

MEMOREX

ENEM 2011

CIÊNCIAS NATURAIS E SUAS TECNOLOGIAS

ENEM 2011

Módulo 1. Evolução: evidências

1. Fixismo ou criacionismo

2. Evolução

3. Evidências da evolução biológica

- Fósseis
- Anatomia comparada
- Embriologia comparada
- Bioquímica comparada
- Órgãos vestigiais

Módulo 2. Evolução: lamarckismo e darwinismo

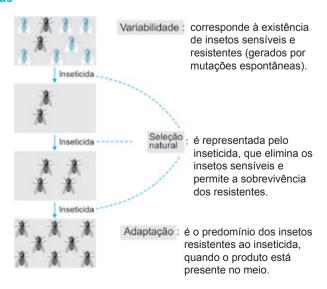
1. Lamarckismo

- Evolução e necessidade
- Lei do uso e desuso
- Lei da herança dos caracteres adquiridos
- Crítica ao lamarckismo

2. Darwinismo

- 0 mecanismo da evolução
- Malthus

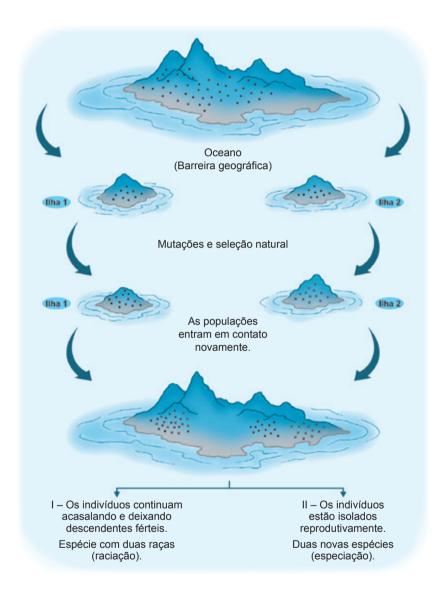
3. Darwin x Lamarck


Variabilidade	Seleção natural	Adaptação
Em certo momento, os ancestrais dos coelhos apresentavam indivíduos com tamanhos diferentes de orelhas.	Predadores atacam grupos de coelhos. Os que ouvem melhor (de orelhas longas) podem sobreviver aos ataques, pois fogem antes.	Coelhos com orelhas longas são mais abundantes no grupo.

Módulo 3. Evolução: neodarwinismo

1. Mecanismos da evolução

- Fontes de variabilidade (mutações e recombinação genética)
- Seleção natural
- Adaptação

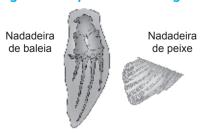

2. Insetos e inseticidas

3. Melanismo industrial

Módulo 4. Evolução: especiação, irradiação e convergência adaptativa

- 1. Espécie
- 2. Especiação

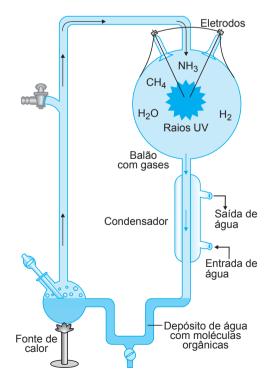
3. Irradiação adaptativa e homologia



Nadadeira de baleia


Membro superior humano

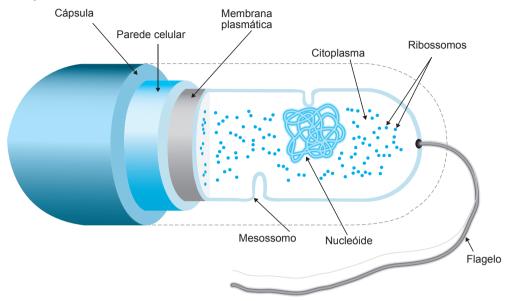
4. Convergência adaptativa e analogia


Módulo 5. Origem da vida: histórico

- 1. Abiogênese
- 2. Biogênese
- 3. Experiência de Redi
- 4. Experiência de Pasteur

Módulo 6. Origem da vida: hipótese heterotrófica

- 1. Condições da terra primitiva
 - Oparin e Haldane
 - Experiência de Miller



2. Hipótese heterotrófica x hipótese autotrófica

Módulo 7. Organização celular: célula bacteriana

- 1. Características gerais das células
- 2. Características de uma célula procariótica

