

6ª OLIMPÍADA DE QUÍMICA DO RIO DE JANEIRO – 2011

MODALIDADE EM1 – 2ª FASE

Leia atentamente as instruções abaixo:

- Esta prova destina-se exclusivamente aos alunos da 1^a série do ensino médio.
- A prova contém cinco questões discursivas, cada uma valendo 16 pontos.
- A prova possui CINCO folhas de questões. A RESOLUÇÃO DE CADA QUESTÃO DEVE SER FEITA NA FOLHA DA MESMA QUESTÃO (FRENTE OU VERSO).
- TODAS as folhas devem estar identificadas com o NOME COMPLETO LEGÍVEL em LETRA DE FORMA.
- NÃO utilize uma mesma folha de resposta para mais de uma questão.
- A duração da prova é de **TRÊS** horas.
- O uso de calculadoras comuns ou científicas é permitido. Estão proibidos a consulta a outros materiais e o uso de aparelhos celulares (mesmo como calculadora).

Rio de Janeiro, 15 de outubro de 2011.

Realização:

$6^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro – 2011 EM1 – $2^{\underline{a}}$ Fase

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

TABELA PERIÓDICA DOS ELEMENTOS

1																	18
1 H 1,0	2											13	14	15	16	17	2 He 4,0
3 Li 6,9	4 Be 9,0					n° atômi SÍMBO massa atô	LO					5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,0	17 Cl 35,5	18 Ar 39,9
19 K 39,0	20 Ca 40,0	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 55,0	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc 98	44 Ru 101,1	45 Rh 102,9	46 Pd 106,4	47 Ag 107,9	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,8	52 Te 127,6	53 I 127,0	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57 – 71	72 Hf 178,5	73 Ta 181,0	74 W 183,8	75 Re 186,2	76 Os 190,2	77 Ir 192,2	78 Pt 195,1	79 Au 197,0	80 Hg 200,6	81 T ℓ 204,4	82 Pb 207,2	83 Bi 209,0	84 Po 209	85 At 210	86 Rn 222
87 Fr 223	88 Ra 226	89 –103	104 Rf 261	105 Db 262	106 Sg 263	107 Bh 262	108 Hs 265	109 Mt 266									
	e dos nídeos	57 La 138,9	58 Ce 140,1	59 Pr 140,9	60 Nd 144,2	61 Pm 145	62 Sm 150,4	63 Eu 152,0	64 Gd 157,3	65 Tb 159,0	66 Dy 162,5	67 Ho 164,9	68 Er 167,3	69 Tm 168,9	70 Yb 173,0	71 Lu 174,97	
	e dos nídeos	89 Ac 227	90 Th 232,0	91 Pa 231,0	92 U 238,0	93 Np 237	94 Pu 244	95 Am 243	96 Cm 247	97 Bk 247	98 Cf 251	99 Es 252	100 Fm 257	101 Md 258	102 No 259	103 Lr 262	

Dados:

Constante do Avogadro = 6,022x10²³ mol⁻¹ Densidade da solução de etanol = 0,798 g/cm³

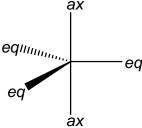
ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

Nome completo:	NOTA:	
Modalidade:	reenchido pela banca. Não use esse espaço!)	

QUESTÃO 01

Uma grande diferença entre os elementos do segundo período para os demais é a falta de capacidade de formar um grande número de ligações químicas. São observados moléculas ou íons como o ${\rm SiF_6}^{2-}$, ${\rm PF_6}^-$ e ${\rm SF_6}$, mas nenhum análogo é observado para carbono, nitrogênio ou oxigênio. Além do ${\rm SF_6}$, o enxofre forma uma vasta série de compostos com o flúor: ${\rm S_2F_2}$, ${\rm SOF_2}$, ${\rm SF_4}$, ${\rm SOF_4}$ e o ${\rm S_2F_{10}}$.

A) Existem dois compostos com fórmula química S_2F_2 , um dos exemplos de isomeria mais simples da química inorgânica. Escreva a estrutura de Lewis para os dois isômeros.

