Saudações guerreiro! Futuro oficial da Marinha ou Aeronáutica do Brasil! Esta aula aborda o cálculo de probabilidades condicionais. Vamos começar a batalha? "O preguiçoso deseja e nada consegue, mas os desejos do diligente são amplamente satisfeitos."

SUMÁRIO

1. PROBABILIDADE CONDICIONAL	3
2. REGRA DO PRODUTO DE PROBABILIDADES	4
3. PROPOSIÇÕES	4
4. TEOREMA DE BAYES	
5. DISTRIBUIÇÃO BINOMINAL	5
EXERCÍCIOS DE COMBATE	6
GABARITO	11

PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL

1. PROBABILIDADE CONDICIONAL

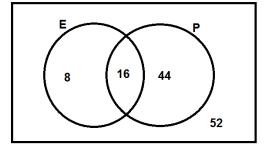
Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.

Suponha que um redator de um jornal recebeu 120 cartas de leitores sobre uma demissão polêmica de um professor universitário, mas o redator só pode publicar uma destas cartas, que será escolhida ao acaso.

As cartas foram escritas por alunos ou por pais, algumas apoiam o reitor que demitiu o professor, outras apoiam o professor, e estão dividias conforme o quadro abaixo:

	ESTUDANTES	PAIS
Apoiam o professor	16	44
Apoiam o reitor	8	52

A situação pode também ser representada pelo diagrama de Venn, onde E representa o conjunto das cartas que foram escritas pelos estudantes e P representa o conjunto de cartas que foram escritas em apoio ao professor.



Como podemos ver, a probabilidade de retirar uma carta escrita por um estudante que apoia o professor é $P(E \cap P) = \frac{16}{120} = \frac{2}{15}$.

Para calcular qual a probabilidade de uma carta apoiar o professor dado que foi escrita por um estudante,

temos
$$P(P|E) = \frac{P(P \cap E)}{P(E)} = \frac{\frac{16}{120}}{\frac{24}{120}} = \frac{16}{24}$$
,

Ou
$$P(P|E) = \frac{n^{\circ} \text{ de elementos de } P \cap E}{n^{\circ} \text{ de elementos de E}} = \frac{16}{24}$$
.

Generalizando a partir do nosso exemplo, vamos definir probabilidade condicional.

Se A e B são eventos de um espaço amostral S e P(B) ≠ 0, então a probabilidade do evento A ocorrer dado que ocorreu B é representada P (A|B) e é dada por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, $P(B) \neq 0$.

2. REGRA DO PRODUTO DE PROBABILIDADES

Dois eventos A e B são independentes quando a ocorrência, ou não ocorrência de um deles não influi na ocorrência do outro, isto é:

$$P(A \mid B) = P(A)$$

ou ainda,

$$P(A \cap B) = P(A) \cdot P(B)$$

3. PROPOSIÇÕES

Sejam A, B e C eventos de algum espaço amostral S. Então,

②
$$P(\emptyset | A) = 0$$
, $P(S | A) = 1$ e 0 ≤ $P(B|A) ≤ 1$

$$P((B \cup C)|A) = P(B|A) + P(C|A)$$
, se $B \cap C = \emptyset$

4. TEOREMA DE BAYES

Sejam
$$A_1, A_2, ..., A_p$$
 eventos disjuntos e $B \subset \bigcup_{i=1}^p A_i$, então

$$P(B) = \sum_{i=1}^{p} P(A_i).P(B \mid A_i)$$

e,
$$P(A_k | B) = \frac{P(A_k) \cdot P(B | A_k)}{P(A_1) \cdot P(B | A_1) + ... + P(A_n) \cdot P(B | A_n)}$$
.

5. DISTRIBUIÇÃO BINOMINAL

A probabilidade de ocorrerem exatamente k sucessos em uma sequência de n provas independentes, na qual a probabilidade de sucesso em cada prova é p, igual a

$$\binom{n}{k} p^k (1-p)^{n-k}$$
.

EXEMPLO: Jogamos uma moeda não viciada 10 vezes. Qual é a probabilidade de obtermos exatamente 5 caras?

SOLUÇÃO: Pondo *sucesso* = cara, temos p=1/2 em cada prova e as provas são independentes. Queremos achar a probabilidade de k=5 sucessos em n=10 provas. Pelo teorema binominal, a resposta é

$$\binom{10}{5} \left(\frac{1}{2}\right)^5 \left(1 - \frac{1}{2}\right)^5 = \frac{252}{1024} = \frac{63}{256}.$$

Agora vamos ao treinamento!

