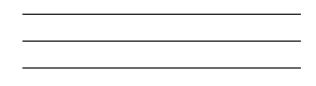
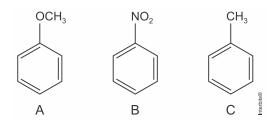
W.

REAÇÕES DE ADIÇÃO, ELIMINAÇÃO E SUBSTITUIÇÃO


1. (UFPR) As reações de substituição são muito importantes para a síntese orgânica, porque permitem a substituição de grupos funcionais. Nessas reações, um nucleófilo (Nu⁻) ataca um carbono de outra molécula e desloca um grupo X presente originalmente, conforme mostrado na Eq. 1.

$$\stackrel{\bigcirc}{Nu}$$
 + R $\stackrel{\frown}{X}$ $\stackrel{\frown}{\longrightarrow}$ R $\stackrel{\frown}{Nu}$ + X $\stackrel{\bigcirc}{X}$ (Eq. 1)


A síntese de Williamson é um exemplo de reação de substituição em que o íon etóxido (EtO⁻) reage com um halogeneto de alquila, como mostrado na Eq. 2.

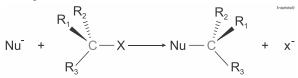
$$\overset{\bigcirc}{\text{EtO}} + \overset{\bigcirc}{\frown} \text{C}\ell \longrightarrow \text{Produto} + \text{C}\ell$$

- a. Forneça o nome do halogeneto de alquila empregado na Síntese de Williamson da Eq. 2.
- b. Forneça a estrutura química do produto indicado na Eq. 2.
- c. A qual classe de substâncias orgânicas (função) pertence o produto indicado na Eq. 2?

2. (UEM) Assinale o que for **correto** sobre a reatividade dos compostos abaixo.

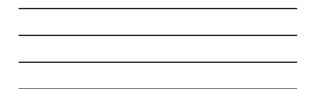
- 01) O composto A pode ser obtido a partir da oxidação do composto C com KMnO₄.
- 02) O composto A é mais reativo que o benzeno em reações de substituição eletrofílica aromática, pois o grupo –OCH₃ ativa o anel aromático por efeito de ressonância.
- 04) O grupo -NO₂ retira elétrons do anel aromático, tornando o composto B menos reativo que o benzeno em reações com eletrófilos.
- 08) O produto da reação do composto B com $\mathrm{C}\ell_2$ na presença de $\mathrm{A}\ell\mathrm{C}\ell_3$ é o m-cloro-nitrobenzeno.
- 16) O produto da reação do composto C com $\mathrm{C}\ell_2$ na presença de luz e de calor, é um composto aromático ortosubstituído.
- **3.** (IME) Dê as fórmulas estruturais planas dos compostos orgânicos eletronicamente neutros, oriundos do etanal, em cada uma das reações abaixo:
 - a. oxidação com ácido crômico;
 - b. adição de cianeto de hidrogênio;
 - c. adição de bissulfito de sódio;

- d. redução com boroidreto de sódio;
- e. reação de Tollens (solução de nitrato de prata amoniacal).
- **4.** (IME) As chamadas reações de substituição nucleofílica estão entre as mais importantes da Química Orgânica. Elas podem ser unimoleculares (reações SN_1) ou bimoleculares (reações SN_2). Os esquemas abaixo, nos quais Nu representa o nucleófilo e X o grupo de saída, ilustram de forma simplificada os mecanismos destas reações.


Reações SN₁

1.
$$R - X \rightarrow R^+ + X^-$$
 Etapa lenta

2.
$$R^+ + Nu - H \rightarrow R - Nu^+ - H$$


3.
$$R - Nu^+ - H + H_2O \rightarrow R - Nu + H_3O^+$$

 $\text{Reações } SN_2$

Considere a reação de substituição nucleofílica entre o (S)-3-bromo-3-metil-hexano e a água (em acetona).

- a. Esta reação se processa por um mecanismo SN_1 ou SN_2 ? Justifique sua resposta.
- b. Identifique, pela nomenclatura IUPAC, o(s) principal(is) produto(s) orgânico(s) desta reação.