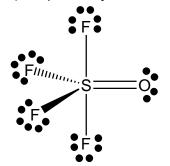

Os compostos SF₄ e SOF₄ possuem o mesmo arranjo espacial, chamado de bipirâmide de base trigonal ou, simplesmente, bipirâmide trigonal.

- B) Represente espacialmente o arranjo bipirâmide de base trigonal e identifique as posições axiais (ax) e equatorais (eq) em sua representação. Defina os ângulos teóricos formados entre as posições equatoriais e entre uma axial e uma equatorial.
- C) O SOF₄ apresenta uma ligação diferente das demais. Represente essa molécula considerando o seu arranjo espacial e explique a sua escolha para a posição dessa ligação.
- D) Apresente a estrutura de Lewis, **utilizando a representação espacial correta**, das espécies SOF₂ e SiF₆²⁻. Escreva também a hibridação do átomo central de cada uma.

GABARITO (questão 1)

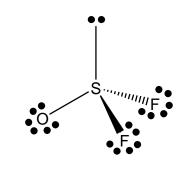
A) As estruturas de Lewis (sem representação espacial) são:

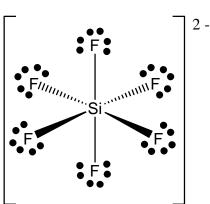
B) A representação espacial do arranjo espacial bipirâmide trigonal destacando as posições axiais (*ax*) e equatoriais (*eq*):



Ângulos: eq – eq = 120 $^{\circ}$ e ax – eq = 90 $^{\circ}$

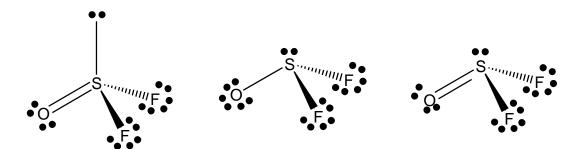
ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio


C) A representação da molécula de SOF₄, considerando o arranjo espacial, ficaria:


A ligação S – O está representada na posição equatorial. Por se tratar de uma ligação com maior densidade eletrônica que as demais, há uma maior repulsão desta em relação às outras.

Segundo o Modelo da Repulsão dos Pares de Elétrons da Camada de Valência, a repulsão é minimizada quanto maior for o ângulo entre as ligações. Na bipirâmide de base trigonal, a repulsão entre as ligações é menor com a ligação S — O na posição equatorial, por se tratar do maior ângulo possível desse tipo de arranjo espacial.

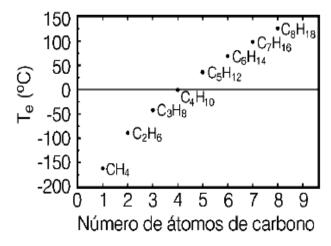
D)



Hibridação do $S = sp^3$

Hibridação do Si = sp^3d^2

Para o SOF₂ também estão corretas as representações:



ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

Nome completo:	NOTA:	
Modalidade:	(Preenchido pela banca. Não use esse espaço!)	

QUESTÃO 02

A figura abaixo mostra a variação da temperatura de ebulição com o número de átomos de carbono para oito hidrocarbonetos (compostos derivados do petróleo). O CH₄, conhecido como metano ou Gás Natural Veicular (GNV), apresenta a mesma polaridade que as demais moléculas do gráfico.

Fonte: Cadernos Temáticos, Química Nova na Escola, 4, 2001.

Considerando que esta e outras características físico-químicas estão intimamente relacionadas com a natureza das interações existentes entre as moléculas, responda:

- A) Classifique as substâncias do gráfico como polares ou apolares e justifique sua classificação.
- B) Qual é o tipo de interação intermolecular para essas substâncias?
- C) Explique a grande diferença entre os pontos de ebulição do etano (C_2H_6) e do octano (C_8H_{18}) à pressão de 1 atm.
- D) Os hidrocarbonetos do tipo alcano (cadeia aberta e saturada), como os citados no gráfico apresentam fórmula geral C_nH_{2n+2} . Qual é a massa molar do alcano que apresenta 15,49 % em massa de hidrogênio?

GABARITO (questão 2):

A)
Todas são apolares, porque o momento dipolar (mi) é igual a zero.