1. Organização básica de uma célula animal

Módulo 8. Organização celular: célula animal

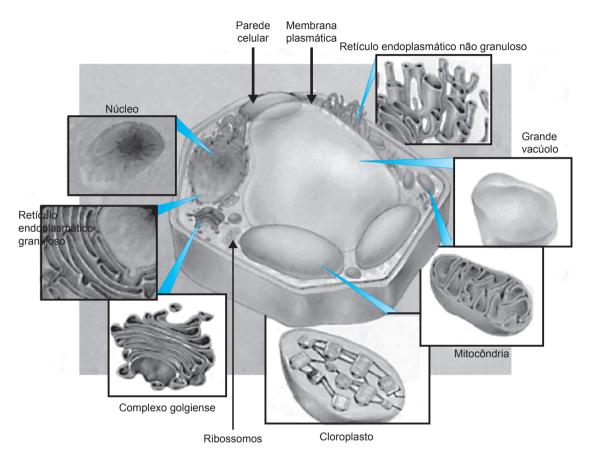
Retículo endoplasmático não-granuloso

Membrana plasmática

Mitocôndria

Poros nucleares

Envoltório Núcleo Cromatina


Ribossomos golgiense

Lisossomos

Retículo endoplasmático granuloso

Módulo 9. Organização celular: célula vegetal

1. Organização básica de uma célula vegetal

2. Morfologia e funções das principais estruturas celulares

Módulo 10 · Composição química: água e sais minerais

1. Metabolismo

- Anabolismo
- Catabolismo

2. Principais componentes químicos das células

- Substâncias inorgânicas: água e sais minerais
- Substâncias orgânicas: carboidratos, lipídios, proteínas, ácidos nucleicos e vitaminas

3. Água

- Propriedades
- Funções
- 4. Sais minerais

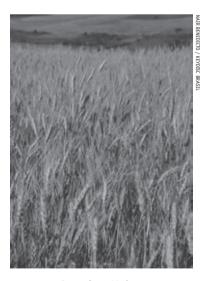
Mineral	Funções	Fontes	
Ferro	Presente na hemoglobina (transporte de 0 ₂)	Fígado, gema de ovo, carnes e vegetais verdes	
Magnésio	Presente na clorofila (fotossíntese)	Cereais integrais, vegetais verdes	
Fosfato	Armazenamento e transferência de energia (ATP) Presentes nos ácidos nucleicos (DNA e RNA)	Leite, carnes e cereais	
Cálcio	Participa da coagulação sanguínea e da contração muscular Componente de ossos e dentes	Vegetais verdes, leite, laticínios e ovos	
Sódio e potássio	Envolvidos com a condução dos impulsos nervosos	Sal de cozinha, leite e frutas	
Iodo	Componentes dos hormônio da tireoide (T ₃ e T ₄)	Peixes, frutos do mar e sal iodado	

Módulo 11. Composição química: carboidratos

1. Funções

- Energéticas
- Reserva
- Estruturais

2. Classificação


- Monossacarídeos: glicose, frutose e galactose
- Oligossacarídeos

Dissacarídeos	Unidades formadoras (monossacarídeos)	Fonte
Sacarose	Glicose + frutose	Cana, beterraba
Lactose	Glicose + galactose	Leite
Maltose	Glicose + glicose	Cereais