5. (FEPAR)

O "Fantástico" apresentou, em junho deste ano, uma reportagem sobre o novo lançaperfume que invadiu a periferia da cidade de São Paulo. A droga, reformulada, voltou com sabor doce e ainda mais perigosa, podendo até matar.

Amostras foram compradas nas ruas de São Paulo e levadas para teste em laboratório. Duas substâncias tóxicas foram encontradas: o **tricloroetileno**, entre outras aplicações, usado para remover adesivos e tintas; o **diclorometano**, uma substância tão tóxica que é componente do removedor de solda.

Na gíria, o lança é "baforado"; na verdade, ele é aspirado pela boca, vai direto para os pulmões, entra rapidamente na corrente sanguínea e em segundos chega ao cérebro.

(Adaptado do disponível em:http://g1.globo.com/fantastico/noticia/2015/06/

uso-de-lanca-perfume-poe-em-risco-vida-de-jovens-pelo brasil.html>. Acesso em 22 out. 2015)

Com base no texto e em conhecimentos de Química, faça o que se pede.

- a. Escreva a fórmula estrutural espacial dos hidrocarbonetos clorados mencionados no texto, apresentando todos os elementos que formam a molécula.
- b. Se o diclorometano for submetido a excesso de cloro, calor e luz ultravioleta, poderá ocorrer a substituição de um de seus hidrogênios, formando o

clorofórmio. Escreva a equação que representa essa reação.

c. O tricloroetileno é produzido a partir do etileno. A reação inicia-se com a cloração do etileno em presença de catalisador, produzindo 1,2 - dicloroetano, que aquecido a 400 °C com cloro é convertido em tricloroetileno. Escreva as equações das duas etapas descritas nesse processo de obtenção.

6. (UEM) Assinale o que for **correto** a respeito da reação abaixo.

$$CH_3$$
 CH_3 $+$ B $+$ C CH_3 $+$ C

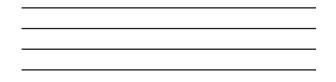
- 01) O reagente A é o cloreto de etanoila.
- 02) Um dos produtos (B ou C) é gerado por meio da substituição na posição orto.
- 04) O grupo –CH₃ ativa o anel doando densidade eletrônica e facilitando o ataque do nucleófilo ao anel aromático.
- 08) Um dos produtos (B) ou (C) é o $C\ell_2$.
- 16) Se em lugar do grupo -CH₃ o reagente contivesse o grupo -OCH₃, este tiraria densidade eletrônica do anel por meio do efeito mesômero.

7. (UEPG) Considerando as reações abaixo, assinale o que for correto.

A)
$$C\ell_2$$
 + HC ℓ

B)
$$C\ell \xrightarrow{CH_3} CH_3 + HC\ell$$

- 01) São reações de substituição.
- 02) O produto de B é uma cetona.
- 04) A reação B corresponde a uma acilação de Friedel-Crafts.
- 08) Na reação A, a utilização de $Br_2/FeBr_3$ no lugar de $C\ell_2/FeC\ell_3$, produzirá o bromobenzeno.
- 16) Ambos os produtos são aromáticos.
- **8.** (UEM) Os solventes halogenados são de grande utilização industrial, principalmente no desengraxamento de peças metalúrgicas. Entre os halogenados, os mais utilizados são os solventes clorados derivados de hidrocarbonetos, como o tetracloreto de carbono ($CC\ell_4$) e o clorofórmio ($CHC\ell_3$). Considerando os haletos de alquila, assinale o que for **correto**:
 - 01) A reação de um alcano com cloro $(C\ell_2)$, sob aquecimento, é um tipo de reação de substituição que ocorre por meio de um mecanismo radicalar.
 - 02) O cloreto de metila pode sofrer reação de eliminação formando um alceno.
 - 04) A reação de monocloração do isopentano leva à formação de cinco compostos diferentes.



- 08) A reação do cloreto de metila com hidróxido de sódio forma metanol e cloreto de sódio, e ocorre por meio de uma reação de substituição nucleofílica.
- 16) O tetracloreto de carbono pode ser obtido a partir da tetracloração do metano ou da cloração do clorofórmio.
- **9.** (UERJ 2016) A sequência de reações abaixo é um exemplo de síntese orgânica, na qual os principais produtos formados são indicados por A e B.

