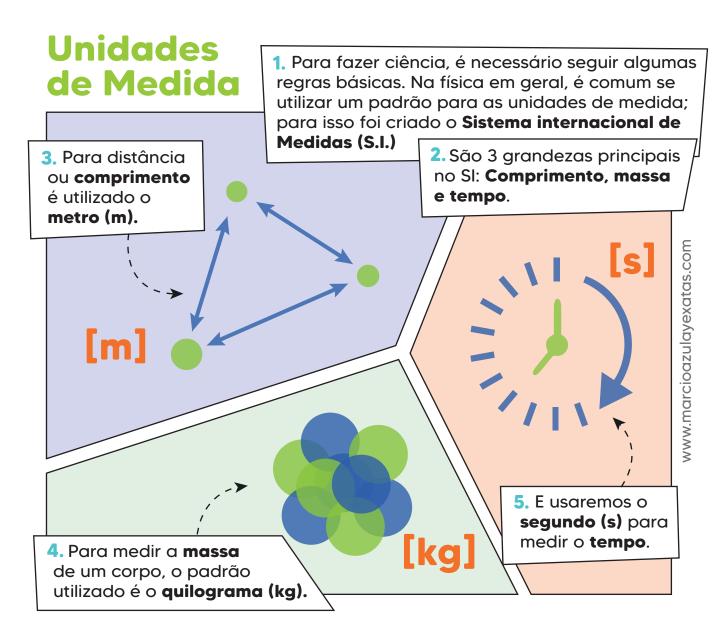
Márcio Azulay Significante de la constant de la co

5 DINÂMICA


2

SUMÁRIO

Física Ilustrada

Volume 2 • Dinâmica 3ª Edição • 2022

- **03** Sistema Internacional
- **04** Prefixos
- **07** Leis de Newton
- 11 Forças
- **16** Elevadores
- 21 Plano Inclinado
- **27** Força Centrípeta
- **28** Tabela de Movimentos
- 33 Energia Mecânica
- 34 Conservação da Energia Mecânica
- 35 Dissipação da Energia Mecânica
- 41 Trabalho
- **47** Potência
- 51 Quantidade de Movimento e Impulso
- **58** Colisões
- 1. Este segundo volume se dedica a estudar os conceitos de **forças, enegia mecânia** e a resolver problemas envolvendo **colisões**.
 - 2. Siga os números e depois as suas respectivas setas.
 - 3. Os exercícios respondidos estão em verde, os desafios estão em laranja. Boa leitura!

Existem outras unidades do S.I. que veremos mais adiante, são elas:

Todas as outras medidas são derivadas dessas medidas fundamentais. Por exemplo, para medir a **velocidade** de um corpo, usaremos a combinação entre **distância** e **tempo**: metros por segundo [m/s]

Prefixos

É comum também encontrar alguns prefixos nas unidades, eles serão utilizados para substituir números muito grandes (como massas de planetas) e até números muitos pequenos (como distâncias entre átomos). Veja a seguir os principais prefixos usados na física:

O grande

quilo

mega

giga

10³

106

Ex: 2 km

2 quilometros

 $= 2 \times 10^3 \,\mathrm{m}$

2 MHz

2 megahertz

 $= 2 \times 10^6 \, \text{Hz}$

2 GW

2 gigawatts

 $= 2 \times 10^9 \text{ W}$

O pequeno

mili

micro

nano

10³

10⁶

Ex: 2 ms

= 2 milisegundos

 $= 2 \times 10^{-3} s$

 $2 \mu J = 2 microjoules$

 $= 2 \times 10^{-6} \text{ J}$

2 nm

2 nanometros

 $= 2 \times 10^{-9} \,\mathrm{m}$

O1 (Respondido) "Em apenas 2 minutos, um carro de 1,2 toneladas consegue percorrer 3,6 quilômetros por uma rodovia."

Transforme todas as medidas do texto anterior para suas respectivas unidades do S.I. (Sistema Internacional de Medidas).

RESOLUÇÃO

Minutos deve ser transformado para segundos, multiplique por 60:

$$2 \min x (60) = 120 s$$

Toneladas deve ser transformado para quilogramas (kg), multiplique por 1000:

$$1,2 \text{ to x } (1000) = 1200 \text{ kg}$$

Quilômetros deve ser transformado para metros, multiplique por 1000:

02. "Todas as manhãs, João sai de sua casa e caminha por 4 minutos até a padaria; compra 500 g de pão e retorna a sua casa que fica a 0,2 km de distância"

Transforme todas as medidas do texto anterior para suas respectivas unidades do S.I. (Sistema Internacional de Medidas).

03 (Respondido) Substitua os prefixos pelas suas potências de 10 equivalentes:

- a) 1,2 mm
- b) 500 kW

RESOLUÇÃO

a) O prefixo "m" (mili) deve ser substituído por 10⁻³:

1,2 mm = 1,2 x
$$10^{-3}$$
 m $\frac{\text{metro(s)}}{\text{metro(s)}}$

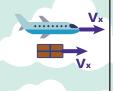
b) O prefixo "k" (quilo) deve ser substituído por 10³:

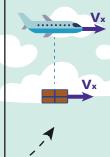
$$500 \text{ kW} = 500 \times 10^3 \text{ W}$$

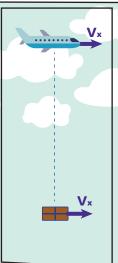
- 04. Substitua os prefixos a seguir pelas suas potências de 10 equivalentes:
 - a) 10 μm
 - b) 0,2 GW
 - c) 15 nC
 - d) 0,1 mA
 - e) 5 kJ
 - f) 72 MN

RESPOSTAS

```
02. 4 minutos = 240 s ; 500 gramas = 0,5 kg ; 0,2 km = 200 m
```


04. a) 10 μ m = 10 x 10⁻⁶ m (metros) b) 0,2 GW = 0,2 x 10⁹ W (watts) c) 15 nC = 15 x 10⁻⁹ C (Coulombs) d) 0,1 mA = 0,1 x 10⁻³ A (Amperes) e) 5 kJ = 5 x 10³ J (Joules) f) 72 MN = 72 x 10⁶ N (Newtons)


Leis de Newton



1ª Lei - Inércia

1. "TODO CORPO PERSISTE EM SEU ESTADO DE REPOUSO, OU MOVIMENTO RETILÎNEO UNIFORME, A MENOS QUE SEJA APLICADO UMA FORÇA SOBRE ELE"

2. Isso explica porque mesmo Após o avião soltar a carga, Ela continuará se movimentando Para a direita com a <u>mesma</u> Velocidade do avião.

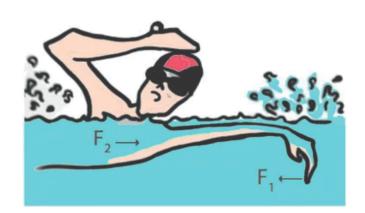
2^a Lei - Princípio Fundamental

- 1. "A ACELERAÇÃO ADQUIRIDA POR UM CORPO É DIRETAMENTE PROPORCIONAL À FORÇA IMPRIMIDA SOBRE ELE E INVERSAMENTE A SUA MASSA"
 - 2. ELA BASICAMENTE PODE SER RESUMIDA NESSA:
 - 3. OU SEJA, QUANTO MAIOR A FORÇA SOBRE UM CORPO, MAIOR SERÁ A ACELERAÇÃO DELA, MAS CORPOS COM MAIOR MASSA ACELERAM MENOS.

 $F = m \cdot a$

F: Força [Newtons - N] m: massa do corpo [kg] a: aceleração [m/s²]

3ª Lei - Ação e Reação


- 1. "A TODA FORÇA DE AÇÃO HÁ SEMPRE UMA REAÇÃO DE IGUAL INTENSIDADE E SENTIDO OPOSTO."
- 2. DA MESMA FORMA QUE A TERRA "ATRAI" A LUA...

...A LUA TAMBÉM ATRAI A TERRA COM FORÇA IGUAL.

A MASSA DA LUA É MENOR DO QUE A DA TERRA, ISSO PERMITE QUE ELA SOFRA A MAIOR ACELERAÇÃO E ORBITE O PLANETA. www.marcioazulayexatas.com

O1. (IF-GO) Um nadador, conforme mostrado na figura, imprime uma força com as mãos na água (F1) trazendo-a na direção de seu tórax. A água, por sua vez, imprime uma força no nadador (F2) para que ele se mova para frente durante o nado.

Assinale a resposta correta:

- a) Esse princípio obedece à Lei da Inércia, uma vez que o nadador permanece em seu estado de movimento.
- b) Obedecendo à Lei da Ação e Reação, o nadador imprime uma força na água para trás e a água, por sua vez, empurra-o para frente.
- c) O nadador puxa a água e a água empurra o nadador, obedecendo à Lei das Forças (segunda Lei de Newton).
- d) Nesse caso, é o nadador que puxa seu corpo, aplicando uma força nele próprio para se movimentar sobre a água.
- e) O nadador poderá mover-se, pois a força que ele aplica na água é maior do que a resultante das forças que a água aplica sobre ele.
- **02.** Analise as afirmações a respeito da inércia e marque a alternativa falsa: (brasilescola.uol.com.br)
 - a) A massa é a medida quantitativa da inércia.
 - b) Na falta de atrito, um corpo em movimento permanecerá em movimento perpetuamente.
 - c) A situação de movimento retilíneo uniforme é denominada de equilíbrio dinâmico.
 - d) A tendência de um corpo em movimento uniforme e com aceleração constante é manter-se em movimento perpetuamente.
 - e) O princípio da inércia é enunciado para corpos que estejam em repouso ou em velocidade constante

O3 (Respondido) Um drone consegue aplicar uma força máxima de 100 N, ele foi usado para puxar uma caixa de 20 kg sobre um plano horizontal. Determine:

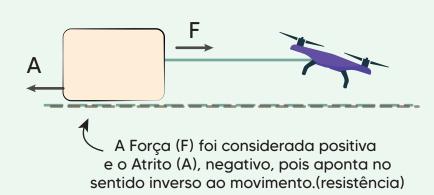
- a) A aceleração adquirida pela caixa em um plano sem atrito.
- b) A aceleração adquirida pela caixa em um plano que gera 20N de atrito.

RESOLUÇÃO

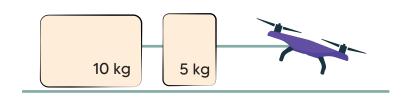
a) A única força que atua sobre a caixa é a de 100 Newtons, utilize a equação da segunda lei:

$$F_{\text{(resultante)}} = m \cdot a$$

$$F = m \cdot a$$


$$100 = (20) \cdot a$$

$$a = 5 \text{ m/s}^2$$



b) Existem duas forças: a criada pelo drone e o atrito que puxa no sentido inverso (reação ao movimento):

F(resultante) =
$$m \cdot a$$

F - A = (20)·a
100 - 20 = (20)·a
80 = (20)·a
a = 4 m/s²

- **04.** Um drone consegue aplicar uma força máxima de 120 N, ele foi usado para puxar uma caixa de 16 kg sobre um plano horizontal. Determine:
 - a) A aceleração adquirida pela caixa em um plano sem atrito.
 - b) A aceleração adquirida pela caixa em um plano que gera 8 N de atrito.
- **05.** Um drone consegue aplicar uma força máxima de 12 N, ele foi usado para puxar duas caixas, uma de 10kg e outra de 5kg sobre um plano sem atrito, determine a aceleração sofrida pelos dois blocos.

06. Um drone consegue aplicar uma força máxima de 12 N, ele foi usado para puxar duas caixas separadamente, uma de 10kg e depois outra de 5kg sobre um plano sem atrito, determine a aceleração sofrida pelos dois blocos.

RESPOSTAS

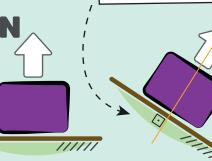
- **01. Letra B -** Ação e Reação Toda ação possui uma reação de mesmo valor, mesma direção, mas sentido oposto
- O2. Letra D Se um corpo está em Movimento Uniforme, a sua velocidade é constante, ou seja, sua aceleração deve ser zero!
 (Aceleração: Grandeza que mede a variação da velocidade de um corpo)
- **04.** a) 7.5 m/s^2 ; b) 7 m/s^2
- **05. a) 0,8 m/s²** Dica: O sistema possui 15 kg (10 + 5)
- O6. a) 1,2 m/s² e 2,4 m/s² Dica: A aceleração adquirida pelo corpo é inversamente proporcional a sua massa: o corpo menor sempre acelera mais.

