

1. Elipse

Uma elipse é uma linha fechada e plana (toda contida em um único plano) que tem o aspecto da figura 1 e a seguinte propriedade: sendo P um ponto qualquer da elipse, tem-se:

$$PF_1 + PF_2 = constante = A_1A_2$$

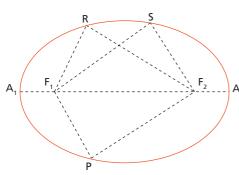


Figura 2.

Figura 1.

Assim, na figura 1 temos, por exemplo:

$$PF_1 + PF_2 = RF_1 + RF_2 = SF_1 + SF_2 = constante = A_1A_2$$

Na figura 2 apresentamos os elementos da elipse:

- F_1 e F_2 são focos da elipse;
- $\overline{A_1}\overline{A_2}$ é o eixo maior, que mede 2a;
- $\overline{B_1}\overline{B_2}$ é o eixo menor, que mede 2b;
- C é o centro da elipse;
- F_1F_2 é a distância focal, igual a 2c; \overline{CA}_2 (ou CA_1) é o semieixo maior (que mede a);
 - \overline{CB}_1 (ou CB_2) é o semieixo menor (que mede b).

Aplicando o teorema de Pitágoras ao triângulo retângulo sombreado na figura 2, temos:

$$a^2 = b^2 + c^2$$

A **excentricidade** de uma elipse é um número **e** definido por:

$$e = \frac{C}{a}$$

sendo 0 < e < 1.

Para perceber o significado de excentricidade, observe a figura 3, na qual há duas elipses cujos eixos maiores têm a mesma medida mas distâncias focais diferentes. Na elipse superior a excentricidade é:

$$e_1 = \frac{4}{5} = 0.8$$

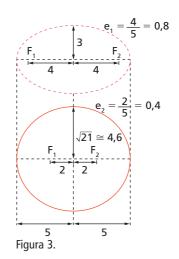
e na elipse inferior a excentricidade é:

$$e_2 = \frac{2}{5} = 0.4$$

isto é, $e_2 < e_1$.

Capítulo 24

Quanto menor a excentricidade, mais a elipse se aproxima de uma circunferência. Por isso alguns autores definem a circunferência como uma elipse de excentricidade nula (os focos F_1 e F_2 são coincidentes). Quanto maior a excentricidade, mais afilada é a elipse.



Os complementos de teoria, leitura e exercícios complementares deste CD são PARTE INTEGRANTE da obra Física Clássica, dos autores Caio Sérgio Calçada e José Luiz Sampaio. Todos os direitos reservados.

Há um modo prático de desenhar uma elipse:

- sobre uma folha de papel fixamos dois alfinetes em pontos F_1 e F_2 (que são os focos), de modo que F₁F₂ seja a distância focal desejada (figura 4);
- amarramos aos alfinetes uma linha cujo comprimento seja igual ao comprimento do eixo maior desejado;
- apoiando a ponta de um lápis na linha, de modo que ela fique esticada, e movimentando o lápis, conseguimos desenhar a elipse.

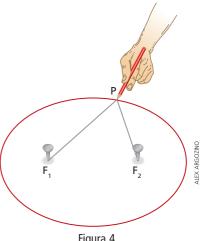
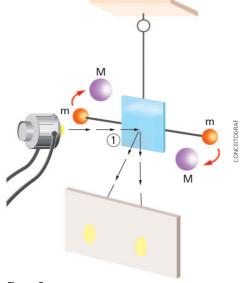
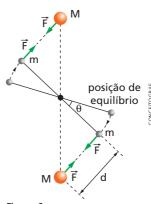


Figura 4.

2. O experimento de Cavendish

O valor de G foi determinado experimentalmente pela primeira vez em 1798, pelo inglês Henry Cavendish. Na figura 5 temos um esquema simplificado do dispositivo por ele usado. Duas bolas de massa m estão unidas por uma barra de massa desprezível, a qual está suspensa por uma fibra de quartzo. Um pequeno espelho está preso na barra. Uma lâmpada emite um feixe de luz que se reflete no espelho e atinge uma tela distante. Aproximando duas bolas de grandes massas iguais a M, as forças de atração entre as bolas provocarão uma pequena rotação θ da barra, a qual pode ser medida pelo deslocamento do ponto de luz na tela.





Todos os direitos reservados.

Cavendish usou um conhecido resultado experimental sobre a torção de fios (fig. 6): o torque total ($M_{\rm o}$) atuante na barra é proporcional à rotação θ produzida:

$$M_{R} = k \cdot \theta$$
 1

sendo a constante k uma característica de cada fio. Se o comprimento da barra for L, temos:

$$M_B = FL$$
 2

De 2 e 1 obtemos:

$$F = \frac{k\theta}{L}$$
 3

Mas, de acordo com a Lei da Gravitação de Newton, temos:

$$F = G \frac{Mm}{d^2} \quad \textcircled{4}$$

Os complementos de teoria, leitura e exercícios complementares deste CD são PARTE INTEGRANTE da obra Física Clássica, dos autores Caio Sérgio Calçada e José Luiz Sampaio.