I) but
$$-2$$
 - eno + HC $\ell \rightarrow A$

II) A + NaOH
$$\xrightarrow{H_2O}$$
B + NaC ℓ

Apresente as fórmulas estruturais planas dos produtos A e B. Identifique, ainda, o mecanismo ocorrido na reação I em função das espécies reagentes.

- **10.** (UEPG) No que se refere às reações químicas apresentadas nos itens I, II e II, assinale o que for correto.
- I) $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$
- II) $CH_3COOH + CH_3OH \rightarrow CH_3COOCH_3 + H_2O$
- III) $CH_3CH_2OH \rightarrow CH_2CH_2 + H_2O$
 - 01) A reação que tem como produto o acetato de sódio é uma reação de substituição.
 - 02) A reação apresentada no item II é uma reação de esterificação.
 - 04) As três reações apresentadas são exemplos de desidratação, pois resultam na eliminação de uma molécula de água.

- 08) A reversão da reação II é um exemplo de hidrólise.
- **11.** (UEM) Assinale a(s) alternativa(s) **correta(s)** a respeito de reações de substituição em alcanos e aromáticos.
 - 01) A reação de cloração do metilbutano apresentará uma única molécula orgânica como produto final.
 - 02) Moléculas que apresentam carbonos primários e terciários apresentarão maior grau de substituição por bromação no carbono primário.
 - 04) Na halogenação de aromáticos é necessário o uso de catalisadores como o $A\ell C\ell_3$ ou o FeBr₃.
 - 08) A halogenação de alcanos ocorre por meio da formação de radicais livres, e estes são formados a partir de irradiação com luz de frequência adequada ou por aquecimento.
 - 16) O ácido sulfúrico fumegante é utilizado na sulfonação de aromáticos, e o ácido sulfúrico concentrado age como catalisador na reação de nitração de aromáticos em presença de ácido nítrico.
- **12.** (UEM) Em reações de substituição de compostos aromáticos, assinale a(s) alternativa(s) **correta(s)** a respeito de grupos dirigentes de reação.
 - 01) Grupos dirigentes doadores de elétrons são considerados ativantes do anel aromático e são chamados de ortopara dirigentes.
 - 02) Um grupo OH ligado ao anel benzênico facilita a reação de substituição nas posições 2, 4 e 6 do anel.

- 04) Os grupos dirigentes doadores de elétrons –NH₂, –OH e –O–R apresentam a mesma intensidade de ativação do anel benzênico.
- 08) Uma reação de nitração do anel benzênico ocorre mais facilmente no tolueno do que no ácido benzoico.
- 16) O TNT (trinitrotolueno), produzido a partir de uma reação de nitração do tolueno, é composto de uma série de isômeros de posição com os três grupos nitro ocupando indistintamente três das cinco possíveis posições no tolueno.
- 13. (IME) A adição de brometo de hidrogênio a propeno, na ausência de peróxidos, gera como produto principal o 2-bromopropano (adição Markovnikov). Entretanto, a mesma adição, na presença de peróxidos, leva principalmente à formação do 1-bromopropano (adição anti-Markovnikov). Proponha um mecanismo adequado para cada uma destas reações e explique a diferença observada com base nesses mecanismos.

14. (UNESP) Organismos vivos destoxificam compostos orgânicos halogenados, obtidos do meio ambiente, através de reações de substituição nucleofílica (SN).

$$R - L + Nu : \rightarrow R - Nu + L$$

Numa reação de SN, o 2-cloropentano reage com hidróxido de sódio em solução aquosa. O produto orgânico (A) dessa reação sofre oxidação na presença de

permanganato de potássio em meio ácido, produzindo o produto orgânico (B). Escreva as equações simplificadas (não balanceadas) das duas reações, o nome do composto (A) e a função química do composto (B).

