

Resolvendo de uma maneira clássica temos que a média das alturas dos jogadores A, B, C, D e E tem que ser no mínimo 1,80 metros, dessa forma obtemos a seguinte equação:

$$m\acute{e}dia = \frac{alt.\ jog\ A + alt.\ jog\ B + alt.\ jog\ C + alt.\ jog\ D + alt.\ jog\ E}{5}$$

Resolvendo-a obtemos que a altura mínima para o jogador E é de:

$$m\acute{e}dia = \frac{alt.\ jog\ A + alt.\ jog\ B + alt.\ jog\ C + alt.\ jog\ D + alt.\ jog\ E}{5}$$

$$1,80 = \frac{1,75 + 1,90 + 1,70 + 1,80 + alt.\ jog\ E}{5}$$

$$1,80 \cdot 5 = 1,75 + 1,90 + 1,70 + 1,80 + alt.\ jog\ E}$$

$$9 = 7,15 + alt.\ jog\ E \rightarrow alt.\ jog\ E = 9 - 7,15$$

$$alt.\ jog\ E = 1,85\ metros$$

Resposta: Letra C.

Resolvendo de outra forma:

Uma maneira não muito convencional de resolvermos essa questão e que o Fredão e o Lobo explicam ao longo do curso é chutarmos uma média para facilitar os cálculos e que nesse caso específico o nosso chute já está dado e é a média mínima de altura para o time de basquete, 1,80 m.

Assim, calculando qual a altura mínima de altura do jogador E, obtemos:

$$valor\ alt.\ jog\ E = chute + [(chute - alt.\ jog\ A) + \\ (chute - alt.\ jog\ B) + (chute - alt.\ jog\ C) + (chute - alt.\ jog\ D)]$$

$$valor\ alt.\ jog\ E = 1,80 + [(1,80-1,75) + (1,80-1,90)$$

$$(1,80-1,70) + (1,80+1,80)]$$

$$valor\ alt.\ jog\ E = 1,80 + [0,05-0,1+0,1+0]$$

$$valor\ alt.\ jog\ E = 1,80+0,05$$

Resposta: Letra C.

valor alt. jog E = 1,85 metros

Apesar de estar escrito EPCAR, não se assustem. Na verdade, essa é uma questão bem divertida e simples.

Vou explicar ela da forma como eu fiz, desenhando.

- o) _ _ _ _ : assim começam as nossas notas. Sabemos que são 5.
- i) Agora, lendo o primeiro parágrafo, temos: a mediana e a média

Portanto, agora nossas notas estão: _ _ 5 _ _

ii) Da leitura do segundo parágrafo, temos que o conjunto é unimodal. Tá Nick, e para que serve essa informação? Meu amigo, ela deu tudo que a gente queria.

Agora sabemos que a moda vale 8, e que é unimodal, ou seja, 8 é o único valor que se repete, nesse caso, 2 vezes. Caso isso não fosse deliberadamente especificado, poderíamos ficar na dúvida se os 2 valores iniciais poderiam ser iguais. Agora sabemos que não.

Então, temos: _ _ 5 8 8

que, na verdade, é: x y 5 8 8, tal que x é diferente de v.

iii) Agora, vamos utilizar as informações do enunciado que ainda não usamos, e correr para o abraço (cuidado com o corona, na real).

Primeiro, usando a média:

$$\frac{x+y+5=8+8}{5} = 5$$

$$x+y+5+16=25$$

$$x+y+16=20$$

$$x+y=4$$

E agora, pensamos nos possíveis valores de x e y, sabendo que são diferentes (como dito pelo enunciado e explicado em ii). São eles:

$$(x = 1; y = 3)$$
 ou $(x = 0; y = 4)$

Mas agora, utilizamos a última informação do enunciado que ainda não utilizamos: que nenhum aluno errou todas as questões, e, portanto, ninguém teve nota 0.

iv) Assim, sabendo que o valor de x = 1 e y = 3. Temos o conjunto final, e podemos resolver a questão: 1 3 5 8 8

Maior nota: 8

Menor nota: 1

8 - 1 = 7

7 é divisor de 14

Resposta: Letra A.

