

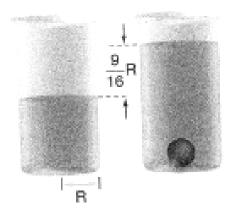
CURSO CIDADE

PREPARATÓRIO PARA CONCURSOS

TURMA:

NOME:

14º SIMULADO DE MATEMÁTICA


1. Qual o termo independente de x na expansão de $\left(\sqrt[5]{x} + \frac{1}{\sqrt[3]{x}}\right)^8$?

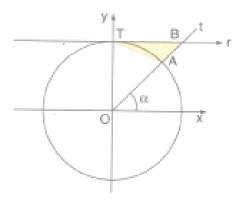
- (A) 104
- (B) 80
- (C) 72
- (D) 64
- (E) 56

2. Em uma fábrica, a máquina x produz 35% do total da produção de X; a máquina Y, 40% e a máquina Z os restantes 25%. Da produção de X, 2% apresentam defeito; da produção de Y, 1,5% apresenta defeito, e da produção de Z 0,8% apresenta defeito. Em um dia que a produção total das 3 máquinas foi de 20.000 peças, uma delas foi tirada ao acesso e verificou-se que era defeituosa. Qual a probabilidade de que essa peça tenha sido produzida na máquina X?

- (A) 7/15
- (B) 3/8
- (C) 1/15
- (D) 7/8
- (E) 5/8

3. Um tanque cilíndrico com água tem raio R. Mergulha-se nesse tanque uma esfera de aço e o nível da água sobe $\frac{9}{16}$ R (veja a figura). O raio da esfera é:

- (A) $\frac{3R}{4}$
- (B) $\frac{9R}{16}$
- (C) $\frac{3R}{5}$



- (D) $\frac{R}{2}$
- (E) $\frac{2R}{3}$
- 4. Um poliedro convexo é formado por 80 faces triangulares e 12 faces pentagonais. O número de vértices do poliedro é:
 - (A) 80
 - (B) 60
 - (C) 50
 - (D) 48
 - (E) 36
- 5. Seja A e B números reais que satisfazem à igualdade da expressão a seguir para todo valor de x que não anula nenhum dos denominadores. $\frac{1}{(x+2)(2x+1)} = \frac{A}{X+2} + \frac{B}{2X+1}$

A soma A + B é:

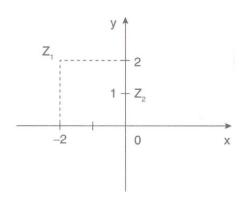
- (A) -1
- (B) $-\frac{1}{3}$
- (C) 0
- (D) $\frac{1}{3}$
- (E) $\frac{3}{2}$
- 6. Sabe-se que a equação $4x^3$ - $12x^2$ x+k=0, onde $k\in\mathbb{R}$, admite duas raízes opostas. O produto das raízes dessa equação é:
 - (A) -12
 - (B) $\frac{-1}{4}$
 - (C) $\frac{-3}{4}$
 - (D) $\frac{3}{4}$
 - (E) 12

7. Na figura, a reta r passa pelo ponto T = (0,1) e é paralela ao eixo Ox. A semirreta Ot forma um ângulo a com o semieixo Ox $(0^{\circ} < a < 90^{\circ})$ e intercepta a circunferência trigonométrica e a reta r nos pontos A e B respectivamente.

A área do \triangle ATB, como função de a, é dada por:

(A)
$$\frac{1-sen\ a}{2}$$
.cos a

(B)
$$\frac{1-\cos a}{2}$$
. sen a

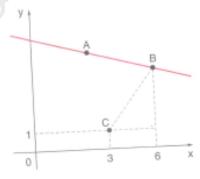

(C)
$$\frac{1-sen\ a}{2}$$
. sen a

(D)
$$\frac{1-sen\ a}{2}$$
.cot $g\ a$

(E)
$$\frac{1-sen\ a}{2}$$
. sen a

- 8. A igualdade sen $\pi x = 0$ é verdadeira se, e somente se, x for:
 - (A) Real.
 - (B) Inteiro.
 - (C) Complexo.
 - (D) Racional.
 - (E) Irracional.
- 9. O número de anagramas de palavra VESTIBULANDO que não apresentam as cinco vogais juntas é:
 - (A) 12!
 - (B) (8!) (5!)
 - (C) 12! (8!) (5!)
 - (D) 12! 8!
 - (E) 12! (7!)(5!)

