XXI Torneio Internacional das Cidades Outono de 1999

Júnior-Nível 0

Sua pontuação total é baseada nos três problemas em que você obteve mais pontos; os pontos dos ítens de um problema são somados. A pontuação máxima que pode ser obtida em cada problema é mostrada entre colchetes ...

1

(a) Um triângulo retângulo feito de papel é dobrado ao longo de uma reta de tal forma que o vértice do ângulo reto coincide com um dos outros vértices. Em qual razão as diagonais do quadrilátero obtido dividem—se ?

2 pontos

(b) Um triângulo retângulo de área 1 feito de papel é dobrado ao longo de uma reta de tal forma que o vértice do ângulo reto coincide com um dos outros vértices. O quadrilátero obtido é dividido pela diagonal que passa pelo terceiro vértice do triângulo. Determine a área do menor pedaço de papel determinado por esta divisão.

2 pontos

2

Triplas de inteiros a, b, e para as quais a+b+e=0 são consideradas. Para cada tripla calculamos o inteiro $d=a^{1999}+b^{1999}+e^{1999}$.

(a) Podemos ter d = 2?

2 pontos

(b) Podemos ter de primo ?

2 pontos

3

n retas são traçadas no plano de tal forma que cada uma intersecte exatamente 1999 outras. Determine n (dê todas as respostas possíveis)

4 pontos

4

Na Itália, fabricantes produzem relógios nos quais o ponteiro das horas dá uma volta a cada ^{24 horas}, enquanto que o ponteiro dos minutos dá ^{24 noltas}; o ponteiro dos minutos é maior do que o ponteiro das horas(num relógio comum, o ponteiro das horas dá *duas* voltas a cada 24 horas enquanto que o dos minutos dá ²⁴). Quantas posições dos dois ponteiros e da marca θ podem ocorrer nos relógios italianos num intervalo de ^{24 horas} e também nos relógios comums? (a marca θ é a posição marcando ^{24 horas} no relógio italiano e ^{12horas} no relógio comum)

4 pontos

5

São dados cartões $^{2 \times 1}$ de cartolina com uma diagonal desenhada em cada um. Assim, há dois tipos de cartões (já que as diagonais podem ser traçadas de duas formas) e dispõe—se de um suprimento ilimitado de cada tipo. É possível escolher 18 cartões e dispô—los em um quadrado $^{6 \times 6}$ de tal forma que os extremos das diagonais nunca coincidam ?

4 pontos

XXI Torneio Internacional das Cidades Outono de 1999

Sênior-Nível 0

Sua pontuação total é baseada nos três problemas em que você obteve mais pontos; os pontos dos ítens de um problema são somados. A pontuação máxima que pode ser obtida em cada problema é mostrada entre colchetes .

1

O incentro de um triângulo é ligado a seus vértices. Desta forma, o triângulo fica dividido em três triângulos menores. Um destes triângulos é semelhante ao triângulo original. Determine seus ângulos.

4 pontos

2

Prove que existem infinitos inteiros positivos ímpares n para os quais $2^{n} + n$ é composto.

4 pontos

3

n planos são traçados no espaço de tal forma que cada uma intersecte exatamente 1999 outros. Determine n (dê todas as respostas possíveis)

4 pontos

4

É possível escolher 50 intervalos (possívelmente com superposição) na reta real satisfazendo as suas seguintes condições ?

- (a) os comprimentos dos intervalos são 1,2,3,...,50 ?
- (b) os extremos dos intervalos são todos os inteiros de 1 a 100.

4 pontos

5

São dados cartões $^{2 \times 1}$ de cartolina com uma diagonal desenhada em cada um. Assim, há dois tipos de cartões (já que as diagonais podem ser traçadas de duas formas) e dispõe—se de um suprimento ilimitado de cada tipo. É possível escolher 32 cartões e dispô—los em um quadrado $^{8 \times 8}$ de tal forma que os extremos das diagonais nunca coincidam ?

4 pontos