A partir do gráfico de 2016 onde o Instagram não aparece mesmo já existindo haja vista ter um número de usuários menor do que 36 milhões e assim não figurar entre as 5 mais populares redes sociais nesse ano. Já em 2018 o Instagram já aparece com 74 milhões de usuários. Portanto, conseguimos perceber que o aumento nos usuários ativos do Instagram foi maior que 100%, pois caso ele fosse a 5 maior rede social com usuários ativos em 2016 isso já ocorreria uma vez que um aumento de 100% em relação a 5 rede social mais utilizada em 2016 seriam necessários um total de 72 milhões de usuários, como 74 milhões é maior que 72 milhões e o número de usuários do Instagram é menor que 36 milhões em 2016. A resposta é um crescimento maior que 100%.

Resposta: Letra D.

Calculando a média:

$$m = \frac{3+3+4+4+4+6}{6} \rightarrow m = 4$$

Usando a fórmula do desvio padrão temos para o gráfico:

$$dp = \sqrt{\frac{(3-4)^2 + (3-4)^2 + (4-4)^2 + (4-4)^2 + (4-4)^2 + (6-4)^2}{6}}$$

dp = 1

Agora para encontramos o número de termos para um desvio padrão igual a metade do obtido acima fazemos:

$$dp = \sqrt{\frac{(3-4)^2 + (3-4)^2 + (4-4)^2 + \dots + (6-4)^2}{6}} = \frac{1}{2}$$

$$\left(\sqrt{\frac{(3-4)^2+(3-4)^2+(4-4)^2+\cdots+(6-4)^2}{6}}=\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2$$

$$\frac{6}{n} = \frac{1}{4} \rightarrow 24 = n$$

Por fim, como a pergunta é o número de termos **ACRESCENTADOS** e inicialmente tínhamos 6 termos a resposta é 18, portanto <u>LETRA A</u>

Observação: No ENEM uma das alternativas seria o 24, por isso a importância de se marcar as partes chaves do enunciado como o Fredão explica para vocês.

Resposta: Letra A.

Primeiro a partir do gráfico vamos calcular a quantidade de vítimas para todas as faixas etárias e categorias de locomoção obtendo:

total de vítimas = vítimas de 20 a 24 + vítimas de 25 a 29 + vítimas de 30 a 34 + vítimas de 35 a 39 total de vítimas = 70 = 60 + 70 + 50 total de vítimas = 250 vítimas

Agora, ainda observando o gráfico vamos calcular o total de acidentados que eram ciclista, se deslocavam de bicicleta, com idade menor que 30 anos, obtendo:

• Faixa etária de 20 a 24 anos:

ciclistas de 20 a 24 = total - motociclistas - pedestres ciclistas de 20 a 24 = 70 - 26 - 25 ciclistas de 20 a 24 = 70 - 51 ciclistas de 20 a 24 = 19 ciclistas

Faixa etária de 25 a 29 anos:

ciclistas de 25 a 29 = total - motociclistas - pedestres ciclistas de <math>25 a 29 = 60 - 22 - 18 ciclistas de 25 a 29 = 60 - 40 ciclistas de 25 a 29 = 20 ciclistas

• Total de ciclistas com menos de 30 anos:

total ciclistas < 30 = ciclistas de 20 a 24 + ciclistas de 25 a 29 total ciclistas < 30 = 19 + 20 total ciclistas < 30 = 39 ciclistas

Por fim, calculando qual o percentual o total de ciclista com menos de 30 anos representa em relação ao total obtemos:

$$percentual = \frac{total\ ciclistas < 30}{total\ de\ v\'(timas)}$$

$$percentual = \frac{39}{250} \rightarrow percentual = \frac{25}{250} + \frac{12,5}{250} + \frac{1,5}{250}$$

$$percentual = 15,6\%$$

Resposta: Letra A.