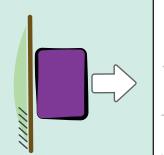
Forças

2. ESSA FORÇA SEMPRE ESTÁ APONTADA PARA "BAIXO", EM DIREÇÃO AO CENTRO DO PLANETA, DA ESTRELA, LUA...

3. ELA É ACHADA
PELO PRODUTO ENTRE
A MASSA (M) E A
ACELERAÇÃO DA
GRAVIDADE LOCAL.

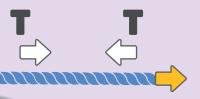
1. É A FORÇA GERADA PELO CAMPO GRAVITACIONAL EM UM CORPO QUE POSSUI MASSA.


[Newtons - N]


m: massa do corpo [kg] g: gravidade [m/s²]

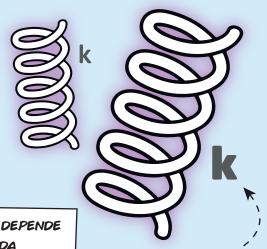
2. PERCEBA QUE ESSA FORÇA É SEMPRE <u>PERPENDICULAR (90°)</u> AO PLANO DE CONTATO.

1. É A FORÇA <u>REAÇÃO</u>
<u>AO CONTATO</u> CRIADO
ENTRE O OBJETO E O
PLANO.



TRAÇÃO

1. É FORÇA QUE
APARECE EM CORDAS,
FIOS OU CORRENTES
QUANDO PUXADAS


LEMBRA DA 3ª LEI?
 A TRAÇÃO SEMPRE
 APARECE EM PARES.

ELÁSTICA

1. FORÇA QUE TENTA RESTAURAR O COMPRIMENTO INICIAL DE UM CORPO QUE FOI DEFORMADO (MOLAS E ELÁSTICOS).

2. ESSA FORÇA DEPENDE
PRINCIPALMENTE DA
NATUREZA DO MATERIAL
DE FABRICAÇÃO DA MOLA
E DE SUAS DIMENSÕES

REPRESENTAREMOS ESSAS CARACTERÍSTICAS COM UMA CONSTANTE "K" (CONSTANTE ELÁSTICA).

3. E TAMBÉM DEPENDE DA

<u>DEFORMAÇÃO</u> "X" SOFRIDA POR

ELA (QUANTO MAIS DEFORMADA,

MAIOR SERÁ A FORÇA DE

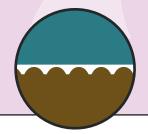
REAÇÃO FEITA PELA MOLA)

 $F_{EL} = k \cdot x$

[Newtons - N]

k: const. elástica [N/m] x: deformação [m]

4. VEJA A FÓRMULA:



- 1. FORÇA DE <u>RESISTÊNCIA AO</u>

 <u>MOVIMENTO</u> QUANDO ELA

 <u>ARRASTA</u> POR UMA SUPERFÍCIE
- 2. ELA DEPENDE UNICAMENTE DO

 CONTATO ENTRE O CORPO E O PLANO
 (NORMAL) E DO TIPO DE CONTATO
 ENTRE ELES QUE PODE SER MAIS
 RUGOSO OU LISO (REPRESENTADO
 PELO COEFICIENTE "µ")

 $F_{AT} = N \cdot \mu$

N: Força Normal [N] µ: Coeficiente de Atrito

ĹΝ,

O1 (Respondido) Você verá na tabela ao lado alguns planetas do sistema solar e suas respectivas acelerações gravitacionais na superfície:

Determine o peso de uma pessoa com massa de 70 kg na superfície da Terra e de Mercúrio.

PLANETA	a (m/s²)
Mercúrio	3,5
Vênus	9,0
Terra	10,0
Júpiter	23,5

RESOLUÇÃO

Use a fórmula do peso:

Na Terra:

 $P = m \cdot a$

 $P = (70) \cdot (10)$

P = 700 N

Em Mercúrio

 $P = m \cdot a$

 $P = (70) \cdot (3,5)$

P = 245 N

- **02.** Use a tabela da questão anterior para descobrir o peso que um astronauta com 80 kg de massa teria na superfície de Vênus e de Júpiter.
- 03. Um menino possui peso de 350 N na Terra, Qual é a massa dele?

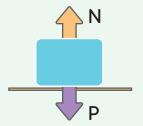
O4 (Respondido) Uma mola comum possui constante elástica de deformação igual a 200 N/m. Determine a força elástica exercida por essa mola quando deformada em 20 cm.

RESOLUÇÃO

Transforme a deformação para metros (20 cm = 0,2 m) e use na fórmula da força elástica

$$F_{EL} = k \cdot x$$

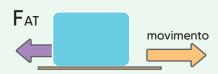
$$F_{EL} = (200) \cdot (0,2)$$


$$F_{EL} = 40 N$$

- **05.** Uma mola consegue exercer uma força de 500 Newtons para cada metro de deformação, determine a força elastica caso ela seja deformada em 15 cm.
- **06.** Para deformar uma mola com 50 cm até metade de seu comprimento inicial, é necessário uma força de compressão igual a 80 N. Determine a constante elástica dessa mola.

07 (Respondido) Um bloco com 40 kg de massa está sendo arrastada por uma superfície horizontal com atrito de coeficiente µ igual a 0,8, determine a força de atrito entre o bloco e a superfície.

RESOLUÇÃO


Para achar o contato entre o bloco e a superfície, faça um diagrama de forças verticais.

Veja que o peso é a única força responsável pelo contato entre o bloco e a superfície, logo, a força normal é igual ao peso:

Use esse valor encontrado na fórmula do atrito:

$$F_{AT} = N \cdot \mu$$

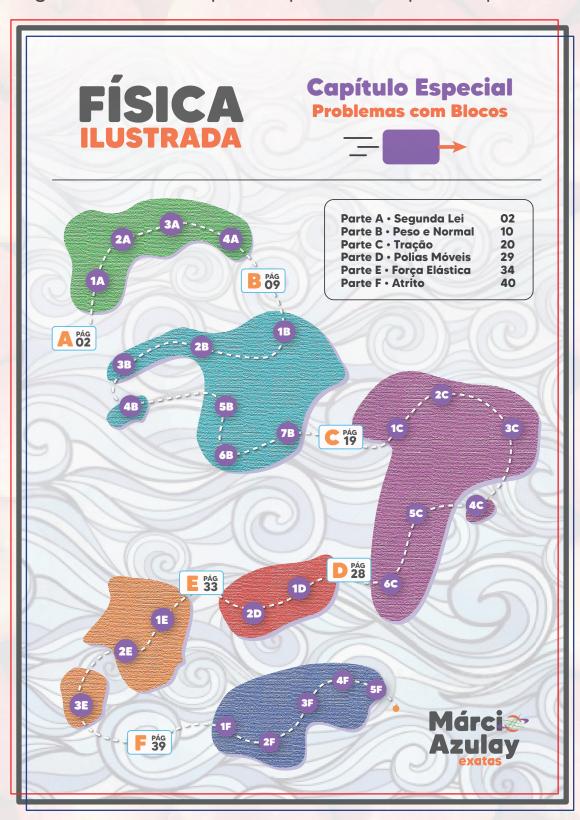
 $F_{AT} = (400) \cdot (0.8)$
 $F_{AT} = 320 \text{ N}$

08. Um bloco com 50 kg está sendo arrastada por uma superfície cujo coeficiente de atrito é igual a 0,15, determine a resistência gerada pelo contato.

RESPOSTAS

02. 720 N em Vênus e 1880 N em Júpiter

03. 35 kg


05. 75 N

06. 320 N/m Dica: x = 0,25 m

08, 75 N

Quer se tornar um MESTRE em 7 LEIS DE NEWTON

Agora é o momento perfeito para ler o capítulo especial:



www.marcioazulayexatas.com

Subindo no **Elevador**

LEIA ESSE CAPİTULO DE BAIXO PARA CIMA

- 6. NESSE MOMENTO,
 A PESSOA QUE ESTÁ
 NO INTERIOR DESSE
 ELEVADOR SE SENTE
 MAIS LEVE QUE O
 NORMAL
 - 5. ACONTECE UMA <u>SUBIDA</u>
 RETARDADA (DESACELERADA)
- 4. E O INVERSO ACONTECE
 QUANDO A PESSOA CHEGA NO
 SEU DESTINO, O ELEVADOR
 QUE ANTES ESTAVA EM
 MOVIMENTO, PRECISA PARAR
- 3. Durante esse período, sentimos uma <u>sensação de</u> <u>Peso</u> que é maior que o nosso peso real.
 - 2. O PRIMEIRO É QUANDO ENTRAMOS NO ELEVADOR E ELE COMEÇA A SUBIR, TEMOS A CHAMADA: SUBIDA ACELERADA.
- 1. EXISTEM 2 MOVIMENTOS IMPORTANTES QUE ACONTECEM QUANDO UMA PESSOA ENTRA EM UM ELEVADOR QUE ESTÁ SUBINDO

Descendo no **Elevador**

1. AQUI TAMBÉM EXISTEM DOIS MOVIMENTOS IMPORTANTES A SEREM MENCIONADOS

2. O PRIMEIRO ACONTECE QUANDO A PESSOA ESTÁ NO ELEVADOR QUE COMEÇA A DESCER (DESCIDA ACELERADA)

> 3. POR INÉRCIA DE MOVIMENTO, O PASSAGEIRO SE SENTE <u>MAIS</u> LEYE QUE O NORMAL

4. E QUANDO CHEGA AO SEU DESTINO (SOLO) O ELEVADOR PRECISA PARAR

> 5. Esse segundo é chamado de descida retardada.

6. POR UM BREYE MOMENTO, O PASSAGEIRO SE SENTE <u>MAIS</u> PESADO QUE O NORMAL.

> *O PESO REAL DO PASSAGEIRO NUNCA MUDA, SOMENTE O PESO APARENTE QUE MUDA EM FUNÇÃO DO MOVIMENTO.

www.marcioazulayexatas.com

Como resolver problemas?

1. PRIMEIRO IDENTIFIQUE O TIPO DE MOVIMENTO

2. A PESSOA NO INTERIOR
DO ELEVADOR SE SENTE
MAIS LEVE OU PESADA?

3. Caso a sensação seja de <u>leveza</u>, use a fórmula a seguir

F = PESO - PESO REAL

4. ELE SERÀ USADO PARA SUBIDA RETARDADA OU UMA DESCIDA ACELERADA.

4. E CASO SEJA UMA SENSAÇÃO DE <u>PESO</u>, USE A FÓRMULA:

5. Use em casos de <u>subida</u> acelerada ou descida retardada

O que é o Peso Aparente?

2. EM EXERCÍCIOS, ELE PODE SER APRESENTADO COMO A FORÇA NORMAL (CONTATO), COMO UMA MARCAÇÃO NA BALANÇA OU ATÉ A TRAÇÃO NOS CABOS QUE O SUSTENTAM

1. É A APENAS O PESO QUE O CORPO "APARENTA" TER POR ESTAR DENTRO DE UM ELEVADOR EM MOVIMENTO

O1 (Respondido) Uma pessoa com 70 kg está no interior de um elevador que sobe acelerado com aceleração constante de 2 m/s^2 .

Determine o peso real e o peso aparente do passageiro.

RESOLUÇÃO

Para achar o peso real, usaremos a fórmula:

 $P(REAL) = m \cdot g$

 $P_{(REAL)} = (70).(10)$

 $P_{(REAL)} = 700 N$

Para uma subida acelerada, use a relação a seguir:

 $F = P_{(APARENTE)} - P_{(REAL)}$

 $m \cdot a = P(APARENTE) - 700$

 $(70)\cdot(2) = P_{(APARENTE)} - 700$

140 = P(APARENTE) - 700

P(APARENTE) = 840 N

Perceba que o peso aparente é maior que o peso real, isso significa que ele se sente mais pesado que o normal.

