orgânica foi submetido a uma reação de hidrogenação, obtendo-se ao final um mol do cicloalcano correspondente, sendo consumidos $2\ g$ de $H_{2(g)}$ nesse processo. O composto orgânico submetido à reação de hidrogenação pode ser o

Dado: H = 1.

- a) cicloexeno
- b) 1,3-cicloexadieno
- c) benzeno
- d) 1,4-cicloexadieno
- e) naftaleno