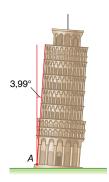


Capítulo 12

A circunferência trigonométrica: seno, cosseno e tangente

Para pensar



Exercícios propostos

Como 1º equivale a 60', para encontrar a equivalência a 3', podemos resolver a regra de três:

1° — 60'
$$x$$
 — 3' $x = \frac{1 \cdot 3}{60} = 0.05$

Logo, 124°3'0" equivale a 124,05°. Alternativa **b**.

2. A razão entre o comprimento do arco e a medida do raio, nessa ordem, é a medida x do arco em radiano, ou seja:

$$x = \frac{10}{2,5} \cdot \text{rad} \implies x = 4 \text{ rad}$$

3. a) rad grau π — 180

$$\begin{array}{ccc}
\pi & ---- & 180 \\
x & ---- & 30
\end{array} \Rightarrow x = \frac{30\pi}{180} = \frac{\pi}{6}$$

Portanto, 30° equivalem a $\frac{\pi}{6}$ rad.

b) rad grav

$$\begin{array}{ccc}
\pi & ---- & 180 \\
x & ---- & 120
\end{array} \Rightarrow x = \frac{120\pi}{180} = \frac{2\pi}{3}$$

Portanto, 120° equivalem a $\frac{2\pi}{3}$ rad.

c) rad grai

$$\begin{array}{ccc}
\pi & ---- & 180 \\
x & ---- & 225
\end{array} \Rightarrow x = \frac{225\pi}{180} = \frac{5\pi}{4}$$

Portanto, 225° equivalem a $\frac{5\pi}{4}$ rad.

d) rad grav

$$\begin{array}{ccc}
\pi & \underline{} & 180 \\
x & \underline{} & 300
\end{array} \Rightarrow x = \frac{300\pi}{180} = \frac{5\pi}{3}$$

Portanto, 300° equivalem a $\frac{5\pi}{3}$ rad.

e) rad gra

Portanto, 240° equivalem a $\frac{4\pi}{3}$ rad.

f) rad grau

$$\pi - \frac{180}{x - 330} \Rightarrow x = \frac{330\pi}{180} = \frac{11\pi}{6}$$

Portanto, 330° equivalem a $\frac{11\pi}{6}$ rad.

4. a) $\pi - 180^{\circ}$ $\Rightarrow x = \frac{\frac{\pi}{4} \cdot 180^{\circ}}{\pi} : x = 45^{\circ}$

b)
$$\pi - 180^{\circ} \Rightarrow x = \frac{\frac{3\pi}{2} \cdot 180^{\circ}}{\pi} \therefore x = 270^{\circ}$$

c)
$$\frac{\pi}{\frac{7\pi}{6}}$$
 $\frac{180^{\circ}}{x}$ $\Rightarrow x = \frac{\frac{7\pi}{6} \cdot 180^{\circ}}{\pi} : x = 210^{\circ}$

d)
$$\pi = 180^{\circ}$$
 $\Rightarrow x = \frac{\frac{2\pi}{5} \cdot 180^{\circ}}{\pi} : x = 72^{\circ}$

e)
$$\pi - 180^{\circ} \Rightarrow x = \frac{\frac{5\pi}{3} \cdot 180^{\circ}}{\pi} \therefore x = 300^{\circ}$$

5. Como π rad equivale a 180° e 1 min equivale a 60 s,

$$1.800\pi \frac{\text{rad}}{\text{min}} = 1.800 \cdot 180^{\circ} \cdot \frac{1}{60 \text{ s}} = 5.400^{\circ}/\text{s}$$

6. a) Indicando por x, y e z, respectivamente, o comprimento, a medida em grau e a medida em radiano do arco ÂB, temos:

∴ $x = \frac{9.555\pi}{2}$ km ou, aproximadamente, 15.000 km

Tempo (h)

24

9

$$z = \frac{3\pi}{4}$$
 rad

b) Em qualquer paralelo terrestre, um ponto descreve um arco de $\frac{3\pi}{4}$ rad em 9 horas.

7. a)
$$x_1 = 50^{\circ}$$

$$x_2 = 50^{\circ} + 360^{\circ} = 410^{\circ}$$

$$x_3 = 50^\circ + 2 \cdot 360^\circ = 770^\circ$$

Logo, as medidas procuradas são 50°, 410° e 770°.

b)
$$x_1 = 50^\circ - 360^\circ = -310^\circ$$

$$x_2 = 50^{\circ} - 2 \cdot 360^{\circ} = -670^{\circ}$$

Logo, as medidas procuradas são −310° e −670°.

8. a)
$$x_1 = \frac{6\pi}{7}$$

$$x_2 = \frac{6\pi}{7} + 2\pi \implies x_2 = \frac{20\pi}{7}$$

$$x_3 = \frac{6\pi}{7} + 2 \cdot 2\pi \implies x_3 = \frac{34\pi}{7}$$

Logo, as medidas procuradas são $\frac{6\pi}{7}$ rad,

$$\frac{20\pi}{7}$$
 rad e $\frac{34\pi}{7}$ rad.

b)
$$x_2 = \frac{6\pi}{7} - 2\pi \implies x_2 = -\frac{8\pi}{7}$$

$$x_3 = \frac{6\pi}{7} - 2 \cdot 2\pi \implies x_3 = -\frac{22\pi}{7}$$

Logo, as medidas procuradas são $-\frac{8\pi}{7}$ rad e $-\frac{22\pi}{7}$ rad.

9. a) 2.923° | 360°

Logo, a medida do arco trigonométrico procurada é 43°

b) 1.972° | 360°

Logo, a medida do arco trigonométrico procurada é 172°.

c) $-40^{\circ} + 360^{\circ} = 320^{\circ} (1^{\circ} \text{ volta positiva})$

Logo, a medida do arco trigonométrico procurada é 320°.

d)
$$-400^{\circ} + 360^{\circ} = -40$$
 (1ª volta negativa)

$$-40^{\circ} + 360^{\circ} = 320^{\circ}$$
 (1^a volta positiva)

Logo, a medida do arco trigonométrico procurada 6 320°

e)
$$\frac{45\pi}{11}$$
 rad = $\left(\frac{44\pi}{11} + \frac{\pi}{11}\right)$ rad = $\left(4\pi + \frac{\pi}{11}\right)$ rad

Logo, a medida do arco trigonométrico procurada é $\frac{\pi}{11}$ rad.

f)
$$\frac{38\pi}{5}$$
 rad = $\left(\frac{35\pi}{5} + \frac{3\pi}{5}\right)$ rad = $\left(7\pi + \frac{3\pi}{5}\right)$ rad = $\left(6\pi + \pi + \frac{3\pi}{5}\right)$ rad = $\left(6\pi + \frac{8\pi}{5}\right)$ rad

Logo, a medida do arco trigonométrico procurada é $\frac{8\pi}{5}$ rad.

g)
$$-\frac{\pi}{13}$$
 rad $=\left(-\frac{\pi}{13} + 2\pi\right)$ rad $=\left(\frac{-\pi + 26\pi}{13}\right)$ rad $=\frac{25\pi}{13}$ rad

Logo, a medida do arco trigonométrico procurada é $\frac{25\pi}{13}$ rad.

h)
$$-\frac{18\pi}{5}$$
 rad $\equiv \left(-\frac{8\pi}{5} + 2\pi\right)$ rad $= \left(\frac{-8\pi + 10\pi}{5}\right)$ rad $= \frac{2\pi}{5}$ rad

Logo, a medida do arco trigonométrico procurada é $\frac{2\pi}{5}$ rad.

Logo:
$$x = 240^{\circ}$$

b)
$$x = 240^{\circ} + 360^{\circ} \Rightarrow x = 600^{\circ}$$

c)
$$x = 240^{\circ} + 2 \cdot 360^{\circ} \Rightarrow x = 960^{\circ}$$

d)
$$x = 240^{\circ} - 360^{\circ} \Rightarrow x = -120^{\circ}$$

11.
$$\frac{121\pi}{6} = \frac{120\pi + \pi}{6} = \frac{120\pi}{6} + \frac{\pi}{6} = 20\pi + \frac{\pi}{6}$$

a)
$$x = \frac{\pi}{6}$$

b)
$$x = \frac{\pi}{6} + 2\pi \implies x = \frac{13\pi}{6}$$

c)
$$x = \frac{\pi}{6} + 2 \cdot 2\pi \implies x = \frac{25\pi}{6}$$

d)
$$x = \frac{\pi}{6} - 2\pi \implies x = -\frac{11\pi}{6}$$

12. a) Como o ponteiro dos minutos faz uma volta a cada hora, cada dia tem 24 horas, e passaram 4 dias até a zero hora do dia 5, concluímos que a medida do arco descrito pelo ponteiro dos minutos é:

$$360^{\circ} \cdot 24 \cdot 4 = 34.560^{\circ}$$

b) Como o ponteiro das horas faz duas voltas por dia e passaram 4 dias até a zero hora do dia 5, temos:

$$2 \cdot 360^{\circ} \cdot 4 = 2.880^{\circ}$$

c) Como o número 3 do relógio equivale a 90° e o ponteiro realiza uma volta por hora, em um dia

$$a_n = 90^\circ + 360^\circ (n-1)$$
, com $1 \le n \le 24$

Como um dia tem 24 horas, substituindo n por 24, obtemos:

$$a_{24} = 90^{\circ} + 360^{\circ}(24 - 1) = 8.370^{\circ}$$

Portanto, o termo geral é $a_n = 90^\circ + 360^\circ (n-1)$ e o último termo é 8.370°.

d) Como os números 3 e 9 do relógio equivalem a 90° e 270° e o ponteiro realiza uma volta por hora,

 $a_n = 90^\circ + 180^\circ (n-1)$, com $1 \le n \le 48$, pois o ponteiro para 2 vezes a cada hora.

Como um dia tem 24 horas, substituindo *n* por 48, obtemos:

$$a_{48} = 90^{\circ} + 180^{\circ}(48 - 1) = 8.550^{\circ}$$

Portanto, o termo geral é $a_n = 90^\circ + 180^\circ (n-1)$ e o último termo é 8.550°.

13. a) Os infinitos números reais associados ao ponto A' são:

...,
$$-\pi$$
, π , 3π , 5π , ...

Observando que a diferença entre dois termos consecutivos quaisquer dessa sequência é 2π , podemos representar todos esses números reais por:

$$x = \pi + k \cdot 2\pi$$
, com $k \in \mathbb{Z}$

 b) Os infinitos números reais associados ao ponto B são:

...,
$$-\frac{3\pi}{2}$$
, $\frac{\pi}{2}$, $\frac{5\pi}{2}$, $\frac{9\pi}{2}$, ...

Observando que a diferença entre dois termos consecutivos quaisquer dessa sequência é 2π , podemos representar todos esses números reais por:

$$x = \frac{\pi}{2} + k \cdot 2\pi$$
, com $k \in \mathbb{Z}$

c) Os infinitos números reais associados aos pontos B ou B' são:

...,
$$-\frac{3\pi}{2}$$
, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, ...

Observando que a diferença entre dois termos consecutivos quaisquer dessa sequência é π , podemos representar todos esses números reais por:

$$x = \frac{\pi}{2} + k\pi$$
, com $k \in \mathbb{Z}$

d) Os infinitos números reais associados aos pontos A, B, A' e B' são:

...,
$$-\pi$$
, $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π , ...

Observando que a diferença entre dois termos consecutivos quaisquer dessa sequência é $\frac{\pi}{2}$, podemos representar todos esses números reais por:

$$x = \frac{k\pi}{2}$$
, com $k \in \mathbb{Z}$

e)
$$x = \pi + \frac{k\pi}{2}$$
, com $k \in \mathbb{Z}$

14. a) Os vértices do hexágono regular ABCDEF dividem a circunferência trigonométrica em arcos de medida: $\frac{2\pi}{6}$ rad = $\frac{\pi}{3}$ rad

Como o vértice A coincide com a origem da circunferência trigonométrica, os infinitos números reais associados aos vértices do hexágono são: ..., 0, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, π , $\frac{4\pi}{3}$, ...

Podemos representar esses números por: $k \cdot \frac{\pi}{3}$, com $k \in \mathbb{Z}$.

b) Os vértices do triângulo equilátero MNP dividem a circunferência trigonométrica em arcos de medida: $\frac{2\pi}{3}$ rad

Como o vértice N está associado ao número π , os infinitos números reais associados aos vértices do triângulo são: ..., $\frac{\pi}{3}$, π , $\frac{5\pi}{3}$, ...

Podemos representar esses números por: $\frac{\pi}{3} + k \cdot \frac{2\pi}{3}$, com $k \in \mathbb{Z}$.

15. A sequência de horários, em hora, programados para o salvamento, depois das 13 h, é:

13,25; 13,5; 13,75; 14; ...; 17; 17,5

Essa sequência pode ser representada por:

$$\left(13 + \frac{k}{4}\right)$$
 horas, com $k \in \mathbb{Z}$ e $1 \le k \le 18$.

Alternativa **a**.

b) N:
$$\pi \operatorname{rad} - \frac{\pi}{5} \operatorname{rad} = \frac{4\pi}{5} \operatorname{rad}$$

P: $\pi \operatorname{rad} + \frac{\pi}{5} \operatorname{rad} = \frac{6\pi}{5} \operatorname{rad}$
Q: $2\pi \operatorname{rad} - \frac{\pi}{5} \operatorname{rad} = \frac{9\pi}{5} \operatorname{rad}$

Q:
$$360^{\circ} - 60^{\circ} = 300^{\circ}$$

b) M: $210^{\circ} - 180^{\circ} = 30^{\circ}$
N: $180^{\circ} - 30^{\circ} = 150^{\circ}$
P: 210°

Q:
$$360^{\circ} - 30^{\circ} = 330^{\circ}$$

c) M: $360^{\circ} - 310^{\circ} = 50^{\circ}$
N: $180^{\circ} - 50^{\circ} = 130^{\circ}$

P:
$$180^{\circ} + 50^{\circ} = 230^{\circ}$$

Q: 310°

d) M:
$$\pi - \frac{4\pi}{5} = \frac{\pi}{5}$$

N: $\frac{4\pi}{5}$

$$P: \pi + \frac{\pi}{5} = \frac{6\pi}{5}$$

Q:
$$2\pi - \frac{\pi}{5} = \frac{9\pi}{5}$$

e) M:
$$\frac{4\pi}{3} - \pi = \frac{\pi}{3}$$

$$N: \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

P:
$$\frac{4\pi}{3}$$

Q:
$$2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

f) M:
$$2\pi - \frac{11\pi}{6} = \frac{\pi}{6}$$

$$N: \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

P:
$$\pi + \frac{\pi}{6} + \frac{7\pi}{6}$$

$$Q:\frac{11\pi}{6}$$

18. a)
$$\cos 0 = 1$$
; $\sin 0 = 0$

b)
$$\cos \frac{\pi}{2} = 0$$
; $\sin \frac{\pi}{2} = 1$

c)
$$\cos \pi = -1$$
; $\sin \pi = 0$

d)
$$\cos \frac{3\pi}{2} = 0$$
; $\sin \frac{3\pi}{2} = -1$

e)
$$\cos 2\pi = 1$$
; $\sin 2\pi = 0$

f)
$$\cos 720^{\circ} = \cos 0^{\circ} = 1$$

g)
$$sen 450^\circ = sen (90^\circ + 360^\circ) = sen 90^\circ = 1$$

h) sen
$$(-270^{\circ})$$
 = sen 90° = 1

i)
$$\cos (-180^\circ) = \cos 180^\circ = -1$$

j)
$$\cos 12\pi = \cos 0 = 1$$

k)
$$\cos 11\pi = \cos (5 \cdot 2\pi + \pi) = \cos \pi = -1$$

l)
$$\sin \frac{21\pi}{2} = \sin \left(\frac{20\pi}{2} + \frac{\pi}{2} \right) = \sin \frac{\pi}{2} = 1$$

m)
$$\sin \frac{23\pi}{2} = \sin \left(\frac{20\pi}{2} + \frac{3\pi}{2} \right) = \sin \frac{3\pi}{2} = -1$$

n) sen
$$(-\pi)$$
 = sen π = 0

19.
$$E = \frac{\text{sen } 90^{\circ} - \cos 180^{\circ} + \cos 270^{\circ}}{\text{sen } 270^{\circ} - \cos 90^{\circ}}$$
$$E = \frac{1 - (-1) + 0}{-1 - 0} = \frac{2}{-1} = -2$$

20.
$$E = \frac{\sin \frac{\pi}{6} + \cos \frac{\pi}{3}}{\sin \frac{\pi}{2}} \Rightarrow E = \frac{\frac{1}{2} + \frac{1}{2}}{1} = \frac{1}{1} = 1$$

- **21.** Os arcos de medidas de 100° e 101° têm extremidades no 2º quadrante. Nesse quadrante, quanto maior a medida do arco, menor o valor do seno. Portanto: sen 101° < sen 100° Alternativa **e**.
- 22. a) $4 + 5 \cos x = 2$ $5 \cos x = -2$ $\cos x = -\frac{2}{5}$ $\text{Como } -1 < -\frac{2}{5} < 1$, então 2 pertence ao conjunto imagem de f.
 - b) $4 + 5 \cos x = 10$ $5 \cos x = 6$ $\cos x = \frac{6}{5}$

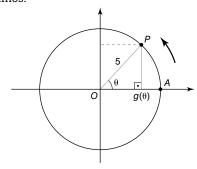
Como $\frac{6}{5} >$ 1, concluímos que $\frac{6}{5}$ não pertence ao conjunto imagem de f.

- c) A imagem da função $y = \cos x$ é [-1; 1]; logo, a imagem de $y = 5 \cos x$ é [-5; 5].

 Portanto, a imagem da função $y = 4 + 5 \cos x$ é [-5 + 4; 5 + 4] = [-1; 9].
- **23.** Como $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$ e $\frac{3\pi}{4} < \beta < \pi$, então α está no primeiro quadrante e β no segundo quadrante.

a) Verdadeira, como α está no primeiro quadrante, sen $\alpha > 0$

- sen $\alpha>0.$ b) Falsa, como β está no segundo quadrante, logo
- sen $\beta > 0$. c) Verdadeira, como β está no segundo quadrante,
- d) Verdadeira, como $\frac{\pi}{2} < 2\alpha < \pi$, então 2α está no segundo quadrante, logo cos $2\alpha < 0$.
- e) Verdadeira, como $\frac{3\pi}{2}$ < 2β < 2π , então 2β está no quarto quadrante, logo cos 2β > 0.
- f) Falsa, como $\pi < 4\alpha < 2\pi$, então 4α está no terceiro ou quarto quadrante, logo sen $4\alpha < 0$.
- 24. (I) Sendo P a posição da partícula em dado instante e θ a medida do arco ÂP, com A(5, 0), esquematizamos:



A função g que expressa a abscissa de P para cada medida θ é:

$$g(\theta) = 5\cos\theta$$
 (I)

A medida θ , em radiano, pode ser obtida em função do tempo t, em segundo, pela regra de três:

Deslocamento angular Tempo em da partícula em radiano segundo 2π 3

$$\therefore \theta = \frac{2\pi t}{3} \, \text{rad} \quad \text{(II)}$$

Substituindo (II) em (I), temos:

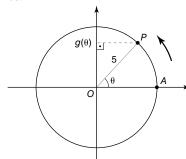
$$g\left(\frac{2\pi t}{3}\right) = 5\cos\frac{2\pi t}{3}$$

Indicando essa função por f(t), concluímos:

$$f(t) = 5 \cos \frac{2\pi t}{3}$$

Alternativa **b**.

(II) Sendo P a posição da partícula em dado instante e θ a medida do arco \widehat{AP} , com A(5, 0), esquematizamos:



A função g que expressa a ordenada de P para cada medida θ é:

$$g(\theta) = 5 \operatorname{sen} \theta$$
 (I)

A medida θ , em radiano, pode ser obtida em função do tempo t, em segundo, pela regra de trâc:

Deslocamento angular Tempo em da partícula em radiano segundo

$$2\pi$$
 3 θ t

$$\therefore \theta = \frac{2\pi t}{3} \text{ rad} \quad \text{(II)}$$

Substituindo (II) em (I), temos:

$$g\left(\frac{2\pi t}{3}\right) = 5 \operatorname{sen} \frac{2\pi t}{3}$$

Indicando essa função por f(t), concluímos:

$$f(t) = 5 \operatorname{sen} \frac{2\pi t}{3}$$

Alternativa **d**.

25. a) sen
$$120^\circ = \text{sen } (180^\circ - 60^\circ) = \text{sen } 60^\circ = \frac{\sqrt{3}}{2}$$

b)
$$\cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}$$

c)
$$sen 210^\circ = sen (180^\circ + 30^\circ) = -sen 30^\circ = -\frac{1}{2}$$

d)
$$\cos 210^\circ = \cos (180^\circ + 30^\circ) = -\cos 30^\circ = -\frac{\sqrt{3}}{2}$$

A circunferência trigonométrica: Capítulo 12 seno, cosseno e tangente

e)
$$sen 300^\circ = sen (360^\circ - 60^\circ) = -sen 60^\circ = -\frac{\sqrt{3}}{2}$$

f)
$$\cos 300^\circ = \cos (360^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2}$$

26. a) • M e N são simétricos em relação ao eixo das ordenadas; logo, suas abscissas são opostas e suas ordenadas são iguais. Assim, temos:

$$N\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$$

• M e P são simétricos em relação à origem do sistema de eixos cartesianos; logo, suas abscissas são opostas e suas ordenadas são opostas. Assim, temos:

$$P\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$$

• M e Q são simétricos em relação ao eixo das abscissas; logo, suas ordenadas são opostas e suas abscissas são iguais. Assim, temos:

$$Q\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

b) • M e P são simétricos em relação à origem do sistema de eixos cartesianos; logo, suas abscissas são opostas e suas ordenadas são opostas. Assim, temos:

$$M\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

 N e P são simétricos em relação ao eixo das abscissas; logo, suas ordenadas são opostas e suas abscissas são iguais. Assim, temos:

$$N\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$

 Q e P são simétricos em relação ao eixo das ordenadas; logo, suas abscissas são opostas e suas ordenadas são iguais. Assim, temos:

$$Q\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$

c) • M e Q são simétricos em relação ao eixo das abscissas; logo, suas ordenadas são opostas e suas abscissas são iguais. Assim, temos:

$$M\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

• N e Q são simétricos em relação à origem do sistema de eixos cartesianos; logo, suas abscissas são opostas e suas ordenadas são opostas. Assim, temos:

$$N\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

• P e Q são simétricos em relação ao eixo das ordenadas; logo, suas abscissas são opostas e suas ordenadas são iguais. Assim, temos:

$$P\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

27. a)
$$\sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$$
 f) $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$

f) sen
$$\frac{3\pi}{4} = \frac{\sqrt{2}}{2}$$

b)
$$\cos \frac{2\pi}{3} = -\frac{1}{2}$$

b)
$$\cos \frac{2\pi}{3} = -\frac{1}{2}$$
 g) $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$

c) sen
$$\frac{7\pi}{6} = -\frac{1}{2}$$

c)
$$\sin \frac{7\pi}{6} = -\frac{1}{2}$$
 h) $\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$

d)
$$\cos \frac{7\pi}{6} = -\frac{\sqrt{3}}{2}$$

i)
$$\cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$$

e)
$$\sin \frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$
 j) $\sin \frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$

i) sen
$$\frac{7\pi}{4} = -\frac{\sqrt{2}}{2}$$

28. a) sen
$$(-30^\circ) = -\text{sen } 30^\circ = -\frac{1}{2}$$

b)
$$\cos (-30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

c)
$$sen (-300^\circ) = -sen 300^\circ = -(-sen 60^\circ) = sen 60^\circ =$$

= $\frac{\sqrt{3}}{2}$

d)
$$\cos (-300^\circ) = \cos 300^\circ = \cos 60^\circ = \frac{1}{2}$$

e)
$$sen (-1.485^\circ) = -sen 1.485^\circ = -sen 45^\circ = -\frac{\sqrt{2}}{2}$$

f)
$$\cos (-1.230^\circ) = \cos 1.230^\circ = \cos 150^\circ = -\cos 30^\circ =$$

= $-\frac{\sqrt{3}}{2}$

g)
$$\operatorname{sen}\left(-\frac{\pi}{6}\right) = -\operatorname{sen}\frac{\pi}{6} = -\frac{1}{2}$$

h)
$$\cos\left(-\frac{4\pi}{3}\right) = \cos\left(\frac{4\pi}{3}\right) = -\cos\frac{\pi}{3} = -\frac{1}{2}$$

i)
$$sen\left(-\frac{11\pi}{6}\right) = -sen\frac{11\pi}{6} = -\left(-sen\frac{\pi}{6}\right) = sen\frac{\pi}{6} = \frac{1}{2}$$

j)
$$\cos\left(-\frac{5\pi}{3}\right) = \cos\frac{5\pi}{3} = \cos\frac{\pi}{3} = \frac{1}{2}$$

k)
$$\cos(-\frac{7\pi}{4}) = \cos(\frac{7\pi}{4}) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

l)
$$\operatorname{sen} \frac{25\pi}{6} = \operatorname{sen} \left(\frac{24\pi}{6} + \frac{\pi}{6} \right) = \operatorname{sen} \left(4\pi + \frac{\pi}{6} \right) = \operatorname{sen} \frac{\pi}{6} = \frac{1}{2}$$

m)
$$\operatorname{sen} \frac{33\pi}{4} = \operatorname{sen} \left(\frac{32\pi}{4} + \frac{\pi}{4} \right) = \operatorname{sen} \left(8\pi + \frac{\pi}{4} \right) = \operatorname{sen} \left(\frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}$$

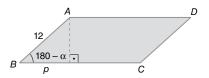
29.
$$E = \frac{\cos(180^\circ + x) + \sin(180^\circ + x) + \sin(180^\circ - x)}{\cos(360^\circ - x)} \Rightarrow$$

$$\Rightarrow E = \frac{-\cos x - \sec x + \sec x}{\cos x}$$

$$\therefore E = -\frac{\cos x}{\cos x} = -1$$

30. Como ABCD é paralelogramo, os ângulos ABC e DAB são suplementares; assim:

$$\cos(180 - \alpha) = -\cos(\alpha) = -\left(-\frac{3}{4}\right) = \frac{3}{4}$$

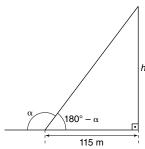


Portanto, para determinar a medida p da projeção ortogonal, podemos fazer:

$$\cos(180 - \alpha) = \frac{p}{12} \implies \frac{3}{4} = \frac{p}{12}$$

Portanto, a projeção ortogonal do segmento AB sobre o segmento BC tem 9 cm.

31. Sendo *h* a altura da pirâmide, temos:



$$\begin{cases} \text{tg (180°} - \alpha) = \frac{h}{115} \\ \cos \alpha = -0.6 \end{cases} \Rightarrow \begin{cases} \frac{\text{sen (180°} - \alpha)}{\cos (180° - \alpha)} = \frac{h}{115} \end{cases}$$

$$\therefore \begin{cases} \frac{\text{sen } \alpha}{-\cos \alpha} = \frac{h}{115} \\ \cos \alpha = -0.6 \end{cases}$$

Como cos $\alpha=-0.6$ e 90° $<\alpha<$ 180°, temos sen $\alpha=$ = 0.8; logo:

$$\frac{0.8}{-(-0.6)} = \frac{h}{115} \Rightarrow h \approx 153 \text{ m}$$

32. a)
$$f(1,5) = 300 \cos\left(\frac{4 \cdot \pi \cdot 1,5}{3}\right) = 300 \cos 2\pi = 300$$

Portanto, a abscissa quando t = 1,5 'e 300 km.

b) A função do eixo das ordenadas é dada por $g(t) = 300 \text{ sen}\left(\frac{4\pi t}{3}\right)$; assim, para t = 2,5 temos: $g(2,5) = 300 \text{ sen}\left(\frac{4 \cdot \pi \cdot 2,5}{3}\right) = 300 \text{ sen}\left(10 \cdot \frac{\pi}{3}\right) = 300 \text{ sen}\left(4 \cdot \frac{\pi}{3}\right) = -150\sqrt{3}$

Portanto, a ordenada quando $t = 2,5 \, \text{\'e} - 150 \, \sqrt{3} \, \text{km}$.

c)
$$r^2 = \left[300 \text{ sen } \left(\frac{4\pi t}{3}\right)\right]^2 + \left[300 \text{ cos } \left(\frac{4\pi t}{3}\right)\right]^2$$

 $r^2 = 300^2 \left[\text{sen}^2 \left(\frac{4\pi t}{3}\right) + \cos^2 \left(\frac{4\pi t}{3}\right)\right]$
 $r^2 = 300^2$
 $r = 300$

Portanto, o raio da órbita mede 300 km.

d) Para completar uma volta, devemos ter:

$$\frac{4\pi t}{3} = 2\pi \implies t = \frac{3}{2} = 1,5$$

Portanto, o satélite dá uma volta ao redor da Terra a cada 1,5 hora.