• Polissacarídeos: amido, glicogênio, celulose e quitina

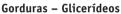
Cana-de-açúcar - Sacarose

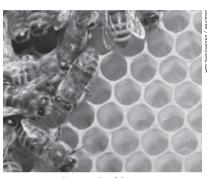
Cereais - Maltose

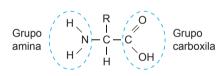
Módulo 12. Composição química: lipídios

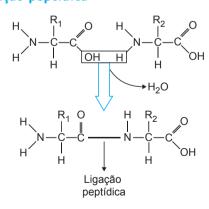
1. Funções

- Reservas energéticas
- Estruturais


2. Classificação

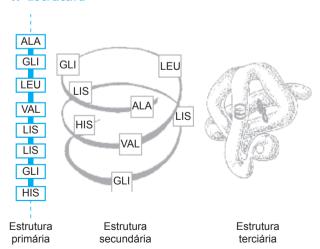

- Glicerídeos
- Cerídeos
- Fosfolipídios
- Estereoides

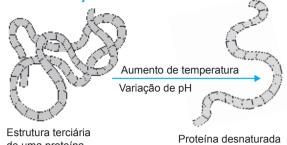



Cera - Cerídeos

Módulo 13 · Proteínas: estrutura e funções

1. Aminoácidos


3. Ligação peptídica

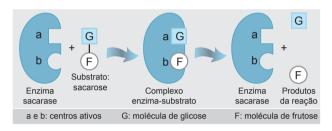

2. Tipos de aminoácidos

- Naturais
- Essenciais

4. Estrutura

5. Desnaturação

6. Funções

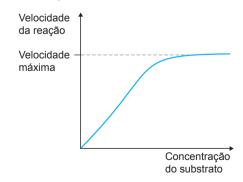

- Estrutural
- Hormonal
- Defesa
- Enzimática

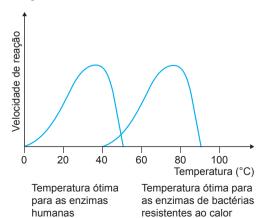
Módulo 14 · Proteínas: enzimas

1. Definição

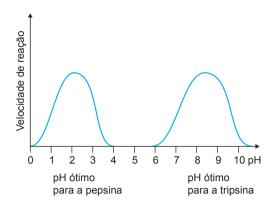
de uma proteína

2. Mecanismo de ação

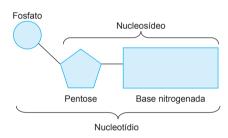

Reação enzimática de degradação da sacarose

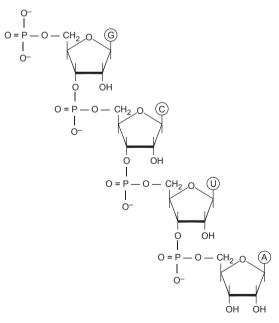

Efeito da desnaturação impede a ligação enzima-substrato

3. Fatores que influenciam a atividade enzimática

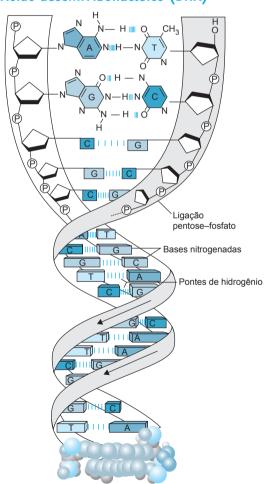

• Concentração do substrato

• Temperatura





Módulo 15 · Ácidos nucleicos: generalidades

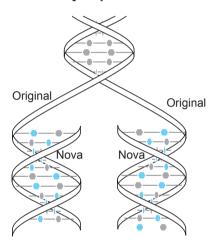

1. Nucleotídios

3. Ácido ribonucleico (RNA)

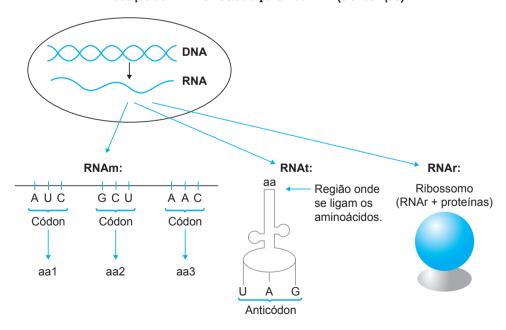
2. Ácido desoxirribonucleico (DNA)

MEMOREX

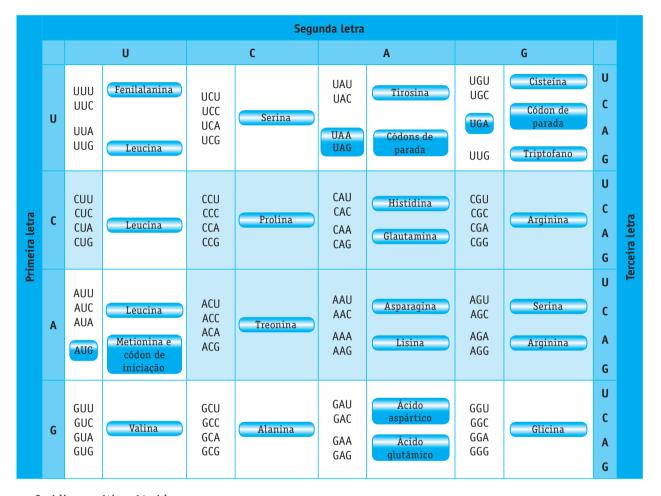
Módulo 16 · Ácidos nucleicos: DNA e RNA


1. Ácido desoxirribonucleico (DNA)

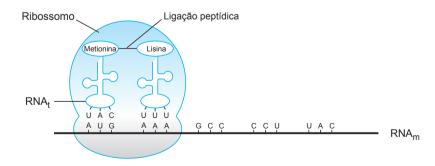
- Função
- Relação de Chargaff
- Duplicação semiconservativa (replicação)