15. (FUVEST) A adição de $HC\ell$ a alcenos
ocorre em duas etapas. Na primeira delas,
o íon H^+ , proveniente do $HC\ell$, liga-se ao
átomo de carbono da dupla ligação que
está ligado ao menor número de outros
átomos de carbono. Essa nova ligação
(C-H) é formada à custa de um par
eletrônico da dupla ligação, sendo gerado
um íon com carga positiva, chamado
carbocátion, que reage imediatamente

$$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH} = \text{CH}_2 + \text{HC}\ell \xrightarrow{\textbf{1}^{\text{B}} \text{ etapa}} \left[\text{CH}_3\text{CH}_2\text{CH}_2 - \overset{\bullet}{\text{CH}} - \overset{\bullet}{\text{CH}} - \overset{\bullet}{\text{CH}}_2} \right] \xrightarrow{\textbf{C}\ell} \text{CH}_3\text{CH}_2\text{CH}_2 - \overset{\bullet}{\text{CH}} - \overset{\bullet}{\text{CH}}_3$$
 carbocátion

com o íon cloreto, dando origem ao produto

final. A reação do 1-penteno com HC/

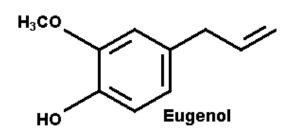
formando o 2-cloropentano, ilustra o que

foi descrito.

a. Escreva a fórmula estrutural do carbocátion que, reagindo com o íon cloreto, dá origem ao haleto de alguila:

$$\begin{array}{c} \mathsf{C}\ell \\ | \\ \mathsf{CH_3CH_2} - \mathsf{C} - \mathsf{CH_2CH_2CH_3} \\ | \\ \mathsf{CH_3} \end{array}$$

- b. Escreva a fórmula estrutural de três alcenos que não sejam isômeros cistrans entre si e que, reagindo com HC ℓ , podem dar origem ao haleto de alquila do item anterior.
- c. Escreva a fórmula estrutural do alceno do item (b) que não apresenta isomeria cis-trans. Justifique.



16. (UFF) O anel benzênico pode sofrer reação de substituição eletrofílica aromática com cloro e gerar clorobenzeno e, a subsequente cloração desse produto leva à formação de três isômeros dissubstituídos.

Com base nessas informações:

- a. represente a fórmula estrutural dos isômeros:
- b. aponte os isômeros polares;
- c. mencione os produtos principais da segunda reação.

17. (UFRRJ) O cravo ('Syzygium aromaticum') é uma planta usada como tempero há vários séculos, tendo motivado inúmeras viagens de navegadores europeus ao continente asiático. Desta planta extrai-se um óleo essencial que tem como componente majoritário o eugenol (mostrado a seguir).

- a. Quando o eugenol reage com uma solução de Br₂ em CCl₄ (solução de coloração castanho-avermelhada) ocorre imediata descoloração da solução. Dê a estrutura do produto de adição formado nesta reação.
- b. Dê a estrutura do produto formado, quando o eugenol é tratado com uma solução aquosa de NaOH.

18. (FUVEST) Alcanos reagem com cloro, em condições apropriadas, produzindo alcanos monoclorados, por substituição de átomos de hidrogênio por átomos de cloro, como esquematizado:

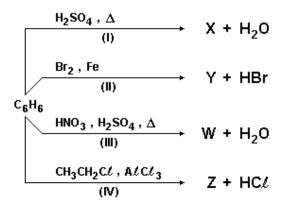
Considerando os rendimentos percentuais de cada produto e o número de átomos de hidrogênio de mesmo tipo (primário, secundário ou terciário), presentes nos alcanos acima, pode-se afirmar que, na reação de cloração, efetuada a 25°C,

- um átomo de hidrogênio terciário é cinco vezes mais reativo do que um átomo de hidrogênio primário.
- um átomo de hidrogênio secundário é quatro vezes mais reativo do que um átomo de hidrogênio primário.

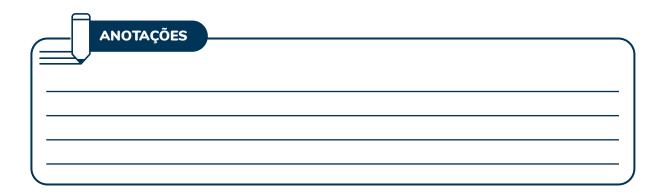
Observação: Hidrogênios primário, secundário e terciário são os que se ligam, respectivamente, a carbonos primário, secundário e terciário.

A monocloração do 3-metilpentano, a 25°C, na presença de luz, resulta em quatro produtos, um dos quais é o 3-cloro-3-metilpentano, obtido com 17% de rendimento.

a. Escreva a fórmula estrutural de cada um dos quatro produtos formados.


b. Com base na porcentagem de 3-cloro-3-metilpentano formado, calcule a porcentagem de cada um dos outros três produtos.