33.
$$\sin^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \left(\frac{4}{5}\right)^2 + \cos^2 \alpha = 1$$

$$\therefore \cos^2 \alpha = 1 - \frac{16}{25} \Rightarrow \cos^2 \alpha = \frac{9}{25}$$

$$\therefore \cos \alpha = \pm \frac{3}{5}$$

Como $\frac{\pi}{2} < \alpha < \pi$, concluímos que cos $\alpha = -\frac{3}{5}$.

34.
$$sen^2 x = 1 - cos^2 x = 1 - \left(-\frac{1}{3}\right)^2 = \frac{8}{9}$$

∴ $sen x = \pm \frac{2\sqrt{2}}{3}$
Como $\pi < x < \frac{3\pi}{2}$, então $sen x = -\frac{2\sqrt{2}}{3}$

35.
$$\begin{cases}
sen^2 \beta + cos^2 \beta = 1 \\
sen \beta = 2 cos \beta
\end{cases}$$
 (II)

Substituindo (II) em (I), temos:

$$(2\cos\beta)^2 + \cos^2\beta = 1$$
 e, portanto:

$$4\cos^2 \beta + \cos^2 \beta = 1 \Rightarrow 5\cos^2 \beta = 1$$

$$\therefore \cos^2 \beta = \frac{1}{5} \Rightarrow \cos \beta = \pm \frac{\sqrt{5}}{5}$$

Como $\pi < \beta < \frac{3\pi}{2}$, concluímos que cos $\beta = -\frac{\sqrt{5}}{5}$.

Substituindo cos β por $-\frac{\sqrt{5}}{5}$ em (II), obtemos:

$$\operatorname{sen} \beta = -\frac{2\sqrt{5}}{5}$$

36.
$$\operatorname{sen}^2 x + \cos^2 x = 1 \Rightarrow \left(\frac{m}{4}\right)^2 + \left(\frac{\sqrt{m+1}}{2}\right)^2 = 1$$

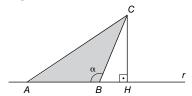
$$\therefore \frac{m^2}{16} + \frac{m+1}{4} = 1 \Rightarrow \frac{m^2 + 4m + 4}{16} = \frac{16}{16}$$

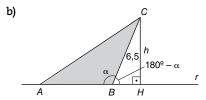
 $m^2 + 4m - 12 = 0 \Rightarrow m = 2 \text{ ou } m = -6 \text{ (não convém)}$ Concluímos, então, que m = 2.

37. a) Professor! Variar a linguagem contribui para o enriquecimento do vocabulário do aluno. Sugerimos as seguintes variações para a definição de altura:

Sendo r a reta suporte do lado \overline{AB} , a altura relativa a esse lado é o segmento \overline{CH} , perpendicular à reta r, com $H \subseteq r$.

A altura relativa ao lado \overline{AB} é o segmento \overline{CH} , em que H é a projeção ortogonal de C sobre a reta suporte do lado \overline{AB} .





No triângulo retângulo BCH, temos:

$$sen (180^{\circ} - \alpha) = \frac{h}{6.5} \Rightarrow sen \alpha = \frac{h}{6.5}$$
 (I)

Para o cálculo do sen α , aplicamos a relação fundamental da Trigonometria a partir do dado

$$\begin{split} \cos\alpha &= -\frac{5}{13} \\ sen^2\alpha + \cos^2\alpha &= 1 \implies sen^2\alpha + \left(-\frac{5}{13}\right)^2 = 1 \\ \therefore sen \alpha &= \pm \frac{12}{13} \end{split}$$

Como α é medida de um ângulo obtuso, temos que sen α é positivo:

$$sen \alpha = \frac{12}{13} \quad (II)$$

Substituindo (II) em (I), concluímos:

$$\frac{12}{13} = \frac{h}{6.5} \Rightarrow h = 6$$

Logo, a medida da altura relativa ao lado \overline{AB} é 6 cm.

38. Sendo α , β e γ os ângulos internos do triângulo, temos:

$$\alpha + \beta + \gamma = 180^{\circ} \Rightarrow \beta + \gamma = 180^{\circ} - \alpha$$

 $\cos (\beta + \gamma) = \cos (180^{\circ} - \alpha) = -\cos \alpha$

Da relação fundamental, temos

$$\cos\alpha = \pm\sqrt{1-sen^2\,\alpha} = \pm\sqrt{1-\left(\frac{1}{3}\right)^2} = \pm\frac{2\sqrt{2}}{3}$$

Como o triângulo é acutângulo, temos 0 < $\alpha < 90^{\circ};$

$$logo: cos \ \alpha = \frac{2\sqrt{2}}{3}$$

Portanto,
$$\cos (\beta + \gamma) = -\frac{2\sqrt{2}}{3}$$
.

39. Fazendo a mudança de variável $\cos x = y$, obtemos a equação do 2° grau:

$$3y^2 - 4y + 1 = 0$$

$$\Delta = (-4)^2 - 4 \cdot 3 \cdot 1 = 16 - 12 = 4$$

$$y = \frac{-(-4) \pm 2}{2 \cdot 3} \Rightarrow y = 1 \text{ ou } y = \frac{1}{3}$$

Retornando à variável original, temos:

$$\cos x = 1 \left(\text{não convém, pois } 0 < x < \frac{\pi}{2} \right) \text{ou}$$

$$\cos x = \frac{1}{3}$$

Pela relação fundamental (sen² $x + cos^2 x = 1$), concluímos:

$$sen^2 x + \left(\frac{1}{3}\right)^2 = 1 \implies sen^2 x = 1 - \frac{1}{9}$$

$$\therefore \operatorname{sen}^2 x = \frac{8}{9} \Rightarrow \operatorname{sen} x = \pm \frac{2\sqrt{2}}{3}$$

Como $0 < x < \frac{\pi}{2}$, só nos interessa o valor positivo do seno, isto é:

$$\operatorname{sen} x = \frac{2\sqrt{2}}{2}$$

40. $2 \operatorname{sen}^2 x + 3 \cos x = 0$

Substituindo sen² x por $1 - \cos^2 x$, obtemos:

$$2(1 - \cos^2 x) + 3\cos x = 0$$

$$-2\cos^2 x + 3\cos x + 2 = 0$$

Aplicando a fórmula resolutiva, temos:

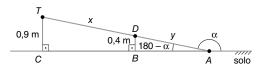
$$\Delta = 3^2 - 4 \cdot (-2) \cdot 2 = 25$$

$$\cos x = \frac{-3 \pm \sqrt{25}}{2 \cdot (-2)}$$

 \therefore cos $x = -\frac{1}{2}$ ou cos x = 2 (não convém).

Logo,
$$\cos x = -\frac{1}{2}$$

41. Sendo A o ponto de intersecção da reta TD com o plano do solo, esquematizamos:



Temos:

$$\cos (180^{\circ} - \alpha) = -\cos \alpha = \frac{2\sqrt{6}}{5}$$

$$\operatorname{sen}\left(180^{\circ} - \alpha\right) = \operatorname{sen}\alpha = \sqrt{1 - \left(-\frac{2\sqrt{6}}{5}\right)^{2}} = \frac{1}{5}$$

Assim:

(I) Do triângulo ADB, obtemos:

$$sen (180^{\circ} - \alpha) = \frac{0.4}{y} \implies \frac{1}{5} = \frac{0.4}{y}$$

$$\therefore y = \frac{0.4}{\frac{1}{5}} \implies y = 2$$

(II) Do triângulo ATC, obtemos:

$$sen (180^{\circ} - \alpha) = \frac{0.9}{x + y} \Rightarrow x + y = \frac{0.9}{\frac{1}{5}} \Rightarrow$$

$$\Rightarrow x + y = 4,5$$

De (I) e (II), concluímos:

$$x + 2 = 4,5 \implies x = 2,5$$

Portanto, a distância entre T e D é 2,5 m.

42. a)
$$E = tg \pi + tg 2\pi + tg \frac{\pi}{4} = 0 + 0 + 1 = 1$$

b)
$$E = \frac{tg\frac{3\pi}{3} + tg^2\frac{\pi}{3}}{tg\left(\frac{3}{4} \cdot \frac{\pi}{3}\right)} = \frac{0 + \left(\sqrt{3}\right)^2}{1} = 3$$

43. Sabemos que a tangente é positiva para arcos dos 1º e 3º quadrantes e negativa para arcos dos 2º e 4º quadrantes. Como 95º é um arco do 2º quadrante e 130º também é um arco do 2º quadrante:

tg 95° < 0 e tg 130° < 0
$$\Rightarrow \frac{\text{tg 95}^{\circ}}{\text{tg 130}^{\circ}} > 0$$

Alternativa d.

44.
$$\begin{cases} \sec \alpha = \frac{3}{5} \\ \sec^2 \alpha + \cos^2 \alpha = 1 \end{cases} \Rightarrow \cos \alpha = -\frac{4}{5},$$

para
$$\frac{\pi}{2} < \alpha < \pi$$

Assim:

$$tg \alpha = \frac{sen \alpha}{cos \alpha} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}$$

Logo, tg
$$\alpha = -\frac{3}{4}$$
.

45.
$$\begin{cases} \cos \alpha = -\frac{\sqrt{13}}{7} \\ \sec^2 \alpha + \cos^2 \alpha = 1 \end{cases} \Rightarrow \sec \alpha = -\frac{6}{7},$$

para
$$\pi < \alpha < \frac{3\pi}{2}$$

Accim

$$\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} = \frac{6\sqrt{13}}{13}$$

Logo, tg
$$\alpha = \frac{6\sqrt{13}}{13}$$
.

46. $\operatorname{tg} \alpha = \frac{3}{4} \Rightarrow \operatorname{sen} \alpha = \frac{3 \cos \alpha}{4}$

para
$$0 < \alpha < \frac{\pi}{2}$$

Assim

$$sen \ \alpha = \frac{3 \cos \alpha}{4} = \frac{3}{4} \cdot \frac{4}{5} = \frac{3}{5}$$

Logo, sen
$$\alpha = \frac{3}{5}$$
 e cos $\alpha = \frac{4}{5}$.

47. a) Pela relação fundamental da Trigonometria, temos:

$$sen^{2} x = 1 - cos^{2} x = 1 - \left(\frac{\sqrt{10}}{10}\right)^{2} = \frac{90}{100}$$
$$sen x = \frac{3\sqrt{10}}{10}$$

Logo, tg
$$x = \frac{\text{sen } x}{\text{cos } x} = \frac{\frac{3\sqrt{10}}{10}}{\frac{\sqrt{10}}{10}} = 3.$$

b) Como ABCD é um quadrado, temos:

$$DC = AD = 12$$

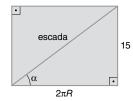
$$tg \alpha = \frac{AD}{DE} \Rightarrow 3 = \frac{12}{DE}$$

$$\therefore$$
 DE = 4

$$A_{ABCE} = A_{ABCD} - A_{ADE} = 12^2 - \frac{12 \cdot 4}{2} = 144 - 24 = -120$$

Portanto, a área do trapézio ABCE é 120 cm².

48. Planificando a superfície lateral do reservatório, obtemos um retângulo de altura de 15 m e base $2\pi R$, em que R é a medida do raio da base do cilindro.



$$tg \alpha = \frac{15}{2\pi R} \quad (I)$$

Calculando tg α :

para
$$0 < \alpha < \frac{\pi}{2}$$

Assim:
$$tg \alpha = \frac{sen \alpha}{cos \alpha} = \frac{\frac{3}{5}}{\frac{4}{r}} \Rightarrow tg \alpha = \frac{3}{4}$$
 (II)

Substituindo (II) em (I), obtemos:

$$\frac{3}{4} = \frac{15}{2\pi R} \implies R = \frac{10}{\pi}$$

Logo, o raio da base do cilindro mede $\frac{10}{\pi}$ m ou aproximadamente 3,18 m.

49. Calculamos usando a redução ao 1º quadrante.

a)
$$tg 135^{\circ} = -tg 45^{\circ} = -1$$

b)
$$tg 240^{\circ} = tg 60^{\circ} = \sqrt{3}$$

c)
$$tg 330^\circ = -tg 30^\circ = -\frac{\sqrt{3}}{3}$$

d)
$$tg \frac{5\pi}{3} = -tg \frac{\pi}{3} = -\sqrt{3}$$

e)
$$tg \frac{5\pi}{4} = tg \frac{\pi}{4} = 1$$

f)
$$tg \frac{11\pi}{4} = -tg \frac{\pi}{4} = -1$$

g)
$$tg \frac{20\pi}{3} = -tg \frac{\pi}{3} = -\sqrt{3}$$

h)
$$tg \frac{17\pi}{6} = -tg \frac{\pi}{6} = -\frac{\sqrt{3}}{3}$$

50. Para $x = 60^{\circ}$:

$$E = \frac{tg\ 2x + tg\ 3x}{tg\ 4x} = \frac{tg\ 120^{\circ} + tg\ 180^{\circ}}{tg\ 240^{\circ}}$$

• 120° é correspondente de 60° e pertence ao 2º quadrante. Logo:

$$tg \ 120^{\circ} = -tg \ 60^{\circ} = -\sqrt{3}$$

• 240° é correspondente de 60° e pertence ao 3º quadrante. Logo:

$$tg \ 240^{\circ} = tg \ 60^{\circ} = \sqrt{3}$$

Accim.

$$E = \frac{-\sqrt{3} + 0}{\sqrt{3}} = -1$$

- **51.** a) $tg(-45^\circ) = -tg 45^\circ = -1$
 - **b)** tg $(-120^{\circ}) = -\text{tg } 120^{\circ} = -(-\sqrt{3}) = \sqrt{3}$
 - c) $tg(-300^\circ) = -tg 300^\circ = -(-\sqrt{3}) = \sqrt{3}$

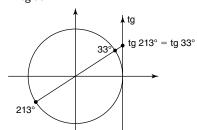
52. a)
$$E = \frac{\operatorname{tg} \alpha - (-\operatorname{tg} \alpha)}{-\operatorname{tg} \alpha - \operatorname{tg} \alpha} = \frac{2\operatorname{tg} \alpha}{-2\operatorname{tg} \alpha} = -1$$

b)
$$E = \frac{\text{tg } (180^\circ + x) + \text{tg } (180^\circ - x) + \text{tg } (360^\circ - x)}{\text{sen } (360^\circ - x)} =$$

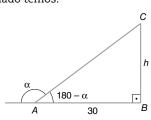
$$= \frac{\text{tg } x + (-\text{tg } x) + (-\text{tg } x)}{-\text{sen } x} =$$

$$= \frac{\operatorname{tg} x}{\operatorname{sen} x} = \frac{\frac{\operatorname{sen} x}{\cos x}}{\operatorname{sen} x} = \frac{1}{\cos x}$$

53. Os arcos trigonométricos de 33° e 213° têm extremidades simétricas em relação ao centro da circunferência e, portanto, os prolongamentos dos raios que passam por essas extremidades interceptam o eixo das tangentes no mesmo ponto. Logo: tg 213° = tg 33°



54. Do enunciado temos:

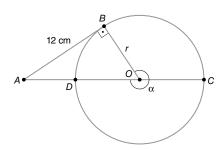


$$tg (180^{\circ} - \alpha) = -tg \alpha = \frac{BC}{AB}$$

$$-\text{tg }\alpha = \frac{h}{30} \Rightarrow h = -30 \text{ tg }\alpha$$

Alternativa **b**.

55. Do enunciado temos:



$$tg (360^{\circ} - \alpha) = -tg \alpha = 1,5$$

$$tg (360^{\circ} - \alpha) = \frac{AB}{BO} \Rightarrow 1.5 = \frac{12}{r}$$

Portanto, o raio mede 8 cm.

56. Sabemos que tg $\alpha = -2.6$ e $\alpha + \beta = 180^{\circ}$.

a)
$$\alpha + \beta = 180^{\circ} \Rightarrow \beta = 180^{\circ} - \alpha$$

 $tg \beta = tg (180^{\circ} - \alpha) = -tg \alpha = 2,6$
Logo, $tg \beta = 2,6$.

b)
$$tg (\alpha + \beta) = tg 180^{\circ} = 0$$

c)
$$tg (2\alpha + \beta) = tg (2\alpha + 180^{\circ} - \alpha) = tg (180^{\circ} + \alpha) = tg \alpha = -2,6$$

Logo, $tg (2\alpha + \beta) = -2,6$.

57. a) Os valores de x, com $0 \le x < 2\pi$, para os quais sen $x = \frac{\sqrt{2}}{2}$ são $x = \frac{\pi}{4}$

ου

$$x=\pi-\frac{\pi}{4}=\frac{3\pi}{4}$$

Logo,
$$S = \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\}$$
.

b) Os valores de x, com $0 \le x < 2\pi$, para os quais $\cos x = -\frac{\sqrt{2}}{2}$ são $x = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$ ou

$$x=\pi+\frac{\pi}{4}=\frac{5\pi}{4}.$$

Logo,
$$S = \left\{ \frac{3\pi}{4}, \frac{5\pi}{4} \right\}$$

c) Os valores de x, com $0 \le x < 2\pi$, para os quais

sen
$$x = \frac{\sqrt{3}}{2}$$
 são $x = \frac{\pi}{3}$ ou $x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$.

Logo,
$$S = \left\{ \frac{\pi}{3}, \frac{2\pi}{3} \right\}$$
.

d) Os valores de x, com $0 \le x < 2\pi$, para os quais $\cos x = -\frac{\sqrt{3}}{2}$ são $x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ ou

$$x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}.$$

Logo,
$$S = \left\{ \frac{5\pi}{6}, \frac{7\pi}{6} \right\}$$
.

e) Os valores de x, com $0 \le x < 2\pi$, para os quais $\cos x = \frac{1}{2}$ são $x = \frac{\pi}{3}$ ou $x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$.

Logo,
$$S = \left\{ \frac{\pi}{3}, \frac{5\pi}{3} \right\}$$

f) Os valores de x, com $0 \le x < 2\pi$, para os quais $\operatorname{sen} x = -\frac{1}{2} \operatorname{são} x = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \operatorname{ou}$

$$x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$$
.

Logo,
$$S = \left\{ \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$$
.

g) O valor de x, com 0 \leqslant x < 2 π , para o qual

$$sen x = -1 \'e x = \frac{3\pi}{2}$$
.

Logo,
$$S = \left\{ \frac{3\pi}{2} \right\}$$
.

h) O valor de x, com $0 \le x \le 2\pi$, para o qual $\cos x = 1$ é x = 0.

Logo,
$$S = \{0\}$$
.

i) Os valores de x, com $0 \le x < 2\pi$, para os quais sen x = 0 são x = 0 ou $x = \pi$.

Logo,
$$S = \{0, \pi\}.$$

- j) Não existe x tal que sen x = 3. Logo, $S = \emptyset$.
- **k)** Não existe x tal que cos x = -2. Logo, $S = \emptyset$.

1)
$$tg x = \sqrt{3} \implies x = \frac{\pi}{3} \text{ ou } x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$$

Logo,
$$S = \left\{ \frac{\pi}{3}, \frac{4\pi}{3} \right\}$$
.

m) tg
$$x = \frac{\sqrt{3}}{3} \Rightarrow x = \frac{\pi}{6}$$
 ou $x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$

Logo,
$$S = \left\{ \frac{\pi}{6}, \frac{7\pi}{6} \right\}$$
.

n) tg
$$x = -\sqrt{3} \implies x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$
 ou

$$x=2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$$

Logo,
$$S = \left\{ \frac{2\pi}{3}, \frac{5\pi}{3} \right\}$$
.

o)
$$tg x = -\frac{\sqrt{3}}{3} \Rightarrow x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$
 ou

$$x=2\pi-\frac{\pi}{6}=\frac{11\pi}{6}$$

Logo,
$$S = \left\{ \frac{5\pi}{6}, \frac{11\pi}{6} \right\}.$$

58. a) Na primeira volta do sentido positivo, temos:

Assim, no universo R, o conjunto S da equação é:

$$S = \left\{ x \in |R| \, x = \frac{\pi}{4} + k \cdot 2\pi \text{ out} \right\}$$

$$x = \frac{3\pi}{4} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z} \Big\}.$$

e) Na primeira volta do sentido positivo, temos:

$$\cos x = \frac{1}{2} \implies x = \frac{\pi}{3} \text{ ou } x = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3}$$

Assim, no universo \mathbb{R} , o conjunto S da equação é

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{3} + k \cdot 2\pi \text{ ou} \right\}$$

$$x = \frac{5\pi}{3} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z}$$

10

Capítulo 12 A circunferência trigonométrica: seno, cosseno e tangente

- i) Na primeira volta do sentido positivo, temos: $sen \ x=0 \ \Rightarrow \ x=0 \ ou \ x=\pi$ Assim, no universo $\mathbb R$, o conjunto $\mathbb S$ da equação é $\mathbb S=\{x\in \mathbb R | x=k\pi, com \ k\in \mathbb Z\}.$
- m) Na primeira volta do sentido positivo, temos:

$$tg x = \frac{\sqrt{3}}{3} \Rightarrow x = \frac{\pi}{6} \text{ ou } x = \frac{7\pi}{6}$$

Assim, no universo \mathbb{R} , o conjunto S da equação é: $S = \left\{ x \in \mathbb{R} \, | \, x = \frac{\pi}{6} + k\pi, \text{ com } k \in \mathbb{Z} \right\}.$

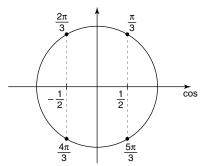
n) Na primeira volta do sentido positivo, temos:

$$\operatorname{tg} x = -\sqrt{3} \implies x = \frac{2\pi}{3} \text{ ou } x = \frac{5\pi}{3}$$

Assim, no universo \mathbb{R} , o conjunto \mathbb{S} da equação é:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{2\pi}{3} + k\pi, \text{ com } k \in \mathbb{Z} \right\}.$$

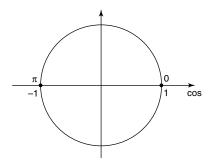
59. a) $\cos^2 x = \frac{1}{4} \Rightarrow \cos x = -\frac{1}{2}$ ou $\cos x = \frac{1}{2}$



$$\therefore x = \frac{\pi}{3} \text{ ou } x = \frac{2\pi}{3} \text{ ou } x = \frac{4\pi}{3} \text{ ou } x = \frac{5\pi}{3}$$

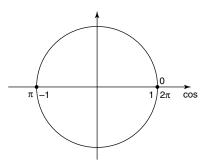
$$\text{Logo, S} = \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\}.$$

b) $\cos^2 x = 1 \Rightarrow \cos x = 1$ ou $\cos x = -1$



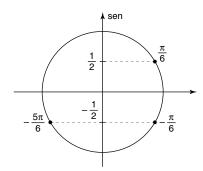
$$\therefore x = 0 \text{ ou } x = \pi$$
Logo, $S = \{0, \pi\}$.

c) $\cos^2 x = 1 \Rightarrow \cos x = 1$ ou $\cos x = -1$



∴
$$x = 0$$
 ou $x = \pi$ ou $x = 2\pi$
Logo, $S = \{0, \pi, 2\pi\}$.

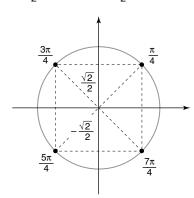
d)
$$sen^2 x = \frac{1}{4} \implies sen x = -\frac{1}{2} ou sen x = \frac{1}{2}$$



$$\therefore x = -\frac{5\pi}{6} \text{ ou } x = -\frac{\pi}{6} \text{ ou } x = \frac{\pi}{6}$$

Logo,
$$S = \left\{ -\frac{5\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6} \right\}.$$

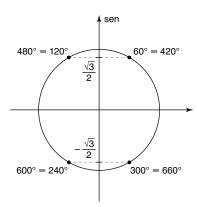
e)
$$|\operatorname{sen} x| = \frac{\sqrt{2}}{2} \Rightarrow \operatorname{sen} x = \pm \frac{\sqrt{2}}{2}$$



Assim, nas infinitas voltas, o conjunto solução é dado por:

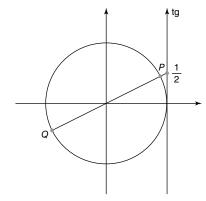
$$S = \left\{ x \in \mathbb{R} | x = \frac{\pi}{4} + \frac{k\pi}{2}, \text{ com } k \in \mathbb{Z} \right\}$$

60.
$$\sin^2 x = \frac{3}{4} \implies \sin x = -\frac{\sqrt{3}}{2}$$
 ou $\sin x = \frac{\sqrt{3}}{2}$



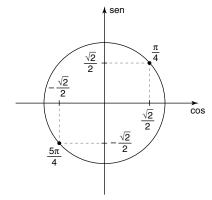
$$\therefore$$
 x = 60° ou x = 120° ou x = 240° ou x = 300° ou x = 420° ou x = 480° ou x = 600° ou x = 660° Logo, S = {60°, 120°, 240°, 300°, 420°, 480°, 600°, 660°}.

61. Prolongando o raio que passa pelo ponto de ordenada $\frac{1}{2}$ do eixo das tangentes, determinamos dois pontos, $P \in Q$, sobre a circunferência trigonométrica abaixo.



Logo, em cada volta dessa circunferência a equação possui 2 raízes e, portanto, nas 3 voltas representadas pelo intervalo $[0, 6\pi[$ a equação possui 6 raízes.

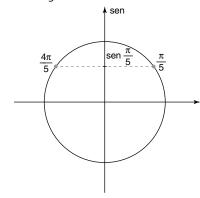
62. sen $x = \cos x$



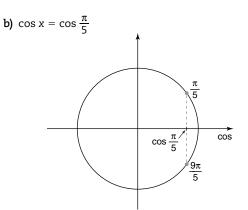
$$\therefore x = \frac{\pi}{4} \text{ ou } x = \frac{5\pi}{4}.$$

$$\text{Logo, S} = \left\{ \frac{\pi}{4}, \frac{5\pi}{4} \right\}.$$

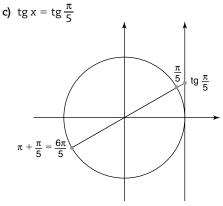
63. a) sen $x = \text{sen } \frac{\pi}{5}$



Para $0 \le x < 2\pi$, temos: $\operatorname{sen} x = \operatorname{sen} \frac{\pi}{5} \Rightarrow x = \frac{\pi}{5} \text{ ou } x = \frac{4\pi}{5}$ $\operatorname{Logo}, S = \left\{ \frac{\pi}{5}, \frac{4\pi}{5} \right\}$.



Para $0 \le x < 2\pi$, temos: $\cos x = \cos \frac{\pi}{5} \Rightarrow x = \frac{\pi}{5} \text{ ou } x = \frac{9\pi}{5}$ Logo, $S = \left\{ \frac{\pi}{5}, \frac{9\pi}{5} \right\}$.



Para $0 \le x < 2\pi$, temos:

$$S = \left\{ \frac{\pi}{5}, \frac{6\pi}{5} \right\}$$

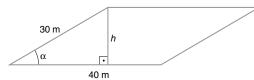
64. a) $2 \text{ sen } (\pi - x) - \sqrt{3} \cos (\pi + x) = \text{sen } (-x), \text{ para } 0 \le x \le 2\pi$ $2 \text{ sen } x - \sqrt{3} (-\cos x) = -\text{sen } x \Rightarrow$ $\Rightarrow 3 \text{ sen } x = -\sqrt{3} \cos x$ $\therefore \frac{\sin x}{\cos x} = -\frac{\sqrt{3}}{3} \Rightarrow \text{tg } x = -\frac{\sqrt{3}}{3}$ $\therefore x = \frac{5\pi}{6} \text{ ou } x = \frac{11\pi}{6}$ $\text{Logo, } S = \left\{ \frac{5\pi}{6}, \frac{11\pi}{6} \right\}.$

b) Além das raízes na primeira volta, obtidas no item anterior, a equação tg $x=-\frac{\sqrt{3}}{3}$ possui as seguintes raízes na segunda volta:

$$x = \frac{5\pi}{6} + 2\pi = \frac{17\pi}{6}$$
ou $x = \frac{11\pi}{6} + 2\pi = \frac{23\pi}{6}$
Logo, $S = \left\{ \frac{5\pi}{6}, \frac{11\pi}{6}, \frac{17\pi}{6}, \frac{23\pi}{6} \right\}$.

c) Como tg
$$x=-\frac{\sqrt{3}}{3}$$
, temos:
$$x=\frac{5\pi}{6}+\pi k, k\in\mathbb{Z}$$
 Logo, $S=\left\{x\in\mathbb{R}\,|\,x=\frac{5\pi}{6}+\pi k,\,k\in\mathbb{Z}\right\}$.

65. Supondo α como na figura abaixo, temos:



$$\operatorname{sen} \alpha = \frac{h}{30} \Rightarrow h = 30 \operatorname{sen} \alpha$$

Sabendo que a área do paralelogramo é 600 m², temos:

$$40 \cdot h = 600 \implies 40 \cdot 30 \operatorname{sen} \alpha = 600$$

$$\therefore$$
 sen $\alpha = \frac{1}{2}$

Logo,
$$\alpha = \frac{\pi}{6}$$
 ou $\alpha = \frac{5\pi}{6}$.

(Note que os dois valores convêm como resposta. Um para o ângulo agudo e o outro para o ângulo obtuso formado pelos lados consecutivos do paralelogramo.)