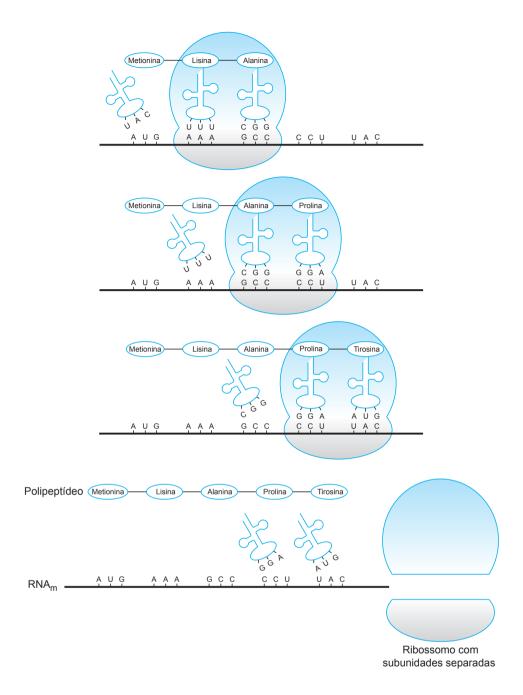

2. Ácido ribonucleico (RNA)

- Função
- Tipos de RNA
- Transcrição


Replicação do DNA

Produção de RNA no núcleo a partir do DNA (transcrição)




Módulo 17 · Código genético

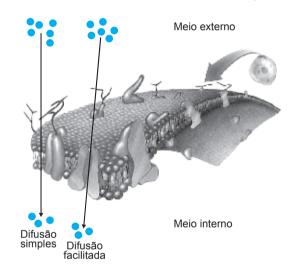
O código genético: 64 códons

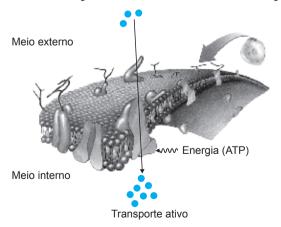
Módulo 18 · Síntese de proteínas



Módulo 19 · Membrana plasmática: estrutura e propriedades

- 1. Função
- 2. Localização


- 3. Composição
- 4. Modelo de mosaico fluido

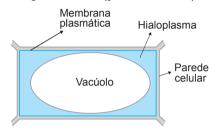

- 5. Especializações da membrana plasmática
 - Microvilosidades
 - Desmossomos
 - Interdigitações

Módulo 20 · Membrana plasmática: transporte passivo

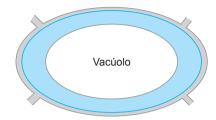
- 1. Difusão simples
- 2. Difusão facilitada
- 3. Osmose

Módulo 21. Membrana plasmática: transporte ativo

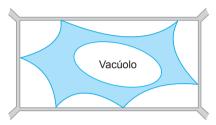
Módulo 22. Osmose na célula vegetal


Sc = Si - M

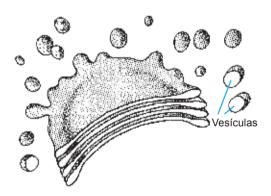
ou


DDP = PO - PT

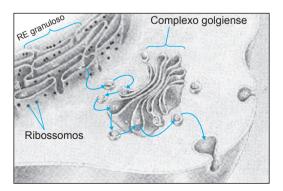
Sc ou DPD = capacidade da célula de ganhar água do meio Si ou PO = capacidade do vacúolo de sugar água (pressão de entrada)


M ou PT = resistência oferecida pela parede celular à entrada de áqua na célula (pressão de saída)