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

- B)
 Dipolo Induzido ou Dipolo Temporário ou Forças de London.
- C)
 Ambas as moléculas apresentam o mesmo tipo de interação intermolecular, no entanto, o aumento da massa molecular favorece o aumento do ponto de ebulição. Por isso, o ponto de ebulição do octano é maior que o do etano.

D) 15,49% H
$$\rightarrow$$
 84,51% C \rightarrow (100,00 – 15,49) C = 84,51 / 12 = 7,06 \rightarrow 7,04 / 7,04 = 1 X 10 = 10 H = 15,49 / 1 = 15,49 \rightarrow 15,49 / 7,04 = 2,20 X 10 = 22

Logo, a fórmula do alcano proposto é $C_{10}H_{22}$ e sua massa molar é 142 g/mol.

$6^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro – 2011 EM1 – $2^{\underline{a}}$ Fase

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

Nome completo:	NOTA:					
Modalidade:	(Preenchido pela banca. Não use esse espaço!)					
QUESTÃO 03						
por parte da sociedade contemporânea: as ca Esta última, provocada por diversas ativida	ento industrial têm gerado grandes preocupações usas futuras das poluições hídrica e atmosférica. des humanas que produzem gases poluentes, cas e sanitárias indesejáveis. Como por exemplo:					
I - O aumento da concentração de gases do e dióxido de carbono (CO_2) e o óxido nitroso (N_2	efeito estufa na atmosfera, como o metano (CH ₄), O), é a principal causa do aquecimento global.					
II - O ozônio (O ₃), que na estratosfera é imprescindível para a proteção dos seres humanos contra os raios ultravioletas, curiosamente na troposfera é considerado poluente, pois causa problemas respiratórios e é um dos responsáveis pela formação do <i>smog</i> (nevoeiro fotoquímico).						
A partir destas informações:						
A) Classifique os óxidos citados no texto quant	o à polaridade. Justifique sua classificação.					
	B) Classifique os óxidos mencionados no texto quanto ao caráter ácido/base. Justifique sua classificação demonstrando as reações com a água.					
C) A combustão completa de um dos compostos citados no texto forma dióxido de carbono e água. Escreva a reação balanceada de combustão completa deste composto (citando os estados físicos) e determine a massa necessária deste, em miligramas, para produzir 3,011x10 ²¹ moléculas de água, admitindo um rendimento de 85,45 % na reação.						
GABARITO) (questão 3):					
A) Polar (N ₂ O), porque seu momento dipolar (mi) é diferente de zero. Apolar (CO ₂), porque seu momento dipolar (mi) é igual a zero.						
B) $N_2O=\text{\'oxido neutro} /\!/\!/ N_2O+H_2O \rightarrow \text{n\~ao reagem}$ $CO_2=\text{\'oxido\'acido ou anidrido} /\!/\!/ CO_2+H_2O \rightarrow H_2CO_3$						
C)						

Reação de combustão completa do metano balanceada:

 $CH_{4(g)} + 2~O_{2(g)} \rightarrow CO_{2(g)} + 2~H_2O_{(I)}$

$6^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro – 2011 EM1 – $2^{\underline{a}}$ Fase

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

Logo:
16g CH ₄ 12,044 x 10 ²³ moléculas H ₂ O (2 mols)
X g 3,011 x 10 ²¹ moléculas
$X = 16 \times 3,011 \times 10^{21} / 12,044 \times 10^{23}$
$X = 4 \times 10^{-2} g = 0,040 g = 40,0 mg$
40,0 mg 100,0%
X mg 85,45%
X = 40,0 x 85,45 / 100 = 34,18 mg

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

Nome completo:	NOTA:	
Modalidade:	reenchido pela banca. Não use esse espaço!)	

QUESTÃO 04

A Cidade do Rio de Janeiro está passando por uma verdadeira revolução rodoviária e imobiliária, tendo em vista a Copa do Mundo de 2014 e as Olimpíadas de 2016. Sem falar em outros megaeventos que vão acontecer na Cidade Maravilhosa, como por exemplo, o Rock in Rio este ano.