66. a) Os valores de t para os quais a altura do eixo do pedal foi de 16 cm podem ser obtidos pela equação:

$$16 = 16 - 6 \text{sen } (2\pi t) \implies 6 \text{sen } (2\pi t) = 0$$

$$\therefore$$
 sen $(2\pi t) = 0$

$$\therefore 2\pi t = 0 + k\pi$$

$$\therefore$$
 t = $\frac{k}{2}$, com k \in {0, 1, 2, 3, ..., 60}

Observe que, como o tempo máximo é 30 segundos, o valor máximo de k deve ser 60.

b) Observando a expressão h(t) = 16 - 6sen $(2\pi t)$, concluímos que a altura máxima ocorre quando 6sen $(2\pi t)$ é mínimo, ou seja, quando sen $(2\pi t) = -1$. Logo:

$$\therefore 2\pi t = \frac{3\pi}{2} + 2k\pi$$

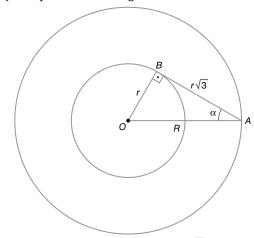
$$\therefore t = \frac{3}{4} + k, \text{ com } k \in \{0, 1, 2, 3, ..., 29\}$$

c) Uma volta completa ocorre quando:

$$2\pi t = 2\pi \implies t = 1$$

Ou seja, o pedal realiza uma volta completa a cada 1 segundo.

67. A medida do ângulo agudo OÂB é máxima na posição esquematizada a seguir:



Nessa posição: tg
$$\alpha = \frac{r}{r\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Logo, $\alpha = 30^{\circ}$.

68. a)
$$(2 \operatorname{sen} x - \sqrt{3})(2 \operatorname{cos} x - \sqrt{2}) = 0 \Rightarrow$$

⇒ $2 \operatorname{sen} x - \sqrt{3} = 0 \text{ ou } 2 \operatorname{cos} x - \sqrt{2} = 0$
∴ $\operatorname{sen} x = \frac{\sqrt{3}}{2} \operatorname{ou} \operatorname{cos} x = \frac{\sqrt{2}}{2}$

Para $0 \le x < 2\pi$, concluímos:

• sen
$$x = \frac{\sqrt{3}}{2} \implies x = \frac{\pi}{3}$$
 ou $x = \frac{2\pi}{3}$

•
$$\cos x = \frac{\sqrt{2}}{2} \Rightarrow x = \frac{\pi}{4}$$
 ou $x = \frac{7\pi}{4}$

Logo,
$$S = \left\{ \frac{\pi}{4}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{4} \right\}.$$

b)
$$2 \cdot \text{sen } x \cdot \cos x + \text{sen } x = 0 \Rightarrow$$

$$\Rightarrow$$
 sen $x(2\cos x + 1) = 0$

$$\therefore$$
 sen $x = 0$ ou $2\cos x + 1 = 0 \Rightarrow$

$$\Rightarrow$$
 sen x = 0 ou cos x = $-\frac{1}{2}$

Para $0 \le x < 2\pi$, concluímos:

• sen
$$x = 0 \Rightarrow x = 0$$
 ou $x = \pi$

•
$$\cos x = -\frac{1}{2} \Rightarrow x = \frac{2\pi}{3}$$
 ou $x = \frac{4\pi}{3}$

Logo, S =
$$\left\{0, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}\right\}$$
.

c)
$$tg^2 x - tg x = 0$$

Para t = tg x, temos:

$$t^2 - t = 0 \Rightarrow t(t - 1) = 0$$

$$\therefore$$
 t = 0 ou t = 1

Assim:

•
$$\operatorname{tg} x = 0 \Rightarrow x = 0 \text{ ou } x = \pi$$

•
$$\operatorname{tg} x = 1 \Rightarrow x = \frac{\pi}{4} \operatorname{ou} x = \frac{5\pi}{4}$$

Logo,
$$S = \left\{0, \pi, \frac{\pi}{4}, \frac{5\pi}{4}\right\}$$
.

d)
$$(tg x - \sqrt{3})(tg^2 x - 1) = 0 \Rightarrow tg x - \sqrt{3} = 0 \text{ ou}$$

 $tg^2 x - 1 = 0$

$$\therefore$$
 tg $x = \sqrt{3}$ ou tg $x = 1$ ou tg $x = -1$

Assim, temos:

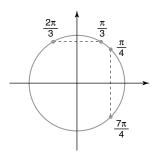
•
$$\operatorname{tg} x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} \text{ ou } x = \frac{4\pi}{3}$$

•
$$\operatorname{tg} x = 1 \Rightarrow x = \frac{\pi}{4} \operatorname{ou} x = \frac{5\pi}{4}$$

•
$$\operatorname{tg} x = -1 \Rightarrow x = \frac{3\pi}{4} \operatorname{ou} x = \frac{7\pi}{4}$$

Logo, S =
$$\left\{ \frac{\pi}{3}, \frac{4\pi}{3}, \frac{\pi}{4}, \frac{5\pi}{4}, \frac{3\pi}{4}, \frac{7\pi}{4} \right\}$$

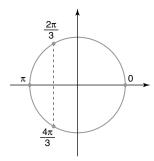
69. a) Representando na circunferência trigonométrica as raízes obtidas no item a do exercício anterior, temos:



Assim, nas infinitas voltas, o conjunto solução é dado por:

$$S = \left\{ x \in \mathbb{R} | x = \frac{\pi}{3} + k \cdot 2\pi \text{ ou } x = \frac{2\pi}{3} + k \cdot 2\pi \text{ ou} \right.$$
$$\left. x = \frac{\pi}{4} + k \cdot 2\pi \text{ ou } x = \frac{7\pi}{4} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z} \right\}$$

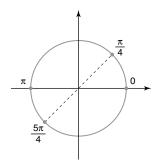
 b) Representando na circunferência trigonométrica as raízes obtidas no item b do exercício anterior, temos:



Assim, nas infinitas voltas, o conjunto solução é dado por:

$$S = \left\{ x \in \mathbb{R} \mid x = k\pi \text{ ou } x = \frac{2\pi}{3} + k \cdot 2\pi \text{ ou} \right.$$
$$x = \frac{4\pi}{3} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z} \right\}$$

 c) Representando na circunferência trigonométrica as raízes obtidas no item c do exercício anterior, temos:



Assim, nas infinitas voltas, o conjunto solução é dado por:

$$S = \left\{ x \in |R| \, x = k\pi \text{ ou } x = \frac{\pi}{4} + k\pi, \text{ com } k \in \mathbb{Z} \right\}$$

70. Dada a equação $4x^2 + 4x \operatorname{sen} \alpha + \operatorname{sen} \alpha \cdot \cos \alpha = 0$, temos:

$$\Delta = (4 \operatorname{sen} \alpha)^2 - 4 \cdot 4 \cdot \operatorname{sen} \alpha \cdot \cos \alpha$$

$$\therefore \Delta = 16 \operatorname{sen}^2 \alpha - 16 \cdot \operatorname{sen} \alpha \cdot \cos \alpha$$

$$\therefore \Delta = 16 \operatorname{sen} \alpha \cdot (\operatorname{sen} \alpha - \cos \alpha)$$

Como a equação possui duas raízes reais e iguais, devemos ter $\Delta=0$. Assim:

$$16 \operatorname{sen} \alpha (\operatorname{sen} \alpha - \cos \alpha) = 0$$

$$\therefore$$
 16 sen $\alpha = 0$ ou sen $\alpha - \cos \alpha = 0$

$$\therefore$$
 sen $\alpha = 0$ ou sen $\alpha = \cos \alpha$

$$\therefore \alpha = 0 \text{ ou } \alpha = \pi \text{ ou } \alpha = \frac{\pi}{4} \text{ ou } \alpha = \frac{5\pi}{4}$$

71. a) Fazendo a mudança de variável sen x = y, temos: $2y^2 + y - 1 = 0 \Rightarrow y = -1$ ou $y = \frac{1}{2}$

Retornando à variável original, obtemos:

• sen
$$x = -1 \Rightarrow x = \frac{3\pi}{2}$$

ΟU

• sen
$$x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$$
 ou $x = \frac{5\pi}{6}$

Assim, temos como conjunto solução:

$$S = \left\{ \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$

b) Fazendo a mudança de variável $\cos x = y$, temos:

$$2y^2 - 3y - 2 = 0 \implies y = 2 \text{ ou } y = -\frac{1}{2}$$

Retornando à variável original, obtemos:

•
$$\cos x = 2$$
 (não convém)

011

•
$$\cos x = -\frac{1}{2} \Rightarrow x = \frac{2\pi}{3}$$
 ou $x = \frac{4\pi}{3}$

Assim, temos como conjunto solução:

$$S = \left\{ \frac{2\pi}{3}, \frac{4\pi}{3} \right\}$$

c) Fazendo a mudança de variável tg x = y, temos:

$$4y^{2} + \sqrt{3}y = y^{2} + 3\sqrt{3}y + 3 \Rightarrow 3y^{2} - 2\sqrt{3}y - 3 = 0$$

$$\therefore y = \sqrt{3} \text{ ou } y = -\frac{\sqrt{3}}{3}$$

Retornando à variável original, obtemos:

•
$$\operatorname{tg} x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} \operatorname{ou} x = \frac{4\pi}{3}$$

011

•
$$\operatorname{tg} x = -\frac{\sqrt{3}}{3} \Rightarrow x = \frac{5\pi}{6} \text{ ou } x = \frac{11\pi}{6}$$

Assim, temos como conjunto solução:

$$S = \left\{ \frac{\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{6}, \frac{11\pi}{6} \right\}$$

d) Substituindo cos² x por 1 – sen x, temos:

$$1 - \operatorname{sen}^2 x - 4 \operatorname{sen} x + 4 = 0 \Rightarrow$$

$$\Rightarrow$$
 sen² x + 4 sen x - 5 = 0

Fazendo a mudança de variável sen x = y, temos:

$$y^2 + 4y - 5 = 0 \implies y = -5 \text{ ou } y = 1$$

Retornando à variável original, obtemos:

• sen
$$x = -5$$
 (não convém)

011

• sen
$$x = 1 \Rightarrow x = \frac{\pi}{2}$$

Assim, temos como conjunto solução:

$$S = \left\{\frac{\pi}{2}\right\}$$

72. O valor mínimo de uma função polinomial do 2º grau é a ordenada do vértice da parábola correspondente. Assim:

$$y_{v} = -\frac{\Delta}{4a} = -\frac{\sin^{2}\alpha - 4\cos\alpha}{4} = -\frac{1}{4}$$

$$\therefore \, \operatorname{sen}^2 \alpha - 4 \operatorname{cos} \alpha = 1$$

Substituindo sen² α por 1 – $\cos^2 \alpha$, temos:

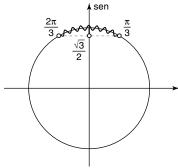
$$1 - \cos^2 \alpha - 4\cos \alpha = 1$$

$$\therefore \cos^2 \alpha + 4\cos \alpha = 0 \Rightarrow \cos \alpha \cdot (\cos \alpha + 4) = 0$$

$$\therefore$$
 cos $\alpha = 0$ ou cos $\alpha = -4$ (não convém)

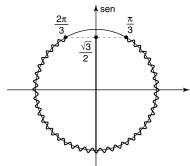
Logo,
$$\alpha = \frac{\pi}{2}$$
 ou $\alpha = \frac{3\pi}{2}$

73. a) sen $x > \frac{\sqrt{3}}{2}$



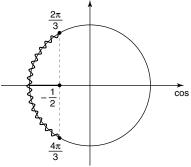
$$Logo, S = \left\{ x \in \mathbb{R} | \frac{\pi}{3} < x < \frac{2\pi}{3} \right\}.$$

b) sen $x \le \frac{\sqrt{3}}{2}$



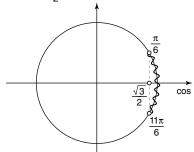
Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \leqslant x \leqslant \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} \leqslant x < 2\pi \right\}.$$

c) $\cos x \le -\frac{1}{2}$



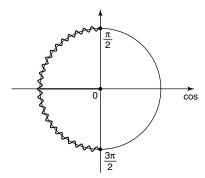
Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{2\pi}{3} \leqslant x \leqslant \frac{4\pi}{3} \right\}.$$

d) $\cos x > \frac{\sqrt{3}}{2}$



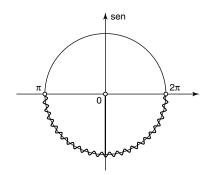
$$Logo, S = \left\{ x \in \mathbb{R} \mid 0 \le x < \frac{\pi}{6} \text{ ou } \frac{11\pi}{6} < x < 2\pi \right\}.$$

e) $\cos x \le 0$



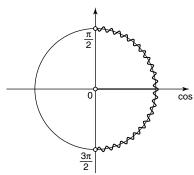
Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{2} \leqslant x \leqslant \frac{3\pi}{2} \right\}.$$

f) sen x < 0



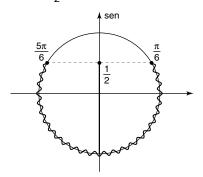
Logo,
$$S = \{x \in \mathbb{R} | \pi < x < 2\pi\}.$$

g) $\cos x > 0$



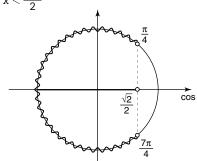
$$Logo, S = \bigg\{ x \in \mathbb{R} \, | \, 0 \leqslant x < \frac{\pi}{2} \text{ ou } \frac{3\pi}{2} < x < 2\pi \bigg\}.$$

h) sen $x \le \frac{1}{2}$



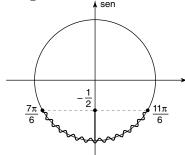
Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{6} \text{ ou } \frac{5\pi}{6} \le x < 2\pi \right\}.$$

i)
$$\cos x < \frac{\sqrt{2}}{2}$$



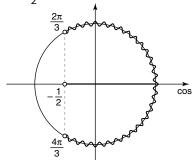
$$Logo, S = \left\{ x \in \mathbb{R} | \frac{\pi}{4} < x < \frac{7\pi}{4} \right\}.$$

j) sen x ≤ $-\frac{1}{2}$



$$Logo, S = \left\{ x \in \mathbb{R} \mid \frac{7\pi}{6} \leqslant x \leqslant \frac{11\pi}{6} \right\}.$$

k) $\cos x > -\frac{1}{2}$

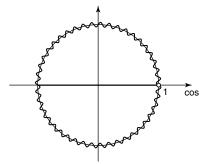


$$Logo, S = \left\{ x \in \mathbb{R} | 0 \leqslant x < \frac{2\pi}{3} \text{ ou } \frac{4\pi}{3} < x < 2\pi \right\}.$$

1) sen x > 1

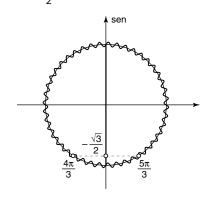
Não existem valores de x que satisfaçam essa inequação, pois $-1 \le \operatorname{sen} x \le 1$, para todo $x \in \mathbb{R}$. Logo, $S = \emptyset$.

m) $\cos x < 1$



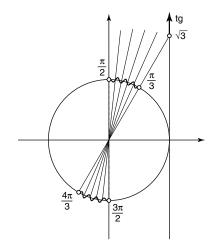
$$Logo, S = \{x \in \mathbb{R} \,|\, 0 < x < 2\pi\}$$

n) sen
$$x \neq -\frac{\sqrt{3}}{2}$$



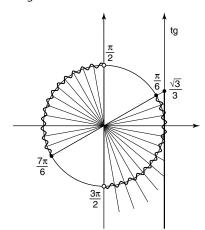
Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \leqslant x < 2\pi \ e \ x \neq \frac{4\pi}{3} \ e \ x \neq \frac{5\pi}{3} \right\}.$$

o) tg $x > \sqrt{3}$

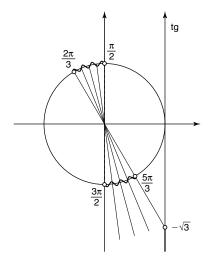


Logo,
$$S = \left\{ x \in \mathbb{R} | \frac{\pi}{3} < x < \frac{\pi}{2} \text{ ou } \frac{4\pi}{3} < x < \frac{3\pi}{2} \right\}.$$

 $p) tg x \leqslant \frac{\sqrt{3}}{3}$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{6} \text{ ou } \frac{\pi}{2} < x \le \frac{7\pi}{6} \text{ ou } \frac{3\pi}{2} < x < 2\pi \right\}.$$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{2} < x < \frac{2\pi}{3} \text{ ou } \frac{3\pi}{2} < x < \frac{5\pi}{3} \right\}$$

74. a) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo do intervalo obtido no item a do exercício anterior:

$$S = \left\{ x \in \mathbb{R} \,|\, \frac{\pi}{3} + k \cdot 2\pi < x < \frac{2\pi}{3} + k \cdot 2\pi,$$

$$com \; k \in \mathbb{Z} \right\}$$

c) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo do intervalo obtido no item c do exercício anterior:

$$S = \left\{ x \in \mathbb{R} | \frac{2\pi}{3} + k \cdot 2\pi \le x \le \frac{4\pi}{3} + k \cdot 2\pi, \right.$$

$$com \ k \in \mathbb{Z} \right\}$$

d) Como os números $\frac{11\pi}{6}$ e $-\frac{\pi}{6}$ estão associados ao mesmo ponto da circunferência trigonométrica, o conjunto solução da inequação do item d do exercício anterior, no universo \mathbb{R} , pode ser dado por:

$$S = \left\{ x \in \mathbb{R} \left| -\frac{\pi}{6} + k \cdot 2\pi < x < \frac{\pi}{6} + k \cdot 2\pi \right. \right\}$$

$$com \ k \in \mathbb{Z} \right\}$$

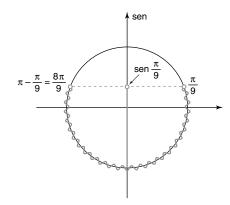
o) Basta adicionar a expressão $k\pi$, com $k\in\mathbb{Z}$, a um dos intervalos obtidos no item o do exercício anterior:

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} + k\pi < x < \frac{\pi}{2} + k\pi, \text{ com } k \in \mathbb{Z} \right\}$$

p) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, aos extremos do intervalo $\left|\frac{\pi}{2}, \frac{7\pi}{6}\right|$ obtido no item p do exercício anterior:

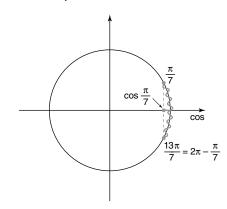
$$S = \left\{ x \in |R| \frac{\pi}{2} + k\pi < x \leqslant \frac{7\pi}{6} + k\pi, \text{ com } k \in \mathbb{Z} \right\}$$

75. a) sen $x < \text{sen } \frac{\pi}{9}$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \leqslant x < \frac{\pi}{9} \text{ ou } \frac{8\pi}{9} < x < 2\pi \right\}.$$

b) $\cos x \ge \cos \frac{\pi}{7}$

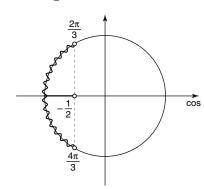


Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{7} \text{ ou } \frac{13\pi}{7} \le x < 2\pi \right\}.$$

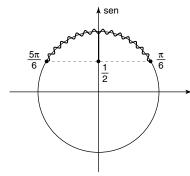
76. a)
$$\begin{cases} \cos x < -\frac{1}{2} & \text{(I)} \\ \sin x \ge \frac{1}{2} & \text{(II)} \end{cases}$$

Resolvendo cada uma das inequações do sistema, temos:

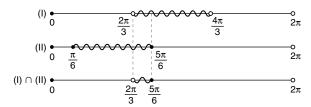
(I)
$$\cos x < -\frac{1}{2}$$



(II) sen $x \ge \frac{1}{2}$



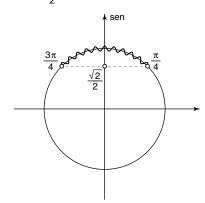
Fazendo a intersecção dos conjuntos soluções de (I) e (II), vamos ter:



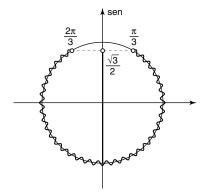
Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{2\pi}{3} < x \leqslant \frac{5\pi}{6} \right\}$$

Resolvendo (I) e (II), temos:

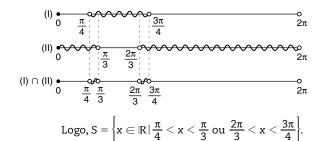
(I) sen
$$x > \frac{\sqrt{2}}{2}$$

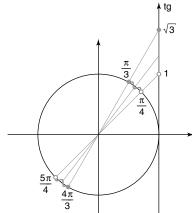


(II) sen $x < \frac{\sqrt{3}}{2}$

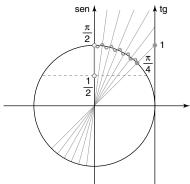


Fazendo a intersecção dos conjuntos soluções de (I) e (II), vamos ter:





$$Logo, S = \left\{ x \in |\mathbb{R}| \frac{\pi}{4} < x \leqslant \frac{\pi}{3} \text{ ou } \frac{5\pi}{4} < x \leqslant \frac{4\pi}{3} \right\}.$$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} \leqslant x < \frac{\pi}{2} \right\}.$$

77. a) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo do intervalo obtido no item a do exercício anterior:

$$S = \left\{ x \in \mathbb{R} \,|\, \frac{2\pi}{3} + k \cdot 2\pi < x \leqslant \frac{5\pi}{6} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z} \right\}$$

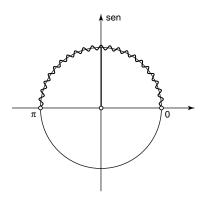
d) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo do intervalo obtido no item d do exercício anterior:

$$S = \left\{ x \in \mathbb{R} \, | \, \frac{\pi}{4} + k \cdot 2\pi \leqslant x < \frac{\pi}{2} + k \cdot 2\pi, \, \text{com} \, \, k \in \mathbb{Z} \right\}$$

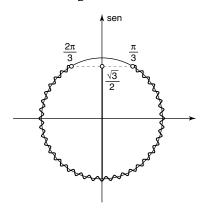
78. a) A dupla desigualdade é equivalente ao sistema

Resolvendo (I) e (II), temos:

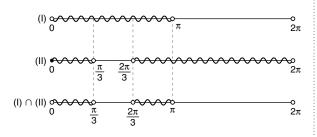
(I) sen
$$x > 0$$



(II) sen
$$x < \frac{\sqrt{3}}{2}$$



Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:



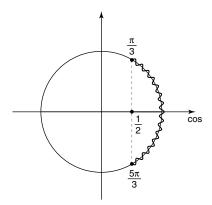
$$Logo, S = \Big\{ x \in \mathbb{R} \, | \, 0 < x < \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} < x < \pi \Big\}.$$

b) A dupla desigualdade é equivalente ao sistema

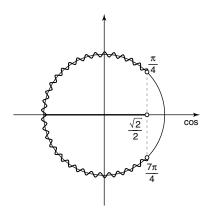
$$\begin{cases} \cos x \geqslant \frac{1}{2} & \text{(I)} \\ \cos x < \frac{\sqrt{2}}{2} & \text{(II)} \end{cases}$$

Resolvendo (I) e (II), temos:

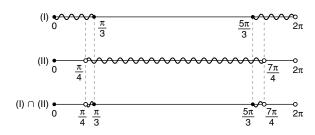
(I)
$$\cos x \ge \frac{1}{2}$$



(II) $\cos x < \frac{\sqrt{2}}{2}$



Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:



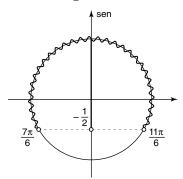
$$Logo, S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} < x \leqslant \frac{\pi}{3} \text{ ou } \frac{5\pi}{3} \leqslant x < \frac{7\pi}{4} \right\}.$$

c)
$$|\text{sen } x| < \frac{1}{2} \Rightarrow -\frac{1}{2} < \text{sen } x < \frac{1}{2}$$

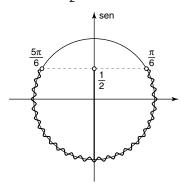
Essa dupla desigualdade é equivalente ao sistema

Resolvendo (I) e (II), temos:

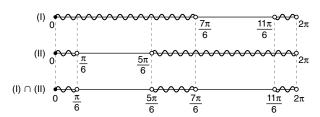
(I) sen
$$x > -\frac{1}{2}$$



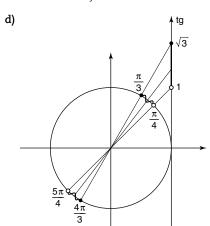
(II) sen $x < \frac{1}{2}$



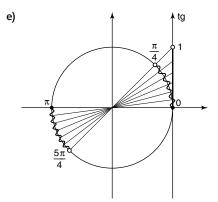
Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:



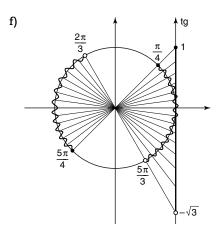
Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x \frac{\pi}{6} \text{ ou } \frac{5\pi}{6} \le x \le \frac{7\pi}{6} \text{ ou } \frac{11\pi}{6} \le x \le 2\pi \right\}.$$



$$Logo, S = \left\{ x \in |R| \, \frac{\pi}{4} < x \leqslant \frac{\pi}{3} \text{ ou } \frac{5\pi}{4} < x \leqslant \frac{4\pi}{3} \right\}.$$

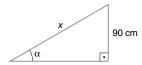


$$Logo, S = \left\{ x \in \mathbb{R} \, | \, 0 \leqslant x < \frac{\pi}{4} \text{ ou } \pi \leqslant x < \frac{5\pi}{4} \right\}.$$



$$\label{eq:Logo} \begin{split} \text{Logo, S} &= \left\{ x \in \mathbb{R} \, | \, 0 \leqslant x \leqslant \frac{\pi}{4} \text{ ou } \frac{2\pi}{3} < x \leqslant \frac{5\pi}{4} \text{ ou } \right. \\ &\frac{5\pi}{3} < x < 2\pi \right\} . \end{split}$$

79. Sendo x o comprimento da rampa, em centímetro, esquematizamos a situação:



Assim: sen $\alpha = \frac{90}{x}$

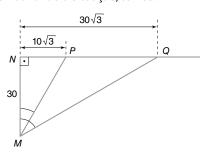
Como devemos ter $x \ge 180$, concluímos que

sen $\alpha \leq \frac{1}{2}$.

Ou seja, $\alpha \leq 30^{\circ}$.

Alternativa a.

80. Esquematizando a situação, temos:



Pela figura, observamos que, no trecho \overline{PQ} , a medida α do ângulo agudo $B\widehat{M}N$ é mínima quando o barco está no ponto P e máxima quando está em Q. Logo, $P\widehat{M}N < \alpha < Q\widehat{M}N$.

Temos:

tg
$$(\widehat{PMN}) = \frac{10\sqrt{3}}{30} = \frac{\sqrt{3}}{3} \Rightarrow \widehat{PMN} = 30^{\circ}$$

tg (Q
$$\widehat{M}$$
N) = $\frac{30\sqrt{3}}{30}$ = $\sqrt{3}$ \Rightarrow Q \widehat{M} N = 60°

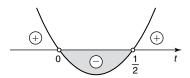
Assim: $30^{\circ} < \alpha < 60^{\circ}$

Alternativa c.

81. a) $2 \sin^2 x - \sin x < 0$.

Fazendo a mudança de variável sen x = t, obtemos a inequação $2t^2 - t < 0$.

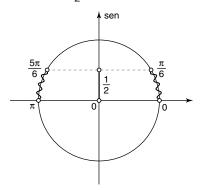
A variação de sinal da função $f(t) = 2t^2 - t$ é esquematizada por:



Assim,
$$f(t) < 0 \implies 0 < t < \frac{1}{2}$$
.

Retornando à variável original, temos

$$0 < \text{sen } x < \frac{1}{2}$$
 e, portanto:



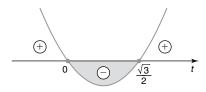
Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \, | \, 0 < x < \frac{\pi}{6} \text{ ou } \frac{5\pi}{6} < x < \pi \right\}$$

b) $2 \cdot \cos^2 x - \sqrt{3} \cos x \le 0$

Fazendo a mudança de variável $\cos x = t$, obtemos:

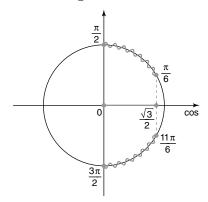
$$2t^2 - \sqrt{3}t \leqslant 0$$



Assim,
$$0 \le t \le \frac{\sqrt{3}}{2}$$
.