19. (UEG) Nas reações de substituição aromática eletrofílica, o grupo ligado ao anel aromático influencia diretamente a posição em que o eletrófilo se ligará no anel. A reação de nitração do fenol é um exemplo dessa reação e leva à formação preferencial dos isômeros A e B. Considerando essa reação, responda aos itens a seguir:


$$\begin{array}{c}
OH \\
\hline
HNO_3 \\
\hline
H_2SO_4
\end{array}
A+B$$

- a. Classifique o grupo hidroxila como um grupo ativador ou desativador do anel aromático em reações de substituição eletrofílica.
- b. Considerando a monossubstituição do anel aromático, forneça a estrutura dos isômeros A e B.

20. (UFF) Quando uma reação química ocorre, ligações existentes entre os átomos de uma molécula se rompem, formam-se novas ligações e surgem novas moléculas. Observe, então, o seguinte esquema reacional:

- a. Identifique, por meio de suas respectivas fórmulas estruturais, os compostos X, Y, W e Z.
- b. Informe o percentual de carbono do composto W.
- c. As reações representadas por I, II, III e IV são reações de substituição eletrofílica. Classifique-as.

1. a) Nome do halogeneto de alquila empregado na Síntese de Williamson da equação 2 cloreto de etila ou cloroetano.

$$\begin{array}{ccc} \text{H}_3\text{C} & \text{---}\text{CH}_2 \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

b) Estrutura química do produto indicado na equação 2: $H_3C - CH_2 - O - CH_2 - CH_3$.

$$H_3C$$
— CH_2 + H_3C — CH_2 — O — CH_2 — CH_3 + $C\ell$

c) O produto indicado na equação 2 pertence à função éter.

2.02 + 04 + 08 = 14.

[01] Incorreto. Ácido benzoico é obtido a da oxidação do composto C (tolueno) com KMnO₄.

[02] Correto. O composto A (fenil, metiléter) é mais reativo que o benzeno em reações de substituição eletrofílica aromática, pois o grupo $-OCH_3$ ativa o anel aromático por efeito d e ressonância, ou seja, é um radical ortopara-dirigente.

orto
$$\overset{\text{(c)}}{\overset{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset{\text{(c)}}{\overset$$

[04] Correto. O grupo -NO₂ (radical metadirigente) retira elétrons do anel aromático, tornando o composto B (nitrobenzeno) menos reativo que o benzeno em reações com eletrófilos.

[08] Correto. O produto da reação do composto B (nitrobenzeno) com um mol de $^{C\ell_2}$ na presença de $^{A\ell C\ell_3}$ é o m-cloronitrobenzeno.

[16] Incorreto. O produto da reação do composto C (tolueno) com $^{\mathbf{C}\ell_2}$ na presença de luz e de calor, é um composto aromático derivado da substituição na cadeia lateral.

$$\begin{array}{c} \text{CH-CH} & \text{H} \\ \text{CH-CH} & \text{CH}_2 \\ \text{CH-CH} \end{array} + \begin{array}{c} \text{C}\ell + \text{C}\ell \end{array} \longrightarrow \begin{array}{c} \text{H-C}\ell + \text{HC} \\ \text{CH-CH} \\ \text{CH-CH} \end{array}$$

3. a) Oxidação com ácido crômico:

$$H_3C$$
— C + [O] $\stackrel{H_2CrO_4}{\longrightarrow}$ H_3C — C OH

b) Adição de cianeto de hidrogênio:

$$H_3C$$
 $\stackrel{O}{\leftarrow}$ H H $\stackrel{C}{\leftarrow}$ H H $\stackrel{O}{\longrightarrow}$ H_3C $\stackrel{O}{\leftarrow}$ \stackrel{O}

c) Adição de bissulfito de sódio:

d) Redução com boroidreto de sódio:

e) Reação de Tollens (solução de nitrato de prata amoniacal):

4. a) O mecanismo SN₁ ocorre na presença de acetona (propanona) que não fornece OH⁻, neste caso a água faz isto.