840 > 700

- **02.** Uma pessoa com 70 kg está no interior de um elevador que sobe retardado com desaceleração constante de 2 m/s². Determine o peso aparente do passageiro.
- **03.** Uma pessoa com 70 kg está no interior de um elevador que desce retardado com desaceleração constante de 2 m/s². Determine o peso aparente do passageiro.
- **04.** Uma pessoa com 70 kg está no interior de um elevador que desce acelerado com aceleração constante de 2 m/s². Determine o peso aparente do passageiro.

O5 (Respondido) Um elevador com 500 kg de massa leva 3 passageiros com com 75 kg cada chega ao térreo de um edifício com desaceleração constante de 1 m/s². Determine a tração exercida pelos cabos nesse instante.

RESOLUÇÃO

A tração exercida pelos cabos do elevador durante a parada é o peso aparente que aparece nas fórmulas.

Mas também devemos lembrar que os cabos estão sustentanto o peso dos 3 passageiros e do próprio elevador, veja o peso real do sistema:

P(REAL) = P(passageiros) + P(elevador)

 $P_{(REAL)} = 3.(75).(10) + (500).(10)$

P(REAL) = 2250 + 5000

P(REAL) = 7250 N

Para uma descida retardada, use a relação a seguir:

 $F = P_{(APARENTE)} - P_{(REAL)}$

 $m \cdot a = P(APARENTE) - 7250$

 $(725)\cdot(1) = P_{(APARENTE)} - 7250$

725 = P(APARENTE) - 7250

P(APARENTE) = 7975 N

T = 7975 N

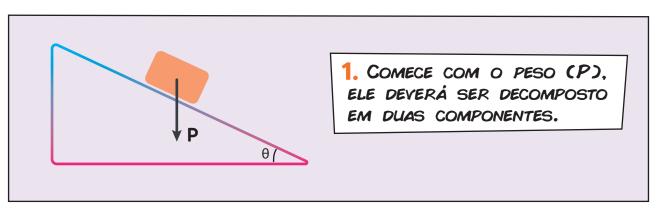
Perceba que o peso aparente é maior que o peso real, isso significa que durante o movimento os cabos sofrem uma maior tração do que o normal. 7975 > 7250

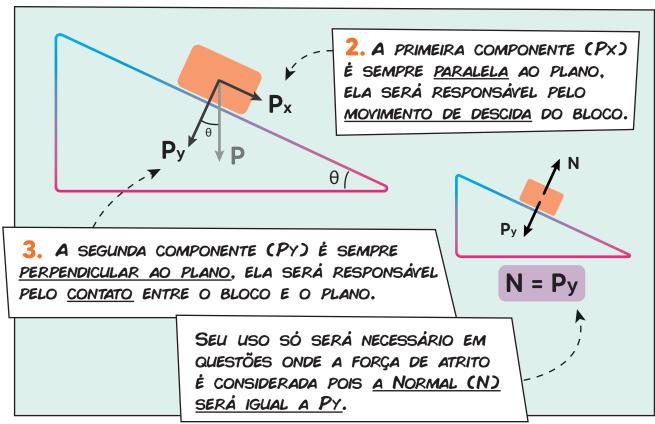
06. Um elevador com 700 kg de massa leva 4 passageiros com 75 kg cada para o décimo andar de um edifício, determine a tração nos cabos quando o elevador começa a desacelerar com intensidade de 0,8 m/s² no topo.

07. Um foguete começa a decolar com aceleração constante de 4 m/s 2 , determine a força de contato entre um passageiro de 70 kg com o seu assento.

08. Um homem com 80 kg de massa está sobre uma balança comum no interior de um elevador que está subindo. Nesse exato momento vê que a marcação na balança é de 840 N. Essa é uma subida acelerada ou retardada? Qual é o valor da aceleração?

RESPOSTAS


02. 560 N 03. 840 N 04. 560 N 06. 9200 N (10000 - 800)


07. 980 N (700 + 280) **08.** Subida acelerada (a = 0.5 m/s²)

Plano Inclinado

EM CASOS DE PLANO INCLINADO PRECISAREMOS NOS ADAPTAR E CONSIDERAR DUAS DIREÇÕES: FORÇAS QUE SÃO PERPENDICULARES AO PLANO E FORÇAS PARALELAS AO PLANO.

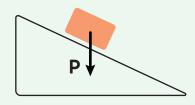
5. Para decompor utilizaremos as fórmulas que dependem do <u>ângulo</u> <u>de inclinação</u> (θ) entre o plano e a horizontal.

 $P_x = P \cdot sen(\theta)$

 $P_y = P \cdot cos(\theta)$

O1 (Respondido) Um bloco de 20 kg está sobre um plano inclinado, o ângulo entre o plano e a horizontal é θ . Desconsidere qualquer atrito e determine:

sen θ = 0,6 cos θ = 0,8 $g = 10 m/s^2$

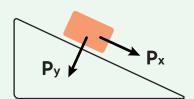

- a) O peso do bloco
- b) A componentes do vetor peso
- c) A força de contato (N) entre o bloco e o plano
- d) A aceleração do bloco

RESOLUÇÃO

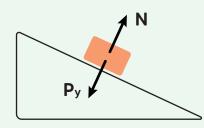
a) Use a fórmula do peso:

$$P = (20) \cdot (10)$$

$$P = 200 N$$

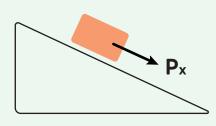

b) Use as fórmulas das componentes:

$$Px = P \cdot sen(\theta)$$


$$P_x = (200) \cdot (0,6)$$

$$Py = P \cdot cos(\theta)$$

$$Py = (200) \cdot (0,8)$$

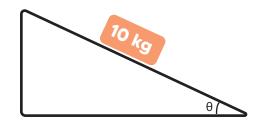


c) As forças perpendiculares ao plano são a Normal e a componente Py:

Ela está estática em relação a esse eixo, logo, as forças são iguais. d) Para a descida do bloco, iremos considerar somente as forças paralelas ao plano, nesse caso, só temos a componente Px.

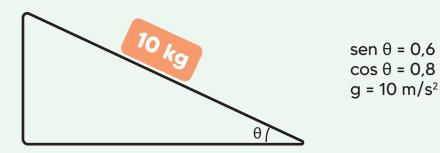
$$F = m \cdot a$$

 $Px = m \cdot a$
 $(120) = (20) \cdot a$
 $a = 6 \text{ m/s}^2$


02. Um bloco de 30 kg está sobre um plano inclinado, o ângulo entre o plano e a horizontal é θ . Desconsidere qualquer atrito e determine:

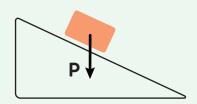
sen θ = 0,34 cos θ = 0,94 g = 10 m/s²

- a) O peso do bloco
- b) As componentes do vetor peso
- c) A força de contato (N) entre o bloco e o plano
- d) A aceleração do bloco


03. Um bloco de 10 kg está sobre um plano inclinado, o ângulo entre o plano e a horizontal é θ . Desconsidere qualquer atrito e determine:

 $sen \theta = 0.42$ $cos \theta = 0.90$ $g = 10 \text{ m/s}^2$

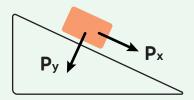
- a) O peso do bloco
- b) As componentes do vetor peso
- c) A força de contato (N) entre o bloco e o plano
- d) A aceleração do bloco


O4 (Respondido) Um bloco de 10 kg está sobre um plano inclinado, o ângulo entre o plano e a horizontal é θ . Considere que o coeficiente de atrito entre o bloco e o plano é de 0,4. Determine:

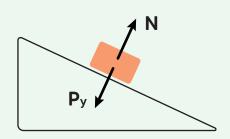
- a) O peso do bloco
- b) A componentes do vetor peso
- c) A força de contato (N) entre o bloco e o plano
- d) A força de atrito
- e) A aceleração do bloco

RESOLUÇÃO

a) Use a fórmula do peso:



b) Use as fórmulas das componentes:

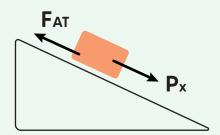

$$Px = P \cdot sen(\theta)$$

 $Px = (100) \cdot (0,6)$

$$Px = 60 N$$

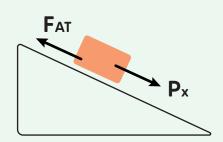
$$P_y = P \cdot cos(\theta)$$

 $P_y = (100) \cdot (0,8)$



c) As forças perpendiculares ao plano são a Normal e a componente Py:

d) Use a fórmula da força de atrito, use o coeficiente 0,4:


$$F_{AT} = N \cdot \mu$$

 $F_{AT} = (80) \cdot (0,4)$
 $F_{AT} = 32 \text{ N}$

e) Para a descida do bloco, iremos considerar somente as forças paralelas ao plano, nesse caso, temos a componente Px e a força de atrito:

F = m·a
Px - FAT = m·a

$$60 - 32 = (10) \cdot a$$

 $28 = 10a$
 $a = 2.8 \text{ m/s}^2$

05. Um bloco de 5 kg está sobre um plano inclinado, o ângulo entre o plano e a horizontal é θ . Considere que o coeficiente de atrito entre o bloco e o plano é de 0,3. Determine:

a) O peso do bloco	0 0 77
b) As componentes do vetor peso	sen θ = 0.77 $cos θ = 0.64$
c) A força de contato (N) entre o bloco e o plano	
d) A força de atrito	$g = 10 \text{ m/s}^2$
e) A aceleração do bloco	

06. Um bloco de 80 kg está sobre um plano inclinado, o ângulo entre o plano e a horizontal é θ . Considere que o coeficiente de atrito entre o bloco e o plano é de 0.25. Determine:

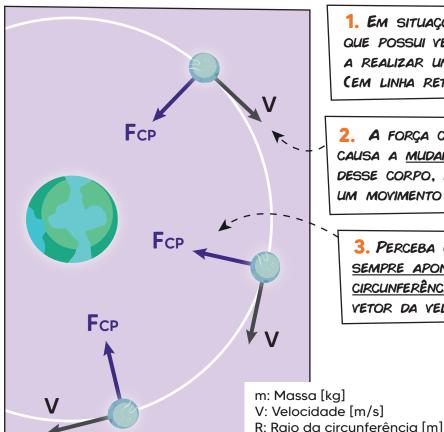
a) O peso do bloco	$sen \theta = 0.7$
b) As componentes do vetor peso	$\cos \theta = 0.7$ $q = 10 \text{ m/s}^2$
c) A força de contato (N) entre o bloco e o plano	
d) A forca de atrito	9 - 10 111/3

a) A torça de atrito

e) A aceleração do bloco

RESPOSTAS

02. a) P = 300 N b) Px = 102 N e Py = 282 N c) N = 282 N d) 3.4 m/s^2


03. a) P = 100 N b) Px = 42 N e Py = 90 N c) N = 90 N d) 4.2 m/s^2

05. a) P = 50 N b) Px = 38,5 N e Py = 32 N c) N = 32 N d) 9,6 N e) 5,78 m/s²

06. a) P = 800 N b) Px = Py = 560 N c) N = 560 N d) 140 N e) 5.25 m/s^2

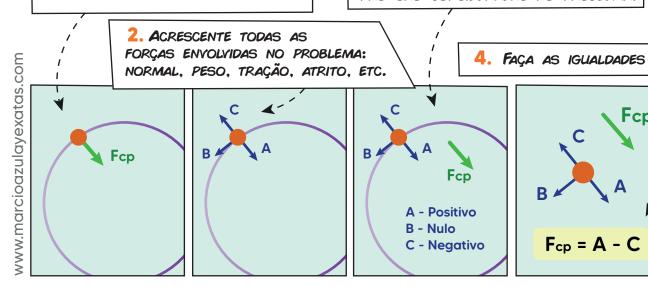
Força Centrípeta

- 1. EM SITUAÇÕES NORMAIS, UM CORPO QUE POSSUI VELOCIDADE SEMPRE TENDE A REALIZAR UM MOVIMENTO RETILÎNEO (EM LINHA RETA).
- 2. A FORÇA CENTRÎPETA È A FORÇA QUE CAUSA A <u>MUDANÇA NA DIREÇÃO DA YELOCIDADE</u> DESSE CORPO, FAZENDO COM QUE ELE REALIZE UM MOVIMENTO CIRCULAR.
 - 3. PERCEBA QUE <u>A FORÇA CENTRÎPETA</u>

