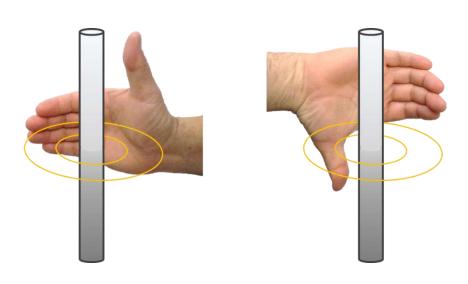

Fontes de campo magnético - Fio

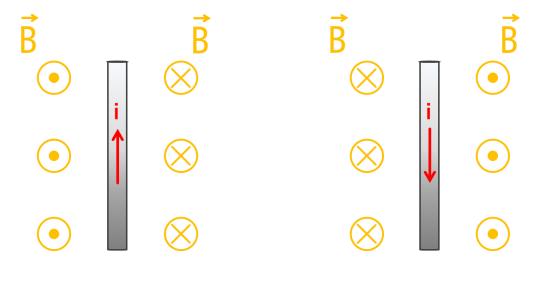
Fio retilíneo percorrido por uma corrente elétrica

Experimento de Oersted


As linhas de campo magnético são circulares e concêntricas com o fio.

Orientação do campo magnético

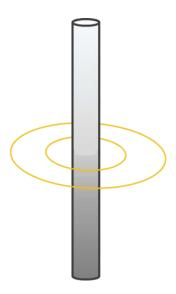
Regra da mão direita



Polegar: corrente elétrica Outros dedos: linhas de campo magnético

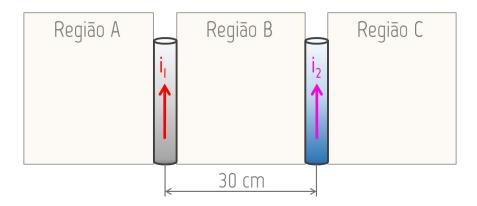
Orientação do campo magnético

Regra da mão direita



Ao invertermos o sentido da corrente elétrica o sentido do campo magnético também inverte.

Módulo do campo magnético


Exercício 01

(Fei) Um fio de cobre, reto e extenso é percorrido por uma corrente i =1,5 A. Qual é a intensidade do vetor campo magnético originado em um ponto à distanciar r = 0,25 m do fio. Dado: μ_0 = 4π . 10^{-7} T.m . A^{-1}

- a) B = 10^{-6} T
- b) $B = 0.6 \cdot 10^{-6} \text{ T}$
- c) B = $1,2 \cdot 10^{-6} \text{ T}$
- d) B = $2,4 \cdot 10^{-6} \text{ T}$

Exercício 02

Dois fios retilíneos e paralelos são percorridos por duas correntes i_1 = 10 A e i_2 = 5 A, conforme mostra a figura a seguir. Determine em qual região (A, B ou C) existe um ponto onde o campo magnético é nulo e calcule a distância entre esse ponto e o fio I.