PROMILITARES • AFA/EFOMM/EN • MÓDULO 5

MATEMÁTICA

- 1. (FUVEST) Considere o experimento que consiste no lançamento de um dado perfeito (todas as seis faces têm probabilidades iguais). Com relação a esse experimento considere os seguintes eventos:
- I. O resultado do lançamento é par.
- II. O resultado do lançamento é estritamente maior que 4.
- III. O resultado é múltiplo de 3.
- a) I e II são eventos independentes?
- b) II e III são eventos independentes?
- 2. Numa prova há 7 perguntas do tipo verdadeiro falso. Calcular a probabilidade de acertarmos todas as 7 se:
- a) escolhermos aleatoriamente as 7 respostas,
- b) escolhermos aleatoriamente as respostas mas sabendo que há mais respostas "verdadeiro" do que "falso".
- 3. Um exame de laboratório tem eficiência de 95% para detectar uma doença quando essa doença existe de fato. Entretanto o teste aponta um resultado "falso positivo" para 1% das pessoas sadias testadas. Se 0,5% da população tem a doença, qual é a probabilidade de uma pessoa ter a doença dado que o seu exame foi positivo?
- 4. Um grupo de pessoas está classificado da seguinte forma:

	Fala inglês	Fala alemão	Fala francês
Homens	92	35	47
Mulheres	101	33	52

Escolhe-se uma pessoa ao acaso. Sabendo-se que esta pessoa fala francês, qual é a probabilidade de que seja homem?

- 5. (ITA 2011) Numa caixa com 40 moedas, 5 apresentam duas caras, 10 são normais (cara e coroa) e as demais apresentam duas coroas. Uma moeda é retirada ao acaso e a face observada mostra uma coroa. A probabilidade de a outra face desta moeda também apresenta uma coroa é:
- a) $\frac{7}{8}$

- b) $\frac{5}{7}$.
- c) $\frac{5}{6}$
- d) $\frac{3}{5}$
- e) $\frac{3}{7}$
- 6. (FUVEST 1998) Num torneio de tênis, no qual todas as partidas são eliminatórias, estão inscritos 8 jogadores. Para definir a primeira rodada do torneio realiza-se um sorteio casual que divide os 8 jogadores em 4 grupos de 2 jogadores cada um.
- a) De guantas maneiras diferentes pode ser constituída a tabela de jogos da primeira rodada?
- b) No torneio estão inscritos quatro amigos A, B, C e D. Nenhum deles gostaria de enfrentar um dos outros logo na primeira rodada do torneio. Qual é a probabilidade de que esse desejo seja satisfeito?
- c) Sabendo que pelo menos um dos jogos da primeira rodada envolve 2 dos 4 amigos, qual é a probabilidade condicional de que A e B se enfrentem na primeira rodada?
- 7. (UEG 2015) A tabela a seguir apresenta a preferência de homens e mulheres em relação a um prato, que pode ser doce ou salgado, típico de certa região do Estado de Goiás.

Sexo	Preferências	
JEXU	Doce	Salgado
Masculino	80	20
Feminino	60	40

Considerando-se os dados apresentados na tabela, a probabilidade de um desses indivíduos preferir o prato típico doce, sabendo-se que ele é do sexo feminino, é de

- a) 0,43
- b) 0,50
- c) 0,60
- d) 0,70
- 8. (Unesp 2015) Uma loja de departamentos fez uma pesquisa de opinião com 1.000 consumidores, para monitorar a qualidade de atendimento de seus serviços. Um dos consumidores que opinaram foi sorteado para receber um prêmio pela participação na pesquisa.

A tabela mostra os resultados percentuais registrados na pesquisa, de acordo com as diferentes categorias tabuladas.

