
Em um ciclo trigonométrico, pode-se observar que diferentes arcos possuem o mesmo valor de seno. Assim, é **CORRETO** afirmar que sen  $\pi/6$  é igual a:

- a)sen  $11\pi/6$
- b)sen  $7\pi/6$
- c)sen  $13\pi/6$
- d)sen  $4\pi/6$



Os arcos AP e AQ, representados no ciclo trigonométrico na passante figura, são simétricos em relação à origem.



Se o arco AQ mede 294°, o arco PS med

- a)114°
- b)156°
- c)164°
- d)204°
- e)246°



## Dados os ângulos de 30° e 150°, pode-se afirmar que

- a)sen  $30^{\circ} = \cos 150^{\circ}$ .
- b)sen  $30^{\circ}$  = sen  $150^{\circ}$ .
- c) $\cos 30^{\circ} = \cos 150^{\circ}$ .
- d)cos  $30^{\circ} = \text{ sen } 150^{\circ}$ .



# O valor do cos( - 17 $\pi$ /6 ) é

- a)1/2.
- b) $\sqrt{3/2}$ .
- c)-1/2.
- d)  $\sqrt{3/2}$ .



### O valor de

$$(\cos 165^{\circ} + \sin 155^{\circ} + \cos 145^{\circ} - \sin 25^{\circ} + \cos 35^{\circ} + \cos 15^{\circ})$$

é

- a) $\sqrt{2}$ .
- b) -1.
- c)0.
- d)1.
- e)1/2.



Observe a expressão apresentada abaixo.

2. 
$$sen(90^\circ)$$
.  $sen(30^\circ) + 4$ .  $sen(30^\circ)$ .  $cos(60^\circ) + tg(45^\circ)$ .  $cos(90^\circ)$ 

Essa expressão vale:

- a)1
- b)2
- c)3
- d)4



Os ângulos a,  $\[ \beta \]$  e  $\[ \theta \]$  ; são agudos e tais que sena = 1/2 ,

O valor de tg θ é

 $\cos \beta = \frac{\sqrt{2}}{2} e \theta = \frac{3\alpha}{2} + \frac{\beta}{3}$ 

- a)1
- b)1/2
- c)√3/3
- d)√ 3/2
- e)√3



Se x é um arco do  $1^{\circ}$  quadrante, com sen x = a e cos x = b, então  $\frac{\sin x \cdot \cos x}{\sin x}$  é

$$y = \frac{\sec(\pi x) \cos(x)}{\tan(x)}$$

- a)a
- b)b
- c)–a
- d)-b



Se 
$$senx = \frac{3}{5}$$
 e  $cos x = -\frac{4}{5}$  , então o valor da expressão

$$sen(2\pi + x) + cos(\pi + x)$$
 é:

- a)1
- b)1/5
- c)7/5
- d)-1



o valor da expressão 
$$E = sen\left(-\frac{7\pi}{6}\right) + cos\left(-\frac{2\pi}{3}\right) + sen\frac{15\pi}{6}$$

- é:
- a)1
- b)1/2
- c)-1/2
- d)-1