A partir do enunciado do texto, conseguimos montar a seguinte equação abaixo, onde x representa a média de idade dos funcionários dessa empresa, y representa a idade do funcionário que se aposentou e z representa a idade do funcionário que entrou.

$$15 \cdot x - y + z = 15 \cdot (x - 3)$$

Resolvendo a equação acima, obtemos que a idade do funcionário que se aposentou (y) é:

$$15 \cdot x - y + z = 15 \cdot (x - 3)$$

 $15x - y + z = 15x - 45$ \rightarrow $y = 65 \text{ anos}$
 $-y + 20 = -45$

Resposta: Letra D.

Antes de tentarmos descobrir qual é o número removido para a média se tornar 18,5, vamos verificar quanto é a média atual desse conjunto:

$$\overline{M} = \frac{11 + 12 + 17 + 18 + 23 + 29 + 30}{7} = \frac{140}{7} = 20$$

A média atual do conjunto é 20, logo vamos precisar remover um número alto do conjunto para que ela desça até 18,5. Para descobrirmos qual número devemos remover, no entanto, vamos usar a definição de média. Para encontrar a média de um conjunto, nós encontramos o somatório dos termos de um conjunto e dividimos pelo número de termos.

Após a remoção de um termo, o novo conjunto terá média 18,5 e 6 termos, então nós podemos achar o somatório de seus termos pela fórmula da média:

$$\overline{M} = \frac{\Sigma}{n} \rightarrow 18, 5 = \frac{\Sigma}{6} \rightarrow \Sigma = 111$$

Agora olhe para a média original do conjunto que encontramos acima. Note que a média deu 20 porque o somatório era 140 e o número de termos era 7. Para que o somatório de termos diminua de 140 para 111, é necessário que o termo removido seja o 29 (note como a diferença entre 140 e 11 é igual a 29).

Com isso, sabemos que o novo conjunto será {11, 12, 17, 18, 23, 30}. Este conjunto possui um número par de termos, logo precisamos encontrar a média entre os dois termos centrais para calcular a mediana:

$$\frac{17+18}{2}=17,5$$

E ficamos com a Letra D.

Cada filial apresenta um lucro por peça diferente, e para encontrarmos o lucro médio da companhia inteira, precisamos levar em conta a participação na produção de cada filial. Ou seja, o lucro médio será a média ponderada dos lucros de cada filia, e seus pesos são a % de produção que cada filial representa:

$$\overline{M} = 0.3 \cdot 20 + 0.4 \cdot 15 + 0.1 \cdot 25 + 0.2 \cdot 20$$

 $\overline{M} = 6 + 6 + 2.5 + 4 = 18.5$

E ficamos com a Letra D.

A primeira observação importante nessa questão é que nenhum funcionário recebe o salário de R\$2.800, que é a mediana desejada, logo só será possível obter esse número a partir da média de dois outros salários. Assim, necessariamente o número final de funcionários precisa ser par, para que a mediana seja a média dos dois salários que representam os termos centrais da distribuição.

A segunda é perceber que os dois números que ao se extrair a média resultam em 2.800 só podem ser 2.000 e 3.600, logo esses dois precisam ser os termos centrais da nova distribuição. Após ordenar os salários de cada funcionário de forma crescente para poder extrair a mediana, os dez primeiros termos serão iguais a R\$2.000, os 12 termos seguintes serão iguais a R\$3.600, os 5 subsequentes iguais a R\$ 4.000 e os 3 últimos iguais a R\$6.000, totalizando os 30 termos. Para que os termos centrais dessa distribuição sejam os números 2.000 e 3.600, necessariamente os dois termos usados para extrair a mediana serão o 10º (2.000) e o 11º (3.600), e para que esses dois números sejam os termos centrais de uma sequência, ela deve ter apenas 20 termos.