De 4), tiramos:

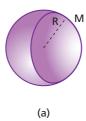
$$G = \frac{kd^2\theta}{Mml}$$

Desse modo, Cavendish obteve o valor de G.

3. Aceleração da gravidade no interior da Terra

Campo gravitacional de uma casca esférica

Consideremos uma casca esférica muito fina (figura 7a) cujo raio é R e cuja massa M está distribuída de modo uniforme. Usando o Cálculo Integral, Newton demonstrou que o campo gravitacional \vec{g} produzido por essa casca tem as seguintes características:



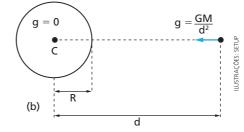


Figura 7.

1º) Em pontos externos à casca, o campo é igual ao que seria produzido por uma partícula de massa *M* situada no centro *C* da casca (fig. 7b):

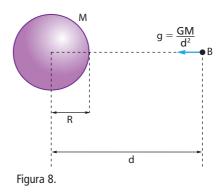
$$g = \frac{GM}{d^2}$$

2^a) Em qualquer ponto interno o campo é nulo.

Capítulo 24

Campo gravitacional de uma esfera homogênea

Consideremos agora um corpo esférico, maciço e homogêneo, cujo raio é R e cuja massa é M. Esse corpo pode ser imaginado como a superposição de um número infinito de cascas esféricas, como se fossem as camadas de uma cebola. Assim, o campo gravitacional no ponto B, situado a uma distância d do centro C, tal que $d \ge R$ (fig. 8), tem intensidade dada por $g = \frac{GM}{d^2}$.



Calculemos, agora, a intensidade do campo gravitacional num ponto P, interno à esfera, situado a uma distância r do centro C (fig. 9). O ponto P é interno à região azul assinalada na figura e, portanto, o campo gravitacional produzido em P pela região azul é nulo. Assim, o campo em P é o campo produzido pela região verde, isto é, pela esfera de raio r:

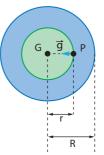


Figura 9.

Os complementos de teoria, leitura e exercícios complementares deste CD são PARTE INTEGRANTE da obra *Física Clássica*, dos autores Caio Sérgio Calçada e José Luiz Sampaio.

Todos os direitos reservados.

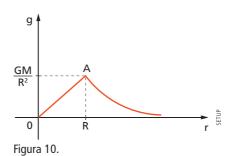
(

$$g_p = \frac{Gm}{r^2}$$
 1

sendo m a massa da região verde, cujo volume é $V=\frac{4}{3}\pi r^3$. Sendo ρ a densidade da esfera, temos:

$$m = \rho \cdot V = \rho \cdot \frac{4\pi r^3}{3} \quad (2)$$

Substituindo 2 em 1, obtemos:

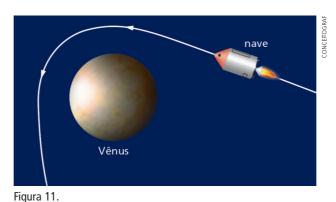


$$g_p = \frac{G}{r^2} m = \frac{G}{r^2} \cdot \rho \cdot \frac{4\pi r^3}{3} \Rightarrow g_p = \underbrace{\left(\frac{4\pi G\rho}{3}\right)}_{\text{constants}} r$$
 3

A equação 3 é do primeiro grau. Portanto, o gráfico de g em função de r, para $r \leq R$, é o trecho retilíneo \overline{OA} do gráfico apresentado na figura 10.

4. Efeito estilingue

Consideremos uma nave espacial contornando o planeta Vênus (fig. 11).



Quando a nave está distante do planeta, a atração deste sobre ela é pequena, e quando a nave se afasta, a força vai diminuindo novamente. Podemos, então, tratar a interação entre a nave e o planeta como uma **colisão elástica**, pois há conservação da energia. Para facilitar os cálculos, vamos supor que a trajetória seja a da figura 12. A velocidade de Vênus em relação ao Sol é aproximadamente $v_v = 35$ km/s. Suponhamos que a velocidade da nave quando está longe de Vênus seja $v_1 = 15$ km/s. Na figura, as velocidades já estão com sinais em relação ao eixo adotado. A velocidade da nave quando estiver se afastando de Vênus e distante dele será v_2 . Como a massa de Vênus é muito maior que a velocidade da nave, podemos supor que a velocidade do planeta não se altera durante a "colisão". Como a colisão é elástica, o coeficiente de restituição é igual a 1:

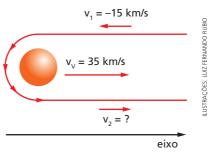


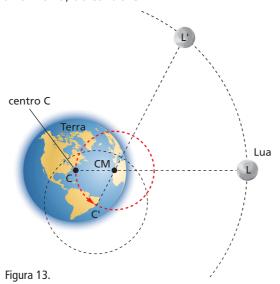
Figura 12.

$$e = -\frac{v_v - v_2}{v_v - v_1} = -\frac{35 - v_2}{35 - (-15)} = \frac{-35 + v_2}{35 + 15} = 1 \Rightarrow v_2 = 85 \text{ km/s}$$

Podemos ver que, sem necessidade de combustível, a velocidade da nave foi aumentada de 15 km/s para 85 km/s! Esse efeito é chamado efeito estilinque. Contornando vários planetas em sua trajetória, uma nave pode atingir velocidades que não alcançaria somente pela impulsão de foguetes (seria necessária uma enorme quantidade de combustível).