CATEGORIAS	PERCENTUAIS
ótimo	25
regular	43
péssimo	17
não opinaram	15

Se cada consumidor votou uma única vez, a probabilidade de o consumidor sorteado estar entre os que opinaram e ter votado na categoria péssimo é, aproximadamente,

- a) 20%.
- b) 30%.
- c) 26%.
- d) 29%.
- e) 23%.
- 9. (UNESP 2014) Em um condomínio residencial, há 120 casas e 230 terrenos sem edificações. Em um determinado mês, entre as casas, 20% dos proprietários associados a cada casa estão com as taxas de condomínio atrasadas, enquanto que, entre os proprietários associados a cada terreno, esse percentual é de 10%. De posse de todos os boletos individuais de cobrança das taxas em atraso do mês, o administrador do empreendimento escolhe um boleto ao acaso. A probabilidade de que o boleto escolhido seja de um proprietário de terreno sem edificação é de
- a) $\frac{24}{350}$
- b) $\frac{24}{47}$
- c) $\frac{47}{350}$
- d) $\frac{23}{350}$
- e) $\frac{23}{47}$
- 10. Um dia você captura dez peixes em um lago, marca-os e coloca-se de novo no lago. Dois dias após, você captura vinte peixes no mesmo lago e constata que dois desses peixes haviam sido marcado por você. Se o lago possui k peixes, qual era a probabilidade de, capturando vinte peixes, encontrar dois peixes marcados?
- 11. A circulação de uma estrada é cortada por cinco sinais luminosos, não sincronizados, cuja distância mínima entre si é de 2,3 km. Os sinais têm ciclo de 1 minuto, com duração para o sinal verde de 30, 30, 40, 40 e 45

segundos, respectivamente. Se um carro percorre a estrada, à velocidade média de 60 km/h, observando a todos os sinais, qual a probabilidade de não ser parado por nenhum deles?

- 12. Para pessoas com idades de 20, 21, 22 e 23 anos, as probabilidades de morte durante cada ano em curso são iguais, respectivamente, a p_1, p_2, p_3, p_4 . Se A, B e C são pessoas com 20, 21, 22 anos, pede-se para calcular: (i) a probabilidade dos três sobreviverem, até o fim do ano; (ii) de terem todos morridos, até o fim do ano; (iii) de no máximo ter ocorrido uma morte, até o fim do ano; (iv) de pelo menos um deles ter morrido, até o fim do ano; (v) de A sobreviver pelo menos dois anos; (vi) de A morrer até o fim do primeiro ano, e B morrer no segundo ano.
- 13. (AFA 2013) Um dado cúbico tem três de suas faces numeradas com "0", duas com "1" e uma com "2". Um outro dado, tetraédrico, tem duas de suas faces numeradas com "0", uma com "1" e uma com "2". Sabe-se que os dados não são viciados.

Se ambos são lançados simultaneamente, a probabilidade de a soma do valor ocorrido na face superior do dado cúbico com o valor ocorrido na face voltada para baixo no tetraédrico ser igual a 3 é de

- a) 12,5%
- b) 16,6%
- c) 37,5%
- d) 67,5%

14. (AFA 2011) Considere que:

- I. Em uma urna encontram-se p bolas vermelhas e q bolas azuis;
- II. Duas bolas são retiradas dessa urna, sucessivamente e com reposição.

Sabe-se que x é a variável que indica o número de bolas azuis observadas com as retiradas, cuja distribuição de probabilidade está de acordo com a tabela a seguir.

Nessas condições, é correto afirmar que

- a) a probabilidade de se observar no máximo uma bola azul é 64%;
- b) se p = 6, então q = 9;
- c) se p = 18, então q = 12;
- d) p + q é necessariamente menor ou igual a 100.

15. (OBM 2001) Uma rifa foi organizada entre os 30 alunos da turma do Pedro. Para tal, 30 bolinhas numeradas de 1 a 30 foram colocadas em uma urna. Uma delas foi, então, retirada da urna. No entanto, a bola caiu no chão e se perdeu e uma segunda bola teve que ser sorteada entre as 29 restantes. Qual a probabilidade de que o número de Pedro tenha sido o sorteado desta segunda vez?

- a) 1/29
- b) 1/30
- c) 1/31
- d) 1/60
- e) 2/31

16. (ITA 2004) São dados dois cartões, sendo que um deles tem ambos os lados na cor vermelha, enquanto o outro tem um lado na cor vermelha e o outro lado na cor azul. Um dos cartões é escolhido ao acaso e colocado sobre uma mesa. Se a cor exposta é vermelha, calcule a probabilidade e o cartão escolhido ter a outra cor também vermelha.