Logo, como atualmente existem 30 funcionários, e para que a mediana seja R\$2.800 devem existir apenas 20, 10 funcionários precisam ser demitidos. **Letra D**

Obs: entretanto, nada desse processo seria necessário para resolver a questão durante a prova, já que é uma questão de múltipla escolha e pode ser feita por eliminação, poupando bastante tempo. Basta perceber que, como o número final de termos precisa ser par, imediatamente excluímos as letras B, C e E como respostas possíveis; e, após isso, é mais rápido testar as medianas das opções A e D. Rapidamente descobriremos que a mediana da sequência na situação A é R\$3.600.

Resposta: Letra D.

Vamos primeiro encontrar a Nota de Avaliação de cada curso, segundo o passo a passo no começo do enunciado. Para tal, nós vamos multiplicar a nota em cada critério pelo seu peso.

$$N_A\,=4\cdot 3+3\cdot 2=18$$

$$N_B = 5 \cdot 3 + 3 \cdot 2 = 21$$

$$N_C = 4 \cdot 3 + 4 \cdot 2 = 20$$

$$N_D = 4 \cdot 3 + 5 \cdot 2 = 22$$

$$N_F=5\cdot 3+5\cdot 2=25$$

Agora que temos a nota de avaliação de cada curso, para acharmos o custo-benefício nós dividiremos o custo de cada curso pela sua respectiva nota. Note que nós nem precisamos encontrar o valor para o curso C, já que ele apresenta o mesmo custo do curso B, mas uma nota menor, logo com certeza e uma opção pior que o curso B.

$$CB_A = \frac{3200}{18} = 177,...$$

$$CB_B = \frac{3650}{21} = 173,...$$

$$CB_D = \frac{3750}{22} = 170,...$$

$$CB_E = \frac{4100}{25} = 164$$

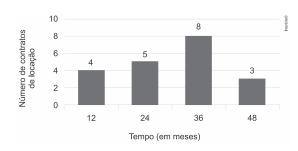
Note que nós não precisamos encontrar o valor exato de cada divisão, mas apenas ter uma noção de qual valor é o menor. Concluímos então que o curso com a melhor relação é o E, por ter o menor valor custo-benefício. **Letra E.**

A mediana de uma distribuição estatística é o número que está exatamente na posição quando já contamos 50 % do total de termos. Ou seja, nós vamos contando do menor valor para o maior valor, como sempre fazemos para encontrar a mediana, e quando já tivermos contado metade do total, o valor no qual estivermos será a mediana.

Nesse caso, a menor nota foi 5, que representa 25% das notas. Se seguirmos para o 6, teremos mais 15%, totalizando 40% das notas até aqui. Com 7 pontos, teremos mais 10%, chegando exatamente em 50%. A linha que marca exatamente metade dos alunos está exatamente entre o 7 e o 8.

Nessa situação, encontrar a mediana é similar a encontra-la quando temos um conjunto com um número par de termos. Como a mediana está exatamente na divisão entre 7 e 8, ela será, na verdade, a média entre esses dois valores, que é 7,5, **Letra D.**

Para descobrir o tempo médio de vigência, em meses, dos contratos de locação fazemos a média ponderada com o dados do gráfico da questão:



Tempo Médio Contrato =
$$\frac{4 \cdot 12 + 5 \cdot 24 + 8 \cdot 36 + 3 \cdot 48}{4 + 5 + 8 + 3}$$

Tempo Médio Contrato =
$$\frac{48 + 120 + 8 \cdot (40 - 4) + 3 \cdot (50 - 2)}{9 + 11}$$

Tempo Médio Contrato =
$$\frac{48 + 120 + 320 - 32 + 150 - 6}{20}$$

Tempo Médio Contrato =
$$\frac{168 + 288 + 144}{20}$$

Tempo Médio Contrato =
$$\frac{160 + 8 + 280 + 8 + 140 + 4}{20}$$

Tempo Médio Contrato =
$$\frac{160 + 140 + 280 + 8 + 8 + 4}{20}$$

Tempo Médio Contrato =
$$\frac{300 + 280 + 16 + 4}{20}$$

Tempo Médio Contrato =
$$\frac{580 + 20}{20}$$

Tempo Médio Contrato =
$$\frac{600}{20}$$

Resposta: Letra C.