Retornando à variável original, temos:

$$0 \le \cos x \le \frac{\sqrt{3}}{2}$$



Portanto:
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{6} \le x \le \frac{\pi}{2} \text{ ou} \right\}$$

$$\frac{3\pi}{2} \leqslant x \leqslant \frac{11\pi}{6}$$

c)
$$2 \text{sen}^2 x + 5 \cos x - 4 > 0 \implies$$

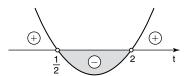
$$\Rightarrow 2(1 - \cos^2 x) + 5\cos x - 4 > 0$$

$$\therefore -2\cos^2 x + 5\cos x - 2 > 0 \Rightarrow$$

$$\Rightarrow 2\cos^2 x - 5\cos x + 2 < 0$$

Fazendo a mudança de variável cos x = t, obtemos a inequação $2t^2 - 5t + 2 < 0$.

A variação de sinal da função $f(t) = 2t^2 - 5t + 2$ é esquematizada por:

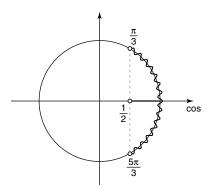


Assim,
$$f(t) < 0 \implies \frac{1}{2} < t < 2$$
.

Retornando à variável original, temos:

$$\frac{1}{2}$$
 < cos x < 2, ou seja, cos x > $\frac{1}{2}$, cujas

soluções são representadas por:



Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \mid 0 \leqslant x < \frac{\pi}{3} \text{ ou } \frac{5\pi}{3} < x < 2\pi \right\}$$

d) $2 \cdot \cos^2 x - \sin x - 1 \le 0$

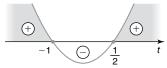
Substituindo $\cos^2 x$ por $1 - \sin^2 x$, temos:

$$2 \cdot (1 - \sin^2 x) - \sin x - 1 \le 0$$

$$2sen^2 x + sen x - 1 \ge 0$$

Fazendo a mudança de variável sen x = t, obtemos:

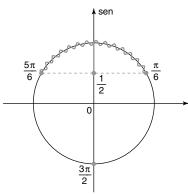
$$2t^2 + t - 1 \geqslant 0$$



Assim: $t \le -1$ ou $t \ge \frac{1}{2}$

Retornando à variável original, temos:

$$\operatorname{sen} x \leqslant -1 \operatorname{ou} \operatorname{sen} x \geqslant \frac{1}{2}$$



Portanto: $S = \left\{ x \in \mathbb{R} \, | \, x = \frac{3\pi}{2} \text{ ou } \frac{\pi}{6} \leqslant x \leqslant \frac{5\pi}{6} \right\}$

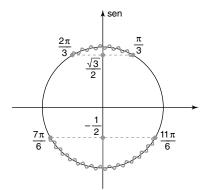
e) $(2 \cdot \text{sen } x + 1)(2 \cdot \text{sen } x - \sqrt{3}) \ge 0$ Fazendo a mudança de variável sen x = t, obtemos:

Fazendo a mudança de variavel sen x = t, obtemos: $(2t + 1)(2t - \sqrt{3}) \ge 0$

Assim: $t \le -\frac{1}{2}$ ou $t \ge \frac{\sqrt{3}}{2}$

Retornando à variável original, temos:

$$\operatorname{sen} x \leqslant -\frac{1}{2} \text{ ou sen } x \geqslant \frac{\sqrt{3}}{2}$$



Portanto:
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} \leqslant x \mid \frac{2\pi}{3} \text{ ou } \right\}$$

$$\frac{7\pi}{6} \leqslant x \leqslant \frac{11\pi}{6}$$

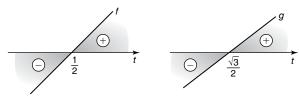
$$f) \ \frac{2 \operatorname{sen} x - 1}{2 \operatorname{sen} x - \sqrt{3}} \leqslant 0$$

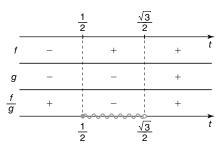
Fazendo sen x = t, obtemos a inequação

$$\frac{2t-1}{2t-\sqrt{3}}\leqslant 0.$$

Estudando a variação de sinal das funções

$$f(t) = 2t - 1$$
, $g(t) = 2t - \sqrt{3} e^{\frac{f}{g}}$, temos:





$$\frac{f(t)}{g(t)} \le 0 \Rightarrow \frac{1}{2} \le t < \frac{\sqrt{3}}{2}$$

Logo, $\frac{1}{2} \le \text{sen } x < \frac{\sqrt{3}}{2}$; e, portanto:



Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \, | \, \frac{\pi}{6} \leqslant x < \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} < x \leqslant \frac{5\pi}{6} \right\}$$

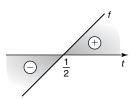
g)
$$\frac{2\cos x - 1}{2\cos x + 1} > 0$$

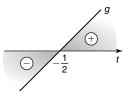
Fazendo $\cos x = t$, obtemos a inequação 2t - 1

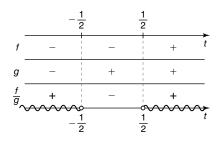
$$\frac{2t-1}{2t+1} > 0$$

Estudando a variação de sinal das funções

$$f(t) = 2t - 1$$
, $g(t) = 2t + 1 e^{\frac{f}{g}}$, temos:

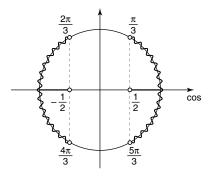






$$\frac{f(t)}{g(t)} > 0 \implies t < -\frac{1}{2} \text{ ou } t > \frac{1}{2}$$

Logo, $\cos x < -\frac{1}{2}$ ou $\cos x > \frac{1}{2}$; e, portanto:



Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \, | \, 0 \leqslant x < \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} < x < \frac{4\pi}{3} \text{ ou } \right.$$

$$\frac{5\pi}{3} < x < 2\pi$$

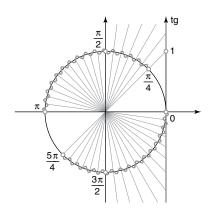
h)
$$tg^2 x - tg x > 0$$

Fazendo tg x = t, temos:

$$t^2-t>0$$

Estudando a variação de sinal de função $f(t) = t^2 - t$, obtemos:

Assim, $f(t) > 0 \implies t < 0$ ou t > 1 e, portanto: tg x < 0 ou tg x > 1



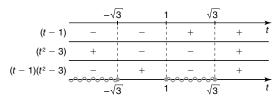
Logo, S =
$$\left\{ x \in \mathbb{R} \mid \frac{\pi}{4} < x < \pi \text{ ou } \frac{5\pi}{4} < x < 2\pi \text{ e} \right.$$

 $x \neq \frac{\pi}{2} \text{ e } x \neq \frac{3\pi}{2} \right\}$

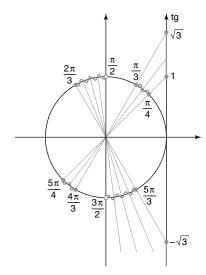
i)
$$(tg x - 1)(tg^2 x - 3) \le 0$$

Fazendo a mudança de variável tg x = t, obtemos:

$$(t-1)(t^2-3) \leq 0$$



Logo, $t \le -\sqrt{3}$ ou $1 \le t \le \sqrt{3}$. Retornando à variável original, temos: $tg \ x \le -\sqrt{3}$ ou $1 \le tg \ x \le \sqrt{3}$



Portanto:
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{3} \text{ ou} \right.$$

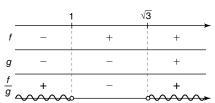
$$\frac{\pi}{2} < x \leqslant \frac{2\pi}{3} \text{ ou } \frac{5\pi}{4} \leqslant x \leqslant \frac{4\pi}{3} \text{ ou } \frac{3\pi}{2} < x \leqslant \frac{5\pi}{3} \right\}$$

$$j) \ \ \frac{tg \ x - 1}{tg \ x - \sqrt{3}} > 0$$

Fazendo tg x = t, temos: $\frac{t-1}{t-\sqrt{3}} > 0$

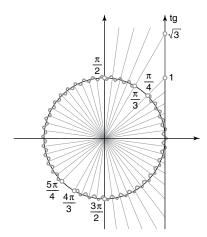
Estudando a variação de sinal das funções

$$f(t) = t - 1, g(t) = t - \sqrt{3} e^{\frac{f}{g}}$$
, obtemos:



Assim,
$$\frac{f(t)}{g(t)} > 0 \implies t < 1 \text{ ou } t > \sqrt{3} \text{ e, portanto:}$$

 $tg \ x < 1 \text{ ou } tg \ x > \sqrt{3}$



Logo,
$$S = \left\{ x \in \mathbb{R} \, | \, 0 \le x < \frac{\pi}{4} \text{ ou } \frac{\pi}{3} < x < \frac{5\pi}{4} \text{ ou } \frac{4\pi}{3} < x < 2\pi \text{ e } x \neq \frac{\pi}{2} \text{ e } x \neq \frac{3\pi}{2} \right\}.$$

82. d) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo dos intervalos obtidos no item **d** do exercício anterior:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{3\pi}{2} + k \cdot 2\pi \text{ ou} \right.$$
$$\frac{\pi}{6} + k \cdot 2\pi \leqslant x \leqslant \frac{5\pi}{6} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z} \right\}$$

e) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo dos intervalos obtidos no item e do exercício anterior:

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} + k \cdot 2\pi \le x \le \frac{2\pi}{3} + k \cdot 2\pi \text{ ou} \right.$$
$$\frac{7\pi}{6} + k \cdot 2\pi \le x \le \frac{11\pi}{6} + k \cdot 2\pi, \text{ com } k \in \mathbb{Z} \right\}$$

i) Basta adicionar a expressão $k \cdot \pi$, com $k \in \mathbb{Z}$, a cada extremo dos intervalos $\left[\frac{\pi}{4}, \frac{\pi}{3}\right] \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$ obtidos no item i do exercício anterior:

$$S = \left\{ x \in \mathbb{R} | \frac{\pi}{4} + k \cdot \pi \leqslant x \leqslant \frac{\pi}{3} + k \cdot \pi \text{ ou} \right.$$
$$\frac{\pi}{2} + k \cdot \pi < x \leqslant \frac{2\pi}{3} + k \cdot \pi, \text{ com } k \in \mathbb{Z} \right\}$$

Exercícios complementares

Exercícios técnicos

1. a) O comprimento da circunferência é $2\pi r = 30\pi$ e podemos calcular a medida, em grau, do arco da seguinte maneira:

$$30\pi - 360^{\circ}$$

$$5\pi - x$$

$$x = \frac{50\pi \cdot 360^{\circ}}{30\pi} = 60^{\circ}$$

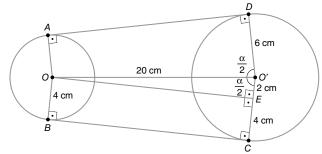
Portanto, a medida, em grau, do arco é 60°.

b) Podemos calcular a medida, em grau, do arco da seguinte maneira:

rad cm
1 ------ 2,5

$$x$$
 ------ 2π
 $\therefore x = \frac{4\pi}{5}$ rad

2. Sendo α o ângulo de medida do menor arco CD, E o ponto de intersecção entre O'C e uma paralela a BC que passe por O, e traçando OO', que divide α na metade, obtemos:



Analisando o triângulo OO'E, temos:

$$\cos \frac{\alpha}{2} = \frac{2}{20} = 0.1 \Rightarrow \frac{\alpha}{2} \approx 84^{\circ}$$

Portanto, α mede aproximadamente 168°.

- 3. a) A sequência é dada por: (40°, 400°, 760°, ..., 6.520°) Seu termo geral é: $a_n = 40^\circ + (n-1) \cdot 360^\circ$, com $n \in \mathbb{N}^*$ e $n \leq 19$
 - b) Pelo item anterior, o último termo é 6.520°.
- 4. a) A sequência é dada por:

$$\left(\frac{4\pi}{5}, \frac{14\pi}{5}, \frac{24\pi}{5}, \dots, \frac{104\pi}{5}, \frac{114\pi}{5}, \frac{124\pi}{5}, \dots, \frac{734\pi}{5}\right)$$

Seu termo geral é:

seu termo gerar e:

$$a_n = \frac{4\pi}{5} + (n-1) \cdot 2\pi$$
, com $n \in \mathbb{N}^*$ e $n \le 74$

- b) Pelo item anterior, o último termo é $\frac{734\pi}{5}$.
- **5.** Como as expressões indicam medidas de dois arcos côngruos, podemos escrever:

$$3x - 45^\circ = 2x + 135^\circ + k \cdot 360^\circ$$
, com $k \in \mathbb{Z}$

$$\therefore x = 180^{\circ} + k \cdot 360^{\circ}, \text{ com } k \in \mathbb{Z}$$

$$\therefore x = 180^{\circ} (1 + 2k)$$
, com $k \in \mathbb{Z}$

Alternativa e.

6. a)
$$2\pi : 6 = \frac{\pi}{3}$$

 $x_A = 0 \text{ rad}$ $x_D = \pi \text{ rad}$
 $x_E = \frac{\pi}{3} \text{ rad}$ $x_E = \frac{4\pi}{3} \text{ rad}$
 $x_C = \frac{2\pi}{3} \text{ rad}$ $x_F = \frac{5\pi}{3} \text{ rad}$
Logo: A(0), B $\left(\frac{\pi}{3}\right)$, C $\left(\frac{2\pi}{3}\right)$, D(π), E $\left(\frac{4\pi}{3}\right)$, F $\left(\frac{5\pi}{3}\right)$.

b) x_C na $2^{\underline{a}}$ e na $3^{\underline{a}}$ voltas positivas.

$$\frac{2\pi}{3} + 2\pi = \frac{8\pi}{3}$$
 (na 2ª volta positiva)

$$\frac{2\pi}{3} + 2 \cdot 2\pi = \frac{14\pi}{3}$$
 (na 3ª volta positiva)

Logo, as medidas procuradas associadas ao vértice C são $\frac{8\pi}{3}$ rad e $\frac{14\pi}{3}$ rad.

A circunferência trigonométrica: seno, cosseno e tangente

c) x_F na 1^a e na 2^a voltas negativas.

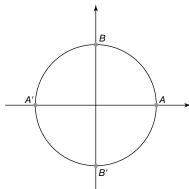
$$\frac{5\pi}{3} - 2\pi = -\frac{\pi}{3}$$
 (na 1ª volta negativa)

$$\frac{5\pi}{3} - 2\pi = -\frac{\pi}{3} \text{ (na 1ª volta negativa)}$$

$$\frac{5\pi}{3} - 2 \cdot 2\pi = -\frac{7\pi}{3} \text{ (na 2ª volta negativa)}$$

Logo, as medidas procuradas associadas ao vértice F são $-\frac{\pi}{3}$ rad e $-\frac{7\pi}{3}$ rad.

7. O conjunto A é formado pelos números reais associados aos quatro pontos A, B, A' e B' da circunferência trigonométrica abaixo; e o conjunto B é formado pelas medidas associadas aos pontos A e A'.

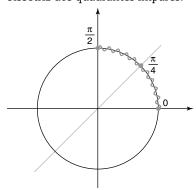


Logo, o conjunto A - B é formado pelos números reais associados aos pontos B e B'. A expressão geral

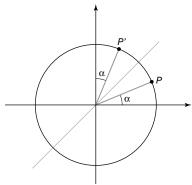
desses números é
$$x = \frac{\pi}{2} + k\pi$$
, com $k \in \mathbb{Z}$.

Alternativa a.

8. a) Na figura abaixo estão representadas as possíveis posições de P e de seus simétricos em relação à bissetriz dos quadrantes ímpares.

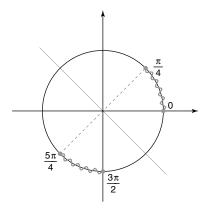


Observe que, para cada ponto P de medida α , temos seu simétrico P' na seguinte posição:

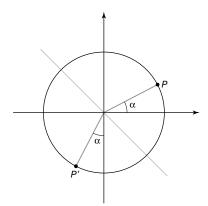


Assim, o número real x associado ao simétrico de cada ponto P pode ser representado pela expressão: $x = \frac{\pi}{2} - \alpha$

b) Na figura a seguir estão representadas as possíveis posições de P e de seus simétricos em relação à bissetriz dos quadrantes pares.



Observe que, para cada ponto P de medida α , temos seu simétrico P' na seguinte posição:



Assim, o número real x associado ao simétrico de cada ponto P pode ser representado pela expressão: $x = \frac{3\pi}{2} - \alpha$

9. I.

- a) Cada ângulo interno de um triângulo equilátero mede 60° e a altura OM também é bissetriz; logo, a medida do ângulo central AÔP é 30°. Como a medida do ângulo central é a mesma do arco determinado, concluímos que, na primeira volta do sentido positivo, o arco AP mede 30°.
- b) A medida do lado do triângulo OPQ é 1, pois é raio da circunferência trigonométrica. Como a altura OM também é mediana, temos que M é ponto médio de \overline{PQ} e, portanto, $PM = \frac{1}{2}$. Aplicando o teorema de Pitágoras no triângulo OMP,

$$(OM)^2 + \left(\frac{1}{2}\right)^2 = 1^2 \Rightarrow OM = \frac{\sqrt{3}}{2}$$

c) Do item b, temos $P\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$. Como a abscissa e a ordenada de P são, respectivamente, o cosseno e o seno do arco \widehat{AP} , concluímos que:

sen
$$30^{\circ} = \frac{1}{2}$$
 e cos $30^{\circ} = \frac{\sqrt{3}}{2}$

II.

- a) Cada ângulo interno de um triângulo equilátero mede 60°; logo, a medida do ângulo central AÔP é 60°. Como a medida do ângulo central é a mesma do arco determinado, concluímos que, na primeira volta do sentido positivo, o arco ÂP mede 60°.
- b) A medida do lado do triângulo equilátero AOP é 1, pois é raio da circunferência trigonométrica. Como a altura \overline{PM} também é mediana, temos que M é ponto médio de \overline{OA} e, portanto, $OM = \frac{1}{2}. \text{ Aplicando o teorema de Pitágoras no triângulo OMP, concluímos:}$

$$(PM)^2 + \left(\frac{1}{2}\right)^2 = 1^2 \Rightarrow PM = \frac{\sqrt{3}}{2}$$

c) Do item b, temos $P\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Como a abscissa e a ordenada de P são, respectivamente, o cosseno e o seno do arco \widehat{AP} , concluímos que:

$$sen 60^{\circ} = \frac{\sqrt{3}}{2} e cos 60^{\circ} = \frac{1}{2}$$

III.

a) Os ângulos da base de um triângulo isósceles têm medidas iguais. Indicando por α a medida dos ângulos congruentes \widehat{AOP} e \widehat{QPO} , temos, do triângulo \widehat{OPQ} :

$$\alpha + \alpha + 90^{\circ} = 180^{\circ} \Rightarrow \alpha = 45^{\circ}$$

Portanto, o ângulo AÔP mede 45°.

Como a medida do ângulo central é a mesma do arco determinado, concluímos que, na primeira volta do sentido positivo, o arco \widehat{AP} mede 45° .

b) A hipotenusa do triângulo retângulo OPQ mede 1, pois é raio da circunferência trigonométrica, e os segmentos PQ e OQ são congruentes, pois são lados de um triângulo isósceles de base OP. Indicando por ℓ a medida de cada um desses segmentos congruentes e aplicando o teorema de Pitágoras no triângulo OPQ, temos:

$$\ell^2 + \ell^2 = 1^2 \Rightarrow \ell = \frac{\sqrt{2}}{2}$$

Assim:
$$PQ = OQ = \frac{\sqrt{2}}{2}$$

c) Do item b, temos $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. Como a abscissa e a ordenada de P são, respectivamente, o cosseno e o seno do arco \widehat{AP} , concluímos que:

10. Para $x \in \mathbb{R}$, temos:

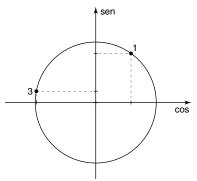
$$0 \le |\text{sen } x| \le 1$$

Portanto, o valor mínimo de f é zero.

- 11. A expressão $\frac{1}{|\cos x|}$ assume o valor mínimo quando o denominador $|\cos x|$ assume o valor máximo. Como o valor máximo de $|\cos x|$ é 1, concluímos que o valor mínimo de $\frac{1}{|\cos x|}$ é $\frac{1}{1}$ = 1.
- 12. Vamos analisar cada um dos itens.
 - a) $1.570^\circ=130^\circ+4\cdot360^\circ$. Ou seja, o ângulo está no 2° quadrante e, portanto, sen 1.570° é positivo. Afirmação falsa.
 - b) 1.330° = 250° + 3 · 360°. Ou seja, o ângulo está no 3º quadrante e, portanto, cos 1.330° é negativo. Afirmação falsa.
 - c) $\frac{44\pi}{5} = \frac{4\pi}{5} + 4 \cdot 2\pi$. Ou seja, o ângulo está no 2° quadrante e, portanto, cos $\frac{44\pi}{5}$ é negativo. Afirmação falsa.
 - d) $\frac{36\pi}{5} = \frac{6\pi}{5} + 3 \cdot 2\pi$. Ou seja, o ângulo está no 3° quadrante e, portanto, cos $\frac{36\pi}{5}$ é negativo. Afirmação verdadeira.
 - e) $\frac{13\pi}{2} = \frac{\pi}{2} + 3 \cdot 2\pi$. Ou seja, $\cos \frac{13\pi}{2}$ é nulo. Afirmação falsa.

Alternativa d.

13. Lembrando que $\pi \approx 3,14$ e $\frac{\pi}{2} \approx 1,57$, as posições de 1 e 3 na circunferência trigonométrica são, aproximadamente:



Observando a figura, temos:

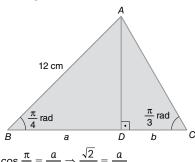
I. Falsa, pois sen 1 > sen 3

II. Falsa, pois $\cos 1 > \cos 3$

III. Verdadeira, pois cos 1 < sen 1

Alternativa **c**.

14. Sendo AD a altura do triângulo ABC, relativa ao lado BC, esquematizamos:



$$\cos\frac{\pi}{4} = \frac{a}{12} \Rightarrow \frac{\sqrt{2}}{2} = \frac{a}{12}$$

$$a = 6\sqrt{$$

Como ABD é isósceles de base AB, temos que:

$$AD = BD = 6\sqrt{2}$$

Do triângulo ADC, obtemos:

$$tg\frac{\pi}{3} = \frac{6\sqrt{2}}{b} \Rightarrow \sqrt{3} = \frac{6\sqrt{2}}{b}$$

$$\therefore b = 2\sqrt{6}$$

Concluímos, então, que $BC = a + b = (6\sqrt{2} + 2\sqrt{6})$ cm.

15. Os 20 primeiros termos de ordem ímpar são:

$$a_1 = 5 \cdot 1 + \operatorname{sen}\left(1 \cdot \frac{\pi}{2}\right) = 5 + 1$$

$$a_3 = 5 \cdot 3 + \operatorname{sen}\left(3 \cdot \frac{\pi}{2}\right) = 15 - 1$$

$$a_5 = 5 \cdot 5 + \text{sen}\left(5 \cdot \frac{\pi}{2}\right) = 25 + 1$$

...

$$a_{37} = 5 \cdot 37 + \operatorname{sen}\left(37 \cdot \frac{\pi}{2}\right) = 185 + 1$$

$$a_{39} = 5 \cdot 39 + \operatorname{sen}\left(39 \cdot \frac{\pi}{2}\right) = 195 - 1$$

Assim, a soma desses termos é dada por:

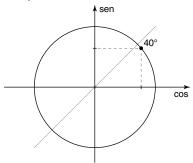
$$5 + 1 + 15 - 1 + 25 - 1 + ... + 185 + 1 + 195 - 1 =$$

= 5 + 15 + 25 + ... + 185 + 195 =

$$=\frac{(5+195)\cdot 20}{2}=2.000$$

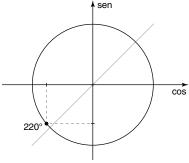
۷ آلامینی میلاد میلاد کا

- **16.** a) V, pois sen 145° = sen $(180^{\circ} 145^{\circ})$ = sen 35° e sen 40° > sen 35° .
 - b) V, pois cos 40° é positivo e cos 230° é negativo; portanto, cos 40° > cos 230°.
 - c) V, pois sen 40° é positivo e sen 320° é negativo; portanto, sen 40° > sen 320°.
 - d) F, pois cos $320^{\circ} = \cos (360^{\circ} 320^{\circ}) = \cos 40^{\circ}$.
 - e) V, pois, observando a circunferência trigonométrica, temos:



∴ sen 40° < cos 40°

f) F, pois, observando a circunferência trigonométrica, temos:



sen 220° > cos 220°

17.
$$2.370^{\circ} = 210^{\circ} + 6 \cdot 360^{\circ}$$

∴ sen $2.370^{\circ} = \text{sen } 210^{\circ} = -\text{ sen } 30^{\circ} = -\frac{1}{2}$

Alternativa b.

18.
$$\operatorname{sen} \frac{4\pi}{3} \cdot \operatorname{cos} \frac{5\pi}{6} + \left(\operatorname{sen} \frac{7\pi}{4}\right)^2 =$$

$$= -\operatorname{sen} \frac{\pi}{3} \cdot \left(-\operatorname{cos} \frac{\pi}{6}\right) + \left(-\operatorname{sen} \frac{\pi}{4}\right)^2 =$$

$$= -\frac{\sqrt{3}}{2} \cdot \left(-\frac{\sqrt{3}}{2}\right) + \left(-\frac{\sqrt{2}}{2}\right)^2 =$$

$$= \frac{3}{4} + \frac{2}{4} = \frac{5}{4}$$

Alternativa c.

19. a)
$$E = \frac{\cos \alpha - \sin \alpha}{-\cos \alpha + \sin \alpha} = \frac{\cos \alpha - \sin \alpha}{-(\cos \alpha - \sin \alpha)} = -1$$

b)
$$E = \frac{1 - (-\cos \alpha)^2}{1 + \cos \alpha} = \frac{1 - \cos^2 \alpha}{1 + \cos \alpha} =$$

$$= \frac{(1 - \cos \alpha)(1 + \cos \alpha)}{(1 + \cos \alpha)} = 1 - \cos \alpha$$

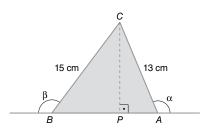
20.
$$E = \frac{\text{sen } x + \text{sen}(\pi + x) + \text{sen}(x - \pi)}{\text{sen}(-x) + \text{sen}(2\pi - x)} =$$

$$= \frac{\operatorname{sen} x - \operatorname{sen} x - \operatorname{sen} x}{-\operatorname{sen} x - \operatorname{sen} x} =$$

$$= -\frac{\operatorname{sen} x}{-2\operatorname{sen} x} = \frac{1}{2}$$

Alternativa **c**.

21.



No triângulo APC, temos:

$$\cos (180^{\circ} - \alpha) = -\cos \alpha = \frac{AP}{13}$$
$$\therefore -\left(-\frac{5}{13}\right) = \frac{AP}{13} \Rightarrow AP = 5$$

No triângulo BPC, temos:

$$\cos (180^\circ - \beta) = -\cos \beta = \frac{BP}{15}$$

$$\therefore -\left(-\frac{3}{5}\right) = \frac{BP}{15} \Rightarrow BP = 9$$

Assim: AB = AP + BP = 5 + 9 = 14

Portanto, o perímetro do triângulo ABC é:

15 cm + 13 cm + 14 cm = 42 cm

22. Pelo enunciado, temos:

 $\cos \alpha + 2 \sin \alpha = 1 \Rightarrow \cos \alpha = 1 - 2 \sin \alpha$ (I) Pela relação fundamental da Trigonometria, temos: $\cos^2 \alpha + \sin^2 \alpha = 1 \Rightarrow \cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$ (II) Substituindo (II) em (I), obtemos:

$$\pm \sqrt{1 - \operatorname{sen}^{2} \alpha} = 1 - 2\operatorname{sen} \alpha \Rightarrow$$

$$\Rightarrow \left(\pm \sqrt{1 - \operatorname{sen}^{2} \alpha}\right)^{2} = (1 - 2\operatorname{sen} \alpha)^{2}$$

$$\therefore 1 - sen^2 \alpha = 1 - 4sen \alpha + 4sen^2 \alpha \Rightarrow 5sen^2 \alpha - 4sen \alpha = 0$$

$$\therefore \operatorname{sen} \alpha \text{ (5sen } \alpha - 4) = 0$$

 \therefore sen $\alpha = 0$ (não convém) ou sen $\alpha = \frac{4}{5}$ (III)

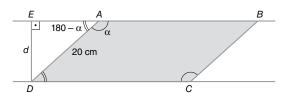
A circunferência trigonométrica: seno, cosseno e tangente

Substituindo (III) em (I), temos:

$$\cos \alpha = 1 - 2 \cdot \frac{4}{5} = -\frac{3}{5}$$

Como sen $\alpha>0$ e cos $\alpha<0$, concluímos que α é uma medida do 2º quadrante.