 <u>SEMPRE APONTA PARA O CENTRO DA</u>

 <u>CIRCUNFERÊNCIA</u> E É PERPENDICULAR AO

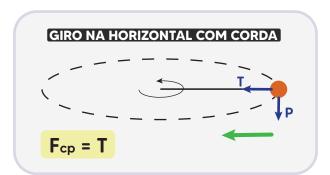
 <u>YETOR DA YELOCIDADE. YEJA A FÓRMULA:</u>

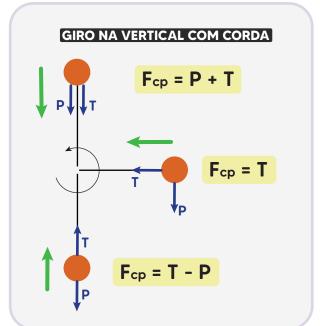

FORÇA CENTRÍPETA

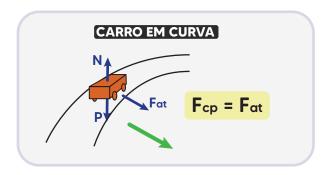
$$F_{cp} = m \frac{V^2}{R}$$

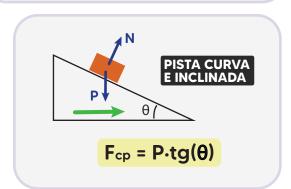
[N]

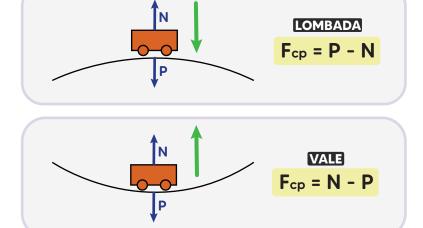
Resolvendo Problemas

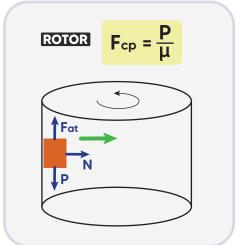

1. PRIMEIRO IDENTIFIQUE A DIREÇÃO E O SENTIDO DA FORÇA CENTRÍPETA (EM YERDE), ELA SEMPRE APONTA PARA O CENTRO DA CIRCUNFERÊNCIA. 3. Identifique os sinais: forças a favor da força centrípeta são positivas; forças contra a força centrípeta são negativas; forças perpendiculares a força centrípeta não são consideradas no problema.

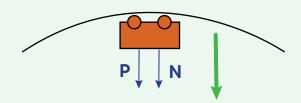



Veja a seguir alguns exemplos de movimentos circulares e como a força centrípeta pode ser relacionada com as forças aplicadas sobre esse corpo.


Note que a força centrípeta **não é uma força extra** a ser acrescentada ao problema, ela é uma **força resultante**.


(O vetor da força centrípeta está representado em verde nos exemplos)





P: Peso T: Tração N: Normal Fat: Força de Atrito µ: Coef. de Atrito **O1 (Respondido)** Um motoqueiro deseja fazer um looping completo em um globo da morte de 8 metros de diâmetro. Determine a velocidade mínima para que o motoqueiro consiga fazer a volta sem cair. (Adote: $g = 10 \text{m/s}^2$)

RESOLUÇÃO

No ponto mais alto a força centrípeta é dada por:

$$Fcp = P + N$$

A velocidade mínima é aquela que permite que o motoqueiro faça o looping sem perder contato com a pista no ponto mais alto, ou seja, a normal (N) se aproxima de zero (N = 0):

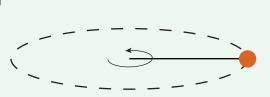
Fcp = P + 0
Fcp = P

$$\frac{m \cdot V^2}{R}$$
 = m·g

 $\frac{V^2}{R}$ = g

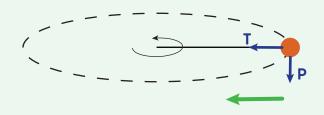
Substitua os valores numéricos, se o diâmetro é 8 m, o raio é 4 m.

 $\frac{V^2}{4}$ = 10


 V^2 = 40

 $V = 6.3 \text{ m/s}$

02. Um motoqueiro deseja fazer um looping completo em um globo da morte de 9,8 metros de diâmetro. Determine a velocidade mínima para que o motoqueiro consiga fazer a volta sem cair. (Adote: $g = 10 \text{m/s}^2$)


O3 (Respondido) Um menino amarra uma esfera de 0,5 kg de massa em um fio inextensível com 2 metros de comprimento e o gira na horizontal a uma frequência de 1 Hz.

Determine a tração nesse fio (Adote: π = 3)

RESOLUÇÃO

As únicas forças agindo sobre a esfera são a força de Tração no fio e o Peso da esfera (que está perpendicular à força centrípeta, logo, deve ser descartada)

$$Fcp = T$$

Mas antes, precisamos descobrir a velocidade da esfera utilizando a frequência do movimento (1 Hz = 1 volta por segundo):

$$V = \omega \cdot R$$

$$V = 2 \cdot \pi \cdot f \cdot R$$

$$V = 2 \cdot 3 \cdot 1 \cdot 2$$

$$V = 12 \text{ m/s}$$

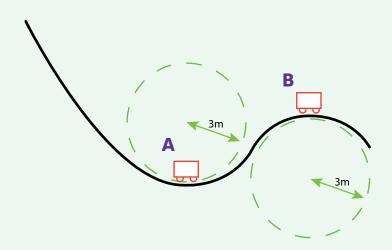
$$\omega = 2 \cdot \pi \cdot f$$

$$0 \text{ raio da trajetória é o próprio comprimento do fio}$$

Volte com a equação da força centrípeta:

Fcp = T
$$\frac{\text{m} \cdot \text{V}^2}{\text{R}} = \text{T}$$

$$\frac{(0,5) \cdot (12)^2}{2} = \text{T}$$


$$\text{T} = 36 \text{ N}$$

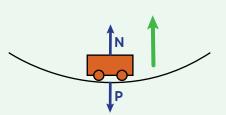
04. Um menino amarra uma esfera de 0,4 kg de massa em um fio inextensível com 1,6 metros de comprimento e o gira na horizontal a uma frequência de 2 Hz.

Determine a tração nesse fio (Adote: π = 3)

O3 (Respondido) Parte de uma trilha de uma montanha russa está representada na figura a seguir:

O carro possui 500kg de massa no total, determine a força de contato entre o carro e os trilhos nos pontos A e B sabendo que ele mantem uma velocidade constante de 3 m/s.

RESOLUÇÃO


Na posição A:

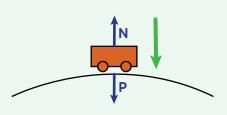
Fcp = N - P
$$\frac{\text{m} \cdot \text{V}^2}{\text{R}} = \text{N} - \text{m} \cdot \text{g}$$

$$\frac{(500) \cdot (3)^2}{3} = \text{N} - (500) \cdot (10)$$

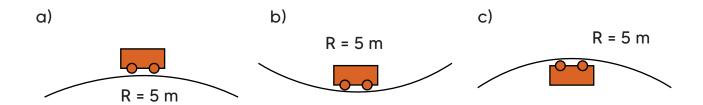
$$1500 = \text{N} - 5000$$

$$\text{N} = 6500 \text{ N}$$

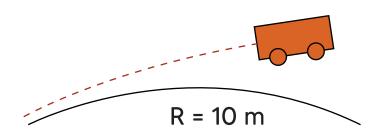
Na posição B:


Fcp = P - N

$$\frac{\text{m} \cdot \text{V}^2}{\text{R}} = \text{m} \cdot \text{g} - \text{N}$$


$$\frac{(500) \cdot (3)^2}{3} = (500) \cdot (10) - \text{N}$$

$$1500 = 5000 - \text{N}$$


$$\text{N} = 3500 \text{ N}$$

06. Determine a força de contato entre o móvel (400 kg) e a pista nas 3 situações a seguir quando ele se move a 4 m/s, adote a aceleração da gravidade como 10 m/s^2 .

07. Determine a velocidade máxima que o carro de 400 kg pode passar pela pista a seguir sem perder contato com ela.

RESPOSTAS

Dica: No terceiro caso, a força normal foi negativa, isso significa que o corpo não consegue fazer o percurso sem perder contato com a pista. A velocidade mínima é de 7,07 m/s.

$$07. V = 10 m/s$$

Energia Mecânica

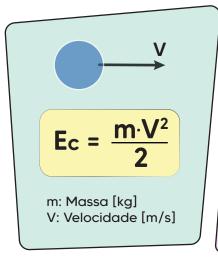
- 1. ENERGIA PODE SER DEFINIDA COMO A CAPACIDADE QUE UM CORPO, UMA SUBSTÂNCIA OU UM SISTEMA FÍSICO TÊM DE REALIZAR TRABALHO (MUDANÇA)
- 2. A ENERGIA PODE ADOTAR AS MAIS DIVERSAS FORMAS: ELETROMAGNÉTICA, MECÂNICA, QUÍMICA, TÉRMICA. E TAMBÉM PODE SE TRANSFORMAR DE UMA PARA A OUTRA (CONVERSÃO DE ENERGIA).

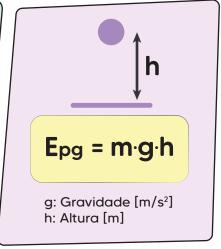
www.marcioazulayexatas.com

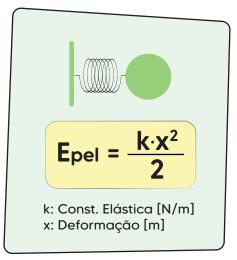
3. VAMOS NOS FOCAR EM ESTUDAR A ENERGIA MECÂNICA, ELA É TODA ENERGIA ASSOCIADA AO <u>MOVIMENTO DE</u> CORPOS OU ARMAZENADA NOS SISTEMAS FÍSICOS.

4. EXISTEM 3 TIPOS DE ENERGIA MECÂNICA:

CINÉTICA


Está diretamente ligada ao movimento de um corpo (velocidade)


POTENCIAL GRAVITACIONAL

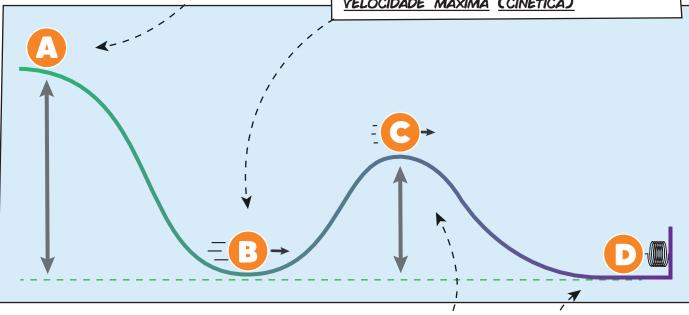

É a energia armazenada no corpo devido a atração gravitacional da Terra

POTENCIAL ELÁSTICA

Energia que é armazenada por corpos elásticos quando são deformados

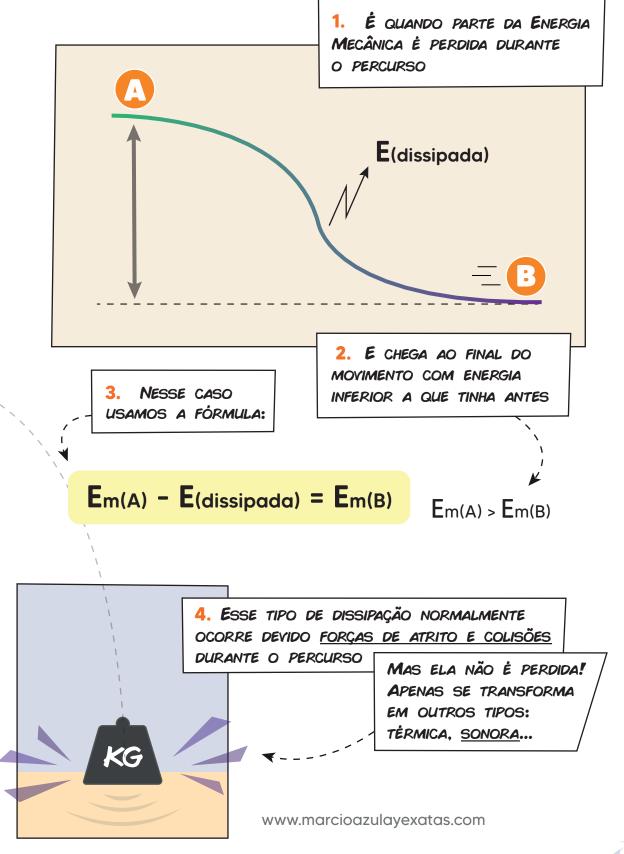
[Joules - J]

E NO SI, A MEDIDA UTILIZADA SERÁ O JOULES [KG·M²·S⁻²]


Conservação da Energia Mecânica

 $E_{m(A)} = E_{m(B)} = E_{m(C)} = E_{m(D)}$

2. PERCEBA QUE NA POSIÇÃO A, A ESFERA POSSUI <u>ALTURA</u>, LOGO, TODA ENERGIA MECÂNICA É DO TIPO POTENCIAL GRAVITACIONAL.