Para descobrir a mediana das alturas devemos colocar as alturas em ordem crescente:

Atleta	Esporte	Altura (m)
Anderson Varejão	Basquete	2,11
Augusto Lima	Basquete	2,08
Éder	Vôlei	2,05
Evandro	Vôlei de praia	2,10
Evandro	Vôlei	2,07
Lucão	Vôlei	2,10
Marquinho	Basquete	2,07
Maurício Souza	Vôlei	2,06
Nenê	Basquete	2,11
Rafael	Basquete	2,08

$$2,05 \rightarrow 2,06 \rightarrow 2,07 \rightarrow 2,07 \rightarrow 2,08 \rightarrow 2,08 \rightarrow 2,10 \rightarrow 2,10 \rightarrow 2,11 \rightarrow 2,11$$

Como temos 10 atletas, que é um número par de atletas, pegamos os dois termos centrais, nesse caso o 5º e o 6º e fazemos a média aritmética entre eles.

5º termo: 2,08 e 6º termo: 2,08

Mediana =
$$\frac{5^{\circ} \text{ termo} + 6^{\circ} \text{ termo}}{2} = \frac{2,08 + 2,08}{2} = 2,08$$

Resposta: Letra C.

Para o J1 a média é $m1 = \frac{g}{p}$ e para o J2 a média é

 $m2 = \frac{p^3}{g}$, como as medias são iguais temos:

$$m1 = m2 \rightarrow \frac{g}{p} = \frac{p^3}{q} \rightarrow g^2 = p^4 \rightarrow g = p^2 \rightarrow p = \sqrt{g}$$

Resposta: Letra A.

Separando as notas por cada matéria:

Física:

$$7,8 - 7,3 - 9,1$$

Química:

$$8,9 - 7,1 - 8,1$$

Biologia:

$$7,1-6,7-6,9$$

Matemática:

$$6,5-7,8-8,1$$

Geometria:

$$8,6-7,9-7,8$$

A moda é o valor que mais se repete entre as 15 notas acima:

$$Moda = 7.8$$

Para a **mediana**, colocamos as notas em ordem crescente:

$$6,5 \rightarrow 6,7 \rightarrow 6,9 \rightarrow 7,1 \rightarrow 7,1 \rightarrow$$
$$\rightarrow 7,3 \rightarrow 7,8 \rightarrow 7,8 \rightarrow 7,8 \rightarrow 7,9 \rightarrow$$
$$\rightarrow 8,1 \rightarrow 8,1 \rightarrow 8,6 \rightarrow 8,9 \rightarrow 9,1$$

Como temos 15 termos, pegamos o termo central, que é o $8^{\rm o}$ termo.

Mediana = 8° termo = 7,8

Agora calculamos a **média** entre as 15 notas:

$$\frac{6,5+6,7+6,9+7,1\cdot 2+7,3+7,8\cdot 3+7,9+8,1\cdot 2+8,6+8,9+9,1}{15} =$$

$$\frac{13,2+6,9+14,2+7,3+23,4+7,9+16,2+17,5+9,1}{15} =$$

$$\frac{20,1+21,5+31,3+33,7+9,1}{15} =$$

$$\frac{41,6+65+9,1}{15}$$
 =

$$\frac{106,6+9,1}{15}$$
 =

$$\frac{115,7}{15}$$
 =

$$\frac{105}{15} + \frac{10,7}{15} =$$

$$\frac{105}{15} + \frac{10,5}{15} + \frac{0,2}{15} =$$

$$7+0.7+0.0133...=7.71333 \cong 7.7$$

Então temos:

Resposta: Letra B.