23. Sendo *d* a distância procurada, esquematizamos:



Pela relação fundamental, sen² $\alpha + \cos^2 \alpha = 1$,

$$sen^2\alpha + \left(-\frac{\sqrt{5}}{3}\right)^2 = 1 \Rightarrow sen^2\alpha = 1 - \frac{5}{9} = \frac{4}{9}$$

$$\therefore$$
 sen $\alpha = \pm \frac{2}{3}$

Como $90^{\circ} < \alpha < 180^{\circ}$, só nos interessa o valor positivo do seno, isto é:

$$\operatorname{sen} \alpha = \frac{2}{3}$$

Do triângulo ADE, obtemos:

$$\mathrm{sen}\,(180^\circ - \alpha) = \frac{d}{20} \,\Rightarrow\, \mathrm{sen}\,\alpha = \frac{d}{20}$$

$$\therefore \frac{2}{3} = \frac{d}{20} \Rightarrow d = \frac{40}{3}$$

Portanto, a distância do ponto D à reta \overrightarrow{AB} é $\frac{40}{3}$ cm.

24. Elevando ambos os membros ao quadrado, temos:

$$y^2 = (\operatorname{sen} x + \cos x)^2 \Rightarrow$$

 $\Rightarrow y^2 = \operatorname{sen}^2 x + 2 \cdot \operatorname{sen} x \cdot \cos x + \cos^2 x$

$$\Rightarrow$$
 y' = sen' x + 2 · sen x · cos x + cos' x

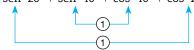
$$\therefore y^2 = (\operatorname{sen}^2 x + \cos^2 x) + 2 \cdot (\operatorname{sen} x \cdot \cos x) \Rightarrow$$

$$\Rightarrow y^2 = 1 + 2 \cdot \frac{1}{8}$$

$$\therefore y^2 = \frac{5}{4}$$

$$\therefore y = \frac{\sqrt{5}}{2} \text{ ou } y = -\frac{\sqrt{5}}{2}$$

25. Como sen $70^{\circ} = \cos 20^{\circ} = \sin 50^{\circ} = \cos 40^{\circ}$, temos: $E = sen^2 20^\circ + sen^2 40^\circ + sen^2 50^\circ + sen^2 70^\circ \Rightarrow$ $\Rightarrow E = \text{sen}^2 \ 20^\circ + \text{sen}^2 \ 40^\circ + \text{cos}^2 \ 40^\circ + \text{cos}^2 \ 20^\circ$



$$\therefore E = 2$$

26. Como cos $140^{\circ} = -\cos 40^{\circ}$, temos:

$$E = \frac{\text{sen}^2 30^\circ + \cos^2 60^\circ}{\text{sen}^2 40^\circ + \cos^2 140^\circ} \Rightarrow$$

$$\Rightarrow E = \frac{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2}{\sec^2 40^\circ + \cos^2 40^\circ} = \frac{\frac{1}{4} + \frac{1}{4}}{1}$$

$$\therefore E = \frac{1}{2}$$

27.
$$\begin{cases} 4 \cos^2 x + 5 \sin x - 5 = 0 \\ \cos^2 x + \sin x^2 = 1 \end{cases} \Rightarrow (1 + 3)$$

$$\Rightarrow \begin{cases} 4\cos^2 x + 5\sin x - 5 = 0 & \text{(I)} \\ \cos^2 x = 1 - \sin x^2 & \text{(II)} \end{cases}$$

Substituindo (II) em (I), temos:

$$4(1 - \sin^2 x) + 5 \sin x - 5 = 0 \Rightarrow$$

 $\Rightarrow 4 \sin^2 x - 5 \sin x + 1 = 0$

Fazendo a mudança de variável sen x = k, obtemos a equação do 2º grau:

$$4k^2 - 5k + 1 = 0$$

$$\Delta = (-5)^2 - 4 \cdot 4 \cdot 1 = 9$$

$$\therefore k = \frac{-(-5) \pm \sqrt{9}}{2 \cdot 4} \Rightarrow k = 1 \text{ ou } k = \frac{1}{4}$$

Retornando à variável original, temos

sen
$$x = 1$$
 (não convém, pois $\frac{\pi}{2} < x < \pi$)

ou sen
$$x = \frac{1}{4}$$

Portanto, concluímos que sen $x = \frac{1}{4}$.

28. $x^2 - 4x + 4\cos^2 \alpha = 0$ $\Delta = (-4)^2 - 4 \cdot 1 \cdot 4\cos^2 \alpha = 16 - 16\cos^2 \alpha = 16$

$$\Delta = (-4)^2 - 4 \cdot 1 \cdot 4 \cos^2 \alpha = 16 - 16 \cos^2 \alpha = 16(1 - \cos^2 \alpha)$$

Como 1 –
$$\cos^2 \alpha = \sin^2 \alpha$$
, temos:

$$\Delta = 16 \operatorname{sen}^2 \alpha$$

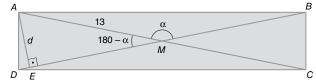
$$\therefore x = \frac{-(-4) \pm \sqrt{16 \operatorname{sen}^2 \alpha}}{2 \cdot 1} \Rightarrow x = \frac{4 \pm 4 \operatorname{sen} \alpha}{2}$$

$$\therefore x = 2 \pm 2 \operatorname{sen} \alpha$$

Portanto: $S = \{2 - 2 \cos \alpha, 2 + 2 \cos \alpha\}$

29.
$$E = \frac{1 + \cos x \cdot (-\cos x)}{-\sin x \cdot (-\sin x)} = \frac{1 - \cos^2 x}{\sin^2 x} = \frac{\sin^2 x}{\sin^2 x} = 1$$

30. O ponto M, comum às diagonais, é ponto médio de cada uma. Assim, indicando por d a distância procurada, esquematizamos:



Do triângulo AEM, temos:

sen
$$180^{\circ} - \alpha = \frac{d}{13} \Rightarrow \operatorname{sen}\alpha = \frac{d}{13}$$
 (I)

Pela relação fundamental da Trigonometria, temos:

$$sen^2 \alpha + cos^2 \alpha = 1 \Rightarrow \left(\frac{d}{13}\right)^2 + \left(-\frac{12}{13}\right)^2 = 1$$

Como d representa uma distância, só nos convém

Ou seja, a distância entre o vértice A e a diagonal \overline{BD} é 5 cm.

31. a) tg $89^{\circ} \approx 57,28996163$

b) tg 89,9° \approx 572,9572134

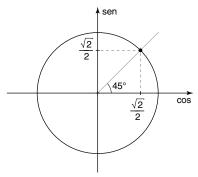
c) $tg 89,99^{\circ} \approx 5.729,577893$

d) tg 89,999° \approx 57.295,77951

e) tg 89,9999° \approx 572.957,7951

f) tg 90° não existe

- 32. a) F, pois, tomando $\alpha = -\frac{3\pi}{4}$, temos $tg\left(-\frac{3\pi}{4}\right) = 1$.
 - b) F, pois, tomando $\alpha = \pi$, temos tg $\pi = 0$.
 - c) V, pois, para $\alpha=\pi+k\pi$, teremos sen $\alpha=0$ e, consequentemente, tg $\alpha=0$.
 - d) V, pois, para $\alpha=\frac{k\pi}{2}$, com k ímpar, teremos $\cos\pi=0$ e, consequentemente, tg α não existe.
 - e) V, pois, para $\alpha = \frac{\pi}{2} + k\pi$, teremos tg $2\alpha = tg(\pi + 2k\pi) = 0$.
 - f) F, pois, tomando k = 30, temos $tg(\alpha) = tg(\frac{30\pi}{6}) = tg(5\pi) = 0.$
- **33.** Tomando $45^{\circ} < \theta < 90^{\circ}$, temos tg $\theta > 1$. Temos o seguinte círculo trigonométrico:



Daí se nota que, para o intervalo 45° < θ < 90°, teremos sen θ > cos θ .

Como cos $\theta < \text{sen } \theta < 1$ e tg $\theta > 1$, então

 $\cos \theta < \sin \theta < tg \theta$

Alternativa b.

34. Pela relação fundamental da Trigonometria, temos:

$$\left(\frac{2}{3}\right)^2 + \cos^2 x = 1 \Rightarrow \cos^2 x = \frac{9}{9} - \frac{4}{9}$$

$$\therefore \cos^2 x = \frac{5}{9}$$

Assim:

$$tg^2 x = \frac{sen^2 x}{cos^2 x} = \frac{\frac{4}{9}}{\frac{5}{9}} = \frac{4}{9} \cdot \frac{9}{5} = \frac{4}{5} = 0.8$$

Alternativa c.

35. tg
$$\alpha = -2 \Rightarrow \frac{\text{sen } \alpha}{\text{cos } \alpha} = -2$$

$$\begin{cases} \operatorname{sen} \alpha = -2\cos \alpha \\ \operatorname{sen}^2 \alpha + \cos^2 \alpha = 1 \end{cases} \Rightarrow$$

$$\Rightarrow$$
 cos $\alpha = -\frac{\sqrt{5}}{5}$, para $\frac{\pi}{2} < \alpha < \pi$

Assim:

sen
$$\alpha = -2\cos \alpha = -2\left(-\frac{\sqrt{5}}{2}\right) = \frac{2\sqrt{5}}{5}$$

Logo,
$$\cos \alpha = -\frac{\sqrt{5}}{5}$$
 e sen $\alpha = \frac{2\sqrt{5}}{5}$.

36. tg
$$x = \frac{\operatorname{sen} x}{\cos x} = \frac{3}{4} \Rightarrow \operatorname{sen} x = \frac{3}{4} \cdot \cos x$$

$$\therefore \operatorname{sen}^2 x = \frac{9}{16} \cdot \cos^2 x \quad \text{(I)}$$

Substituindo (I) na relação fundamental da Trigonometria, obtemos:

$$\frac{9}{16} \cdot \cos^2 x + \cos^2 x = 1 \Rightarrow \frac{25}{16} \cdot \cos^2 x = 1$$

$$\therefore \cos^2 x = \frac{16}{25} \Rightarrow \cos x = \pm \frac{4}{5}$$

$$\operatorname{sen} x = \frac{3}{4} \cdot \cos x \Rightarrow \operatorname{sen} x = \pm \frac{3}{5}$$

Como x é uma medida do 3º quadrante, concluímos que sen $x = -\frac{3}{5}$ e cos $x = -\frac{4}{5}$.

Portanto:

$$\cos x - \sin x = -\frac{4}{5} - \left(-\frac{3}{5}\right) = -\frac{1}{5}$$

Alternativa e.

37. tg
$$\alpha = -\frac{1}{3} \Rightarrow \text{sen } \alpha = -\frac{1}{3} \cos \alpha$$

$$\begin{cases} sen \ \alpha = -\frac{1}{3} \cos \alpha \\ sen^2 \ \alpha + \cos^2 \alpha = 1 \end{cases} \Rightarrow \cos \alpha = \frac{3\sqrt{10}}{10}$$

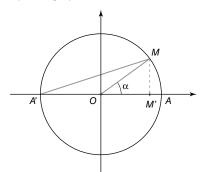
$$para\,\frac{3\pi}{2}<\alpha<2\pi$$

Assim:

sen
$$\alpha = -\frac{1}{3}\cos \alpha = \frac{1}{3} \cdot \frac{3\sqrt{10}}{10} = -\frac{\sqrt{10}}{10}$$

Logo, sen
$$\alpha = -\frac{\sqrt{10}}{10}$$
 e cos $\alpha = \frac{3\sqrt{10}}{10}$

38. a) Seja M' a projeção de M sobre o eixo das abscissas.



Cálculo de OM':

$$(OM)^2 = (MM')^2 + (OM')^2 \Rightarrow 1 = \left(\frac{3}{5}\right)^2 + (OM')^2$$

$$\therefore (OM') = \frac{4}{5}$$

Assim

$$tg \alpha = \frac{MN'}{OM'} = \frac{3}{4}$$

b)
$$m(\widehat{AA'M}) = \frac{1}{2} \cdot m(\widehat{AOM}) \Rightarrow m(\widehat{AA'M}) = \frac{\alpha}{2}$$

c)
$$tg\left(\frac{\alpha}{2}\right) = \frac{MM'}{A'M'} = \frac{\frac{3}{5}}{1 + \frac{4}{5}} = \frac{1}{3}$$

39. a) tg
$$\alpha = \frac{\sqrt{3}}{3} \Rightarrow \alpha = \frac{\pi}{6}$$
 ou $\alpha = \frac{7\pi}{6}$

$$\therefore M\left(\frac{\pi}{6}\right) \in N\left(\frac{7\pi}{6}\right)$$

b) tg
$$\alpha = -\sqrt{3} \Rightarrow \alpha = \frac{2\pi}{3}$$
 ou $\alpha = \frac{5\pi}{3}$

$$\therefore M\left(\frac{2\pi}{3}\right) \in N\left(\frac{5\pi}{3}\right)$$

A circunferência trigonométrica: seno, cosseno e tangente

c)
$$\operatorname{tg} \alpha = -1 \Rightarrow \alpha = \frac{3\pi}{4} \text{ ou } \alpha = \frac{7\pi}{4}$$

$$\therefore M\left(\frac{3\pi}{4}\right) \in N\left(\frac{7\pi}{4}\right)$$

40. a) tg (-30°) = -tg 30° =
$$-\frac{\sqrt{3}}{3}$$

b)
$$tg(-120^\circ) = -tg 120^\circ = tg 60^\circ = \sqrt{3}$$

c) $tg(-225^\circ) = -tg 225^\circ = -tg 45^\circ = -1$

c)
$$tg(-225^\circ) = -tg 225^\circ = -tg 45^\circ = -1$$

d)
$$tg(-300^\circ) = -tg(300^\circ) = tg(60^\circ) = \sqrt{3}$$

d)
$$tg(-300^\circ) = -tg 300^\circ = tg 60^\circ = \sqrt{3}$$

e) $tg(-1.110^\circ) = -tg (1.110^\circ) = -tg 30^\circ = -\frac{\sqrt{3}}{3}$

f)
$$tg(-1.860^\circ) = -tg(1.860^\circ) = -tg60^\circ = -\sqrt{3}$$

41. a)
$$tg\left(-\frac{\pi}{6}\right) = -tg\frac{\pi}{6} = -\frac{\sqrt{3}}{3}$$

b)
$$tg\left(-\frac{5\pi}{3}\right) = -tg \frac{5\pi}{3} = tg \frac{\pi}{3} = \sqrt{3}$$

c)
$$tg\left(-\frac{7\pi}{6}\right) = -tg\frac{7\pi}{6} = -tg\frac{\pi}{6} = -\frac{\sqrt{3}}{3}$$

d)
$$\operatorname{tg}\left(-\frac{3\pi}{4}\right) = -\operatorname{tg}\frac{3\pi}{4} = \operatorname{tg}\frac{\pi}{4} = 1$$

e)
$$\operatorname{tg}\left(\frac{33\pi}{4}\right) = \operatorname{tg}\frac{\pi}{4} = 1$$

f)
$$\operatorname{tg}\left(\frac{31\pi}{3}\right) = \operatorname{tg}\left(\frac{\pi}{3}\right) = \sqrt{3}$$

42. Pelo enunciado, temos:

$$E = \frac{\text{tg } (\pi - x) + \text{tg } (-x) + \text{tg } (\pi + x)}{\text{tg } (2\pi - x)} =$$
$$= \frac{-\text{tg } x - \text{tg } x + \text{tg } x}{-\text{tg } x} = \frac{-\text{tg } x}{-\text{tg } x} = 1$$

Alternativa a

43. Pela relação fundamental da Trigonometria, temos:

$$a^2 + \cos^2 \alpha = 1 \implies \cos^2 \alpha = 1 - a^2$$

$$\therefore$$
 cos $\alpha = \sqrt{1 - a^2}$ ou cos $\alpha = -\sqrt{1 - a^2}$ (não convém)

$$tg(\pi - a) = \frac{sen(\pi - \alpha)}{cos(\pi - \alpha)} = -\frac{sen\alpha}{cos\alpha} = -\frac{a}{\sqrt{1 - a^2}}$$

Alternativa a.

44. Temos:

I.
$$tg 92^\circ = -tg (180^\circ - 92^\circ) = -tg 88^\circ$$

II. $tg 178^\circ = tg (180^\circ - 2^\circ) = tg (-2^\circ) = -tg (-2^\circ)$

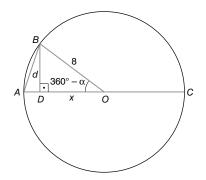
II.
$$tg 178^{\circ} = tg (180^{\circ} - 2^{\circ}) = tg (-2^{\circ}) = -tg 2^{\circ}$$

III.
$$tg 268^{\circ} = tg (180^{\circ} + 88^{\circ}) = tg 88^{\circ}$$

IV.
$$tg 272^{\circ} = tg (180^{\circ} + 92^{\circ}) = tg 92^{\circ} = -tg 88^{\circ}$$

Alternativa d.

45. Indicando por O o centro da circunferência, por x a medida da projeção ortogonal de \overline{OB} sobre \overline{OA} e por *d* a distância procurada, esquematizamos:



Do triângulo OBA, temos:

$$\begin{cases} tg (360^{\circ} - \alpha) = \frac{d}{x} \\ d^2 + x^2 = 8^2 \end{cases} \Rightarrow \begin{cases} -tg \alpha = \frac{d}{x} \\ d^2 + x^2 = 64 \end{cases}$$

$$\therefore \begin{cases} \frac{3}{4} = \frac{d}{x} \\ d^2 + x^2 = 64 \end{cases} \Rightarrow \begin{cases} d = \frac{3x}{4} & \text{(I)} \\ d^2 + x^2 = 64 & \text{(II)} \end{cases}$$

Substituindo (I) em (II), obtemos:

$$\left(\frac{3x}{4}\right)^2 + x^2 = 64 \Rightarrow x = \frac{32}{5}$$

Substituindo x por $\frac{32}{5}$ em (I), concluímos:

$$d = \frac{3}{4} \cdot \frac{32}{5} = \frac{96}{20} = 4.8$$

Ou seja, a distância entre o ponto B e o diâmetro AC é 4,8 cm.

- **46.** a) O valor de x, com $0^{\circ} \le x < 360^{\circ}$, para que sen $x = 1 \text{ \'e } x = 90^{\circ}$. Logo, $S = \{90^{\circ}\}.$
 - b) Os valores de x, com $0^{\circ} \le x < 360^{\circ}$, para os quais $\cos x = 0 \text{ são } x = 90^{\circ} \text{ ou } x = 270^{\circ}.$ Logo, $S = \{90^{\circ}, 270^{\circ}\}.$
 - c) Os valores de x, com $0^{\circ} \le x < 360^{\circ}$, para os quais sen $x = \frac{1}{2}$ são $x = 30^{\circ}$ ou $x = 180^{\circ} - 30^{\circ} = 150^{\circ}$. Logo, $S = \{30^{\circ}, 150^{\circ}\}.$
 - d) Os valores de x, com 0° \leq x < 360°, para os quais cos x = $-\frac{1}{2}$ são x = 180° 60° = 120° ou $x = 180^{\circ} + 60^{\circ} = 240^{\circ}.$ Logo, $S = \{120^{\circ}, 240^{\circ}\}.$
- 47. a) Na primeira volta no sentido positivo, temos: $\operatorname{sen} x = 1 \Rightarrow x = \frac{\pi}{2}$ Logo, o conjunto solução S nas infinitas voltas é: $S = \left\{ x \in \mathbb{R} \, | \, x = \frac{\pi}{2} + k \cdot 2\pi, \, \text{com } k \in \mathbb{Z} \right\}$
 - b) Na primeira volta no sentido positivo, temos: $\cos x = 0 \Rightarrow x = \frac{\pi}{2}$ ou $x = \frac{3\pi}{2}$ Logo, o conjunto solução S nas infinitas voltas é: $S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{2} + k\pi, \text{ com } k \in \mathbb{Z} \right\}$
- **48.** a) $tg^2 x = 0 \implies tg x = 0$ $\therefore x = 0 \text{ ou } x = \pi$ Logo, $S = \{0, \pi\}.$

b)
$$tg^2 x = 1 \Rightarrow tg x = 1 \text{ ou } tg x = -1$$

• $tg x = 1 \Rightarrow x = \frac{\pi}{4} \text{ ou } x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$
• $tg x = -1 \Rightarrow x = \pi - \frac{\pi}{4} = \frac{3\pi}{4} \text{ ou } x = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$
Logo, $S = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$.

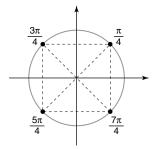
c)
$$tg^2 x = 3 \Rightarrow tg x = \sqrt{3} \text{ ou } tg x = -\sqrt{3}$$

• $tg x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} \text{ ou } x = \frac{4\pi}{3}$
• $tg x = -\sqrt{3} \Rightarrow x = \frac{2\pi}{3} \text{ ou } x = \frac{5\pi}{3}$
Logo, $S = \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\}$.

d)
$$| \text{tg } x | = \frac{\sqrt{3}}{3} \Rightarrow \text{tg } x = \frac{\sqrt{3}}{3} \text{ ou tg } x = -\frac{\sqrt{3}}{3}$$

• $\text{tg } x = \frac{\sqrt{3}}{3} \Rightarrow x = \frac{\pi}{6} \text{ ou } x = \frac{7\pi}{6}$
• $\text{tg } x = -\frac{\sqrt{3}}{3} \Rightarrow x = \frac{5\pi}{6} \text{ ou } x = \frac{11\pi}{6}$
Logo, $S = \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$.

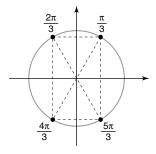
49. b) Representando na circunferência trigonométrica as raízes obtidas no item **b** do exercício anterior, temos:



Logo, o conjunto solução S nas infinitas voltas é:

$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{4} + \frac{k\pi}{2}, \text{ com } k \in \mathbb{Z} \right\}$$

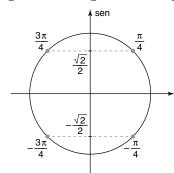
 c) Representando na circunferência trigonométrica as raízes obtidas no item c do exercício anterior, temos:



Logo, o conjunto solução S nas infinitas voltas é:

$$S = \left\{ x \in \mathbb{R} | x = \frac{\pi}{3} + k\pi \text{ ou } x = \frac{2\pi}{3} + k\pi, \right.$$
$$\text{com } k \in \mathbb{Z} \right\}$$

50. $sen^2 x = \frac{1}{2} \Rightarrow sen x = -\frac{\sqrt{2}}{2} ou sen x = \frac{\sqrt{2}}{2}$



$$\therefore x = -\frac{3\pi}{4} \text{ ou } x = -\frac{\pi}{4} \text{ ou } x = \frac{\pi}{4} \text{ ou } x = \frac{3\pi}{4}$$

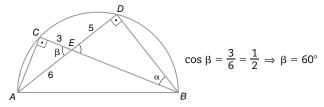
$$\text{Logo, S} = \left\{ -\frac{3\pi}{4}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \right\}.$$

51.
$$3 \operatorname{sen} x = \sqrt{3} \operatorname{cos} x \Rightarrow \frac{3 \operatorname{sen} x}{\operatorname{cos} x} = \sqrt{3}$$

$$\therefore \operatorname{tg} x = \frac{\sqrt{3}}{3} \Rightarrow x = \frac{\pi}{6} \operatorname{ou} x = \frac{7\pi}{6}$$

$$\operatorname{Logo}, S = \left\{ \frac{\pi}{6}, \frac{7\pi}{6} \right\}.$$

52. a) Sendo β a medida do ângulo $A\widehat{E}C$ e α a medida procurada, esquematizamos:



Como os ângulos AÊC e BÊD são opostos pelo vértice: $m(B\widehat{E}D) = 60^{\circ}$

Assim:
$$90^{\circ} + 60^{\circ} + \alpha = 180^{\circ} \Rightarrow \alpha = 30^{\circ} = \frac{\pi}{6} \text{ rad}$$

b) No triângulo BED, temos:

tg
$$30^{\circ} = \frac{ED}{BD} \Rightarrow \frac{\sqrt{3}}{3} = \frac{5}{BD}$$

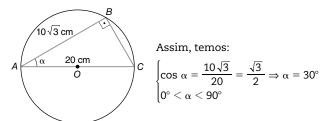
$$\therefore$$
 BD = $5\sqrt{3}$

Aplicando o teorema de Pitágoras no triângulo ABD, concluímos:

$$(AB)^2 = 11^2 + (5\sqrt{3})^2 \implies (AB)^2 = 196$$

 $\therefore AB = 14 \text{ cm}$

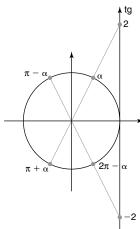
53. Sendo α a medida procurada, esquematizamos:



Logo, a medida do ângulo agudo que a corda \overline{AB} forma com o diâmetro \overline{AC} é 30°.

54.
$$tg^2 x = 4 \Rightarrow tg x = 2 e tg x = -2$$

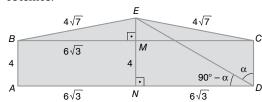
Sendo α a raiz pertencente ao intervalo $\left]0, \frac{\pi}{2}\right[$, temos:



Logo, a soma S das raízes no intervalo [0, 2π [é dada por:

$$S = \alpha + \pi - \alpha + \pi + \alpha + 2\pi - \alpha = 4\pi$$

55. Traçando o segmento \overline{EN} , perpendicular à base \overline{AD} , obtemos:



Temos, no triângulo EBM:

$$(EM)^2 + (6\sqrt{3})^2 = (4\sqrt{7})^2 \Rightarrow (EM)^2 = 112 - 108 = 4$$

Logo:
$$EN = 2 + 4 = 6$$

Observando o triângulo END, temos:

tg
$$(90^{\circ} - \alpha) = \frac{6}{6\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \Rightarrow 90^{\circ} - \alpha = 30^{\circ}$$

 $\therefore \alpha = 60^{\circ}$

56. sen $x \cdot \cos x = 0 \Rightarrow \sin x = 0$ ou $\cos x = 0$

Para $0 \le x \le 2\pi$, concluímos:

• sen
$$x = 0 \Rightarrow x = 0$$
 ou $x = \pi$ ou $x = 2\pi$

•
$$\cos x = 0 \Rightarrow x = \frac{\pi}{2}$$
 ou $x = \frac{3\pi}{2}$

Logo, S =
$$\left\{0, \pi, 2\pi, \frac{\pi}{2}, \frac{3\pi}{2}\right\}$$
.