- 1. É QUANDO A ENERGIA MECÂNICA (EM) É MANTIDA CONSTANTE DURANTE TODO O PERCURSO, OU SEJA, É IGUAL PARA TODOS OS PONTOS
- 3. VEMOS TAMBÉM QUE QUANDO ELE CHEGA NO PONTO B, NÃO POSSUI MAIS ALTURA, MAS EM COMPENSAÇÃO, POSSUI VELOCIDADE MÁXIMA (CINÉTICA)

- 4. Em alguns pontos, o corpo pode ter mais de um tipo de energia ao mesmo tempo. No ponto C por exemplo, a energia Mecânica está dividida entre <u>Potencial Gravitacional e</u> <u>Cinética</u> (pois ele possui yelocidade e altura ao mesmo tempo).
- 5. E FINALMENTE CHEGA NO PONTO D CAUSANDO UMA COMPRESSÃO NA MOLA, OU SEJA, POTENCIAL ELÁSTICA.
- 6. Em todos os casos, a E<u>nergia Mecânica é dividida entre Cinética,</u>
 Gravitacional e Elástica, mas o importante é que <u>a soma dessas três</u>
 Energias sempre possuirá o mesmo yalor (para qualquer ponto).

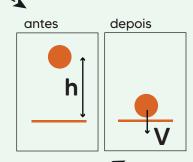
Dissipação da Energia Mecânica

O1 (Respondido) Um corpo de 20g se movimenta no espaço com velocidade constante de 20 m/s, calcule a sua energia cinética.

RESOLUÇÃO

Transforme a massa para quilograma (20 g = 0,02 kg), use a fórmula da energia cinética:

Ec =
$$\frac{\text{mV}^2}{2}$$
 = $\frac{(0,02)\cdot(20)^2}{2}$ = $\frac{8}{2}$ = 4 Joules(J)


- **02.** Um carro com 1 tonelada de massa possui velocidade constante de 15 m/s, determine a energia cinética desse carro.
- **03.** A energia cinética de um corpo com 2 kg é de 625 J, qual é o valor da sua velocidade?
- **04.** Uma moeda com 10 g está na janela de um apartamento a 50 metros do solo, qual é a energia potencial gravitacional dessa moeda logo antes de cair?
- **05.** Um elástico de constante elástica (k) igual a 50 N/m, foi esticada em 10 cm. Qual é a energia armazenada por esse elástico?

O6 (Respondido) Um objeto cai de uma altura de 5 metros, determine a sua velocidade quando chega ao solo. (Desconsidere forças de dissipação)

RESOLUÇÃO

Se você já leu o Volume 1 (Cinemática), já deve ter aprendido a resolver esse mesmo problema com as fórmulas do MUV. Agora iremos aprender a resolver utilizando Energia Mecânica.

- No inicio do movimento, o objeto possui altura de 5 metros, ou seja, possui somente **energia potencial gravitacional**.
- Quando chega ao solo, a altura é zero, e por causa da gravidade, alcança a sua velocidade máxima (toda a energia potencial se converteu para cinética).

Use a fórmula para conservação:

E (gravitacional) = E (cinética)

$$m \cdot g \cdot h = \frac{m \cdot V^2}{2}$$

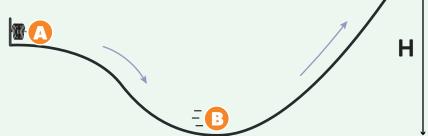
$$g \cdot h = \frac{V^2}{2}$$

$$(10)\cdot(5) = \frac{V^2}{2}$$

$$V^2 = 100$$

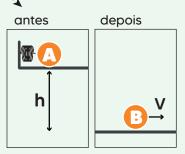
$$V = 10 \text{ m/s}$$

Corte as massas, provando novamente que a massa de um corpo não influencia no seu movimento de queda


- **07.** Um objeto cai de um prédio com altura de 45 metros, determine a sua velocidade quando chega ao solo. (desconsidere forças dissipativas)
- **08.** Um objeto com 4 kg de massa desce uma rampa com 0,8 metros de altura e comprime uma mola de constante elástica igual a 100 N/m quando chega ao solo; determine a deformação da mola em centímetros. (Desconsidere forças de dissipação)

09 (Respondido) Uma esfera de 2 kg comprime uma mola de constante elástica igual a 500 N/m quando se situa no alto de uma rampa de 10 m de altura (a deformação da mola é de 40 cm).

O objeto descreve o movimento descrito na figura a seguir.


Determine a velocidade atingida no ponto B e a altura máxima (H) atingida pelo objeto ao final do percurso (C)

(Desconsidere forças de dissipação)

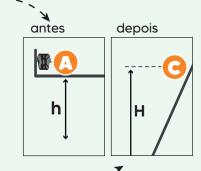
RESOLUÇÃO

- Na posição A, a sua energia mecânica está dividida entre **Potencial Gravitacional e Elástica** (pois possui altura e comprime uma mola ao mesmo tempo)
- Na posição B, toda sua energia se torna **cinética**.

Use a fórmula da conservação:

$$E (gravitacional) + E (elástica) = E (cinética)$$

$$m \cdot g \cdot h + \frac{k \cdot x^2}{2} = \frac{m \cdot V^2}{2}$$


$$(2)\cdot(10)\cdot(10) + \frac{(500)\cdot(0,4)^2}{2} = \frac{(2)\cdot V^2}{2}$$

$$200 + 40 = V^2$$

$$V = 15,5 \text{ m/s}$$

Para achar a altura máxima atingida usaremos os pontos A e C:

- Na posição A, a sua energia mecânica está dividida entre **Potencial Gravitacional e Elástica** (pois possui altura e comprime uma mola ao mesmo tempo)
- Na posição C, toda sua energia se torna **potencial gravitacional** pois se chega na altura máxima com velocidade nula

Use a fórmula da conservação:

$$m \cdot g \cdot h + \frac{k \cdot x^2}{2} = m \cdot g \cdot H$$

$$200 + 40 = (2) \cdot (10) \cdot H$$

10. Um objeto de 4 kg comprime uma mola de constante elástica igual a 1000 N/m que está deformada em 80 cm quando se situa no alto de uma rampa de 10 m de altura.

O objeto descreve o movimento descrito na figura a seguir.

Determine a velocidade atingida no ponto B e a altura máxima (H) atingida pelo objeto ao final do percurso (C)

(Desconsidere forças de dissipação)

11 (Respondido) Uma criança com 30 kg desce um escorregador com 4 metros de altura e chega ao solo com velocidade de 4 m/s. Qual foi a energia dissipada por atrito no percurso?

RESOLUÇÃO

No alto do escorregador, a criança possui energia potencial gravitacional, use a fórmula:

E (pot. grav.) =
$$m \cdot g \cdot h$$

E (pot. grav.) = $(30) \cdot (10) \cdot (4)$
E (pot. grav.) = 1200 J
Antes

Quando chega ao solo, possui somente energia cinética:

E (cinética) =
$$\frac{mV^2}{2} = \frac{(30)\cdot(4)^2}{2} = 240 \text{ J}$$
 Depois

Perceba que ele tinha 1200 Joules de energia e chegou ao solo com menos desse valor, houve dissipação de energia:

- **12.** Um bloco de 5 kg possui velocidade constante de 20 m/s quando passa por uma região de atrito que faz a sua velocidade diminuir para 10 m/s. Determine a energia mecânica dissipada nesse período.
- **13.** Uma chave de 10 g foi jogada da janela de um prédio que está a 20 metros de altura em relação ao solo e durante a queda perde 1 J de energia devido ao atrito com o ar, qual é a velocidade com que ela chega ao solo?

RESPOSTAS

02. 112500 J (112,5 kJ) Dica: 1 to = 1000 kg

03. 25 m/s

04. 5 J Dica: 10 g = 0.01 kg

05. 0,25 J Dica: 10 cm = 0,1 m

07. 30 m/s

08.80 cm Dica: Potencial gravitacional se transforma em elástica

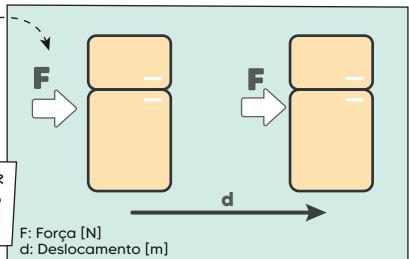
10. V = 19 m/s e H = 18 m

12. E (dis) = 750 J Dica: Ele possuía 1000J no início e passou a ter 250J

13. V = 14,1 m/s Dica: Ele possuía 2J no início e dissipou 1J, restando 1J

Trabalho

- 1. É A ENERGIA


 NECESSÁRIA PARA

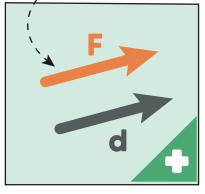
 DESLOCAR UM CORPO

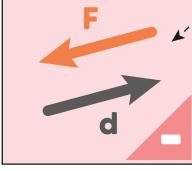
 NO ESPAÇO DEVIDO A

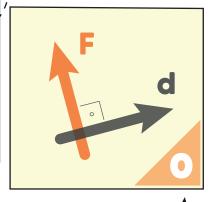
 APLICAÇÃO DE UMA

 FORCA "F"
- 2. O TRABALHO PODE SER CALCULADO PELO PRODUTO DESSAS DUAS GRANDEZAS

W = F·d


[Joules - J]


3. E COMO ESTAMOS FALANDO DE ENERGIA, TAMBÉM UTILIZAMOS A UNIDADE "JOULES"

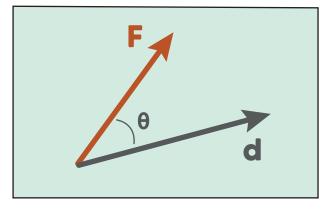

Olha o sinal!

1. A REGRA GERAL É BEM SIMPLES, SE OS VETORES DA FORÇA (F) E O DESLOCAMENTO (D) ESTIVEREM COM O MESMO SENTIDO, O TRABALHO DESSA FORÇA SERÁ POSITIVO www.marcioazulayexatas.com

2. SE FORAM SENTIDO CONTRÁRIOS, É <u>NEGATIVO</u>

3. E SE FOREM
PERPENDICULARES?
(90 GRAUS)

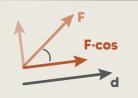
Então o trabalho será <u>Nulo</u> para aquela força.

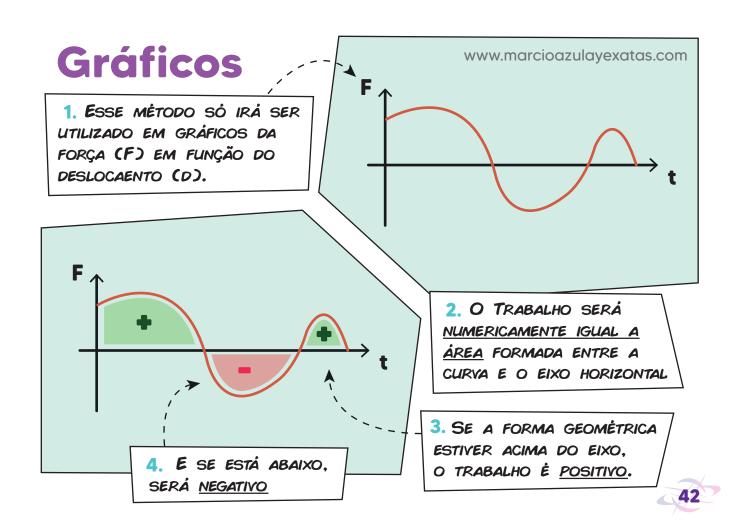

A fórmula geral

1. EM ALGUMAS EXERCÍCIOS, OS VETORES DA FORÇA E DO DESLOCAMENTO POSSUIRÃO UM ÂNGULO ENTRE ELES.

2. PODEMOS USAR UMA FÓRMULA MAIS GERAL, QUE SERVIRÁ PARA QUALQUER CASO.

> APENAS ACRESCENTE O COSSENO* DO ÂNGULO NA FÓRMULA




 $W = F \cdot d \cdot \cos(\theta)$

[Joules - J]

*O vetor da força deverá ser decomposto em duas componentes ortogonais, uma será paralela ao vetor do deslocamento e a outra será perpendicular.

