

GRAVITAÇÃO - TESTES DE APRENDIZAGEM

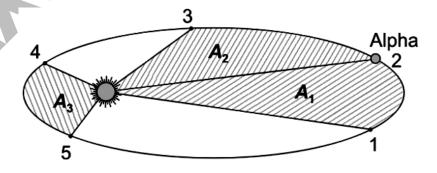
01. (AFA)

A tabela a seguir resume alguns dados sobre dois satélites de Júpiter.

Nome	Diâmetro aproximado (km)	Raio médio da órbita em relação ao centro de Júpiter (km)
lo	3,64.10 ³	4,20.10 ⁵
Europa	3,14.10 ³	6,72.10 ⁵

Sabendo-se que o período orbital de lo é de aproximadamente 1,8 dia terrestre, pode-se afirmar que o período orbital de Europa expresso em dia(s) terrestre(s), é um valor mais próximo de

- A) 0,90
- B) 1,50
- C) 3,60
- D) 7,20



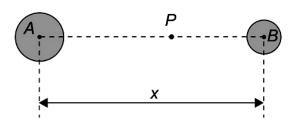
Um satélite cujo raio da órbita vale R gira ao redor da Terra com velocidade angular constante ω . Por necessidade técnica será feito um ajuste na trajetória que dobrará o raio orbital desse satélite, fazendo-o girar com uma nova velocidade angular constante ω' . A razão ω/ω' vale

- A) $2\sqrt{2}$
- B) $\frac{\sqrt{2}}{2}$
- C) 2
- D) 1/2

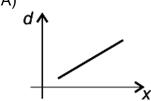
03. (AFA)

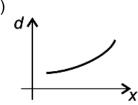
Um planeta Alpha descreve uma trajetória elíptica em torno do seu sol como mostra a figura abaixo.

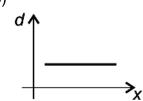
Considere que as áreas A_1 , A_2 e A_3 são varridas pelo raio vetor que une o centro do planeta ao centro do sol quando Alpha se move respectivamente das posições de 1 a 2, de 2 a 3 e de 4 a 5. Os trajetos de 1 a 2 e de 2 a 3 são realizados no mesmo intervalo de tempo Δt e o trajeto de 4 a 5 num intervalo Δt ' < Δt . Nessas condições é correto afirmar que



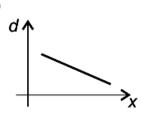
- A) $A_1 < A_3$
- B) $A_2 < A_3$
- C) $A_1 > A_2$
- D) $A_3 < A_2$


04. (AFA)


Dois corpos A e B, esféricos, inicialmente estacionários no espaço, com massas respectivamente iguais a m_A e m_B, encontram-se separados, centro a centro, de uma distância x muito maior que os seus raios, conforme figura abaixo.


O gráfico que melhor representa d em função de x, afim de que qualquer massa m colocada no ponto P fique em equilíbrio, é:

A)



B)

D)

05. (AFA)

A respeito de um satélite artificial estacionário em órbita sobre um ponto do equador terrestre, afirma-se que

I- a força que a Terra exerce sobre ele é a resultante centrípeta necessária para mantê-lo em órbita.

II- o seu período de translação é 24 horas.

III- os objetos soltos em seu interior ficam flutuando devido à ausência da gravidade.

Está(ão) correta(s)

- A) apenas I.
- B) apenas I e II.
- C) apenas II e III.
- D) I, II e III.

06. (AFA)

Os satélites de comunicação são operados normalmente em órbitas cuja velocidade angular ω é igual à da Terra, de modo a permanecerem imóveis em relação às antenas receptoras. Na figura abaixo, estão representados dois destes satélites, A e B, em órbitas geoestacionárias e

em diferentes alturas. Sendo a massa de A maior que a de B, pode-se afirmar que as relações entre os módulos das velocidades v_A e v_B e os períodos de rotação T_A e T_B dos satélites A e B estão representados corretamente na alternativa

- A) $V_A = V_B e T_A = T_B$
- B) $V_A < V_B e T_A < T_B$
- C) $V_A > V_B e T_A = T_B$
- D) $V_A > V_B e T_A > T_B$

Quanto a um satélite artificial geoestacionário, em órbita circular em torno da Terra, afirma-se que:

I- a força que o mantém em órbita é de natureza gravitacional.

II- seu período é de 24 horas.

III- sua aceleração é nula.

É (são) correta(s), apenas a(s) afirmativa(s)

- A) II
- B) I e II
- C) I e III
- D) II e III

08. (AFA)

O Centro de Lançamento de Alcântara (CLA) está preparado para lançar foguetes de sondagem e veículos lançadores de satélites. Localizado na costa do nordeste brasileiro, próximo ao Equador, a posição geográfica do CLA aumenta as condições de segurança e permite menores custos de lançamento. Afirma-se que são fatores determinantes do menor custo de lançamento no CLA (latitude 0°) em relação a outros centros de lançamento situados em regiões de maiores latitudes:

I - maior velocidade tangencial, devido à inércia do movimento de rotação da Terra.