57. $2 \operatorname{sen} x \cos x - \cos x = 0 \Rightarrow \cos x (2 \operatorname{sen} x - 1) = 0$

$$\therefore \cos x = 0 \text{ ou sen } x = \frac{1}{2}$$

Resolvendo cada uma dessas duas equações, obtemos:

$$\cos x = 0 \Rightarrow x = \frac{\pi}{2}$$
 ou $x = \frac{3\pi}{2}$

$$\operatorname{sen} x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6} \text{ ou } x = \frac{5\pi}{6}$$

Logo, temos como conjunto solução:

$$S = \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$

58. $2 \cdot \cos^2 x \cdot \operatorname{sen} x - \operatorname{sen} x = 0 \Rightarrow$

$$\Rightarrow \operatorname{sen} x \cdot (2 \cos^2 x - 1) = \frac{1}{2}$$

$$\therefore \operatorname{sen} x = 0 \text{ ou } \cos x = \pm \frac{\sqrt{2}}{2}$$

$$\therefore x = k\pi \text{ ou } x = \frac{\pi}{4} + \frac{k\pi}{2}, \text{ com } k \in \mathbb{Z}$$

Logo:
$$S = \left\{ x \in \mathbb{R} \mid x = k\pi \text{ ou } x = \frac{\pi}{4} + \frac{k\pi}{2}, \text{ com } k \in \mathbb{Z} \right\}$$

59. $2 \cdot \text{sen } x \cdot \cos x = \cos x \Rightarrow$

$$\Rightarrow 2 \cdot \text{sen } x \cdot \cos x - \cos x = 0$$

∴ $\cos x(2 \sin x - 1) = 0 \Rightarrow \cos x = 0$ ou $\sin x = \frac{1}{2}$ Para $0 \le x < 2\pi$, concluímos:

•
$$\cos x = 0 \Rightarrow x = \frac{\pi}{2}$$
 ou $x = \frac{3\pi}{2}$

• sen
$$x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$$
 ou $x = \frac{5\pi}{6}$

Logo,
$$S = \left\{ \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$

60. Do enunciado temos:

$$2 \cdot \operatorname{sen} x \cdot \operatorname{tg} x - 2 \cdot \operatorname{sen} x - \operatorname{tg} x + 1 = 0$$

Colocando 2sen x e -1 em evidência, temos:

$$2 \text{sen } x (\text{tg } x - 1) - 1(\text{tg } x - 1) = 0 \Rightarrow$$

$$\Rightarrow$$
 (2sen x - 1) · (tg x - 1) = 0

∴
$$2 \sin x - 1 = 0$$
 ou $tg x - 1 = 0$

$$\therefore$$
 sen $x = \frac{1}{2}$ ou tg $x = 1$

Considerando o intervalo $[0, 2\pi]$, temos:

$$x = \frac{\pi}{6}$$
 ou $x = \frac{5\pi}{6}$ ou $x = \frac{\pi}{4}$ ou $x = \frac{5\pi}{4}$

Logo, a soma das raízes é:

$$\frac{\pi}{6} + \frac{5\pi}{6} + \frac{\pi}{4} + \frac{5\pi}{4} = \frac{6\pi}{6} + \frac{6\pi}{4} = \frac{5\pi}{2}$$

Alternativa c

61. a)
$$(4 \operatorname{sen}^2 x - 3)(\cos x - 1) = 0 \Rightarrow$$

 $\Rightarrow \underbrace{4 \operatorname{sen}^2 x - 3}_{(1)} = 0 \operatorname{ou} \underbrace{\cos x - 1 = 0}_{(1)}$

Resolvendo as equações (I) e (II), para $0 \le x \le 2\pi$, temos:

(I)
$$4 \operatorname{sen}^2 x - 3 = 0 \Rightarrow \operatorname{sen}^2 x = \frac{3}{4}$$

 $\therefore \operatorname{sen} x = \pm \frac{\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{3} \operatorname{ou} x = \frac{2\pi}{3} \operatorname{ou} x = \frac{4\pi}{3} \operatorname{ou} x = \frac{5\pi}{3}$

(II)
$$\cos x - 1 = 0 \Rightarrow \cos x = 1$$

$$\therefore x = 0$$
 ou $x = 2\pi$

De (I) e (II), concluímos:

$$S = \left\{0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}, 2\pi\right\}$$

b) $\cos^2 x \cdot \sin x - \sin x = 0 \Rightarrow \sin x (\cos^2 x - 1) = 0$

$$\therefore \text{ sen } x = 0 \text{ ou } \cos x = 1 \text{ ou } \cos x = -1$$

Para $0 \le x \le 2\pi$, concluímos:

•
$$\operatorname{sen} x = 0 \Rightarrow x = 0 \text{ ou } x = \pi \text{ ou } x = 2\pi$$

•
$$\cos x = 1 \Rightarrow x = 0 \text{ ou } x = 2\pi$$

•
$$\cos x = -1 \Rightarrow x = \pi$$

Logo,
$$S = \{0, \pi, 2\pi\}$$
.
c) $4 \cdot \text{sen } x \cdot \cos x + 2 \text{ sen } x - 2 \cos x - 1 = 0 \Rightarrow$

$$\Rightarrow$$
 2 sen x (2 cos x + 1) - 1(2 cos x + 1) = 0

∴
$$(2 \cos x + 1)(2 \sin x - 1) = 0 \Rightarrow \cos x = -\frac{1}{2}$$

ou sen $x = \frac{1}{2}$

Para $0 \le x \le 2\pi$, concluímos:

•
$$\cos x = -\frac{1}{2} \Rightarrow x = \frac{2\pi}{3}$$
 ou $x = \frac{4\pi}{3}$

• sen
$$x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$$
 ou $x = \frac{5\pi}{6}$

Logo, S =
$$\left\{ \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$
.

d) $2 \text{ sen}^2 x - \text{sen } x = 0 \implies \text{sen } x \text{ (2 sen } x - 1) = 0$

$$\therefore$$
 sen x = 0 ou sen x = $\frac{1}{2}$

Para $0 \le x \le 2\pi$, concluímos:

• sen
$$x = 0 \Rightarrow x = 0$$
 ou $x = \pi$ ou $x = 2\pi$

• sen
$$x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6}$$
 ou $x = \frac{5\pi}{6}$

Logo, S =
$$\left\{0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi, 2\pi\right\}$$
.

e) $tg^2 x - \sqrt{3} tg x = 0 \implies tg x (tg x - \sqrt{3}) = 0$

$$\therefore$$
 tg $x = 0$ ou tg $x = \sqrt{3}$

Assim:

•
$$\operatorname{tg} x = 0 \Rightarrow x = 0 \text{ ou } x = \pi \text{ ou } x = 2\pi$$

•
$$\operatorname{tg} x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} \operatorname{ou} x = \frac{4\pi}{3}$$

Logo, S =
$$\left\{0, \pi, \frac{\pi}{3}, \frac{4\pi}{3}, 2\pi\right\}$$

A circunferência trigonométrica: seno, cosseno e tangente

f)
$$tg^5 x - tg x = 0 \Rightarrow tg x (tg^4 x - 1) = 0$$

 $\therefore tg x = 0 \text{ ou } tg x = 1 \text{ ou } tg x = -1$

•
$$\operatorname{tg} x = 0 \Rightarrow x = 0 \text{ ou } x = \pi \text{ ou } x = 2\pi$$

•
$$\operatorname{tg} x = 1 \Rightarrow x = \frac{\pi}{4} \operatorname{ou} x = \frac{5\pi}{4}$$

•
$$\operatorname{tg} x = -1 \Rightarrow x = \frac{3\pi}{4} \operatorname{ou} x = \frac{7\pi}{4}$$

Logo, S =
$$\left\{0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{7\pi}{4}, 2\pi\right\}$$

62.
$$2 \cdot \text{sen } x \cdot \cos x = \sqrt{2} \cos x \Rightarrow$$

$$\Rightarrow 2 \cdot \text{sen } x \cdot \cos x - \sqrt{2} \cos x = 0$$

$$\therefore$$
 cos x (2 · sen x - $\sqrt{2}$) = 0 \Rightarrow

$$\Rightarrow$$
 cos $x = 0$ ou sen $x = \frac{\sqrt{2}}{2}$

Logo, no intervalo $[0, 3\pi]$, temos:

$$x = \frac{\pi}{2}$$
 ou $x = \frac{3\pi}{2}$ ou $x = \frac{5\pi}{2}$ ou $x = \frac{\pi}{4}$ ou $x = \frac{3\pi}{4}$
 9π 11 π

ou
$$x = \frac{9\pi}{4}$$
 ou $x = \frac{11\pi}{4}$

Alternativa e.

63. Condição de existência: $\cos x \neq 0$

$$(tg^2 x - 3)(\cos^2 x - 1) = 0 \Leftrightarrow tg^2 x - 3 = 0 \text{ ou}$$

 $\cos^2 x - 1 = 0$

$$\therefore \operatorname{tg} x = \sqrt{3} \operatorname{ou} \operatorname{tg} x = -\sqrt{3} \operatorname{ou} \cos x = 1 \operatorname{ou} \cos x = -1$$

Assim, temos:

•
$$\operatorname{tg} x = \sqrt{3} \Rightarrow x = \frac{\pi}{3} + k\pi, \operatorname{com} k \in \mathbb{Z}$$

•
$$\operatorname{tg} x = -\sqrt{3} \Rightarrow x = \frac{2\pi}{3} + k\pi, \operatorname{com} k \in \mathbb{Z}$$

•
$$\cos x = 1$$
 ou $\cos x = -1 \Rightarrow x = k\pi$, $\cos k \in \mathbb{Z}$

Logo,
$$S = \left\{ x \in \mathbb{R} \mid x = \frac{\pi}{3} + k\pi \text{ ou } x = \frac{2\pi}{3} + k\pi \text{ ou } \right\}$$

$$x = k\pi$$
, com $k \in \mathbb{Z}$.

64. Condição de existência: $\cos x \neq 0$

$$tg x \cdot sen x - tg x - sen x + 1 = 0 \Rightarrow$$

$$\Rightarrow \operatorname{tg} x (\operatorname{sen} x - 1) - (\operatorname{sen} x - 1) = 0$$

∴
$$(\text{sen } x - 1)(\text{tg } x - 1) = 0 \Rightarrow \text{sen } x - 1 = 0 \text{ ou}$$

 $\text{tg } x - 1 = 0$

Assim, temos:

• sen
$$x = 1 \Rightarrow x = \frac{\pi}{2}$$
 não convém, pois

$$tg x = \frac{\text{sen } x}{\cos x} e \cos x \neq 0$$

•
$$\operatorname{tg} x = 1 \Rightarrow x = \frac{\pi}{4} \operatorname{ou} x = \frac{5\pi}{4}$$

Logo,
$$S = \left\{ \frac{\pi}{4}, \frac{5\pi}{4} \right\}$$
.

65. Condição de existência: $\cos x \neq 0$

$$\operatorname{sen} x \cdot \operatorname{tg} x + \operatorname{sen} x - \operatorname{tg} x \cdot \operatorname{cos} x - \operatorname{cos} x = 0 \Rightarrow$$

$$\Rightarrow$$
 sen x (tg x + 1) - cos x (tg x + 1) = 0

$$\therefore (\operatorname{tg} x + 1)(\operatorname{sen} x - \cos x) = 0 \Rightarrow$$

$$\Rightarrow$$
 tg x + 1 = 0 ou sen x - cos x = 0

Assim, temos:

•
$$\operatorname{tg} x = -1 \Rightarrow x = \frac{3\pi}{4}$$

•
$$\operatorname{sen} x = \cos x \Rightarrow \operatorname{tg} x = 1$$

$$\therefore x = \frac{\pi}{4}$$
Logo, S = $\left\{ \frac{3\pi}{4}, \frac{\pi}{4} \right\}$.

66. Condição de existência: $\cos x \neq 0$ Temos:

$$tg x \cdot sen x = tg x \Rightarrow tg x \cdot sen x - tg x = 0$$

$$\therefore$$
 tg x (sen x - 1) = 0 \Rightarrow tg x = 0 ou sen x = 1

Os valores de x para os quais sen x = 1 não convêm, pois esses valores não satisfazem a condição de existência. Portanto:

$$tg x = 0 \Rightarrow x = k\pi, com k \in \mathbb{Z}$$

Logo,
$$S = \{x \in \mathbb{R} | x = k\pi, \text{ com } k \in \mathbb{Z}\}.$$

67. a) $\cos^2 x - 4 \cos x + 3 = 0$

Fazendo a mudança de variável $\cos x = t$, obtemos a equação de 2º grau:

$$t^2 - 4t + 3 = 0$$

$$\Delta = (-4)^2 - 4 \cdot 1 \cdot 3 = 16 - 12 = 4$$

$$\therefore t = \frac{-(-4) \pm \sqrt{4}}{2 \cdot 1} = \frac{4 \pm 2}{2} \implies t = 3 \text{ ou } t = 1$$

Como $\cos x = t$, temos $\cos x = 3$ (impossível) ou $\cos x = 1$.

Para $0 \le x < 2\pi$, concluímos:

$$\cos x = 1 \Rightarrow x = 0$$

Logo,
$$S = \{0\}$$
.

b) $sen^2 x - 3 sen x + 2 = 0$

Fazendo a mudança de variável sen x = t, obtemos a equação do 2º grau:

$$t^2 - 3t + 2 = 0$$

$$\Delta = (-3)^2 - 4 \cdot 1 \cdot 2 = 9 - 8 = 1$$

$$\therefore t = \frac{-(-3) \pm \sqrt{1}}{2 \cdot 1} = \frac{3 \pm 1}{2} \implies t = 2 \text{ ou } t = 1$$

Como sen x = t, temos sen x = 2 (impossível) ou

Para $0 \le x < 2\pi$, concluímos:

$$\operatorname{sen} x = 1 \Rightarrow x = \frac{\pi}{2}$$

Logo,
$$S = \left\{ \frac{\pi}{2} \right\}$$
.

c)
$$2\cos^2 x + 3\cos x + 1 = 0$$

Fazendo a mudança de variável $\cos x = t$, obtemos a equação do 2º grau:

$$2t^2 + 3t + 1 = 0$$

$$\Delta = 3^2 - 4 \cdot 2 \cdot 1 = 9 - 8 = 1$$

$$\therefore t = \frac{-3 \pm \sqrt{1}}{2 \cdot 2} = \frac{-3 \pm 1}{4} \Rightarrow$$

$$\Rightarrow t = -\frac{1}{2} \text{ ou } t = -1$$

Como cos x = t, temos cos $x = -\frac{1}{2}$ ou $\cos x = -1$.

Para $0 \le x < 2\pi$, concluímos:

•
$$\cos x = -\frac{1}{2} \Rightarrow x = \frac{2\pi}{3}$$
 ou $x = \frac{4\pi}{3}$

•
$$\cos x = -1 \Rightarrow x = \pi$$

Logo,
$$S = \left\{ \frac{2\pi}{3}, \frac{4\pi}{3}, \pi \right\}$$
.

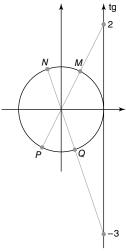
68.
$$tg^2 x + tg x - 6 = 0$$

Para tg
$$x = y$$
, temos: $y^2 + y - 6 = 0 \Rightarrow y = 2$ ou

Logo:
$$tg x = 2 \text{ ou } tg x = -3$$

A circunferência trigonométrica: seno, cosseno e tangente

Quatro pontos, M, N, P e Q, são extremos de arcos trigonométricos que têm essas tangentes, conforme mostra a figura:



Assim, concluímos que no intervalo $\left|0, \frac{3\pi}{2}\right|$ a equação proposta apresenta 3 raízes.

69.
$$tg^2 x - (1 + \sqrt{3}) tg x + \sqrt{3} = 0$$

Para t = tg x, temos:

$$t^2 - (1 + \sqrt{3})t + \sqrt{3} = 0$$

Sendo S e P, respectivamente, a soma e o produto das raízes dessa equação do 2º grau, temos:

$$\begin{cases} S = 1 + \sqrt{3} \\ P = \sqrt{3} \end{cases} \Rightarrow t = 1 \text{ ou } t = \sqrt{3}$$

Assim:

• tg
$$x = 1 \Rightarrow x = \frac{\pi}{4}$$
 ou $x = \frac{5\pi}{4}$

• tg
$$x = \sqrt{3} \Rightarrow x = \frac{\pi}{3}$$
 ou $x = \frac{4\pi}{3}$

Concluímos, então, que a maior raiz da equação proposta, no intervalo $[0, 2\pi[$, $\acute{e} \frac{4\pi}{2}]$

70.
$$sen^2 x - 2cos x - 2 = 0 \implies$$

$$\Rightarrow 1 - \cos^2 x - 2\cos x - 2 = 0$$

$$\therefore \cos^2 x + 2\cos x + 1 = 0$$

Fazendo a mudança de variável $\cos x = y$, obtemos a equação do 2º grau:

$$y^2 + 2y + 1 = 0$$

$$\Delta = 2^2 - 4 \cdot 1 \cdot 1 = 0$$

$$\therefore y = \frac{-2 \pm \sqrt{0}}{2 \cdot 1} \Rightarrow y = -1$$

Retornando à variável original, temos $\cos x = -1$. Assim, para $0 \le x < 2\pi$, concluímos:

$$\cos x = -1 \Rightarrow x = \pi$$

Logo,
$$S = {\pi}$$
.

71.
$$3 \operatorname{sen}^2 x + \operatorname{sen} x \cdot \cos x + 2 \cos^2 x = 3 \Rightarrow$$

$$\Rightarrow 3 - 3 \operatorname{sen}^2 x - \operatorname{sen} x \cdot \cos x - 2 \cos^2 x = 0$$

$$\therefore 3(1 - \sin^2 x) - \sin x \cdot \cos x - 2\cos^2 x = 0 \Rightarrow$$

$$\Rightarrow 3\cos^2 x - \sin x \cdot \cos x - 2\cos^2 x = 0$$

$$\therefore \cos^2 x - \sin x \cdot \cos x = 0 \Rightarrow$$

$$\Rightarrow$$
 cos x (cos x - sen x) = 0

$$\therefore$$
 cos $x = 0$ ou cos $x - \text{sen } x = 0$

Assim, temos:

•
$$\cos x = 0 \Rightarrow x = \frac{\pi}{2}$$

•
$$\cos x = \sin x \Rightarrow \tan x = 1$$

$$\therefore x = \frac{\pi}{4}$$

Logo,
$$S = \left\{ \frac{\pi}{2}, \frac{\pi}{4} \right\}$$
.

72. $8 \operatorname{sen}^4 x + 2 \cos^2 x = 3 \implies 8 \operatorname{sen}^4 x + 2(1 - \operatorname{sen}^2 x) = 3$

$$\therefore 8 \text{ sen}^4 x - 2 \text{ sen}^2 x - 1 = 0$$

Fazendo a mudança de variável sen $^2 x = t$, obtemos a equação do 2º grau:

$$8t^2 - 2t - 1 = 0$$

$$\Delta = (-2)^2 - 4 \cdot 8 \cdot (-1) = 36$$

$$\therefore t = \frac{-(-2) \pm \sqrt{36}}{2 \cdot 8} \Rightarrow t = \frac{1}{2} \text{ ou } t = -\frac{1}{4}$$
Retornando à variável original, temos:

$$\operatorname{sen}^2 x = \frac{1}{2} \operatorname{ou} \operatorname{sen}^2 x = -\frac{1}{4} \operatorname{(impossível)}$$

Assim, calculamos os possíveis valores de sen x:

$$\operatorname{sen}^2 x = \frac{1}{2} \Rightarrow \operatorname{sen} x = \frac{\sqrt{2}}{2} \operatorname{ou} \operatorname{sen} x = -\frac{\sqrt{2}}{2}$$

Para $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, concluímos:

• sen
$$x = \frac{\sqrt{2}}{2} \Rightarrow x = \frac{\pi}{4}$$

• sen
$$x = -\frac{\sqrt{2}}{2} \Rightarrow x = -\frac{\pi}{4}$$

$$Logo, S = \left\{ \frac{\pi}{4}, -\frac{\pi}{4} \right\}.$$

73. Temos que sen² $x = |\sin x|^2$; logo, a equação proposta é equivalente a: $|\sin x|^2 + |\sin x| - 2 = 0$

Fazendo a mudança de variável sen |x| = y, temos:

$$y^2 + y - 2 = 0 \implies y = 1 \text{ ou } y = -2$$

Retornando à variável original, obtemos:

$$|\text{sen } x| = 1 \text{ ou } |\text{sen } x| = -2$$

Como o módulo de um número real é positivo ou nulo, só nos interessa sen x = 1, cuja resolução é:

$$|\sin x| = 1 \Rightarrow \sin x = \pm 1$$

$$\therefore x = \frac{\pi}{2} + k\pi, \text{ com } k \in \mathbb{Z}$$

Alternativa b.

74. $sen^4 x = cos^4 x \Rightarrow sen x = cos x ou sen x = -cos x$ Para $0 \le x \le 2\pi$, concluímos:

• sen
$$x = \cos x \Rightarrow x = \frac{\pi}{4}$$
 ou $x = \frac{5\pi}{4}$

•
$$\operatorname{sen} x = -\cos x \Rightarrow x = \frac{3\pi}{4} \operatorname{ou} x = \frac{7\pi}{4}$$

Logo, a equação proposta tem quatro soluções no intervalo considerado.

Alternativa a.

75. Como o resultado da multiplicação é 0, precisamos que um dos fatores seja 0; logo:

• Para
$$2 \cos^2 x + 3 \sin x = 0$$

$$2 \cdot (1 - \operatorname{sen}^2 x) + 3 \operatorname{sen} x = 0 \Rightarrow$$

$$\Rightarrow -2 \operatorname{sen}^2 x + 3 \operatorname{sen} x + 2 = 0$$

Pela fórmula resolutiva de uma equação de 2º grau, temos:

$$\operatorname{sen} x = -\frac{1}{2}$$
 ou $\operatorname{sen} x = 2$ (não convém)

Concluímos então que as raízes da equação são:

$$\frac{7\pi}{6}$$
 e $\frac{11\pi}{6}$

• Para $\cos^2 x - \sin^2 x = 0$ $\cos^2 x = \sin^2 x$ \therefore cos x = sen x (I) ou cos x = -sen x (II)

Em (I), as raízes são: $\frac{\pi}{4}$ e $\frac{5\pi}{4}$

Em (II), as raízes são: $\frac{3\pi}{4}$ e $\frac{7\pi}{4}$

Portanto, temos 6 possíveis soluções para a equação proposta.

76. Partindo do enunciado, temos:

 $sen^2 x - 2 cos^4 x = 0 \implies 1 - cos^2 x - 2 cos^4 x = 0$ Pela fórmula resolutiva de uma equação de 2º grau,

$$\cos^2 x = \frac{1}{2}$$
 ou $\cos^2 x = -1$ (não convém)

$$\therefore \cos^2 x = \frac{1}{2} \Rightarrow \cos x = \pm \frac{\sqrt{2}}{2}$$

Concluímos, então, que o conjunto solução é:

$$S = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$

Somando as raízes da equação, temos:

$$\frac{\pi}{4} + \frac{3\pi}{4} + \frac{5\pi}{4} + \frac{7\pi}{4} = \frac{16\pi}{4} = 4\pi$$

Alternativa c.

77. Pelo enunciado, temos:

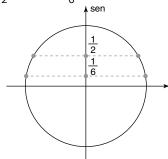
$$8^{sen^2 x} = 4^{sen x - \frac{1}{8}} \Rightarrow 2^{3sen^2 x} = 2^{2sen x - \frac{1}{4}}$$

$$\therefore 3\text{sen}^2 x = 2\text{sen } x - \frac{1}{4} \Rightarrow$$
$$\Rightarrow 12\text{sen}^2 x - 8\text{sen } x + 1 = 0$$

$$\Rightarrow$$
 12sen² x - 8sen x + 1 = 0

Pela fórmula resolutiva de uma equação de 2º grau,

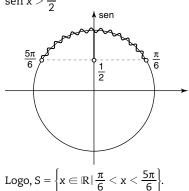
$$\operatorname{sen} x = \frac{1}{2} \text{ ou sen } x = \frac{1}{6}$$



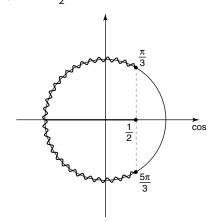
Pelo gráfico, concluímos que a equação admite 4 raízes.

Alternativa b.

78. a) sen $x > \frac{1}{2}$

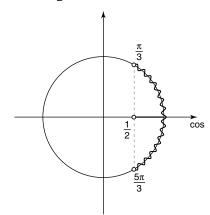


b)
$$\cos x \le \frac{1}{2}$$



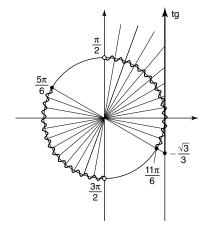
Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} \leqslant x \leqslant \frac{5\pi}{3} \right\}.$$

c)
$$\cos x > \frac{1}{2}$$



$$Logo, S = \left\{ x \in \mathbb{R} \, | \, 0 \leqslant x < \frac{\pi}{3} \text{ ou } \frac{5\pi}{3} < x < 2\pi \right\}.$$

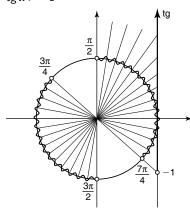
d)
$$tg x \ge -\frac{\sqrt{3}}{3}$$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x < \frac{\pi}{2} \text{ ou } \frac{5\pi}{6} \le x < \frac{3\pi}{2} \text{ ou } \right\}$$

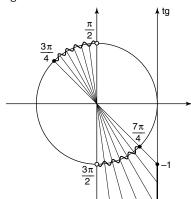
$$\frac{11\pi}{6} \leqslant x < 2\pi$$

e) tg x > -1



$$\label{eq:logo_sum} \begin{split} Logo, S &= \Big\{ x \in \mathbb{R} | \, 0 \leqslant x < \frac{\pi}{2} \text{ ou } \frac{3\pi}{4} < x < \frac{3\pi}{2} \text{ ou } \\ \frac{7\pi}{4} < x < 2\pi \Big\}. \end{split}$$

f) $tg x \leq -1$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{2} < x \leqslant \frac{3\pi}{4} \text{ ou } \frac{3\pi}{2} < x \leqslant \frac{7\pi}{4} \right\}.$$

79. b) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo do intervalo obtido no item **b** do exercício anterior:

$$S = \left\{ x \in |\mathbb{R}| \frac{\pi}{3} + k \cdot 2\pi \leqslant x \leqslant \frac{5\pi}{3} + k \cdot 2\pi, \right.$$

$$com \ k \in \mathbb{Z} \right\}$$

c) Como os números $\frac{5\pi}{3}$ e $-\frac{\pi}{3}$ estão associados ao mesmo ponto da circunferência trigonométrica, o conjunto solução da inequação do item c do exercício anterior, no universo \mathbb{R} , pode ser dado por:

$$S = \left\{ x \in \mathbb{R} | -\frac{\pi}{3} + k \cdot 2\pi < x < \frac{\pi}{3} + k \cdot 2\pi, \right.$$

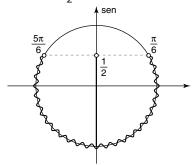
$$com \ k \in \mathbb{Z} \right\}$$

d) Basta adicionar a expressão $k\pi$ a cada extremo do intervalo $\left[\frac{5\pi}{6}, \frac{3\pi}{2}\right]$. Assim, o conjunto solução da inequação do item d do exercício anterior, no universo \mathbb{R} , pode ser dado por:

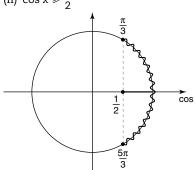
$$S = \left\{ x \in \mathbb{R} \, | \, \frac{5\pi}{6} + k\pi \leqslant x < \frac{3\pi}{2} + k\pi, \, \text{com } k \in \mathbb{Z} \right\}$$

Resolvendo (I) e (II), temos:

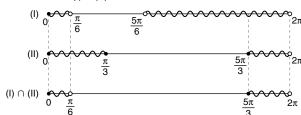
(I) sen
$$x < \frac{1}{2}$$



(II)
$$\cos x \ge \frac{1}{2}$$



Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:

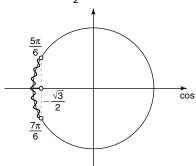


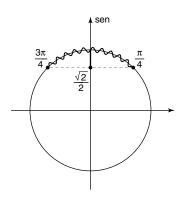
$$Logo, S = \left\{ x \in |R| \, 0 \leqslant x < \frac{\pi}{6} \text{ ou } \frac{5\pi}{3} \leqslant x < 2\pi \right\}.$$

b)
$$\begin{cases} \cos x < -\frac{\sqrt{3}}{2} & \text{(I)} \\ \sin x \ge \frac{\sqrt{2}}{2} & \text{(II)} \end{cases}$$

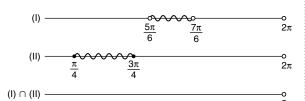
Resolvendo (I) e (II), temos:

(I)
$$\cos x > -\frac{\sqrt{3}}{2}$$



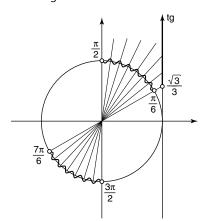


Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:

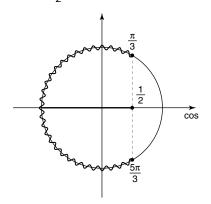


Logo, $S = \emptyset$.