Parte da revolução rodoviária se dá na construção das rodovias expressas por BRT (transolímpica, transoeste e transcarioca). Estes ônibus articulados (BRTs) vão utilizar como combustível o biodiesel, que é bem menos poluente que o óleo diesel.

Uma das maneiras de se obter o biodiesel está representada abaixo.

- A) Se utilizarmos 50,00 toneladas de etanol (C_2H_5OH) com 12,25 % de impurezas e admitindo um rendimento de 72,75 % na reação acima, qual deve ser a massa formada, em quilogramas, de glicerol?
- B) Qual a composição centesimal do glicerol?
- C) O etanol pode ser utilizado como combustível para automóveis. Considere um veículo com um tanque de 50,00 L que foi abastecido em um posto onde o etanol tem 12,50 % em massa de água. Qual é a massa de etanol puro, em quilogramas, contida num tanque que está com 3/4 de sua capacidade?

GABARITO (questão 4):

A) MM etanol = 24 + 5 + 17 = 46 g/mol ///// MM glicerol = 36 + 48 + 8 = 92 g/mol 46g etanol ------ 92g glicerol x 72,75% 50 ton. x 87,75% ------ X ton. X = 63,838123 ton = 63.838,123 kg

$6^{\underline{a}}$ Olimpíada de Química do Rio de Janeiro – 2011 EM1 – $2^{\underline{a}}$ Fase

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

B) 92g (MM glicerol) 100%
36g (MA total C) X%
X = 3600 / 92 = 39,13% C
92g (MM glicerol) 100%
48g (MA total O) Y%
Y = 4800 / 92 = 52,17% O
Logo, teremos 8,70% H \rightarrow [100 – (39,13 + 52,17)].
C) 50 L (capacidado máxima do tanguo) > 3/4 = 50 x 3 / 4 = 37 5 L
C) 50 L (capacidade máxima do tanque) \rightarrow 3/4 = 50 x 3 / 4 = 37,5 L
d = m / V \rightarrow 0,798 = m / 37,5 \rightarrow m = 0,798 x 37,5 = 29,925 kg
Obs.: $0,798 \text{ g / cm}^3 = 0,798 \text{ kg / L}.$
29,925 kg 100,00%
$X \text{ kg}$ 87,50% \rightarrow (100,00 – 12,50)
X = 29,925 x 87,50 / 100 ≈ 26,18 kg etanol puro.

Justifique sua resposta.

Justifique sua resposta.

6ª Olimpíada de Química do Rio de Janeiro – 2011 EM1 – 2ª Fase

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

Nome completo:	NOTA:				
Modalidade:	(Preenchido pela banca. Não use esse espaço!)				
QUESTÃO 05					
As seguintes etapas de uma experiência foram realizadas	em laboratório:				
 i – Certa quantidade de peróxido de hidrogênio foi decomposta utilizando dióxido de manganês como catalisador. O gás liberado pela reação foi recolhido em um recipiente 1, que foi fechado para posterior utilização; 					
ii – Uma pequena porção da substância simples do elemento X foi aquecida e se observou o início de sua fusão. Nesse estado foi introduzida no recipiente 1 . Da reação, foi formada uma nova substância J ; iii – Adicionou-se água ao recipiente 1 , que continha a substância J . Após vigorosa agitação, observou-se um sistema homogêneo incolor;					
iv – Após o procedimento iii, 2,0 ml do conteúdo do recipiente 1 foram transferidos para quatro tubos de ensaio. A cada tubo foram adicionados 2,0 ml de solução de um reagente diferente: ácido clorídrico, cloreto de sódio, hidróxido de sódio e hidróxido de bário. Nenhuma mudança foi observada com a adição dos reagentes nos três primeiros tubos. No último, onde foi adicionado hidróxido de bário, houve formação de precipitado branco;					
 v – O precipitado foi separado por uma centrifugação e o filtrado foi descartado. Ao sólido foram acrescentados 5,0 ml de solução de ácido clorídrico. Mesmo após a agitação, não foram observadas mudanças no aspecto do sólido ou da solução; 					
Considere que o elemento X situa-se ou no segundo ou no terceiro período da tabela periódica e que este elemento não é o fósforo. Considere também que o gás recolhido no recipiente 1 está em grande excesso em relação à substância simples do elemento.					
A) Identifique o elemento X e justifique sua resposta .					
B) Escreva todas as reações que ocorreram nas etapas i, ii, iii e iv.					
Considerando <u>apenas os elementos do mesmo período</u> do elemento X:					

C) Quais possuem MAIORES valores para a 1ª Energia de Ionização que o elemento X?