II - menor aceleração da gravidade, devido ao movimento de rotação da Terra.

III - menor distância das órbitas próprias para satélites geoestacionários.

São verdadeiras as assertivas

- A) apenas I e II
- B) apenas II e III
- C) apenas I e III
- D) I, II e III

09. (AFA)

A relação entre o peso aparente P_A e o real P de um astronauta no interior de uma nave espacial que gira em torno da Terra, em órbita circular, é:

A)
$$\frac{P_A}{P} = 0$$

B)
$$\frac{P_A}{P} = 1$$

$$C) \ \frac{P_A}{P} > 1$$

$$D) \frac{P_A}{P} < 1$$

10. (AFA)

Considere a Terra um planeta de raio R estacionário no espaço. A razão entre os períodos de dois satélites, de mesma massa, em órbitas circulares de altura R e 3R, respectivamente, é

- A) 1/2
- B) 3/4
- C) $\frac{\sqrt{2}}{4}$
- D) $\frac{\sqrt{3}}{2}$

11. (AFA)

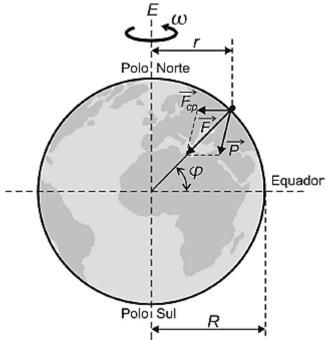
Na cidade de Macapá, no Amapá, Fernando envia uma mensagem via satélite para Maria na mesma cidade. A mensagem é intermediada por um satélite geoestacionário, em órbita circular cujo centro coincide com o centro geométrico da Terra, e por uma operadora local de telecomunicação da seguinte forma: o sinal de informação parte do celular de Fernando direto para o satélite que instantaneamente retransmite para a operadora, que, da mesma forma, transmite para o satélite mais uma vez e, por fim, é retransmitido para o celular de Maria. Considere que esse sinal percorra todo trajeto em linha reta e na velocidade da luz, c; que as dimensões da cidade sejam desprezíveis em relação à distância que separa o satélite da Terra, que este satélite esteja alinhado perpendicularmente à cidade que se encontra ao nível do mar e na linha do equador. Sendo, M, massa da Terra, T, período de rotação da Terra, R_T, raio da Terra e G, a constante de gravitação universal, o intervalo de tempo entre a emissão do sinal no celular de Fernando e a recepção no celular de Maria, em função de c, M, T, G e R_T é:

A)
$$\frac{4}{c} \left(\sqrt[3]{\frac{T^2 GM}{4\pi^2}} - R_{\tau} \right)$$

B)
$$\frac{2}{c} \left(\sqrt[3]{\frac{2TGM}{4\pi}} + R_{\scriptscriptstyle T} \right)$$

C)
$$\frac{4}{c} \left(\sqrt[3]{\frac{TGM}{4\pi^2}} - R_{T} \right)$$

$$D) \ \frac{1}{c} \left(\sqrt[3]{\frac{TGM}{2\pi}} + R_{\scriptscriptstyle T} \right)$$



12. (AFA)

Considere a Terra um Planeta esférico, homogêneo, de raio R, massa M concentrada no seu centro de massa e que gira em torno do seu eixo E com velocidade angular constante ω , isolada do resto do universo.

Um corpo de prova colocado sobre a superfície da Terra, em um ponto de latitude ϕ , descreverá uma trajetória circular de raio r e centro sobre o eixo E da Terra, conforme a figura abaixo. Nessas condições, o corpo de prova ficará sujeito a uma força de atração gravitacional \vec{F} , que admite duas componentes, uma centrípeta, \vec{F}_{cp} , e outra que traduz o peso aparente do corpo, \vec{P} .

Quando $\phi=0^\circ$, então o corpo de prova está sobre a linha do equador e experimenta um valor aparente da aceleração da gravidade igual a g_e . Por outro lado, quando $\phi=90^\circ$, o corpo de prova se encontra em um dos Polos, experimentando um valor aparente da aceleração da gravidade igual a g_p . Sendo G a constante de gravitação universal, a razão $\frac{g_e}{g_o}$ vale:

A)
$$1 - \frac{\omega^3 R^3}{GM}$$

B)
$$\frac{(GM - \omega^2 r)R^2}{GM}$$

C)
$$\frac{1-\omega^4}{GM}$$

D)
$$\frac{GMR^2 - \omega^2 r^2}{GM}$$

GABARITO

01. C 02. A 03. D 04. A 05. B 06. C 07. B 08. A 09. A 10. C 11. A 12. A