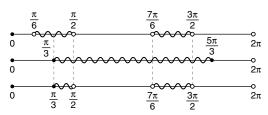
c)
$$tg x > \frac{\sqrt{3}}{3}$$



 $\cos x \leq \frac{1}{2}$

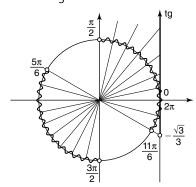


Retificando as soluções, temos:

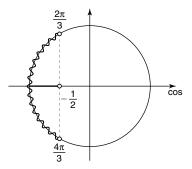


$$\text{Logo, S} = \bigg\{ x \in |R| \frac{\pi}{3} \leqslant x < \frac{\pi}{2} \text{ ou } \frac{7\pi}{6} < x < \frac{3\pi}{2} \bigg\}.$$

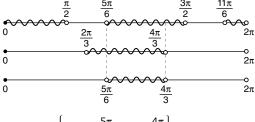
d)
$$tg x > -\frac{\sqrt{3}}{3}$$



$$\cos x < -\frac{1}{2}$$



Retificando as soluções, temos:



$$Logo, S = \left\{ x \in \mathbb{R} \, | \, \frac{5\pi}{6} < x < \frac{4\pi}{3} \right\}.$$

81. a) Como os números $\frac{5\pi}{3}$ e $-\frac{\pi}{3}$ estão associados ao mesmo ponto da circunferência trigonométrica, o conjunto solução do sistema do item a do exercício anterior, no universo $|\mathbb{R}$, pode ser dado por:

$$S = \left\{ x \in \mathbb{R} | -\frac{\pi}{3} + k \cdot 2\pi \le x < \frac{\pi}{6} + k \cdot 2\pi, \right.$$
$$com \ k \in \mathbb{Z} \right\}$$

d) Basta adicionar a expressão $k \cdot 2\pi$, com $k \in \mathbb{Z}$, a cada extremo do intervalo obtido no item d do exercício anterior:

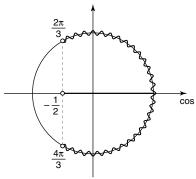
$$\begin{split} S &= \left\{ x \in \mathbb{R} \, | \, \frac{5\pi}{6} + k \cdot 2\pi < x < \frac{4\pi}{3} + k \cdot 2\pi, \right. \\ &\text{com } k \in \mathbb{Z} \right\} \end{split}$$

82. a) A dupla desigualdade é equivalente ao sistema

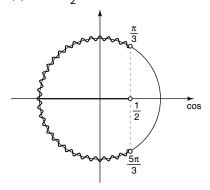
$$\begin{cases} \cos x > -\frac{1}{2} & \text{(I)} \\ \cos x < \frac{1}{2} & \text{(II)} \end{cases}$$

Resolvendo (I) e (II), temos:

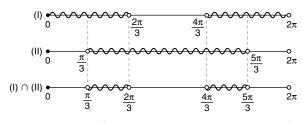
(I)
$$\cos x > -\frac{1}{2}$$



(II) $\cos x < \frac{1}{2}$



Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:



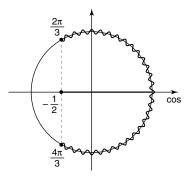
Logo,
$$S = \left\{ x \in \mathbb{R} \, | \, \frac{\pi}{3} < x < \frac{2\pi}{3} \text{ ou } \frac{4\pi}{3} < x < \frac{5\pi}{3} \right\}.$$

b) A dupla desigualdade é equivalente ao sistema

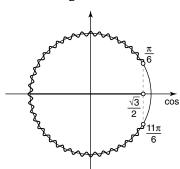
$$\begin{cases} \cos x \ge -\frac{1}{2} & \text{(I)} \\ \cos x < \frac{\sqrt{3}}{2} & \text{(II)} \end{cases}$$

Resolvendo (I) e (II), temos:

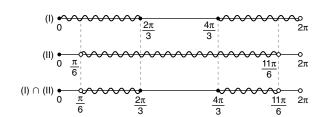
(I)
$$\cos x \geqslant -\frac{1}{2}$$



(II) $\cos x < \frac{\sqrt{3}}{2}$



Fazendo a intersecção dos conjuntos soluções de (I) e (II), obtemos:

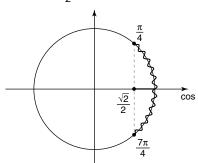


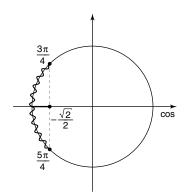
$$Logo, S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{6} < x \leqslant \frac{2\pi}{3} \text{ ou } \frac{4\pi}{3} \leqslant x < \frac{11\pi}{6} \right\}.$$

c)
$$|\cos x| \ge \frac{\sqrt{2}}{2} \Rightarrow \underbrace{\cos x \ge \frac{\sqrt{2}}{2}}_{\text{(II)}} \text{ ou } \underbrace{\cos x \le -\frac{\sqrt{2}}{2}}_{\text{(I)}}$$

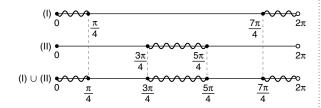
Resolvendo (I) e (II), temos:

(I)
$$\cos x \geqslant \frac{\sqrt{2}}{2}$$



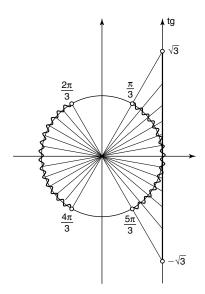


Fazendo a união dos conjuntos soluções de (I) e (II), obtemos:



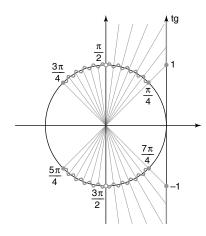
Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{4} \text{ ou } \frac{3\pi}{4} \le x \le \frac{5\pi}{4} \text{ ou } \frac{7\pi}{4} \le x \le 2\pi \right\}.$$

d)
$$|tg x| < \sqrt{3} \Rightarrow -\sqrt{3} < tg x < \sqrt{3}$$

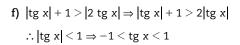


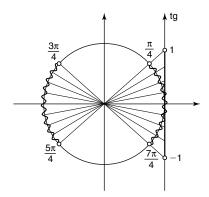
Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x < \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} < x < \frac{4\pi}{3} \text{ ou } \frac{5\pi}{3} < x < 2\pi \right\}.$$

e)
$$|tg x| \ge 1 \Rightarrow tg x \ge 1$$
 ou $tg x \le -1$



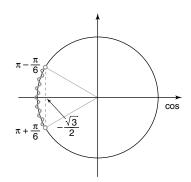
$$Logo, S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} \leqslant x \leqslant \frac{3\pi}{4} \text{ ou } \frac{5\pi}{4} \leqslant x \leqslant \frac{7\pi}{4} \text{ e} \right.$$
$$x \neq \frac{\pi}{2} \text{ e } x \neq \frac{3\pi}{2} \right\}.$$





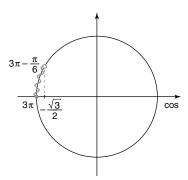
$$Logo, S = \left\{ x \in \mathbb{R} \mid 0 \leqslant x < \frac{\pi}{4} \text{ ou } \frac{3\pi}{4} < x < \frac{5\pi}{4} \text{ ou } \frac{7\pi}{4} < x < 2\pi \right\}.$$

83. Para $x \in [0, 2\pi]$, temos:



Portanto, nosso intervalo é $\left| \frac{5\pi}{6}, \frac{7\pi}{6} \right|$

Para $x \in [2\pi, 3\pi]$, temos:



Portanto, nosso intervalo é $\left| \frac{17\pi}{6}, 3\pi \right|$.

Logo, o conjunto solução da inequação é:

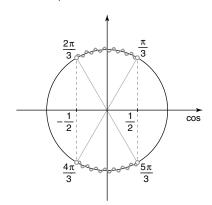
$$S = \left| \frac{5\pi}{6}, \frac{7\pi}{6} \right| \cup \left| \frac{17\pi}{6}, 3\pi \right|$$

Alternativa e.

84. Pelo enunciado, temos:

$$\left|\cos x\right| < \frac{1}{2} \Rightarrow \cos x < \frac{1}{2} \text{ ou } \cos x > -\frac{1}{2}$$

Representando os valores de x na circunferência trigonométrica, obtemos:



Portanto, o conjunto solução é formado por todos os números reais x tais que:

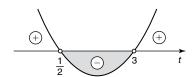
$$\frac{\pi}{3} < x < \frac{2\pi}{3}$$
 ou $\frac{4\pi}{3} < x < \frac{5\pi}{3}$

Alternativa **a**.

85. a) $2\cos^2 x - 7\cos x + 3 < 0$

Fazendo a mudança de variável cos x=t, obtemos a inequação $2t^2-7t+3<0$.

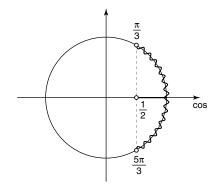
A variação de sinal da função $f(t) = 2t^2 - 7t + 3$ é esquematizada por:



Assim:
$$f(t) < 0 \implies \frac{1}{2} < t < 3$$

Retornando à variável original, temos

$$\frac{1}{2}$$
 < cos x < 3, ou seja, cos x > $\frac{1}{2}$, cujas soluções são representadas por:



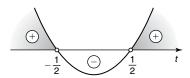
Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \, | \, 0 \leqslant x < \frac{\pi}{3} \text{ ou } \frac{5\pi}{3} < x < 2\pi \right\}$$

b) $4 \cos^2 x - 1 > 0$

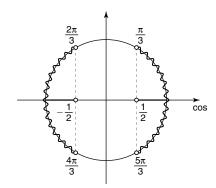
Fazendo a mudança de variável cos x = t, obtemos a inequação $4t^2 - 1 > 0$.

A variação de sinal da função $f(t) = 4t^2 - 1$ é esquematizada por:



Assim:
$$f(t) > 0 \implies t < -\frac{1}{2}$$
 ou $t > \frac{1}{2}$

Retornando à variável original, temos $\cos x < -\frac{1}{2}$ ou $\cos x > \frac{1}{2}$. A reunião dos conjuntos soluções dessas inequações é representada por:

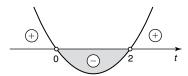


Concluímos, então:

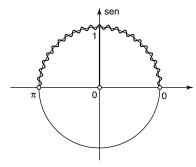
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x < \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} < x < \frac{4\pi}{3} \text{ ou } \frac{5\pi}{3} < x < 2\pi \right\}$$

c) $sen^2 x < 2 sen x \Rightarrow sen^2 x - 2 sen x < 0$ Fazendo a mudança de variável sen x = t, obtemos a inequação $t^2 - 2t < 0$.

A variação de sinal da função $f(t) = t^2 - 2t$ é esquematizada por:



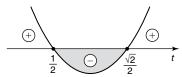
Assim: $f(t) < 0 \Rightarrow 0 < t < 2$ Retornando à variável original, temos 0 < sen x < 2, ou seja, sen x > 0, cujas soluções são representadas por:



Concluímos, então: $S = \{x \in R | 0 < x < \pi\}$

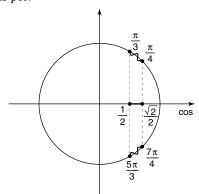
d) $4\cos^2 x - (2\sqrt{2} + 2)\cos x + \sqrt{2} \le 0$ Fazendo a mudança de variável $\cos x = t$, obtemos a inequação $4t^2 - (2\sqrt{2} + 2)t + \sqrt{2} \le 0$.

A variação de sinal da função $f(t)=4t^2-\left(2\sqrt{2}\right.\\ +2\right)\!t+\sqrt{2}\ \acute{e}\ esquematizada\ por:$



Assim: $f(t) \le 0 \Rightarrow \frac{1}{2} \le t \le \frac{\sqrt{2}}{2}$

Retornando à variável original, temos $\frac{1}{2} \le \cos x \le \frac{\sqrt{2}}{2}$, cujas soluções são representadas por:



Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \, | \, \frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{3} \text{ ou } \frac{5\pi}{3} \leqslant x \leqslant \frac{7\pi}{4} \right\}$$

Nota:

No caso de os alunos terem dificuldade na resolução da equação $4t^2-\left(2\sqrt{2}+2\right)\!t+\sqrt{2}=0$, podem ser sugeridas duas formas de resolução:

I) Soma (S) e Produto (P) das raízes:

$$\begin{cases} S = \frac{2\sqrt{2} + 2}{4} = \frac{\sqrt{2}}{2} + \frac{1}{2} \\ P = \frac{\sqrt{2}}{4} \end{cases}$$

Concluímos, então, que as raízes são

$$\frac{\sqrt{2}}{2}$$
 e $\frac{1}{2}$.

II)
$$\Delta = 8 + 8\sqrt{2} + 4 - 16\sqrt{2} = 8 - 8\sqrt{2} + 4 = (2\sqrt{2} - 2)^2$$

e)
$$\frac{\operatorname{sen}^2 x}{3} + \frac{\cos x}{2} - \frac{1}{2} \leqslant 0 \Rightarrow$$

$$\Rightarrow \frac{2 \operatorname{sen}^2 x + 3 \cos x - 3}{6} \leqslant \frac{0}{6}$$

$$\therefore 2 \operatorname{sen}^2 x + 3 \cos x - 3 \leqslant 0 \Rightarrow$$

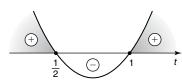
$$\Rightarrow 2(1-\cos^2 x)+3\cos x-3\leqslant 0$$

$$\therefore -2\cos^2 x + 3\cos x - 1 \leqslant 0 \Rightarrow$$

$$\Rightarrow$$
 2 cos² x - 3 cos x + 1 \geqslant 0

Fazendo a mudança de variável cos x=t, obtemos a inequação $2t^2-3t+1\geqslant 0$

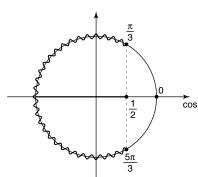
A variação de sinal da função $f(t) = 2t^2 - 3t + 1$ é esquematizada por:



Assim: $f(t) \ge 0 \implies t \le \frac{1}{2}$ ou $t \ge 1$

Retornando à variável original, temos $\cos x \le \frac{1}{2}$ ou $\cos x \ge 1$, ou seja, $\cos x \le \frac{1}{2}$ ou $\cos x = 1$.

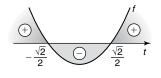
A reunião dos conjuntos soluções dessa inequação e dessa equação é representada por:

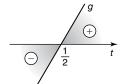


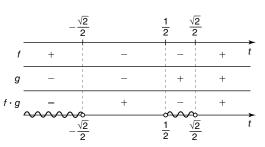
Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} \leqslant x \leqslant \frac{5\pi}{3} \text{ ou } x = 0 \right\}$$

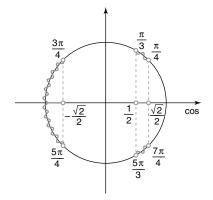
f) $(2\cos^2 x - 1)(2\cos x - 1) < 0$ Fazendo $\cos x = t$, temos: $(2t^2 - 1)(2t - 1) < 0$ Estudando a variação de sinal das funções $f(t) = 2t^2 - 1$, g(t) = 2t - 1 e $f \cdot g$, obtemos:







Logo, $\cos x < -\frac{\sqrt{2}}{2}$ ou $\frac{1}{2} < \cos x < \frac{\sqrt{2}}{2}$; e, portanto:



Concluímos, então:

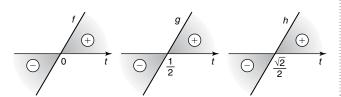
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} < x < \frac{\pi}{3} \text{ ou } \frac{3\pi}{4} < x < \frac{5\pi}{4} \right\}$$
ou
$$\frac{5\pi}{3} < x < \frac{7\pi}{4}$$

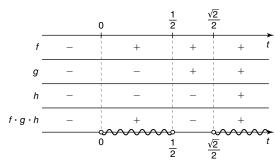
g) $\sin x \left(\sin x - \frac{1}{2} \right) (2 \sin x - \sqrt{2}) > 0$

Fazendo sen x=t, temos: $t\Big(t-\frac{1}{2}\Big)\!(2t-\sqrt{2})>0$

Estudando a variação de sinal das funções

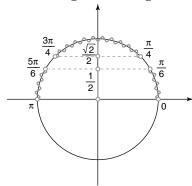
f(t) = t, $g(t) = t - \frac{1}{2}$, $h(t) = 2t - \sqrt{2} e f \cdot g \cdot h$, obtemos:





$$f(t) \cdot g(t) \cdot h(t) > 0 \implies 0 < t < \frac{1}{2} \text{ ou } t > \frac{\sqrt{2}}{2}$$

 $Logo, 0 < sen \ x < \frac{1}{2} \ ou \ sen \ x > \frac{\sqrt{2}}{2}.$



Concluímos, então, que o conjunto solução S é dado por:

$$\begin{split} S = \left\{ x \in \mathbb{R} | \, 0 < x < \frac{\pi}{6} \text{ ou } \frac{\pi}{4} < x < \frac{3\pi}{4} \text{ ou } \right. \\ \left. \frac{5\pi}{6} < x < \pi \right\} \end{split}$$

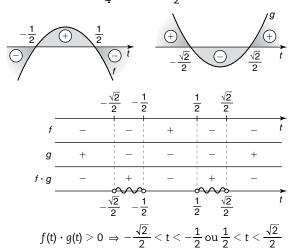
h)
$$\left(\cos^2 x - \frac{3}{4}\right) \left(\sin^2 x - \frac{1}{2}\right) > 0 \Rightarrow$$

 $\Rightarrow \left(1 - \sin^2 x - \frac{3}{4}\right) \left(\sin^2 x - \frac{1}{2}\right) > 0$
 $\therefore \left(-\sin^2 x + \frac{1}{4}\right) \left(\sin^2 x - \frac{1}{2}\right) > 0$

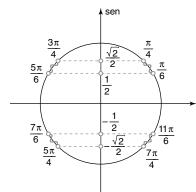
Fazendo sen x=t, temos: $\left(-t^2 + \frac{1}{4}\right)\left(t^2 - \frac{1}{2}\right) > 0$

Estudando a variação de sinal das funções

$$f(t) = -t^2 + \frac{1}{4}$$
, $g(t) = t^2 - \frac{1}{2} e f \cdot g$, obtemos:



 $Logo, -\frac{\sqrt{2}}{2} < sen \ x < -\frac{1}{2} \ ou$ $\frac{1}{2}$ < sen x < $\frac{\sqrt{2}}{2}$; e, portanto:



Concluímos, então:

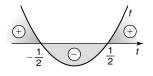
$$S = \left\{ x \in \mathbb{R} | \frac{\pi}{6} < x < \frac{\pi}{4} \text{ ou } \frac{3\pi}{4} < x < \frac{5\pi}{6} \text{ ou} \right.$$

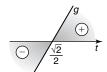
$$ou \frac{7\pi}{6} < x < \frac{5\pi}{4} \text{ ou } \frac{7\pi}{4} < x < \frac{11\pi}{6} \right\}$$

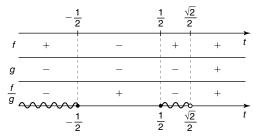
i)
$$\frac{4 \cos^2 x - 1}{2 \cos x - \sqrt{2}} \le 0$$

Fazendo cos x = t, temos: $\frac{4t^2 - 1}{2t - \sqrt{2}} \le 0$

Estudando a variação de sinal das funções $f(t) = 4t^2 - 1$, $g(t) = 2t - \sqrt{2} e^{\frac{f}{a}}$, obtemos:

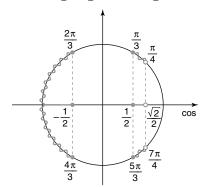






$$\frac{f(t)}{g(t)} \le 0 \implies t \le -\frac{1}{2} \text{ ou } \frac{1}{2} \le t < \frac{\sqrt{2}}{2}$$

Logo, $\cos x \le -\frac{1}{2} \cot \frac{1}{2} \le \cos x < \frac{\sqrt{2}}{2}$; e, portanto:



Concluímos, então:

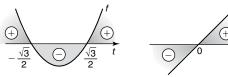
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} < x \leqslant \frac{\pi}{3} \text{ ou } \frac{2\pi}{3} \leqslant x \leqslant \frac{4\pi}{3} \text{ ou } \frac{5\pi}{3} \leqslant x \leqslant \frac{7\pi}{4} \right\}$$

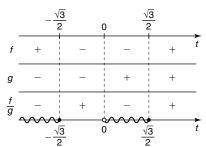
j)
$$\frac{4 \cos^2 x - 3}{\cos x} \le 0$$

j) $\frac{4\cos^2 x - 3}{\cos x} \le 0$ Fazendo $\cos x = t$, temos: $\frac{4t^2 - 3}{t} \le 0$

Estudando a variação de sinal das funções

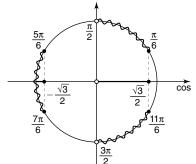
$$f(t) = 4t^2 - 3$$
, $g(t) = t e \frac{f}{g}$, obtemos:





$$\frac{f(t)}{g(t)} \le 0 \implies t \le -\frac{\sqrt{3}}{2} \text{ ou } 0 < t \le \frac{\sqrt{3}}{2}$$

Logo, $\cos x \le -\frac{\sqrt{3}}{2}$ ou $0 < \cos x \le \frac{\sqrt{3}}{2}$; e, portanto:



Concluímos, então:

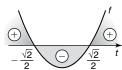
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{6} \le x < \frac{\pi}{2} \text{ ou } \frac{5\pi}{6} \le x \le \frac{7\pi}{6} \text{ ou } \frac{3\pi}{2} < x \le \frac{11\pi}{6} \right\}$$

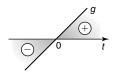
k)
$$\frac{-2\cos^2 x + 1}{\text{sen } x} > 0 \Rightarrow \frac{-2(1 - \sin^2 x) + 1}{\text{sen } x} > 0$$

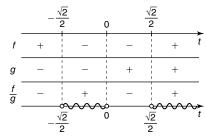
$$\therefore \frac{2 \operatorname{sen}^2 x - 1}{\operatorname{sen} x} > 0$$

 $\therefore \frac{2 \operatorname{sen}^2 x - 1}{\operatorname{sen} x} > 0$ Fazendo sen x = t, temos: $\frac{2t^2 - 1}{t} > 0$ Estudando a variação de sinal das funções

$$f(t) = 2t^2 - 1$$
, $g(t) = t e \frac{f}{g}$, obtemos:

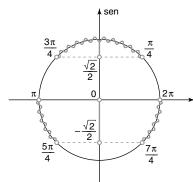






$$\frac{f(t)}{g(t)} > 0 \Rightarrow -\frac{\sqrt{2}}{2} < t < 0 \text{ ou } t > \frac{\sqrt{2}}{2}$$

Logo, $-\frac{\sqrt{2}}{2} < \operatorname{sen} x < 0$ ou $\operatorname{sen} x > \frac{\sqrt{2}}{2}$; e, portanto:



Concluímos, então:

$$S = \left\{ x \in \mathbb{R} \, | \, \frac{\pi}{4} < x < \frac{3\pi}{4} \text{ ou } \pi < x < \frac{5\pi}{4} \text{ ou} \right.$$

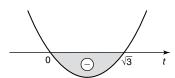
$$\left. \frac{7\pi}{4} < x < 2\pi \right\}$$

86. a)
$$tg^2 x - \sqrt{3} tg x \le 0$$

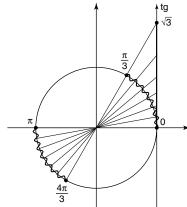
Fazendo tg x = t, temos:

$$t^2 - \sqrt{3}t \leq 0$$

Estudando a variação de sinal da função $f(t) = t^2 - \sqrt{3} t$, obtemos:



Assim, $f(t) \le 0 \Rightarrow 0 \le t \le \sqrt{3}$; e, portanto: $0 \le tg \ x \le \sqrt{3}$



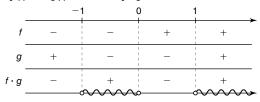
$$Logo, S = \left\{ x \in \mathbb{R} | 0 \leqslant x \leqslant \frac{\pi}{3} \text{ ou } \pi \leqslant x \leqslant \frac{4\pi}{3} \right\}.$$

b) $tg^3 x - tg x > 0$

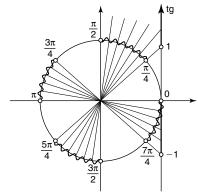
Fazendo tg x = t, temos:

$$t^3 - t > 0 \, \Rightarrow \, t(t^2 - 1) > 0$$

Estudando a variação de sinal das funções f(t) = t, $g(t) = t^2 - 1$ e $f \cdot g$, obtemos:



Assim, $f(t) \cdot g(t) > 0 \Rightarrow -1 < t < 0$ ou t > 1; e, portanto: $-1 < tg \ x < 0$ ou $tg \ x > 1$



Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{4} < x < \frac{\pi}{2} \text{ ou } \frac{3\pi}{4} < x < \pi \text{ ou } \right\}$$

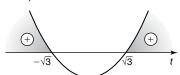
$$\frac{5\pi}{4} < x < \frac{3\pi}{2}$$
 ou $\frac{7\pi}{4} < x < 2\pi$.

c)
$$tg^2 x - 3 \ge 0$$

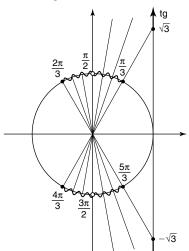
Fazendo tg x = t, temos:

$$t^2 - 3 \geqslant 0$$

Estudando a variação de sinal da função $f(t) = t^2 - 3$, obtemos:



Assim, $f(t) \ge 0 \Rightarrow t \le -\sqrt{3}$ ou $t \ge \sqrt{3}$; e, portanto: $tg \ x \le -\sqrt{3}$ ou $tg \ x \ge \sqrt{3}$



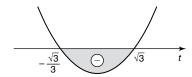
Logo,
$$S = \left\{ x \in \mathbb{R} \mid \frac{\pi}{3} \leqslant x \leqslant \frac{2\pi}{3} \text{ ou} \right\}$$

$$\frac{4\pi}{3} \leqslant x \leqslant \frac{5\pi}{3} \text{ e } x \neq \frac{\pi}{2} \text{ e } x \neq \frac{3\pi}{2} \right\}.$$

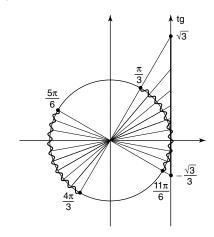
d)
$$3 ext{ tg}^2 x - 2\sqrt{3} ext{ tg} x - 3 \le 0$$

Fazendo $ext{tg} x = t$, temos: $3 ext{t}^2 - 2\sqrt{3} ext{t} - 3 \le 0$

Estudando a variação de sinal da função $f(t) = 3t^2 - 2\sqrt{3}t - 3$, obtemos:



Assim, $f(t) \le 0 \Rightarrow -\frac{\sqrt{3}}{3} \le t \le \sqrt{3}$; e, portanto: $-\frac{\sqrt{3}}{3} \le tg \ x \le \sqrt{3}$

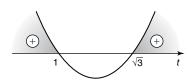


Logo, $S = \left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{3} \text{ ou } \frac{5\pi}{6} \le x \le \frac{4\pi}{3} \text{ ou } \frac{11\pi}{6} \le x \le 2\pi \right\}.$

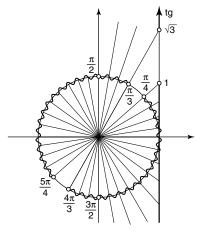
e)
$$tg^2 x - (1 + \sqrt{3}) tg x + \sqrt{3} > 0$$

Fazendo $tg x = t$, temos:
$$t^2 - (1 + \sqrt{3})t + \sqrt{3} > 0$$

Estudando a variação de sinal da função
$$f(t) = t^2 - (1 + \sqrt{3})t + \sqrt{3}$$
, obtemos:



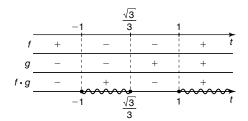
Assim, $f(t) > 0 \implies t < 1$ ou $t > \sqrt{3}$; e, portanto: tg x < 1 ou $tg x > \sqrt{3}$



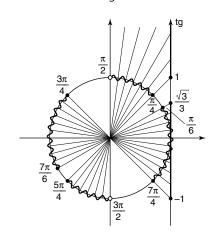
$$\label{eq:logo_spectrum} \begin{split} \text{Logo, S} &= \bigg\{ x \in |R| \, 0 \leqslant x < \frac{\pi}{4} \text{ ou } \frac{\pi}{3} < x < \frac{5\pi}{4} \text{ ou} \\ &\frac{4\pi}{3} < x < 2\pi \text{ e } x \neq \frac{\pi}{2} \text{ e } x \neq \frac{3\pi}{2} \bigg\}. \end{split}$$

f)
$$(tg^2 x - 1)(3tg x - \sqrt{3}) \ge 0$$

Fazendo $tg x = t$, temos: $(t^2 - 1)(3t - \sqrt{3}) \ge 0$
Estudando a variação de sinal das funções $f(t) = t^2 - 1$, $g(t) = 3t - \sqrt{3}$ e $f \cdot g$, obtemos:



Assim: $f(t) \cdot g(t) \ge 0 \Rightarrow -1 \le t \le \frac{\sqrt{3}}{3}$ ou $t \ge 1$; portanto: $-1 \le tg \ x \le \frac{\sqrt{3}}{3}$ ou $tg \ x \ge 1$



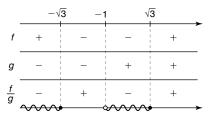
Logo: $S = \left\{ x \in |\mathbb{R}| \ 0 \leqslant x \leqslant \frac{\pi}{6} \text{ ou } \frac{\pi}{4} \leqslant x < \frac{\pi}{2} \text{ ou} \right.$ $\frac{3\pi}{4} \leqslant x \leqslant \frac{7\pi}{6} \text{ ou } \frac{5\pi}{4} \leqslant x < \frac{3\pi}{2} \text{ ou } \frac{7\pi}{4} \leqslant x < 2\pi \right\}$

$$g) \ \frac{tg^2 \ x - 3}{tg \ x + 1} \leqslant 0$$

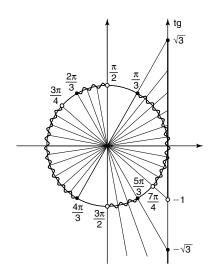
Fazendo tg x = t, temos: $\frac{t^2 - 3}{t + 1} \le 0$

Estudando a variação de sinal das funções

$$f(t) = t^2 - 3$$
, $g(t) = t + 1 e^{\frac{f}{g}}$, obtemos:



Assim, $\frac{f(t)}{g(t)} \le 0 \Rightarrow t \le -\sqrt{3} \text{ ou } -1 < t \le \sqrt{3}$; e, portanto: $tg \ x \le -\sqrt{3} \text{ ou } -1 < tg \ x \le \sqrt{3}$

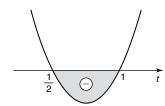


Logo,
$$S = \left\{ x \in \mathbb{R} \mid 0 \le x \le \frac{\pi}{3} \text{ ou } \frac{\pi}{2} < x \le \frac{2\pi}{3} \text{ ou } \frac{3\pi}{4} < x \le \frac{4\pi}{3} \text{ ou } \frac{3\pi}{2} < x \le \frac{5\pi}{3} \text{ ou } \frac{7\pi}{4} < x < 2\pi \right\}.$$

87. Fazendo a mudança de variável $\cos x = t$, temos:

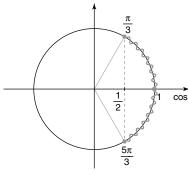
$$2t^2 - 3t + 1 \leqslant 0$$

Pelo estudo do sinal da função $f(t) = 2t^2 - 3t + 1$, obtemos os valores de t para os quais $f(t) \le 0$:



Assim, $f(t) \le 0 \Rightarrow \frac{1}{2} \le t \le 1$.

Logo,
$$\frac{1}{2} \le \cos x \le 1$$
.