D) Quantos apresentam ${\bf MAIORES}$ valores para a 1ª Afinidade Eletrônica que o elemento ${\bf X}$?

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

GABARITO (questão 5)

- A) Alguns dados sobre o elemento **X** são conhecidos:
- Pertence ou ao 2º ou ao 3º período da tabela periódica;
- Não é o fósforo;
- Sua substância simples está no estado sólido e se funde mediante aquecimento;
- A combustão com o gás oxigênio (obtido na etapa i) forma a substância J, que é um óxido. Tal óxido, ao reagir com água, forma um sistema homogêneo.

A terceira informação nos permite excluir alguns elementos: nitrogênio, oxigênio, flúor e cloro. As substâncias simples desses elementos estão no estado gasoso.

As substâncias simples de carbono, boro e silício apresentam pontos de fusão elevadíssimos (são sólidos covalentes).

Os óxidos de berílio, magnésio, alumínio, silício e boro não formariam um sistema homogêneo após entrarem em contato com a água, ou por não reagirem (caso do óxido de alumínio) ou pelo produto ser insolúvel ou muito pouco solúvel em água (como o óxido de magnésio).

Restariam três elementos: lítio, sódio e enxofre. Tais óxidos formariam um sistema homogêneo ao reagirem com a água (embora o hidróxido de lítio seja pouco solúvel em água). A reação desses óxidos com água levaria à formação de soluções de hidróxido de sódio, hidróxido de lítio e de ácido sulfúrico.

Chegando ao final da experiência, há a reação com a solução de hidróxido de bário. As soluções de hidróxido de sódio ou de lítio não reagem com essa solução. Já o ácido sulfúrico reage com o hidróxido de bário gerando um produto insolúvel, o sulfato de bário, conforme a observação relatada na etapa iv. Além disso, o sulfato de bário permanece insolúvel em meio ácido (etapa v).

Diante disso, o elemento **X** só pode ser o enxofre.

ABQ RJ - Colégio Pedro II - IFRJ - PUC-Rio

B) Reações em cada etapa:

Etapa i:

$$2 H_2 O_2 \xrightarrow{MnO_2} 2 H_2 O + O_2$$

Etapa ii:

$$S + O_2 \longrightarrow SO_2$$

$$2 SO_2 + O_2 \longrightarrow 2 SO_3$$

Etapa iii:

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

Etapa iv:

$$H_2SO_4 + Ba(OH)_2$$
 Ba $SO_4 + 2 H_2O$

(Comentário: A última reação ocorre, mas não causa nenhuma alteração visual no tubo).

(Comentário: Não há problema em balancear algumas equações com o fator ½).

C) Padrão mínimo de resposta:

Considerando que a blindagem pouco varia entre elementos de um mesmo período, quanto mais prótons, maior será a atração do núcleo ao elétron. Quanto mais forte for a atração do núcleo pelos elétrons, maior será a energia de ionização. Seguindo esse raciocínio, cloro e argônio vão apresentar um maior valor para a 1ª energia de ionização que o enxofre já que possuem maior carga nuclear.

(Comentário: A variação do raio atômico também pode ser utilizada como parâmetro para a atração do núcleo ao elétron).

D) Padrão mínimo de resposta:

Apenas um elemento (cloro). Considerando que a blindagem pouco varia entre elementos de um mesmo período, quanto mais prótons, maior será a atração do núcleo ao elétron. Quanto mais forte for a atração do núcleo pelos elétrons, maior será a afinidade eletrônica em um mesmo período. O argônio, assim como todos os gases nobres, não segue essa tendência já que receberia o elétron em uma camada diferente (Comentário: a atração será menor em uma camada mais externa, tornando a A.E. menor que dos outros elementos do mesmo período).