O mecanismo SN_2 ocorre na presença de NaOH que fornece o produto de hidrólise (OH^-) . Conclusão: esta reação se processa pelo mecanismo SN_1 .

1)
$$H_3C - CH_2 - CH_2 - CH_2 - CH_3 \longrightarrow H_3C - CH_2 - CH_2 - CH_2 - CH_3 + Br^-$$
2) $H_3C - CH_2 - CH_2 - CH_2 - CH_3 + Br^-$
2) $H_3C - CH_2 - CH_2 - CH_2 - CH_3 + Br^-$
3) $H_3C - CH_2 - CH_2 - CH_2 - CH_3 + Br^ GH_3 - GH_2 - GH_2 - GH_3 - GH$

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C}-\text{CH}_{2}-\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}$$

b) Os principais produtos orgânicos desta reação são os isômeros: (S)3-metil-hexan-3-ol e (R)3-metil-hexan-3-ol.

5. a) Teremos:

b) Teremos:

c) Teremos:

6:01+02=03.

orto-para-dirigente
$$\begin{array}{c} \text{CH}_3 \\ 2 \\ \text{HC} \\ \text{CH} \\ \text{CH}$$

[01] Correta.

$$H_3C$$
— C
 $C\ell$
Cloreto de etanoila (A)

[02] Correta.

[04] Incorreta. O grupo ^{-CH₃} facilita o ataque eletrófilo.

[08] Incorreta. Um dos produtos (B) ou (C) é o $HC\ell$.

[16] Incorreta. Se em lugar do grupo $^{-CH_3}$ o reagente contivesse o grupo $^{-OCH_3}$, o ataque continuaria a ser eletrófilo nas posições orto e para.

$$7:01+02+04+08+16=31.$$

[01] Correta. As reações apresentadas no enunciado são reações de substituição do anel aromático.

[04] Correta. Nesse tipo de reação, ocorre a substituição de um hidrogênio ligado ao anel aromático por um grupo acila.

[08] Correta. Haverá a substituição do bromo ao invés do cloro no anel benzênico

[16] Correta. O anel aromático é formado em ambos os produtos.

$$8:01+08+16=25.$$

[01] Correta.

Reação:

$$CH_4 + C\ell_2 \xrightarrow{\quad \text{hi} \quad} CH_3C\ell + HC\ell$$

Mecanismo:

- Etapa 1: formação dos radicais cloro:

$$C\ell - C\ell \xrightarrow{\ddot{A}} C\ell^{\bullet} + C\ell^{\bullet}$$

- Etapa 2: radicais cloro serão usados na propagação da cadeia:

$$CH_4 + C\ell^{\bullet} \rightarrow CH_3^{\bullet} + H - C\ell$$

 Etapa 3: o radical cloro irá reagir com outra molécula, continuando a reação em cadeia:

$$CH_3^{\bullet} + C\ell - C\ell \rightarrow CH_3C\ell + C\ell^{\bullet}$$

[02] Incorreta. A formação de um alceno ocorre através da desidratação de um

[04] Incorreta. A cloração do isopentano (metil butano) formará 4 compostos diferentes:

$$+ HC\ell$$

$$+ HC\ell$$

$$+ HC\ell$$

$$+ HC\ell$$

$$+ HC\ell$$

[08] Correta. Haletos de alquila na presença de base forte em meio aquoso

podem sofrer reações de substituição nucleofílica. Nesse tipo de reação, o átomo de halogênio, por ser mais eletronegativo do que o carbono têm a ligação carbonohalogênio polarizada. O átomo de cloro ficará com uma carga parcial negativa e o carbono com uma carga parcial positiva.

Com a reação de substituição é iniciada por um nucleófilo, ela é chamada de reação de substituição nucleofílica.

$$CH_3 - C\ell + NaOH \rightarrow CH_3OH + NaC\ell$$

[16] Correta. A síntese do tetracloreto de carbono é dada por:

$$9:01+02+08=11$$

Teremos:

A reação que tem como produto o acetato de sódio é uma reação de neutralização.

A reação que tem como produto o acetato de sódio é uma reação de substituição.

A reação apresentada no item II é uma reação de esterificação.

A reversão da reação II é um exemplo de hidrólise ou adição de água.