Portanto, o conjunto solução é formado por todos os valores de x tais que: $0 \le x \le \frac{\pi}{3}$ ou $\frac{5\pi}{3} \le x < 2\pi$ Alternativa **a**.

Exercícios contextualizados

88. Como uma volta corresponde a 360°, temos:

Volta Ângulo
$$1 - 360^{\circ}$$

$$x - 900^{\circ} \qquad \therefore x = 2,5$$

Alternativa d.

89. Entre a posição do número 12 até a de 1 hora tem $\frac{360^{\circ}}{12} = 30^{\circ}$, portanto em 20 minutos o ponteiro das horas andou:

Ângulo Tempo
30° — 60 min

$$x$$
 — 20 min ∴ $x = 10^{\circ}$

Portanto, o ponteiro das horas andou 70° (30° a cada hora, mais 10° em 20 minutos).

Como o ponteiro dos minutos está na posição do número 4, que representa 20 minutos, e equivale a 120° em relação a posição zero hora, então o ângulo formado pelos ponteiros é $120^{\circ} - 70^{\circ} = 50^{\circ}$.

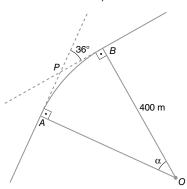
90. Como 24 h equivalem a 24 · 60 min = 1.440 min, podemos fazer:

Grau Minuto
$$360^{\circ} - - 1.440 \text{ min}$$

$$3^{\circ} - x \qquad \therefore x = 12 \text{ min}$$

Portanto, a diferença de nascer do Sol entre as duas cidades é de 12 minutos.

91. Pelos dados do enunciado, temos:



A circunferência trigonométrica: seno, cosseno e tangente

A medida do ângulo APB é dada por:

$$180^{\circ} - 36^{\circ} = 144^{\circ}$$

Logo, a medida α do ângulo A \widehat{O} B é:

$$360^{\circ} - 90^{\circ} - 90^{\circ} - 144^{\circ} = 36^{\circ}$$

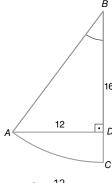
Agora, calculamos o comprimento x da curva \widehat{AB} por uma regra de três:

$$360^{\circ}$$
 — $2\pi \cdot 400$ 36° — x

$$x = 80\tau$$

Logo, a curva terá 80π metros de comprimento ou, aproximadamente, 251 m.

92. Pelos dados do enunciado, temos:



$$tg \, \widehat{B} = \frac{12}{16} = 0,75$$

Na calculadora, calculamos o ângulo cuja tangente é 0,75, obtendo: m(\widehat{ABC}) ≈ 36,9°

Pelo teorema de Pitágoras, calculamos a medida do raio, obtendo AB = 20 m.

Finalmente, calculamos o comprimento x do arco AC por uma regra de três:

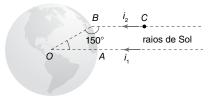
Medida do ângulo Comprimento

$$360^{\circ}$$
 — $2\pi \cdot 20$ $36,9^{\circ}$ — x

$$\therefore x = 4.1\pi \approx 12.87$$

Logo, o comprimento do arco é de aproximadamente 12,87 m.

93. a)



Como $i_1//i_2$, temos que os ângulos colaterais A $\widehat{O}B$ e OBC são suplementares, logo o ângulo central AOB mede 30°. Assim, o comprimento c do arco AB é dado pela regra de três:

Medida do ângulo Comprimento central em grau do arco em km

$$\therefore$$
 c = $\frac{3.185\pi}{3}$ km ou, aproximadamente, 3.333,6 km.

b) A medida do arco \widehat{AB} é 30°, que é a mesma do ângulo central AÔB. A medida x desse arco em radiano é dada pela regra de três:

Medida do Medida do arco arco em grau em radiano

$$\therefore x = \frac{\pi}{6} \text{ rad}$$

94. a) Lembrando que uma volta tem 2π rad, temos:

Medida do Tempo ângulo (rad) (dia)

$$\frac{50\pi}{683}$$
 — 1 2π — 2π

$$\therefore x = 27,32 \text{ dias}$$

Logo, a Lua completa uma volta ao redor da Terra em 27,32 dias aproximadamente.

b) Primeiro, vamos transformar 36° em radianos:

Grau Radiano

$$360^{\circ} \longrightarrow 2\pi$$
 $36^{\circ} \longrightarrow x$

$$\therefore x = 0.2\pi$$

Medida do Tempo ângulo (rad)

$$\frac{50\pi}{683}$$
 ______ 1 0,2 π ______ y

Logo, a Lua percorre um arco de 36° ao redor da Terra em 2,732 dias aproximadamente.

95. a) Lembrando que $1^{\circ} = 60'$, temos:

Medida do Comprimento ângulo (minuto) (metro) $--2\pi \cdot 6.370.000$ 360 · 60 ——

Logo, 1 milha marítima mede aproximadamente 1.853 m.

Comprimento b) Medida do ângulo (rad) (metro)

$$2\pi - 2\pi \cdot 6.370.000$$
 $\frac{\pi}{60} - x$

Logo, um arco de $\frac{\pi}{60}$ rad mede aproximadamente 333.532 m.

96. Quando a polia maior gira $\frac{4\pi}{3}$ rad (ou 240°), a menor

gira
$$\alpha$$
 rad tal que: $\frac{\alpha}{\frac{4\pi}{3}} = \frac{12}{4} \Rightarrow \alpha = 4\pi$

Alternativa d.

97. a) A medida x, em radiano, do arco é dada por:

$$x = \frac{30}{10} \operatorname{rad} = 3 \operatorname{rad}$$

Logo, a velocidade angular ω_a do ponto é:

$$\omega_a = \frac{3}{2} \text{ rad/min} = 1,5 \text{ rad/min}$$

Portanto, a velocidade angular do ponto P é 1,5 rad/min.

b)
$$\omega_a = \frac{3.6 \text{ rad}}{1 \text{ s}}$$

Em 3 segundos, o ponto Q percorrerá:

$$3 \cdot 3,6 \text{ rad} = 10,8 \text{ rad}$$

Sendo R a medida, em centímetro, do raio da circunferência, temos:

$$\frac{54}{R}$$
 = 10,8 \Rightarrow R = 5

Portanto, a medida do raio dessa circunferência é 5 cm.

98. Temos que 100 rotações equivalem a $2\pi \cdot 100 = 200\pi$ radianos.

Então, o disco gira 200π radianos em 3 minutos. Assim:

Medida do Tempo ângulo (rad) (s)
$$200\pi - 3 \cdot 60$$
 $x - 1$

$$\therefore x = \frac{10\pi}{9} \approx 3.5$$

Logo, a velocidade do disco é $\frac{10\pi}{9}$ rad/s ou, aproximadamente, 3,5 rad/s.

99. a) Temos que 1.200 rotações equivalem a $2\pi \cdot 1.200 = 2.400\pi$ radianos.

Ou seja, a centrífuga gira 2.400π radianos em 1 minuto.

Medida do Tempo ângulo (rad) (s)
$$2.400\pi - 60$$

$$x - 1$$

$$\therefore x = 40\pi$$

Logo, a velocidade da centrífuga é 40π rad/s.

b) Radiano Grau 2π — 360 40π — x

x = 7.200

Ou seja, a centrífuga gira 7.200° em 1 segundo. Transformando 1 s em hora, temos:

Medida do ângulo (grau)	Tempo (hora)
7.200 ———	<u>1</u> 3.600
х —	1

 $\therefore x = 25.920.000$

Logo, a velocidade da centrífuga é de $2,592 \cdot 10^7$ graus por hora.

c) A centrífuga do item a tem velocidade de 40π rad/s. Então, em 8 minutos ela gira:

 $40\pi \cdot 8 \cdot 60$ rad, ou seja, 19.200π rad

Em 8 minutos, temos 20 \cdot 8 \cdot 60 voltas, ou seja, 9.600 voltas.

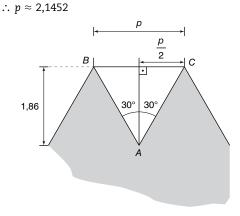
Medida do ângulo Comprimento
$$2\pi \text{ rad}$$
 $2\pi \cdot 10 \text{ cm}$ 19.200 $\pi \text{ rad}$ x

Logo, a distância percorrida pelo tubo em 8 minutos é de aproximadamente 6 km.

100. a) No triângulo equilátero destacado na figura a seguir, temos:

∴ $x = 192.000\pi$ cm = 1,92 π km \approx 6 km

tg 30° =
$$\frac{\frac{p}{2}}{1,86}$$
 $\Rightarrow \frac{\sqrt{3}}{3} = \frac{p}{3,72}$
 $\therefore p = \frac{3,72\sqrt{3}}{3} \Rightarrow p \approx \frac{3,72\cdot 1,73}{3}$



Logo, a medida do passo da rosca é 2,15 mm, aproximadamente.

b) A cada volta do parafuso, cada crista da rosca se desloca um passo p no interior da peça de metal. Como 2.700° equivalem a 7,5 voltas, concluímos que a penetração do parafuso no interior da peça equivale a 7,5 · 2,15 mm, aproximadamente, ou seja, 16,125 mm.

101. a) Observando que uma volta tem 3,4 km de extensão, concluímos que 3,8 voltas têm:

$$3.8 \cdot 3.4 \text{ km} = 12.92 \text{ km}$$

b)
$$\frac{15,1}{3,4} \approx 4,44$$

Logo, 15,1 km correspondem a 4 voltas completas (13,6 km) mais 1,5 km.

Portanto, a pessoa terá parado no marco 1,5 km.

c) Na passagem pelo marco 2,5 km, as distâncias percorridas por uma pessoa que deu exatamente 5 voltas são:

2,5 km; 5,9 km; 9,3 km; 12,7 km e 16,1 km

A expressão que representa esses valores é:

$$x = 2.5 + k \cdot 3.4$$
, com $k \in \mathbb{Z}$ e $0 \le k \le 4$
Expressão II.

A circunferência trigonométrica: seno, cosseno e tangente

102. a) A abscissa x pode ser representada pela função cosseno. Como o raio da roda-gigante mede 75 m, a abscissa pode ser representada em função do ângulo α por: $x = 75 \cdot \cos \alpha$

> Agora, vamos representar o ângulo α em função do tempo t:

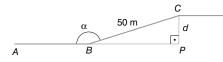
$$\begin{array}{ccc} \text{Medida} & \text{Tempo} \\ \text{do ângulo} & \text{(min)} \\ 2\pi \ \text{rad} & ------ & 30 \\ \alpha \ \text{rad} & ----- & t \end{array} \Rightarrow \alpha = \frac{\pi t}{15}$$

Assim: $x = 75 \cdot \cos \frac{\pi t}{15}$

- b) Analogamente ao item a, temos: $y = 75 \cdot \text{sen } \frac{\pi t}{15}$
- c) Observando que no instante inicial o ponto P está a uma altura de 90 m, temos:

$$h = 90 + 75 \cdot \text{sen } \frac{\pi t}{15}$$

103. Sendo do deslocamento vertical procurado, esquematizamos:



$$\operatorname{sen}\left(180-\alpha\right)=\frac{d}{50}$$

Como sen (180 – α) = sen α , temos:

$$0,3 = \frac{d}{50} \implies d = 15$$

Logo, o deslocamento vertical será de 15 m.

104. No decorrer de cada dia, a temperatura T, em grau Celsius, no interior de uma câmara frigorífica pode ser descrita em função do tempo t, em hora, pela função $T(t) = -3 + 2 \operatorname{sen} \frac{\pi t}{6}$, em que t = 0 representa a meia-noite (0 hora).

a)
$$T(5) = -3 + 2 \operatorname{sen} \frac{5\pi}{6} = -3 + 2 \operatorname{sen} \frac{\pi}{6}$$

 $T(5) = -3 + 2 \cdot \frac{1}{2} = -2$

Logo, a temperatura às 5 h é -2 °C.

b)
$$T(7) = -3 + 2 \operatorname{sen} \frac{7\pi}{6} = -3 - 2 \operatorname{sen} \frac{\pi}{6}$$

 $T(7) = -3 - 2 \cdot \frac{1}{2} = -4$

Logo, a temperatura às 7 h é -4 °C.

c)
$$T(11) = -3 + 2 \operatorname{sen} \frac{11\pi}{6} = -3 - 2 \operatorname{sen} \frac{\pi}{6}$$

 $T(11) = -3 - 2 \cdot \frac{1}{2} = -4$

Logo, a temperatura às 11 h é −4 °C.

d)
$$T(17) = -3 + 2 \operatorname{sen} \frac{17\pi}{6} = -3 + 2 \operatorname{sen} \frac{\pi}{6}$$

 $T(17) = -3 + 2 \cdot \frac{1}{2} = -2$

Logo, a temperatura às 17 h é -2 °C.

e) A temperatura máxima ocorre quando o seno assume seu valor máximo, ou seja, 1. Assim:

$$\begin{split} T_{m\acute{a}x} &= -3 + 2 \cdot 1 \\ \therefore \ T_{m\acute{a}x} &= -1 \, ^{\circ}C \end{split}$$

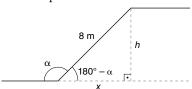
$$T_{m\acute{a}x} = -1 \,^{\circ}\text{C}$$

f) A temperatura mínima ocorre quando o seno assume seu valor mínimo, ou seja, -1. Assim:

$$T_{min} = -3 + 2 \cdot (-1)$$

$$\therefore T_{min} = -5 \,^{\circ}\text{C}$$

105. Façamos um esquema:



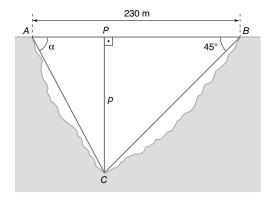
$$\cos (180^{\circ} - \alpha) = \frac{x}{8} \Rightarrow -\cos \alpha = \frac{x}{8}$$
$$\therefore -\left(-\frac{5}{8}\right) = \frac{x}{8} \Rightarrow x = 5$$

Aplicando o teorema de Pitágoras, temos:

$$8^2 = 5^2 + h^2 \implies h^2 = 39 \implies h = \sqrt{39}$$

Logo, a altura do piso superior em relação ao piso inferior é $\sqrt{39}$ m ou, aproximadamente, 6,24 m.

106. Sendo p a profundidade procurada, em metro, esquematizamos:



No triângulo BCP, temos: tg $45^{\circ} = 1 = \frac{p}{PB} \implies p = PB$ Logo, AP = 230 - p.

Como não temos a medida AC da hipotenusa do triângulo ACP, convém achar o valor de tg α . Substituindo sen α por $\frac{15}{17}$ na relação fundamental da Trigonometria, temos:

$$\left(\frac{15}{17}\right)^2 + \cos^2 \alpha = 1 \implies \cos^2 \alpha = \frac{64}{289}$$

$$\therefore$$
 cos $\alpha = -\frac{8}{17}$ (não convém) ou cos $\alpha = \frac{8}{17}$

Assim:
$$\operatorname{tg} \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} = \frac{\frac{15}{17}}{\frac{8}{17}} = \frac{15}{8}$$

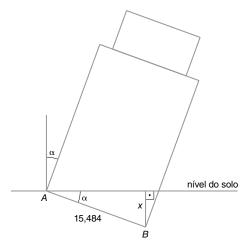
Observando o triângulo ACP, temos:

$$tg \alpha = \frac{p}{AP} \Rightarrow \frac{15}{8} = \frac{p}{230 - p}$$

$$\therefore 8p = 3.450 - 15p \Rightarrow 23p = 3.450$$

Portanto, a cratera tem 150 m de profundidade.

107. a) Indicando por x a medida, em metro, do afundamento vertical do ponto B, esquematizamos:



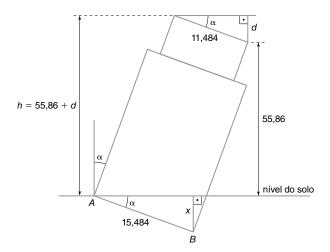
Assim, temos: sen $\alpha = \frac{x}{15,484}$

Como tg $\alpha = 0,06977$, obtemos sen $\alpha = 0,0696$ com o auxílio de uma calculadora. Logo:

$$sen \ \alpha = \frac{x}{15,484} \ \Rightarrow \ 0,0696 = \frac{x}{15,484}$$

Ou seja, o afundamento vertical do ponto B foi de 1,08 m, aproximadamente.

b) Indicando por *d* a distância vertical, em metro, entre os pontos mais alto e mais baixo da torre, esquematizamos:



Assim, temos que:

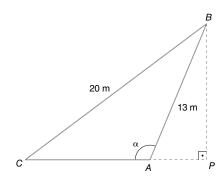
$$\operatorname{sen} \alpha = \frac{d}{11,484} \Rightarrow 0,0696 = \frac{d}{11,484}$$

$$\therefore d \approx 0.8$$

Logo:
$$h = 55,86 + 0,8 = 56,66$$

Ou seja, na parte mais elevada, a altura da torre mede 56,66 m, aproximadamente.

108. Como a tangente do ângulo BÂC é negativa, concluímos que esse ângulo é obtuso. Então, podemos esquematizar a situação do seguinte modo:



Temos:

$$tg \ \alpha = -\frac{12}{5} \Rightarrow \frac{sen \ \alpha}{cos \ \alpha} = -\frac{12}{5}$$

$$\therefore \cos \alpha = -\frac{5 \operatorname{sen} \alpha}{12} \quad \text{(I)}$$

Substituindo (I) na relação fundamental da Trigonometria, temos:

$$sen^2 \alpha + \left(-\frac{5 sen \alpha}{12}\right)^2 = 1 \Rightarrow$$

$$\Rightarrow \frac{169 \text{ sen}^2 \alpha}{144} = 1$$

$$\therefore$$
 sen $\alpha = -\frac{12}{13}$ (não convém) ou sen $\alpha = \frac{12}{13}$

Lembrando que sen (180° $-\alpha$) = sen α , no triângulo ABP, temos:

$$sen (180^{\circ} - \alpha) = \frac{BP}{13} \Rightarrow \frac{12}{13} = \frac{BP}{13}$$

Aplicando o teorema de Pitágoras no triângulo APB, concluímos que AP = 5.

Aplicando o teorema de Pitágoras no triângulo PBC, temos:

$$12^2 + PC^2 = 20^2 \Rightarrow PC = 16$$

Assim, concluímos:

$$AC = PC - AP = 16 - 5$$

109. a)
$$\frac{1}{4} = \frac{1 - \sin x}{3} \Rightarrow \sin x = \frac{1}{2}$$

Como x é medida de um ângulo agudo, temos que $x=30^{\circ}$.

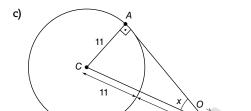
Logo, o cabeceador vê $\frac{1}{4}$ da superfície da bola sob um ângulo de 60°.

b)
$$\frac{1}{8} = \frac{1 - \sin x}{2} \Rightarrow \sin x = \frac{3}{4}$$

Com o auxílio de uma calculadora científica, obtemos:

$$\alpha \approx 48,6^{\circ}$$

Logo, o cabeceador vê $\frac{1}{8}$ da superfície da bola sob um ângulo de 97,2°, aproximadamente.



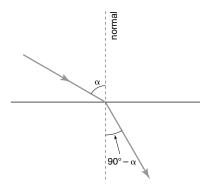
Temos:

$$\begin{cases} \frac{7}{25} = \frac{1 - \sin x}{2} \\ \sin x = \frac{11}{11 + d} \end{cases} \Rightarrow \begin{cases} \sin x = \frac{11}{25} \\ \sin x = \frac{11}{11 + d} \end{cases}$$

$$\therefore \frac{11}{11+d} = \frac{11}{25} \Rightarrow d = 14$$

Logo, a distância entre o olho de mira e a bola é 14 cm.

110. Esquematizando, temos:



Sabemos que: $n_1 \cdot \text{sen } i = n_2 \cdot \text{sen } r$

Então:
$$\frac{5}{4} \cdot \text{sen } \alpha = \frac{5\sqrt{3}}{4} \cdot \text{sen } (90^{\circ} - \alpha)$$

$$\therefore$$
 sen $\alpha = \sqrt{3} \cdot \text{sen } (90^{\circ} - \alpha)$

Lembrando que sen $(90^{\circ} - \alpha) = \cos \alpha$, temos:

$$sen \alpha = \sqrt{3} \cdot cos \alpha$$

$$\therefore \frac{\text{sen } \alpha}{\cos \alpha} = \text{tg } \alpha = \sqrt{3}$$

Portanto, $\alpha = 60^{\circ}$.

111. tg
$$x = \frac{\sqrt{3}}{3} \Rightarrow \alpha = \frac{\pi}{6}$$
, para $0 < \alpha < \frac{\pi}{2}$

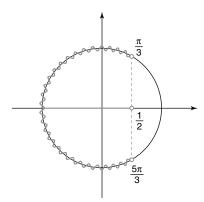
Dividindo o comprimento do arco pela medida R do raio de curvatura, obtemos a medida do ângulo central correspondente, em radiano. Assim:

$$\frac{20}{R} = \frac{\pi}{6} \Rightarrow R = \frac{120}{\pi}$$

Logo, o raio de curvatura mede $\frac{120}{\pi}$ m, ou aproximadamente 38,2 m.

112. Queremos os valores de t, com $0 \le t \le 24$, tais que:

$$T=-1+2\,cos\frac{\pi(t+1)}{6}<0\Rightarrow cos\frac{\pi(t+1)}{6}<\frac{1}{2}$$



Assim:
$$\frac{\pi}{3} + k \cdot 2\pi < \frac{\pi(t+1)}{6} < \frac{5\pi}{3} + k \cdot 2\pi$$

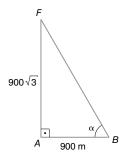
$$\therefore 1 + 12k < t < 9 + 12k$$

Para k = 0, temos: 1 < t < 9

Para k = 1, temos: 13 < t < 21

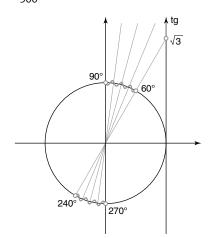
Concluímos, então, que a temperatura esteve negativa entre 1 h e 9 h e entre 13 h e 21 h.

113. Sendo α a medida do ângulo A \hat{B} F, esquematizamos:



Para AF superior a $900\sqrt{3}$ m, temos:

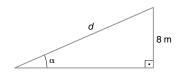
$$tg \ \alpha > \frac{900 \sqrt{3}}{900} \Rightarrow tg \ \alpha > \sqrt{3}$$



Assim: 60° < α < 90° ou 240° < α < 270° (não convém). Logo, as possíveis medidas para o ângulo ABF são: 68° , 72° e 80°

Alternativa e.

114. Esquematizando a situação, temos:



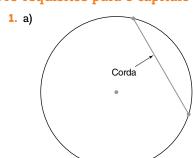
Se
$$18 < d < 24$$
, temos:

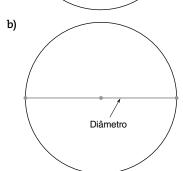
$$\frac{8}{24} < sen \ \alpha < \frac{8}{18}$$

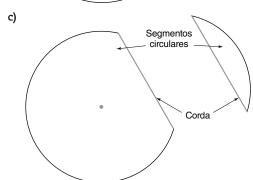
 $\frac{8}{24} < sen \ \alpha < \frac{8}{18}$ Com o auxílio de uma calculadora, obtemos:

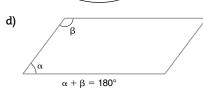
19,47°
$$< \alpha <$$
 26,39°

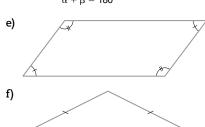
Pré-requisitos para o capítulo 13

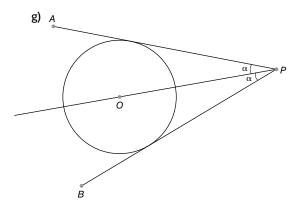


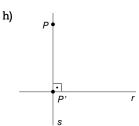


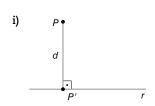




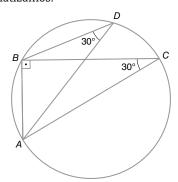








2. Os ângulos BDA e BCA são congruentes, pois estão inscritos em um mesmo arco. O ângulo ABC é reto, pois está inscrito em meia circunferência. Assim, esquematizamos:



Pela soma dos ângulos internos de um triângulo, concluímos que a medida do ângulo BÂC é 60°.

3. a) Como a fórmula da área de um triângulo é dada por $\frac{\text{base} \cdot \text{altura}}{2}$, temos:

$$\frac{8\cdot 5}{2}=20$$

Portanto, a área desse triângulo é 20 cm².

b) Considerando a medida da altura relativa ao lado \overline{AC} como x, temos:

$$20 = \frac{10 \cdot x}{2} \Rightarrow x = 4$$

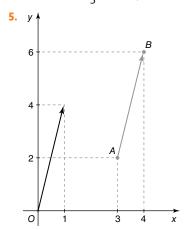
Portanto, a medida da altura relativa ao lado \overline{AC} é 4 cm.

4. a) Sabemos que a soma dos ângulos internos de um polígono é dada pela fórmula $S_i = (n-2) \cdot 180$, sendo n o número de lados do polígono. Como o pentágono tem 5 lados, então:

$$S_i = (5 - 2) \cdot 180 = 540$$

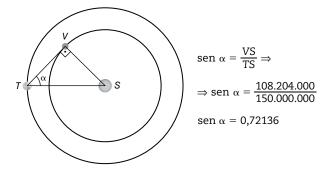
Portanto, a soma dos ângulos internos de um pentágono é 540° .

b) Como a soma de todos os ângulos é 540°, então para um pentágono regular cada ângulo tem medida $\frac{540^{\circ}}{5}$, ou seja, 108°.



Matemática sem fronteiras

1. Indicando por α a medida do ângulo \widehat{VTS} , temos:



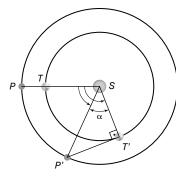
Com o auxílio de uma calculadora científica, concluímos:

$$\alpha \approx 46,17^{\circ}$$

2. Admitindo a hipótese de que a Terra é esférica e que as órbitas dos planetas do sistema solar são circulares e coplanares, tendo o Sol como centro, calculamos a distância entre a Terra e um planeta superior (planeta com raio orbital maior que o da Terra), a partir da distância d entre a Terra e o Sol. Para isso, escolhemos um momento em que o ângulo de vértice no Sol, cujos lados passam pela Terra e pelo planeta, assume sua medida máxima, com o que obtemos um triângulo retângulo, em cujo vértice do ângulo reto está a Terra, conforme explicado a seguir.

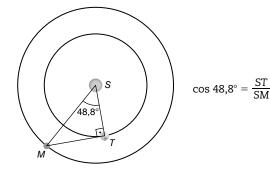
Na figura a seguir, o planeta superior, a Terra e o Sol estão alinhados, ocupando as posições P, T e S, respectivamente. Após uma medida t de tempo, em hora, o planeta e a Terra ocupam as posições P' e T', de modo que o planeta é visto da Terra na linha do horizonte. Nesse momento, a reta $\overline{P'T'}$ é tangente

à órbita da Terra e, portanto, o ângulo $\widehat{ST'P'}$ é reto. Assim, concluímos que o ângulo de vértice no Sol, cujos lados passam pela Terra e pelo planeta, assume sua medida máxima α . Tendo em vista que todos os planetas do sistema solar giram em torno do Sol em um mesmo sentido (adote na figura o sentido anti-horário), que o período da órbita da Terra é de 24 h e que o período do planeta, em hora, é p, com p>24, calculamos a medida α , em função de p e t.



(Nota: O período da órbita de todo planeta superior é muito maior que o da órbita da Terra. O menor desses períodos é o de Marte, que é de 686 dias, aproximadamente.)

3. Temos:



Com o auxílio de uma calculadora científica, concluímos:

$$0,6587 \approx \frac{150.000.000}{SM} \Rightarrow SM \approx 227.721.000$$

Logo, a distância entre o Sol e o planeta Marte é 227.721.000 km, aproximadamente.

Análise da resolução

COMENTÁRIO: O aluno cometeu um erro ao admitir que α é uma medida da primeira volta positiva da circunferência trigonométrica.

Resolução correta:

Fazendo a mudança de variável $2x = \alpha$, temos:

sen
$$\alpha = 1 \Rightarrow \alpha = \frac{\pi}{2} + k \cdot 2\pi$$
, com $k \in \mathbb{Z}$

Retornando à variável original, obtemos:

$$2x = \frac{\pi}{2} + k \cdot 2\pi$$
, com $k \in \mathbb{Z}$

$$\therefore x = \frac{\pi}{4} + k\pi, \text{ com } k \in \mathbb{Z}$$

Como 0 \leqslant x < 2 π , concluímos que os únicos valores possíveis de k são 0 e 1:

•
$$k=0 \Rightarrow x=\frac{\pi}{4}+0\pi=\frac{\pi}{4}$$

•
$$k=1 \Rightarrow x=\frac{\pi}{4}+1 \cdot \pi=\frac{5\pi}{4}$$

Logo,
$$S = \left\{ \frac{\pi}{4}, \frac{5\pi}{4} \right\}$$
.