5. As marés

No capítulo 22 vimos que a Lua não gira exatamente em torno da Terra; tanto a Lua como a Terra giram em torno do centro de massa (CM) do sistema Terra + Lua, como ilustra a figura 13. Nessa figura, enquanto a Lua vai da posição L para a posição L', o centro da Terra vai da posição C para a posição C'. A trajetória do centro da Terra é a circunferência vermelha, de centro CM.



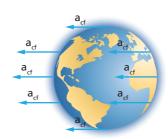


Figura 14.

Para um referencial fixo na Terra, todos os pontos da Terra terão uma aceleração centrífuga de mesmo módulo da centrípeta, como indica a figura 14. Para calcular essa aceleração, vamos usar a Lei da Gravitação:

$$MT \cdot a_{cf} = \frac{GM_T \cdot M_L}{r^2} \Rightarrow a_{cf} = \frac{GM_L}{r^2}$$

Como r \cong 60R (fig. 15), temos:

$$a_{cf} = \frac{GM_L}{(60R)^2} \qquad \textcircled{1}$$

Portanto, para um observador fixo na Terra, cada molécula de água de massa m experimentará uma força centrífuga (fig. 16) dada por:

$$F_{cf} = m \cdot a_c = \frac{GM_L \cdot m}{(60R)^2} \quad ②$$

Todos os direitos reservados.

FC1_CD_C24_Texto.indd 5

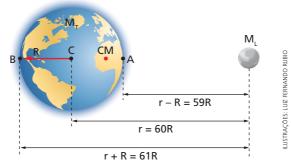


Figura 15.

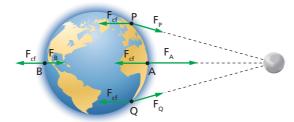


Figura 16.

Além da força centrífuga, cada molécula sofrerá uma atração gravitacional da Lua. Vamos calcular as atrações F_A e F_B , da figura 16:

$$F_A = \frac{GM_L \cdot m}{(59R)^2}$$
 e $F_B = \frac{GM_L \cdot m}{(61R)^2}$

Sabendo que a massa da Lua é $M_1 = 7.36 \cdot 10^{22}$ kg, o raio da Terra é $R = 6.38 \cdot 10^6$ m e $G = 6.67 \cdot 10^{-11}$ no SI, temos:

$$F_{A} = \frac{GM_{L} \cdot m}{(59R)^{2}} = \frac{(6,67 \cdot 10^{-11})(7,36 \cdot 10^{22}) \, m}{\big[(59)(6,38 \cdot 10^{6}) \big]^{2}} \cong 346 \cdot 10^{-7} \cdot m$$

$$F_{cf} = \frac{GM_L \cdot m}{(60R)^2} = \frac{(6,67 \cdot 10^{-11})(7,36 \cdot 10^{22}) \, m}{\big[(60)(6,38 \cdot 10^6) \big]^2} \cong 335 \cdot 10^{-7} \cdot m$$

$$F_{_B} = \, \frac{GM_{_L} \cdot m}{(61R)^2} \, = \, \frac{(6,67 \cdot 10^{-11})(7,36 \cdot 10^{22})\,m}{\big[(61)(6,38 \cdot 10^6)\big]^2} \, \cong 324 \cdot 10^{-7} \cdot m$$

Desse modo, as forças resultantes em A e B (fig. 17) são:

Capítulo 24

$$F'_{A} = F_{A} - F_{cf} \cong 11 \cdot 10^{-7} \cdot m$$

 $F'_{B} = F_{cf} - F_{B} \cong 11 \cdot 10^{-7} \cdot m$

Coincidentemente, F_A e F_B têm quase o mesmo módulo, produzindo duas marés altas em A e B.

Observe que a diferença $F_A - F_B$, no caso da Lua, é $22 \cdot 10^{-7}$ m. Se você fizer os cálculos da diferença $F_A - F_B$ para o caso do Sol no lugar da Lua, levando em conta que a distância entre a Terra e o Sol é 23 400R, observará que o resultado será aproximadamente $9 \cdot 10^{-7}$ m, isto é, cerca de 2,3 vezes menor que no caso da Lua.

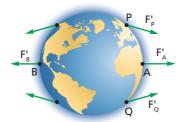


Figura 17.

Os complementos de teoria, leitura e exercícios complementares deste CD são PARTE INTEGRANTE da obra *Física Clássica*, dos autores Caio Sérgio Calçada e José Luiz Sampaio. Todos os direitos reservados.