I)
$$H_3C$$
— CH — CH_3 + H — $C\ell$ \longrightarrow H_3C — CH_2 — CH_3
 $C\ell$
(A)

II)
$$H_3C-CH_2-CH-CH_3+NaOH \xrightarrow{H_2O} H_3C-CH_2-CH-CH_3+NaC\ell OH (B)$$

11: 04 + 08 + 16 = 28.

Reação de cloração do metilbutano:

Moléculas que apresentam carbonos primários e terciários apresentarão maior grau de substituição por bromação no carbono terciário (regra de Saytzeff).

Na halogenação de aromáticos é necessário o uso de catalisadores como o $A\ell C\ell_3$ ou o $FeBr_3$ (síntese de Friedel-Crafts).

A halogenação de alcanos ocorre por meio da formação de radicais livres, e estes são formados a partir de irradiação com luz de frequência adequada ou por aquecimento.

O ácido sulfúrico fumegante é utilizado na sulfonação de aromáticos, e o ácido sulfúrico concentrado age como catalisador na reação de nitração de aromáticos em presença de ácido nítrico.

$$R-H + HO-SO_3H \xrightarrow{\ddot{A}} H_2O + R-SO_3H$$

 $3HNO_3 + 3H_2SO_4 \rightarrow 3H_2O + 3NO_2^+ + 3HSO_4^-$

$$12:01+02+08=11.$$

[01] Grupos dirigentes doadores de elétrons séo considerados ativantes do anel aromítico e séo chamados de ortopara dirigentes.

[02] Um grupo OH ligado ao anel benzźnico facilita a reaēćo de substituiēćo nas posiēões 2, 4 e 6 do anel, ou seja, é um grupo (radical) orto-para dirigente.

[04] Os grupos (radicais) dirigentes –NH2, –OH e –O–R nćo apresentam a mesma intensidade de ativaēćo do anel benzźnico, devido ą diferenēa de eletronegatividade entre os įtomos envolvidos nas ligaēões covalentes dos grupos (radicais).

[08] Uma reaēćo de nitraēćo do anel benzźnico ocorre mais facilmente no tolueno (orto-para dirigente) do que no įcido benzoico (meta dirigente).

[16] O TNT (trinitrotolueno) é produzido a partir da trinitraēćo do tolueno (orto-para dirigente).

13: Markovnikov:

O HBr sofre cisão heterolítica.

H—Br
$$\longrightarrow$$
 H⁺ + Br $\stackrel{-}{\longrightarrow}$ H₃C—CH $\stackrel{-}{\Longrightarrow}$ CH₂ + H⁺ \longrightarrow H₃C—CH₂-CH₃ carbocátion

Anti- Markovnikov (também conhecida como reação de Karasch):

O peróxido sofre cisão homolítica.

$$R - O \bullet \bullet O - R \longrightarrow 2 R - O \bullet$$

$$R - O \bullet + H \bullet Br \bullet \longrightarrow R - O \bullet \bullet H + \left[\bullet Br \bullet \right]$$

$$H_3C - CH = CH_2 + \bullet Br \bullet \longrightarrow H_2C - CH - CH_3$$

$$Br \quad radical \ livre$$

$$H_2C - CH - CH_3 + H \bullet Br \bullet \longrightarrow H_2C - CH_2 - CH_3 + \left[\bullet Br \bullet \right]$$

$$Br \quad radical \ livre$$

$$1-bromopropano$$

14: Seguindo R-L + Nu: \rightarrow R-Nu + L:, vem:

$$\begin{array}{c} \text{NaOH} \xrightarrow{\text{H}_2\text{O}} \text{Na}^{\dagger} + \text{ OH}^{\dagger} \\ \text{R-CI} + \text{Nu:} \longrightarrow \text{R-Nu} + \text{L:} \\ \text{H}_3\text{C-CH}_2\text{-CH-CI} + \text{OH}^{\dagger} \longrightarrow \text{H}_3\text{C-CH}_2\text{-CH-OH} + \text{CI}^{\dagger} \\ \text{CH}_3 \\ \text{(A) 2-pentanol ou pentan-2-ol} \end{array}$$