17. (FGV) Uma escola comprou computadores de 3 fabricantes: A, B e C. 30% foram comprados de A, 30% de B e o restante de C. A probabilidade de um computador fabricado por A apresentar algum tipo de problema, nos próximos 30 meses, é 0,1. As mesmas probabilidades dos fabricantes B e C são respectivamente 0,15 e 0,2.

- a) Qual a probabilidade de que um computador escolhido ao acaso, seja fabricado por A e apresente algum problema nos próximos 30 meses?
- b) Se um computador apresentar algum problema nos próximos 30 meses, qual a probabilidade de que tenha sido fabricado por A?

18. Num exame há 3 respostas para cada pergunta e apenas uma delas é certa. Portanto, para cada pergunta, um aluno tem probabilidade 1/3 de escolher a resposta certa se ele está adivinhando e 1 se sabe a resposta. Um estudante sabe 30% das respostas do exame. Se ele deu resposta correta para uma das perguntas, qual é a probabilidade de que a adivinhou?

1.

REPOSTAS:

- a) I e II são independentes.
- b) II e III não são independentes.

a)

$$P(par) = P(I) = \frac{3}{6} = \frac{1}{2}, P(>4) = P(II) = \frac{2}{6} = \frac{1}{3} \rightarrow$$

$$P(I \cap II) = P(I) \cap P(II) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}.$$

I e II são independentes.

b)

$$P(III) = \frac{2}{6} = \frac{1}{3}, P(II) = \frac{2}{6} = \frac{1}{3} \rightarrow$$

$$P(II) \cdot P(III) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9} e P(II \cap III) = \frac{1}{6}$$

II e III não são independentes.

2.

- a) Há 2^7 = 128 possibilidades e portanto P[acertar os 7 testes] = $\frac{1}{128}$.
- b) Seja A o conjunto de todos os pontos com mais respostas "V" do que "F". Temos que

$$\#(A) = \binom{7}{4} + \binom{7}{5} + \binom{7}{6} + \binom{7}{7} = 35 + 21 + 7 + 1 = 64$$
, logo a probabilidade procurada é igual a $1/64$.

3. A probabilidade procurada é P(doente positivo) que é igual a :

$$\frac{P(doente \cap positivo)}{P(positivo)} = \frac{P(doente) \cdot P(positivo \mid doente)}{P(doente) \cdot P(positivo \mid doente) + P(sadio) \cdot P(positivo \mid sadio)}$$

$$= \frac{0,005.0,95}{0,005.0,95+0,995.0,01} = \frac{95}{294} \cong 0,3231.$$

4. Seja A o evento que ocorre se a pessoa escolhida fala francês e B se a pessoa escolhida é homem. Temos

$$P(A) = \frac{47+52}{360} = \frac{99}{360}$$

$$P(A \cap B) = \frac{47}{360}$$

portanto

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{47/360}{99/360} = \frac{47}{99},$$

5. Seja A o evento "a face observada é coroa" e B o evento "a face oculta é coroa".

Pede-se a probabilidade condicional $P(B|A) = \frac{P(A \cap B)}{P(A)}$.

 $P(A \cap B)$ é a probabilidade de ser selecionada uma moeda com duas coroas, ou seja, $\frac{40-5-10}{40} = \frac{25}{40}$.

Há duas formas disjuntas de ocorrer o evento A:

- 1ª) Um moeda com duas coroas é selecionada, nesse caso a probabilidade é $\frac{25}{40} = \frac{5}{8}$.
- $2^{\underline{a}}$) Uma moeda normal é selecionada e a face observada é coroa, nesse caso a probabilidade é $\frac{10}{40} \cdot \frac{1}{2}$.

Logo,
$$P(A) = \frac{25}{40} + \frac{10}{40} \cdot \frac{1}{2} = \frac{60}{80} = \frac{6}{8} eP(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{8}}{\frac{6}{8}} = \frac{5}{6}.$$

RESPOSTA: C

6.

a)
$$\frac{\binom{8}{2} \cdot \binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{2}}{2} = 105.$$

b) Fixando A, B, C e D em jogos separados há um total de 4 adversários para o A, 3 para o B, 2 para o C e 1 para o D. Logo há 24 casos e a probabilidade solicitada é igual a $\frac{24}{105} = \frac{8}{35}$.

c)
$$p = \frac{\binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{2}}{105 - 24} = \frac{15}{81} = \frac{5}{27}$$
.