Somente a componente paralela irá ser considerada no problema, e esta componente paralela é responsável pela aparição do cosseno.

O1 (Respondido) O motor de um carro de 1 tonelada imprime uma força de 8 kN, determine a energia fornecida por esse motor para percorrer 50 metros.

RESOLUÇÃO

Transforme a força: 8 kN = 8000 N. Use a fórmula do trabalho:

W = F·d W = (8000)·(50) W = 400.000 J (0,4 MJ)

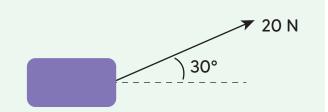
- **02.** Uma criança puxa um carrinho de brinquedo com 1,5 kg de massa com aceleração constante de 2 m/s^2 por 10 metros. Determine:
 - a) A força com que ela puxou o carrinho
 - b) A energia gasta pela criança exclusivamente para puxar o carro
- **O3 (Respondido)** Uma pessoa precisa levar uma caixa de 10 kg escadaria acima até o seu apartamento que fica no segundo andar (6 metros acima do solo). Quando chega em seu apartamento, percebe que pegou a caixa errada e volta para o seu carro com ela. Determine:
 - a) O trabalho realizado pelo peso da caixa na subida
 - b) O trabalho realizado pelo peso da caixa na descida

RESOLUÇÃO

a) O vetor da força peso aponta para baixo, o deslocamento aponta para cima (subida), logo, o trabalho será negativo, use a fórmula:

$$W = - F \cdot d$$

 $W = - P \cdot d$
 $W = - m \cdot g \cdot d$
 $W = - (10)(10) \cdot (6)$
 $W = - 600 J$

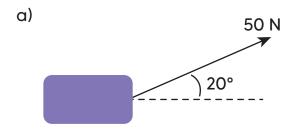

b) O vetor peso continua apontando para baixo, e o deslocamento também (descida), logo, o trabalho será positivo, use a fórmula:

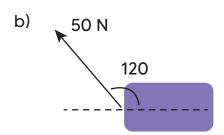
04. Uma pessoa precisa levar uma caixa de 2 kg escadaria acima até o seu apartamento que fica no quinto andar (16 metros acima do solo). Quando chega em seu apartamento, percebe que pegou a caixa errada e volta para o seu carro com ela. Determine:

- a) O trabalho realizado pelo peso da caixa na subida
- b) O trabalho realizado pelo peso da caixa na descida
- c) O trabalho total realizado pelo peso da caixa na ida e volta

O5 (Respondido) Veja a figura ao lado e determine o trabalho realizado pela força (F) para puxá-la 7 metros para a direita pelo plano horizontal.

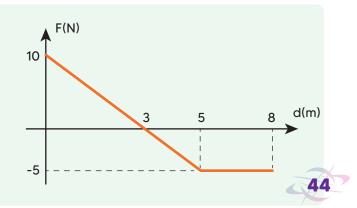
RESOLUÇÃO


Use a fórmula geral do trabalho usando o cosseno do ângulo:

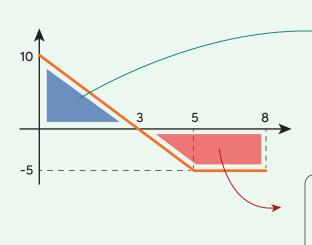

$$W = F \cdot d \cdot \cos(30^{\circ})$$

$$W = (20) \cdot (7) \cdot (0.87)$$

$$W = 121,8 J$$


06. Veja a figuras abaixo e determine o trabalho realizado pela força (F) para puxálas 7 metros para a <u>direita</u> pelo plano horizontal.

07 (Respondido) O movimento de uma partícula é descrita pelo gráfico ao lado. Determine:

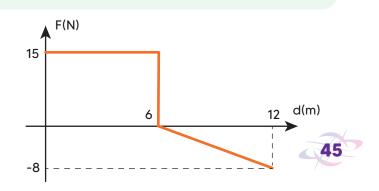

- a) O trabalho realizado pela força.
- b) A força média do movimento.

RESOLUÇÃO

O trabalho realizado pela força pode ser achada pela área entre a curva e o eixo horizontal, vamos dividir em 2 partes:

- Entre 0 e 3 segundos: O trabalho é positivo (acima do eixo) e representado por um triângulo.
- Entre 3 e 8 segundos: O trabalho é negativo (abaixo do eixo) e representado por um trapézio.

W₍₁₎ = Área do Triângulo
W₍₁₎ =
$$\frac{B \cdot h}{2}$$
 = $\frac{3 \cdot (10)}{2}$
W₍₁₎ = 15 J


$$W_{(2)} = \text{Área do Trapézio}$$
 $W_{(2)} = \frac{(B + b) \cdot h}{2} = \frac{(5 + 3) \cdot (-5)}{2}$
 $W_{(2)} = -20 \text{ J}$

Some os dois trabalhos encontrados para achar o total:

$$W = W_{(1)} + W_{(2)} = (15) + (-20) = -5 J$$

b) Use a fórmula do trabalho com o deslocamento igual a 8 m (gráfico):

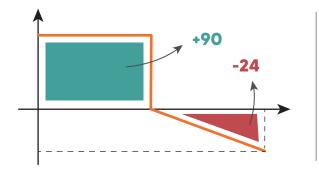
- **08.** O movimento de uma partícula é descrito pelo gráfico (Fxd) ao lado. Determine:
 - a) O trabalho realizado pela força.
 - b) A força média do movimento.

09 (Respondido) É necessário 200 Joules de energia para arrastar uma caixa de 10 kg por 8 metros com aceleração constante. Determine:

- a) A força paralela ao movimento.
- b) A aceleração.

RESOLUÇÃO

a) Use a fórmula do trabalho:


b) Use a fórmula da força:

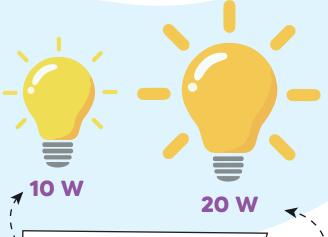
$$F = m \cdot a$$

25 = (10)·a
 $F = 2.5 \text{ m/s}^2$

- 10. É necessário 560 Joules de energia para arrastar uma caixa de 40 kg por 50 metros com aceleração constante. Determine:
 - a) A força paralela ao movimento.
 - b) A aceleração.
- **11.** Um pacote deverá ser levado do décimo andar de um prédio para o térreo; um funcionário dispõe de 2 opções: ir de elevador ou descer as escadas. Em qual das opções a força peso da encomenda realizará um maior trabalho?

RESPOSTAS

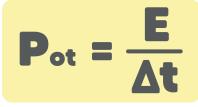
04. a)
$$W = -320 J$$
; b) $W = 320 J$; c) $Wt = 0 J$ Dica: O deslocamento total foi zero (ida e volta)


10. a) F = 11.2 N; b) $a = 0.28 \text{ m/s}^2$

11. As duas são iguais

Dica: O deslocamento nos dois casos serão iguais, logo, o trabalho também será! (O trabalho não depende da trajetória, só do deslocamento)

Potência

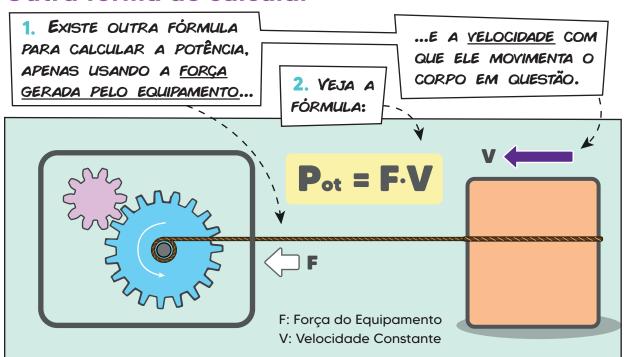

1. É A GRANDEZA QUE MEDE
A RAPIDEZ COM QUE CERTA
QUANTIDADE DE ENERGIA É CONSUMIDA
OU FORNECIDA POR UM SISTEMA

2 POR EXEMPLO, IMAGINE DUAS LÂMPADAS, UMA COM POTÊNCIA DE 10 WATTS E A OUTRA COM 20 W

- 3 A PRIMEIRA CONSOME 10 J DE ENERGIA A CADA SEGUNDO QUE SE PASSA
- 4 E A SEGUNDA CONSOME <u>20</u>

 <u>JOULES</u>, O DOBRO DE ENERGIA

 NO MESMO INTERVALO DE TEMPO



E: Trabalho/Energia [J] Δt: Tempo [s] 5 Para calcular a Potência, use a fórmula:

5 E A SUA UNIDADE "WATT" É
APENAS OUTRO NOME PARA SUBSTITUIR "JOULES POR SEGUNDO"

www.marcioazulayexatas.com

Outra forma de calcular

[Watt - W]

O1 (Respondido) Uma máquina fornece 800 Joules de energia a cada 20 segundos. Qual é a potência dessa máquina?

RESOLUÇÃO

Use a fórmula da potência:

Pot =
$$\frac{E}{\Delta t} = \frac{800}{20} = 40 \text{ W}$$

02. Uma máquina consome 600 Joules de energia a cada minuto, qual é a potência desse equipamento?

O3 (Respondido) Uma lâmpada tem 15 W de potência, qual é a energia total consumida no período de 1 mês, sabendo que ela fica ligada 5 horas diárias?

RESOLUÇÃO

Primeiro vamos descobrir o tempo total em segundos que ela ficou ligada:

- 1 mês são 30 dias
- Cada dia são 5 horas de funcionamento,
- Cada hora possui 60 minutos
- Cada minuto possui 60 segundos

Tempo = 540.000 segundos

Use a fórmula da potência:

Pot =
$$\frac{E}{\Delta t}$$

15 = $\frac{E}{540.000}$
E = 8.100.000 J (8,1 MJ)

máquina

Peso da

- **04.** Uma lâmpada possui 12 Watts de potência, determine a energia total consumida por ela após ficar ligada por 2 horas diárias no período de 2 meses.
- **05.** Uma lâmpada possui 9 Watts de potência, por quanto tempo ela deve ficar ligada para gastar 10,8 kJ de energia?
 - **06 (Respondido)** Uma máquina consegue erguer uma caixa de 20 kg com velocidade constante de 0,5 m/s.
 - a) Qual é a potência útil dessa máquina?
 - b) Qual é a potência total sabendo que ela está a 30% de sua capacidade máxima?

RESOLUÇÃO

a) Utilizaremos a fórmula alternativa da potência usando somente a força e velocidade. Para erguer uma caixa de 18 kg, é necessário aplicar uma força que seja igual ao peso da caixa:

Use a fórmula da potência:

b) A potência útil é a potência real fornecida pela máquina no problema (90 W). A potência total é o 100 % que ela poderia fornecer se não houvesse dissipação de energia, utilize a regra de 3 a seguir:

- **07.** Uma máquina consegue erguer uma caixa de 50 kg com velocidade constante de 0,3 m/s.
 - a) Qual é a potência útil dessa máquina?
 - b) Qual é a potência total sabendo que ela está a 60% de sua capacidade máxima?
 - **08 (Respondido)** Uma pessoa aplica uma força de 40 Newtons para arrastar uma caixa em um plano horizontal por 4 metros. Determine:
 - a) A energia gasta pela pessoa para empurrar a caixa.
 - b) A potência desse movimento que durou 5 segundos.