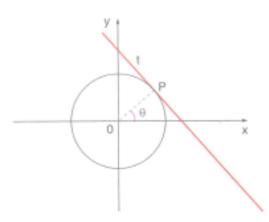
10. Se z_1 e z_2 são números complexos representados pelos seus afixos no plano de argand-Gauss abaixo, então $z_3 = z_1 \ z_2$ escrito na forma trigonométrica é:



- (A) $\sqrt{2}$ (cis 225°)
- (B) $\sqrt{2} \left(cis315^{\circ} \right)$
- (C) $2\sqrt{2}\left(cis45^{\circ}\right)$
- (D) $2\sqrt{2} (cis135^{\circ})$
- (E) $2\sqrt{2} (cis 225^{\circ})$

11. Dentre os complexos z = (x; y) tais que $\begin{cases} |z-1| \le 1 \\ x-y \ge 1 \end{cases}$, aquele de maior módulo tem:

- (A) x > 0 e y > 0
- (B) x < 0 e y = 0
- (C) x > 0 e y < 0
- (D) x < e y > 0
- (E) x = 0 e y > 0


12. Observe a figura a seguir. Nessa figura, A = (2;3) e $BC = \sqrt{10}$.

A equação da reta AB é:

- (A) x + 4y 14 = 0
- (B) x 4y + 14 = 0
- (C) 4x + y 14 = 0
- (D) 4x y + 14 = 0
- (E) x + 2y 7 = 0

13. A equação da real t, tangente à circunferência de raio r no ponto P, conforme figura abaixo é dada por:

- (A) $x \sin \theta + y \cos \theta = r$
- (B) x sem θ y cós θ = r
- (C) $x \cos \theta y \sin \theta = -r$
- (D) $x \cos \theta + y \sin \theta = r$
- (E) $x \cos \theta + y \sin \theta = -r$

14. A distância do centro da circunferência $x^2 + y^2 - 6x - 8y + 21 = 0$ à bissetriz dos quadrantes ímpares vale:

- (A) $\sqrt{5}$
- (B) $\sqrt{2}$
- (C) $\sqrt{3}$
- (D) $\frac{\sqrt{3}}{2}$
- (E) $\frac{\sqrt{2}}{2}$

15. A área da interseção das regiões do plano cartesiano limitada por $x^2 + (y-4)^2 \le 25$ e $y \le \frac{4}{3}x + 4$ é:

- (A) $\frac{9\pi}{2}$
- (B) $\frac{17\pi}{2}$
- (C) $\frac{25\pi}{2}$
- (D) $\frac{31\pi}{2}$
- (E) $\frac{13\pi}{2}$

16. Se a área lateral e a área total de cilindro reto são $2\pi A~e~2\pi S$ respectivamente, então o volume deste sólido é igual a:

(A) $\pi A \sqrt{S-A}$

- (B) $\pi S \sqrt{S-A}$
- (C) $\pi A \sqrt{S+A}$
- (D) $\pi S \sqrt{S + A}$
- (E) $\pi\sqrt{S+A}$
- 17. Um gerente de um hotel, após fazer alguns cálculos, chegou à conclusão de que, para atingir a meta de economia de energia elétrica, bastava apagar 2 lâmpadas de um corredor, com 8 lâmpadas o gerente determinou que 2 lâmpadas adjacentes não poderiam ficar apagadas ao mesmo tempo, e as 2 lâmpadas das extremidades deveriam permanecer acessas. Sendo assim, o número de maneiras que este gerente pode apagar 2 lâmpadas:
 - (A) 24
 - (B) 10
 - (C) 15
 - (D) 12
 - (E) 6
- 18. Sejam as funções reais f(x) e g(x) Se f(x) = x + 2 e $f(g(x)) = \frac{x}{2}$, pode-se afirmar que a função inversa de g(x) é:
 - (A) $g^{-1}(x) = \frac{f(x)}{2}$
 - (B) $g^{-1}(x) = \frac{x+4}{2}$
 - (C) $g^{-1}(x) = f(x)$
 - (D) $g^{-1}(x) = 2f(x)$
 - (E) $g^{-1}(x) = \frac{x-4}{2}$
- 19. Dados os números $a = \sqrt{3} 1$, $b = \sqrt{3} + 1ec = 0,1333...$, pode-se afirmar que:
 - (A) a.b é um número irracional
 - (B) (a+b). c é um número racional
 - (C) (a+b). c é um número racional
 - (D) a.b.c é um número irracional
 - (E) $\frac{a}{b}$ é um número racional
- 20. No conjunto $\mathbb R$, o sistema de equação $\begin{cases} ax+y=-1\\ x+2z=0 & \text{\'e}\\ y-z=2 \end{cases}$
 - (A) Possível e determinando para $a \neq -\frac{1}{2}$
 - (B) Possível e indeterminado para a real qualquer.
 - (C) Impossível para $a = -\frac{1}{2}$
 - (D) Possível e indeterminado para $a = \frac{1}{2}$
 - (E) Impossível para $a = \frac{1}{2}$

Final Da Prova De Matemática