Celula vegetal em meio isotônico - Flácida

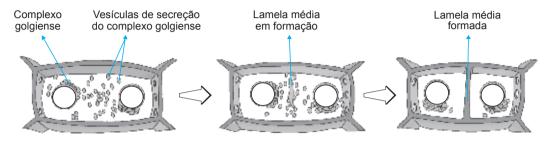

Célula vegetal em meio hipotônico - Túrgida

Célula vegetal em meio hipertônico - Plasmolisada


Módulo 23 · Complexo golgiense e secreção celular

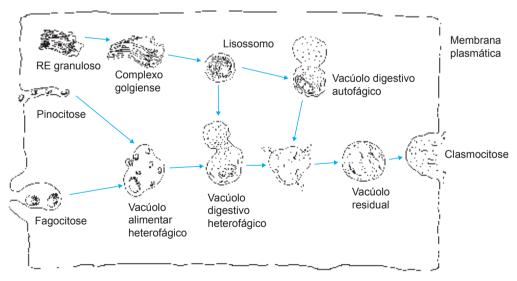
1. Estrutura

2. Funções


• Secreção celular

• Formação dos acrossomos dos espermatozoides

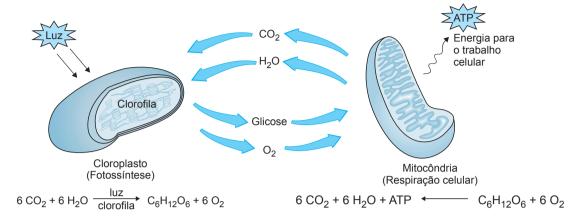
• Formação da lamela média em células vegetais



Módulo 24 · Lisossomos e digestão celular

1. Origem

2. Funções


- Heterofagia
- Autofagia
- Doenças lisossômicas

Etapas da digestão intracelular

Módulo 25 · Fundamentos da bioenergética

1. Metabolismo energético

2. ATP (adenosina trifosfato)

Módulo 26 · Fermentação

	Fermentação alcoólica	Fermentação láctica	Fermentação acética
Produto final	2 álcool etílico (etano) + 2 CO ₂	2 ácido láctico	2 ácido acético + 2 CO ₂
Organismos	Algumas bactérias, fungos e vegetais	Alguma bactérias (lactobacilos), fungos, protozoários e tecido muscular em anaerobiose	Algumas bactérias (acetobactérias)
Importância	Produção de bebidas (cerveja, vinho etc.), de combustível (álcool) e fabricação de pães	Produção de coalhadas, iogurtes, picles etc.	Produção de vinagre

Exercícios de Aplicação

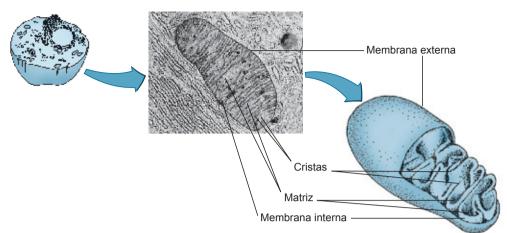
1. (UFAM) Na hipótese heterotrófica da origem da vida, ocorre o mecanismo de fermentação realizado por algumas bactérias e fungos. Um dos tipos bem conhecidos é a fermentação alcoólica da glicose.

Pergunta-se: qual é o produto final dessa reação?

a)
$$1 C_6 H_{12} O_6 \rightarrow 2 C_2 H_5 OH + 2 CO_2 + energia$$

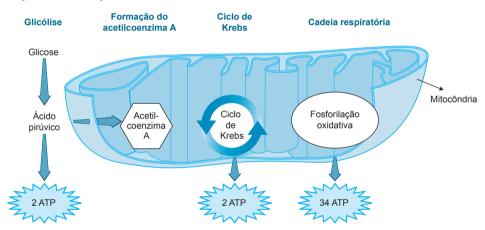
b)
$$1 C_6 H_{12} O_6 \rightarrow 3 C_2 H_5 OH + 2 CO_2 + \text{energia}$$

c) 1
$$C_6H_{12}O_6 \rightarrow$$
 4 C_2H_5OH + 2 CO_2 + energia

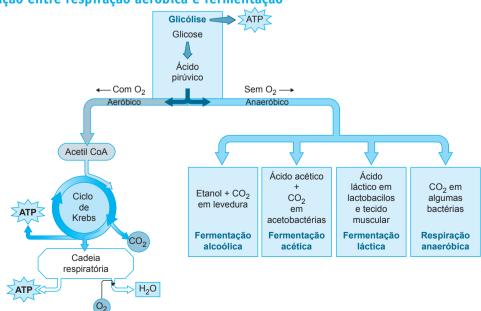

d)
$$1 C_6 H_{12} O_6 \rightarrow 2 C_2 H_5 OH + CO_2 + energia$$

e)
$$1 C_6 H_{12} O_6 \rightarrow 2 C_2 H_5 + 2 CO_2 + \text{energia}$$

Resposta: A


Na fermentação alcoólica, a glicose é convertida em álcool etílico, gás carbônico e energia, conforme a reação a seguir:

Módulo 27 · Respiração aeróbica (I)



Módulo 28 · Respiração aeróbica (II)

1. Reações do processo respiratório

2. Comparação entre respiração aeróbica e fermentação