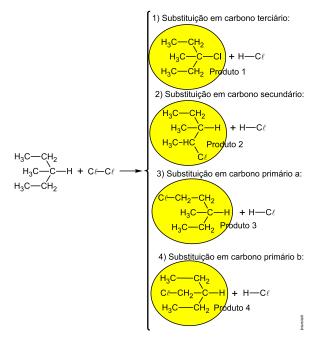
Ou
$$\begin{array}{c} \text{H}_3\text{C-CH-CH}_2\text{-CH}_2\text{-CH}_3\text{+ NaOH} \xrightarrow{\blacktriangleright} \text{NaCI} + \text{H}_3\text{C-CH-CH}_2\text{-CH}_2\text{-CH}_3\\ \text{CI} & \text{OH} \\ \text{(A) 2-pentanol ou pentan-2-ol } \end{array}$$

O nome do composto A é 2-pentanol ou pentan-2-ol.

A função química do composto B é cetona.

$$\begin{array}{c} \text{H}_{3}\text{CH}_{2}\text{CH}_{2}\text{C} - \overset{\leftarrow}{\text{C}^{+}}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3} \\ \text{CH}_{3} \\ \\ \text{H}_{3}\text{CH}_{2}\text{CH}_{2}\text{C} - \overset{\leftarrow}{\text{C}^{+}}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3} \\ \text{CH}_{3} \\ \end{array} \xrightarrow{\text{C}\ell} \begin{array}{c} \text{C}\ell \\ \text{CH}_{3} \\ \text{C}\ell \end{array}$$

b) Fórmula estrutural de três alcenos que não são isômeros cis-trans entre si e que, reagindo com $^{HC\ell}$, podem dar origem ao haleto de alquila do item anterior:


c) Fórmula estrutural do alceno do item anterior que não apresenta isomeria cistrans, pois o carbono da dupla ligação está ligado a dois ligantes iguais entre si, ou seja, a dois hidrogênios:

$$H_3C$$
— CH_2 — CH_2 — CH_2 — CH_3

16: Observe as figuras a seguir:

17: Observe a figura a seguir:

18. a) Teremos as seguintes possibilidades:

- b) Notações utilizadas na resolução deste item:
- p: porcentagem de substituição de hidrogênio ligado a carbono primário
- s: porcentagem de substituição de hidrogênio ligado a carbono secundário
- t: porcentagem de substituição de hidrogênio ligado a carbono terciário

Na molécula de 3-metil-pentano tem-se:

$$H_3C$$
— CH_2
 H_3C — C — H

- 9 átomos de hidrogênio primário: 9p
- 4 átomos de hidrogênio secundário: 4s
- 1 átomo de hidrogênio terciário: 1t

Do enunciado tem-se que t = 17%, logo esta é a porcentagem do produto 1.

Sabemos, também a partir do enunciado, que o hidrogênio ligado a carbono terciário (t) á cinco vezes mais reativo do que o hidrogênio ligado ao carbono primário (p).

Então,

$$t=5\!\times\!p$$

$$17 \% = 5 \times p$$

$$p = \frac{17}{5} = 3,4 \%$$

Como temos 6 átomos de carbono primário ligados a carbonos da cadeia principal na molécula do produto 3, podemos calcular sua porcentagem:

$$6 \times 3,4 \% = 20,4 \%$$

Como temos 3 átomos de carbono primário no radical metil da molécula do produto 4, podemos calcular sua porcentagem:

$$6 \times 3,4 \% = 10,2 \%$$

A soma das porcentagens equivale a 100 %, daí: 9p + 4s + 1t = 100 %.

Como temos 4 átomos de carbono secundário na molécula do produto 2, podemos calcular sua porcentagem (4s):

$$9p + 4s + 1t = 100 \%$$

$$9 \times 3,4\% + 4s + 1 \times 17\% = 100\%$$

$$4s = 52,4 \%$$

Conclusão (porcentagem de cada um dos produtos):

Produto 1: 17 %

Produto 2: 52,4 %

Produto 3: 20,4 %

Produto 4: 10,2 %

20. a) Observe as fórmulas estruturais a seguir:

$$X = \bigcup_{SO_3H} SO_3H$$

$$Y = \bigcup_{NO_2} SO_3H$$

$$W = \bigcup_{C_2H_5} SO_3H$$

b) 58,54% C

c) I = Sulfonação

II = Halogenação

III = Nitração

IV = Alquilação