RESOLUÇÃO

a) Utilize a fórmula do trabalho para achar a energia:

b) Use a fórmula da potência:

Pot =
$$\frac{E}{\Delta t} = \frac{160}{5} = 32 \text{ W}$$

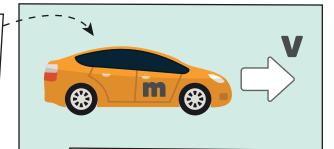
- 09. Uma pessoa aplica uma força de 300 Newtons para arrastar uma caixa em um plano horizontal por 20 metros. Determine.
 - a) A energia gasta pela pessoa para empurrar a caixa.
 - b) A potência desse movimento que durou 60 segundos.

RESPOSTAS

02. P = 10 W Dica: 1 min = 60 s

04. E = 5.184.000 J (5,2 MJ) Dica: Tempo total = 432.000 s

05. t = **1200** s **(20 min)** Dica: 10,8 kJ = 10.800 J

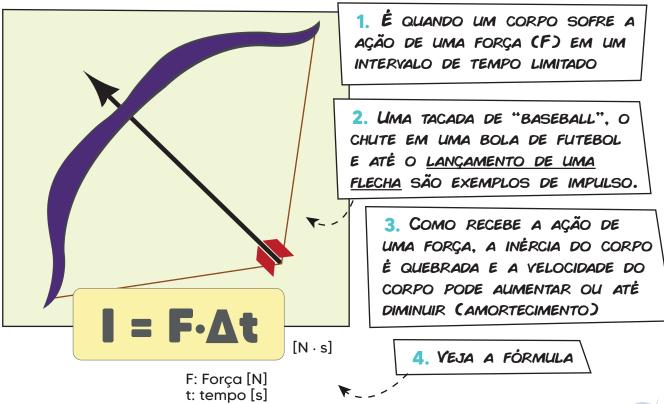

07. a) 150 W; b) 250 W 09. a) 6000 J; b) 100 W

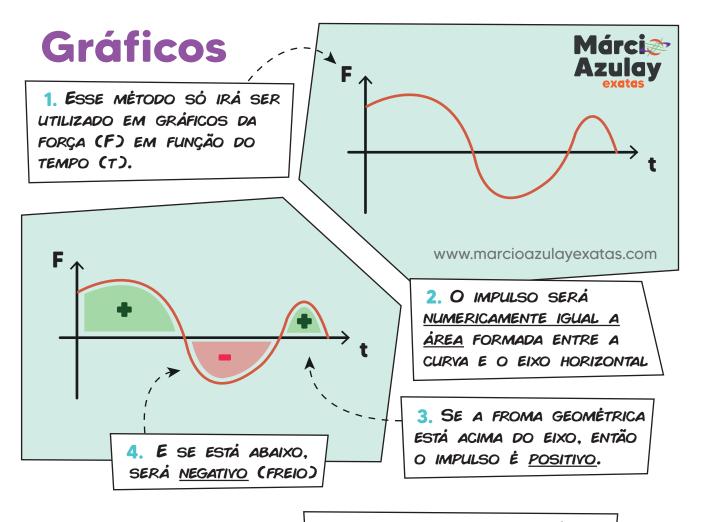
Quantidade de Movimento

MUITO IMPORTANTE EM PROBLEMAS QUE ENVOLVEM COLISÕES

1. TODO CORPO DE MASSA QUE POSSUI VELOCIDADE TAMBÉM POSSUI UMA GRANDEZA CHAMADA: QUANTIDADE DE MOVIMENTO

 $Q = m \cdot V$

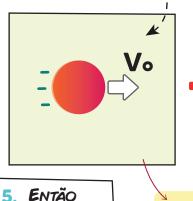

_ **>** [kg · m/s]

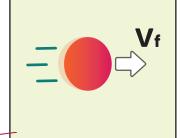

2. Para achar esse valor, multiplique a massa (m) pela velocidade (V).

3. PERCEBA QUE AQUI NÃO EXISTE UMA UNIDADE DE MEDIDA ESPECIAL PARA A QUANTIDADE DE MOVIMENTO, USAREMOS O PRODUTO ENTRE MASSA [KG] E A VELOCIDADE [M/S]

www.marcioazulayexatas.com

Impulso





1. O TEOREMA DO IMPULSO É UMA FORMA DE RELACIONAR AS DUAS GRANDEZAS VISTAS ANTERIORMENTE

2. Imagine um corpo se movimentando com uma velocidade inicial (Vo) 3. E POR UM
BREVE INSTANTE,
SOFRE A AÇÃO
DE UMA FORÇA,
OU SEJA, UM
IMPULSO (I)

4. ESSE IMPULSO SERÁ
RESPONSÁVEL POR UMA
MUDANÇA NA SUA
VELOCIDADE, LOGO, A
QUANTIDADE DE MOVIMENTO
TAMBÉM MUDA (QF)

5. ENTÃO
PODEMOS
RESUMIR NA
EQUAÇÃO:

Q. + | = Qf

Qo: Qt. de Mov. Inicial [kg.m/s] Qf: Qt. de Mov. Final [kg.m/s] I: Impulso [N.s] ou [kg.m/s] **O1 (Respondido)** Um carro de 1,2 toneladas se movimenta em uma estrada reta com velocidade igual a 21 m/s, determine a quantidade de movimento que esse carro possui.

RESOLUÇÃO

Transforme a massa: 1,2 to = 1200 kg. Use a fórmula:

$$Q = m \cdot V$$

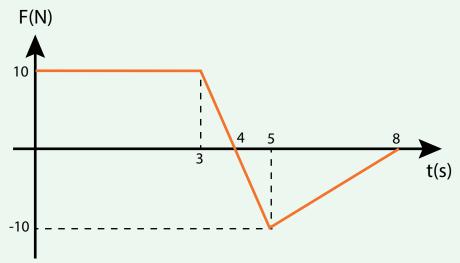
$$Q = (1200) \cdot (21)$$

- **02.** Determine a quantidade de movimento nos casos a seguir:
 - a) Um carro de 2 toneladas com velocidade de 2 m/s
 - b) Uma moto com 200 kg se movimentando a 20 m/s
 - c) Um barco com 30 toneladas parado sobre o mar
 - d) Uma particula com 500 ng se movimentando na velocidade da luz (3 x 108 m/s)

O3 (Respondido) Uma bola de baseball recebe uma força de 2000 N durante uma jogada, determine o impulso recebido pela bola sabendo que a tacada durou apenas 20 ms.

RESOLUÇÃO

Normalmente os tempos virão acompanhados de prefixos (por serem intervalos muito pequenos); faça a transformação:

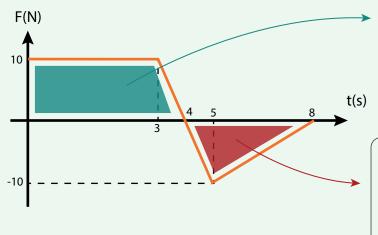

$$20 \text{ ms} = 20 \times 10^{-3} \text{ s} = 0.02 \text{ s}$$

Use a fórmula do impulso:

$$I = (2000) \cdot (0,02)$$

- **04.** Uma bola de futebol recebe um chute com 500 N de força por apenas meio segundo, qual foi o impulso sofrido pela bola?
- **05.** Uma partícula recebeu um impulso de 90 N⋅s, durante 1 minuto qual foi a força média aplicada sobre a partícula?

06 (Respondido) O movimento de uma partícula é descrito pelo gráfico seguir:



Determine:

a) O impulso, b) A força média

RESOLUÇÃO

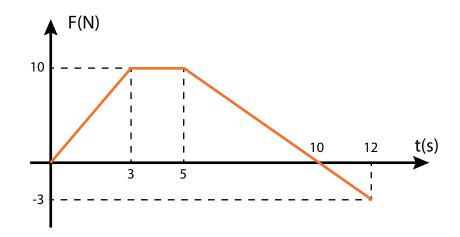
- a) O impulso poderá ser achado pela área do gráfico, vamos dividir em 2 partes:
 - Entre 0 e 4 segundos: Impulso positivo representado por um trapézio
 - Entre 4 e 8 segundos: Impulso negativo representado por um triângulo

I = Área do Trapézio
I =
$$\frac{(B + b) \cdot h}{2}$$

I = $\frac{(4 + 3) \cdot 10}{2}$ = 35 N·s

I = Área do Triângulo $I = \frac{B \cdot h}{2} = \frac{4 \cdot (-10)}{2}$ I = -20 N·s

Some os dois impulsos encontrados para achar o impulso total


$$I = I_{(1)} + I_{(2)} = (35) + (-20) = 15 \text{ N} \cdot \text{s}$$

b) Use a fórmula do impulso com o tempo igual a 8s (tirado do gráfico):

07. O movimento de uma partícula é descrito pelo gráfico ao lado:

Determine:

- a) O impulso,
- b) A força média

O8 (Respondido) Um carro de 1 to está se movimentando com velocidade de 10 m/s quando o seu motor imprime uma força de 900 N por apenas 5 segundos, determine a sua velocidade após o impulso.

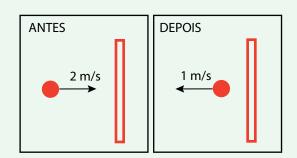
RESOLUÇÃO

Usamos o Teorema do Impulso:

$$Q = m.V$$

$$Q(inicial) + I = Q(final)$$

$$m \cdot V$$
(inicial) + $F \cdot t = m \cdot V$ (final)


$$(1000)\cdot(10) + (900)\cdot(5) = (1000)\cdot V_{\text{(final)}}$$

$$10.000 + 4.500 = (1000) \cdot V(final)$$

$$14.500 = (1000) \cdot V(final)$$

$$V(final) = 14.5 \text{ m/s}$$

- **09.** Um carro de 1,5 to está se movimentando com velocidade de 8 m/s quando seu motor imprime uma força de 1200 N por apenas 4 segundos, determine a sua velocidade após o impulso.
- 10. Um carro de 1,2 to está se movimentando com velocidade de 20 m/s quando avista o sinal vermelho e pisa no freio até parar, determine:
 - a) O impulso aplicado pelos freios
 - b) A força média aplicada pelos freios sabendo que o movimento durou apenas 3 segundos.
- 11 (Respondido) Uma bola está a 2 m/s quando bate em uma parede de concreto e ricocheteia no sentido contrário. Após bater na parede, a bola passa a ter velocidade de 1 m/s. Sabendo que a massa da bola é de 300g, determine:

- a) O impulso produzido pela parede
- b) O módulo da força exercida pela parede se o contato com a bola durou apenas 0,05 segundos.

RESOLUÇÃO

a) Massa: 300 g = 0,3 kg. Use o Teorema do Impulso.

Q(inicial) + I = Q(final)

$$m \cdot V(inicial)$$
 + I = $m \cdot V(final)$
 $(0,3) \cdot (2)$ + I = $(0,3) \cdot (-1)$
 $0,6$ + I = $-0,3$
I = $-0,3 - 0,6$
I = $-0,9$ N·s

A velocidade final é negativa pois aponta no sentido contrário da velocidade inicial

b) Use a fórmula do impulso:

- 12. Uma bola está a 5 m/s quando bate em uma parede de concreto e ricocheteia no sentido contrário. Após bater na parede, a bola passa a ter velocidade de 2 m/s. Sabendo que a massa da bola é de 500g, determine:
 - a) O impulso produzido pela parede
 - b) A força exercida pela parede se o contato com a bola durou apenas 0,25 s.

13 (Respondido) Prove que a unidade de medida para o impulso (I) é igual ao da quantidade de movimento (Q).

RESOLUÇÃO

O impulso é o produto da Força (F) pelo tempo (t)

$$I = F \times t$$

E por sua vez, a força é o produto da massa (m) pela aceleração (a):

$$l = m \times a \times t$$

A unidade de medida para a massa é o "kg", para a aceleração é o "m/s²" e o tempo é medido em "s":

$$I = [kg] \times [m/s^2] \times [s]$$

Multiplique tudo, você poderá cortar os tempos:

$$I = [kg] \times [m/s^2] \times [s]$$

$$I = [kg \times m/s]$$

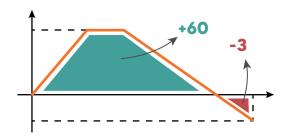
Feito!