7.

$$P(Doce / Feminino) = \frac{60}{60 + 40} = 0,60.$$

RESPOSTA: C

8. A probabilidade pedida é dada por $\frac{17}{85} = 20\%$.

RESPOSTA: A

9.

P: probabilidade pedida.

20% de 120 = 24

10% de 230 = 23

Logo,
$$P = \frac{23}{23 + 24} = \frac{23}{47}$$
.

RESPOSTA: E

10

$$P = \frac{\binom{10}{2} \binom{k-10}{18}}{\binom{k}{20}}.$$

11. Seja A_i o seguinte evento: "o carro não é parado pelo i-ésimo sinal" (i = 1, 2, ..., 5); tem-se:

$$P_1(A_1) = P_2(A_2) = 30/60 = 1/2$$
, $P_3(A_3) = P_4(A_4) = 40/60 = 2/3$ e $P_5(A_5) = 45/60 = 3/4$.

Supondo a independência das ações dos sinais, obtemos:

$$P(A_1 \times A_2 \times ... \times A_5) = P_1(A_1)P_2(A_2)...P_5(A_5) = (1/2)^2.(2/3)^2.(3/4) = (1/12)$$

Onde $A_1 \times A_2 \times ... \times A_5$ é o evento "o carro não é parado por nenhum sinal"

12.

(i)
$$(1-p_1)(1-p_2)(1-p_3)$$

(ii) $p_1 p_2 p_3$

(iii)
$$(1-p_1)(1-p_2)(1-p_3)+p_1(1-p_2)(1-p_3)+(1-p_1)p_2(1-p_3)+(1-p_1)(1-p_2)p_3$$
,

(iv)
$$1-(1-p_1)(1-p_2)(1-p_3)$$

(v)
$$(1-p_1)(1-p_2)$$

(vi)
$$p_1 \left[\left(1 - p_2 \right) p_3 \right]$$

13. Resultados do dado cúbico: {0, 0, 0, 1, 1, 2}

Dado tetraédrico: {0, 0, 1, 2}

Somas possíveis (contanto as repetidas) = $6 \cdot 4 = 24$

Soma igual a 3: {(1,2), (1,2), (2,1)}

Portanto, a probabilidade de que a soma dos valores ocorridos em cada dado seja três, será dada por:

$$P = \frac{3}{24} = \frac{1}{8} = 12,5\%.$$

RESPOSTA: A

14. A probabilidade de sair duas bolas azuis é q.q = 0,16.

Portanto, q = 0,4= 2/5 e a probabilidade de sair uma bola vermelha é 3/5

Então
$$\frac{18}{x} = \frac{3}{5} \iff x = 30$$
 (total de bolas na urna).

Portanto, se p = 18, temos q = 12.

RESPOSTA: C

15. Para que Pedro seja sorteado na segunda vez, o número de Pedro não pode ter sido o primeiro sorteado, (sobram 29 possibilidades para o 1° sorteio) e deve então ser sorteado na segunda extração (1 possibilidade).

Assim, como os sorteios são independentes: $p = \frac{29}{30} \cdot \frac{1}{29} = \frac{1}{30}$.

16. O evento A = a face oposta é vermelha; evento B = a face exposta é vermelha.

$$p(A/B) = \frac{p(A \cap B)}{p(B)} = \frac{\frac{2}{4}}{\frac{3}{4}} = \frac{2}{3}.$$

- 17. Considere os seguintes eventos: A = conjunto de computadores comprados do fabricante A; B = conjunto dos computadores comprados de B; C = conjunto dos computadores comprados de C; D = A = conjunto dos computadores com defeito.
- a) $p(A \cap D) = p(A) \cdot p(D|A) = (0,3)(0,1) = 0.03$
- b) pelo teorema da probabilidade total:

$$p(D) = p(A).p(D|A) + p(B).p(D|B) + p(C).p(D|C) = (0,3)(0,1) + (0,4)(0,2) = 0,155$$

Assim:
$$p(A|D) = \frac{p(A \cap D)}{p(D)} = \frac{0.03}{0.155} = \frac{6}{31} = 19.35\%$$
.

18. Utilizando o Teorema de Bayes temos

P[adivinhou/resposta correta]=
$$\frac{0.70 \times \frac{1}{3}}{0.70 \times \frac{1}{3} + 0.30 \times 1} = \frac{7}{16}.$$