

QUÍMICA

com **Pedro Nunes**

Hidrocarbonetos

HIDROCARBONETOS

São compostos formados apenas por carbono e hidrogênio e por isso podemos até dizer que apresentam fórmula geral $C_x H_v$.

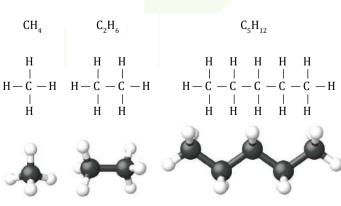
São substâncias apolares, ou seja, não possuem nem polo positivo nem polo negativo e sendo assim, não se dissolvem em água, que é uma substância conhecidamente polar. Por conta disso também não conduzem a corrente elétrica.

São os compostos mais simples da Química Orgânica.

Existem vários tipos de hidrocarbonetos e podemos classificá-los como:

alcanos alcenos alcinos alcadienos ciclanos ciclenos aromáticos

PRINCIPAIS FONTES DE HIDROCARBONETOS



Petróleo Hulha Gás natural

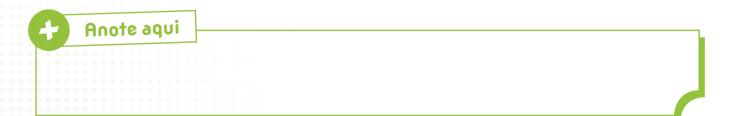
ALCANOS

São hidrocarbonetos de cadeia aberta que apresentam apenas simples ligações entre os carbonos. Tem fórmula geral igual a \overline{C}_nH_{2n+2} onde n é o número de carbonos desse alcano.

Para fazermos a nomenclatura desses compostos orgânicos, precisamos lembrar dos prefixos relacionados ao número de carbonos da cadeia. Observe o quadro a seguir:

NÚMERO DE CARBONOS	PREFIXO
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

A nomenclatura dos alcanos é feita com o prefixo correspondente ao número de carbonos da cadeia, seguida da característica dos alcanos an e a terminação dos hidrocarbonetos o.

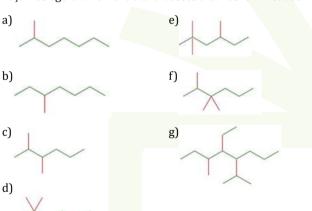

PREFIXO + AN + O

Portanto, qual a nomenclatura de cada alcano de cadeia normal a seguir:

CADEIA DOS ALCANOS	Nº DE C	NOMENCLATURA
$\mathrm{CH_4}$	1	
$\mathrm{CH_{3}CH_{3}}$	2	
$\mathrm{CH_{3}CH_{2}CH_{3}}$	3	
$\mathrm{CH_{3}CH_{2}CH_{3}}$	4	
$CH_3CH_2CH_2CH_3$	5	
$CH_3CH_2CH_2CH_2CH_3$	6	
$CH_3CH_2CH_2CH_2CH_2CH_3$	7	
$CH_3CH_2CH_2CH_2CH_2CH_2CH_3$	8	
$CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_3$	9	
$CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$	10	
$CH_{3CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$	11	
$CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$	12	

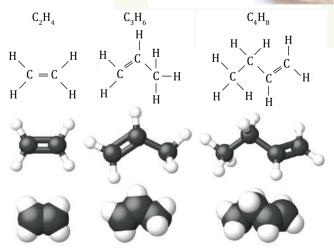
Só que existem alcanos que são ramificados, então temos que saber a nomenclatura de alguns radicais, observe...

Radicais são estruturas que apresentam uma ou mais valências livres.


PRINCIPAIS RADICAIS

$$\begin{array}{ccccc} -\operatorname{CH}_3 & -\operatorname{CH}_2 - \operatorname{CH}_3 & -\operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 & -\operatorname{CH} - \operatorname{CH}_3 \\ \text{metil} & \text{etil} & \text{n-propil} & \operatorname{CH}_3 \\ & & & \text{isopropil} \end{array}$$

$$\begin{array}{ccc} -\operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 & -\operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_3 \\ & & \operatorname{n-butil} & & & & & \\ & & & & & & \\ \end{array}$$


Façamos agora a nomenclatura desses alcanos ramificados

ALCENOS

São hidrocarbonetos de cadeia aberta que apresentam uma única ligação dupla entre carbonos. Tem fórmula geral igual a $C_nH_{2n'}$, onde n é o número de carbonos desse alceno.

A nomenclatura dos alcanos é feita com o prefixo correspondente ao número de carbonos da cadeia, seguida da característica dos alcanos en e a terminação dos hidrocarbonetos o.

PREFIXO + EN + O

a)
$$CH_2 = CH_2$$

b) $CH_2 = CH - CH_3$
c) $CH_3 - CH = CH - CH_3$
d) $CH_3 - CH - CH = CH_2$
 CH_3
 $CH_3 - CH - CH = CH_2$
 CH_2
 CH_3
 CH_3

ALCINOS

São hidrocarbonetos de cadeia aberta que apresentam uma única ligação tripla entre carbonos. Tem fórmula geral igual a C_nH_{2n-2}, onde n é o número de carbonos desse alcino.

$$C_{2}H_{2}$$

$$C_{3}H_{4}$$

$$H-C \equiv C-H$$

$$H-C \equiv C-C$$

$$H$$

$$H$$

A nomenclatura dos alcanos é feita com o prefixo correspondente ao número de carbonos da cadeia, seguida da característica dos alcanos in e a terminação dos hidrocarbonetos o.

PREFIXO + IN + O

a)
$$H - C \equiv C - H$$

b) $H - C \equiv C - CH_3$
c) $CH_3 - C \equiv C - CH_3$
d) $CH_3 - CH - C \equiv CH$
 CH_3
e) CH_3
 $CH_3 - C - C \equiv CH$
 CH_3
 $CH_3 - C = C - CH_2 - CH - CH_3$
 CH_2
 CH_3

TODOS OS DIREITOS RESERVADOS.