A unidade para o Impulso [N.s] **| = [kg × m/s]** é igual a unidade para a Quantidade de Movimento [kg.m/s]

RESPOSTAS

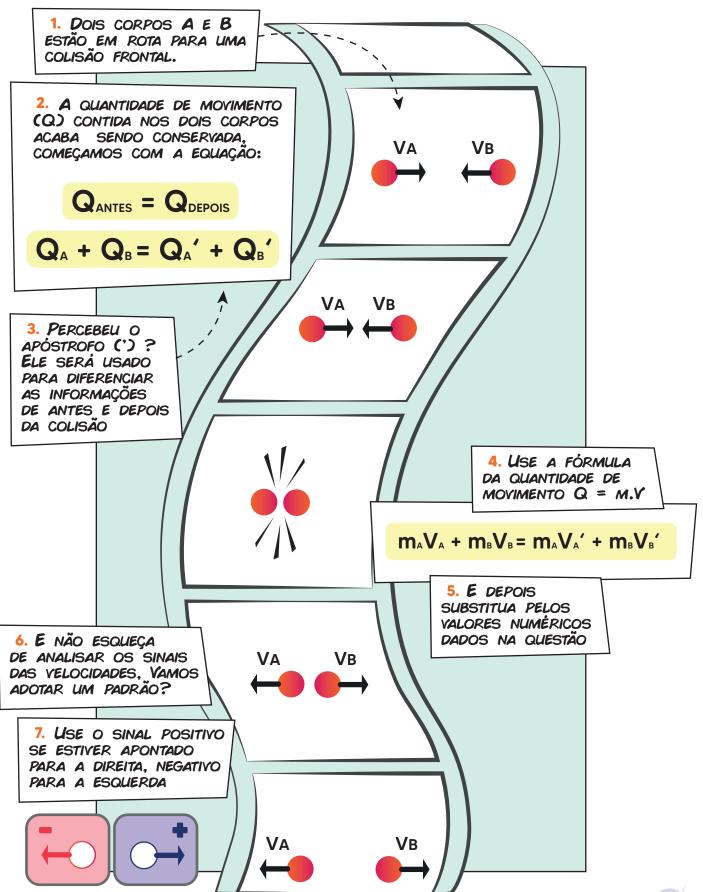
Dica: $500 \text{ ng} = 5 \times 10^{-10} \text{ kg}$

02. a) 4000 kg.m/s; b) 4000 kg.m/s; c) 0; d) 0,15 kg.m/s


04. I = 250 N.s **05. F = 1.5 N** Dica: 1 min = 60 s

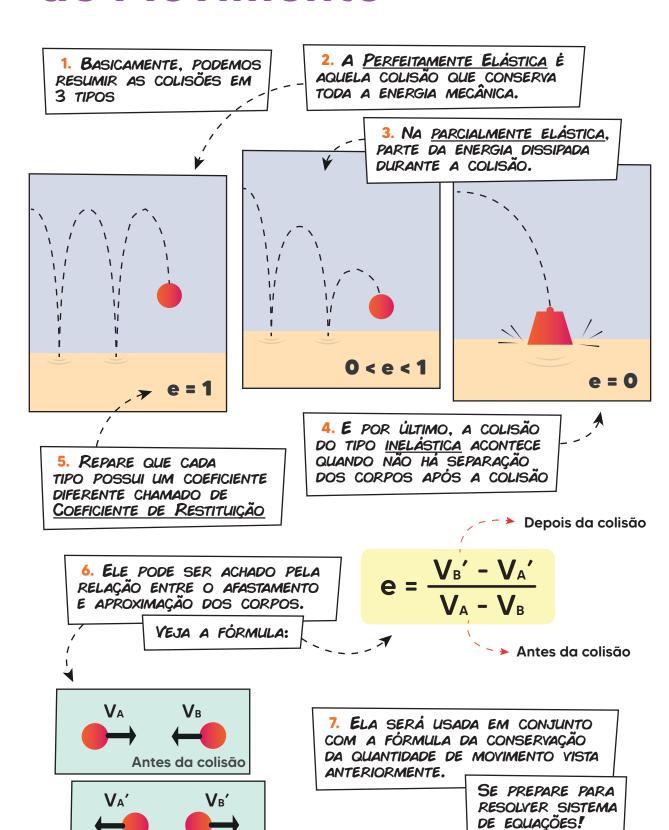
07. a) I = 57 N.s ; b) F = 4,75 N

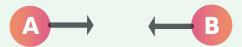
09. V = 11.2 m/s Dica: 1,5 to = 1500 kg


10. a) I = - 24.000 N.s b) F = 8.000 N

12. a) I = - 3.5 N.s b) F = -14 N

Colisões




Restituição de Movimento

Depois da colisão

O1 (Respondido) Dois carros A e B estão se movimentando em uma pista retilínea e chocam-se frontalmente; após a colisão inelástica, os dois carros permanecem unidos. Determine a velocidade do conjunto após a colisão.

Os dois carros possuem massa 1 tonelada cada, a velocidade do carro A era de 20 m/s e o do carro B era de 16 m/s antes da colisão

RESOLUÇÃO

Utilize a conservação da quantidade de movimento

$$\begin{array}{l} Q_{(antes)} = Q_{(depois)} \\ Q_A + Q_B = Q_{A'} + Q_{B'} \\ m_{A} \cdot V_A + m_{B} \cdot V_B = m_{A} \cdot V_{A'} + m_{B} \cdot V_{B'} \\ 1000 \cdot (20) + 1000 \cdot (-16) = 1000 \cdot (V_{A'}) + 1000 \cdot (V_{B'}) \\ 20 - 16 = V_{A'} + V_{B'} \\ 4 = V_{A'} + V_{B'} \end{array}$$

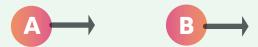
O enunciado fala que a colisão foi do tipo inelástica, ou seja, os dois carros permaneceram juntos após a colisão com velocidades iguais:

$$4 = V_{A'} + V_{B'}$$

$$4 = V' + V'$$

$$2V' = 4$$

$$V' = 2 \text{ m/s}$$


$$V' = V_{A'} = V_{B'}$$

02. Dois carros A e B estão se movimentando em uma pista retilínea e chocam-se frontalmente; após a colisão inelástica, os dois carros permanecem unidos. Determine a velocidade do conjunto após a colisão.

Os dois carros possuem massa 1 tonelada cada, a velocidade do carro A era de 18 m/s e o do carro B era de 12 m/s antes da colisão

O3 (Respondido) Dois carros A e B estão se movimentando em uma pista retilínea como mostra a figura. Após uma colisão inelástica, os dois carros permanecem unidos. Determine a velocidade do conjunto após a colisão.

Os dois carros possuem massa 1 tonelada cada, a velocidade do carro A era de 20 m/s e o do carro B era de 16 m/s antes da colisão

RESOLUÇÃO

Utilize a conservação da quantidade de movimento

$$\begin{array}{l} Q_{(antes)} = Q_{(depois)} \\ Q_A + Q_B = Q_{A'} + Q_{B'} \\ m_{A} \cdot V_A + m_{B} \cdot V_B = m_{A} \cdot V_{A'} + m_{B} \cdot V_{B'} \\ 1000 \cdot (20) + 1000 \cdot (16) = 1000 \cdot (V_{A'}) + 1000 \cdot (V_{B'}) \\ 20 + 16 = V_{A'} + V_{B'} \\ 36 = V_{A'} + V_{B'} \end{array}$$

O enunciado fala que a colisão foi do tipo inelástica, ou seja, os dois carros permaneceram juntos após a colisão com velocidades iguais:

$$36 = V_{A'} + V_{B'}$$

 $36 = V' + V'$
 $2V' = 36$
 $V' = 18 \text{ m/s}$
 $V' = V_{A'} = V_{B'}$

04. Dois carros A e B estão se movimentando em uma pista retilínea como mostra a figura. Após uma colisão inelástica, os dois carros permanecem unidos. Determine a velocidade do conjunto após a colisão.

Os dois carros possuem massa 1 tonelada cada, a velocidade do carro A era de 18 m/s e o do carro B era de 12 m/s antes da colisão

O5 (Respondido) Duas partículas estão se movimentando em sentidos contrários como mostra a figura a seguir. Sabe-se que a massa da partícula A é igual a 0,8 vezes massa de B.

A colisão entre as duas partículas foi parcialmente elástica e possui um coeficiente de restituição igual a 0,5. Conhecendo todos esses dados, determine as velocidades das partículas A e B e seus sentidos após a colisão.

RESOLUÇÃO

Ache a igualdade entre as massas:

$$m_A = 0.8 \cdot m_B$$

Use a fórmula da conservação:

$$Q_{(antes)} = Q_{(depois)}$$

$$Q_A + Q_B = Q_{A'} + Q_{B'}$$

$$m_{A} \cdot V_A + m_{B} \cdot V_B = m_{A} \cdot V_{A'} + m_{B} \cdot V_{B'}$$

$$m_{A} \cdot (20) + m_{B} \cdot (-16) = m_{A} \cdot V_{A'} + m_{B} \cdot V_{B'}$$

Substitua: MA = 0,8 MB

$$(0,8\cdot m_B)\cdot (20) + m_B\cdot (-16) = (0,8\cdot m_B)\cdot (V_{A'}) + m_B\cdot V_{B'}$$

$$16\cdot m_B - 16\cdot m_B = 0,8\cdot m_B\cdot V_{A'} + m_B\cdot V_{B'}$$

$$16 - 16 = 0,8\cdot V_{A'} + V_{B'}$$

$$0 = 0,8\cdot V_{A'} + V_{B'}$$

$$0,8\cdot V_{A'} + V_{B'} = 0$$

$$(EQUAÇÃO 1)$$

Agora é hora de usar o coeficiente de restituição

$$e = \frac{V_{B'} - V_{A'}}{V_{A} - V_{B}}$$
 $0.5 = \frac{V_{B'} - V_{A'}}{(20) - (-16)}$ $0.5 = \frac{V_{B'} - V_{A'}}{36}$

$$V_B' - V_A' = 18$$
 (EQUAÇÃO 2)

Resolva o sistema de equações encontrado:

$$\begin{cases} 0.8 \cdot V_{A'} + V_{B'} = 0 & \text{(EQUAÇÃO 1)} \\ V_{B'} - V_{A'} = 18 & \text{(EQUAÇÃO 2)} \end{cases}$$

$$V_{A'} = -10 \text{ m/s}$$

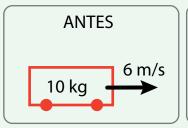
 $V_{B'} = 8 \text{ m/s}$

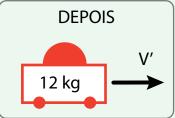
Interpretando sinais: Após a colisão, a partícula A se movimenta para a esquerda, e B se move para a direita

06. Duas partículas estão se movimentando em sentidos contrários como mostra a figura a seguir. Sabe-se que a massa da partícula A é igual a 0,6 vezes massa de B.

A colisão entre as duas partículas foi parcialmente elástica e possui um coeficiente de restituição igual a 0,6. Conhecendo todos esses dados, determine as velocidades das partículas A e B e seus sentidos após a colisão.

07. Duas partículas estão se movimentando com mesmo sentido como mostra a figura a seguir. Sabe-se que a massas das partículas são: MA = 12 kg e MB = 18


A colisão entre as duas partículas foi perfeitamente elástica. Conhecendo todos esses dados, determine as velocidades das partículas A e B e seus sentidos após a colisão.


08 (Respondido) Um carrinho de brinquedo com 10 kg está se movimentando em uma pista reta com 6 m/s quando um menino acrescenta gentilmente uma carga de 2 kg em cima do carro quando passa por ele.

Determine a velocidade do sistema após o evento.

RESOLUÇÃO

Veja o desenho da situação antes e depois:

Podemos apenas considerar que ele sofre um acréscimo de 2 kg na sua massa e agora vale 12 kg.

Use a conservação do movimento:

Q (antes) = Q (depois)

$$m \cdot V = m' \cdot V'$$

 $(10) \cdot (6) = (12) \cdot V'$
 $60 = 12 \cdot V'$
 $V_{A'} = 5 \text{ m/s}$

09. Um carrinho de brinquedo com 8 kg está se movimentando em uma pista reta com 4 m/s quando um menino acrescenta gentilmente uma carga de 2 kg em cima do carro quando passa por ele.

Determine a velocidade do sistema após o evento.

RESPOSTAS

06.
$$VA' = -10 \text{ m/s (esquerda)}$$
 07. $VA' = +8 \text{ m/s (direita)}$ $VB' = +5 \text{ m/s (direita)}$ $VB' = +18 \text{ m/s (direita)}$