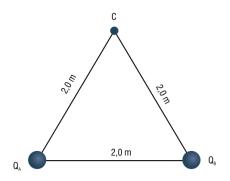

EXERCÍCIOS NÍVEL 1

01 Duas cargas de valor q estão separadas de um ponto A pela distância d. A que distância do ponto A deve ser colocada uma carga — q para que o potencial em A seja nulo?

- (A) d/2.
- (B) d.
- (C) 2d.
- (D) 4d.

02 Calcule V_A – V_B no esquema abaixo:

$$q = -1.2 \cdot 10^{-10} C$$


$$r_A = 1 \text{ cm}$$

$$r_B = 2 \text{ cm}$$

$$K = 9.10^9 \text{ Nm}^2/\text{C}^2$$

- (A) 54 V.
- (B) + 54 V.
- (C) 108 V.
- (D) + 108 V.

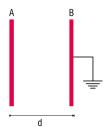
03 Nos vértices A e B do triângulo equilátero representado a seguir, foram fixadas duas partículas eletrizadas com cargas $Q_A = +6.0 \mu C$ e $Q_B = -4.0 \mu C$:

POTENCIAL ELÉTRICO

Considerando a constante eletrostática do meio igual a 1,0 · 10¹⁰ Nm²C⁻², determine:

- a. o potencial elétrico resultante no vértice C;
- b. a energia potencial elétrica armazenada no sistema;
- c. a energia potencial adquirida por uma carga de prova q = + 2,0 mC, ao ser colocada no vértice C.
- **04** Uma partícula eletrizada com carga q, no vácuo, cria a uma distância d um potencial de 300 volts e um campo elétrico de intensidade 100 newtons/coulomb. Quais os valores de d e de q? Adote, nos cálculos, a constante eletrostática do meio igual a $9 \cdot 10^9 \, \text{Nm}^2 \text{C}^{-2}$.
- **05** Uma partícula fixa, eletrizada com carga +5,0 μ C, é responsável pelo campo elétrico existente em uma determinada região do espaço. Uma carga de prova de + 2,0 μ C e 0,25g de massa é abandonada a 10cm da carga fonte, recebendo desta uma força de repulsão. Determine:
- a. o trabalho que o campo elétrico realiza, para levar a carga de prova a 50 cm da carga fonte;
- b. a velocidade escalar da carga de prova, quando estiver a 50 cm da carga fonte.

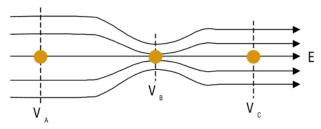
(Dado: constante eletrostática do meio = $1.0 \cdot 10^{10} \text{ Nm}^2\text{C}^{-2}$.)


06 Em uma região existe um campo elétrico tal que o potencial elétrico em cada ponto dessa região é definido por: $V = b \cdot x$, em que b = 1 V/m e x é a abscissa do ponto, em metros.

Uma carga negativa puntiforme móvel de 2 pico coulombs é deslocada do ponto A, de abscissa nula, até o ponto B, de abscissa negativa de 1 m. Qual o trabalho, em pico joules, realizado sobre a carga móvel pelo campo elétrico existente na região, no deslocamento acima especificado?

07 O dispositivo representado consiste em duas placas eletrizadas, de forma que existe, entre elas, um campo elétrico uniforme. Sabe- se que d=8.0 cm, que a placa A tem potencial $V_A=400$ V e que a placa B está ligada à terra.

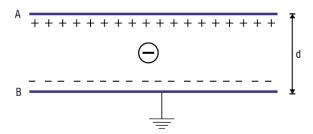
Determine a intensidade da força elétrica que apareceria aplicada numa partícula eletrizada com 5,0 μ C, se a mesma fosse colocada no campo existente entre as placas.


08 Uma esfera metálica de 27 cm de raio, situada no vácuo, recebe uma determinada carga elétrica Q, que produz, na sua superfície, um potencial de 4,0 · 10⁴ V. Qual o valor da carga Q?

(Dado: $K_0 = 9.0 \cdot 10^9 \text{ Nm}^2/\text{C}^2$.)

- **09** Dois condutores bastante afastados possuem capitâncias C_1 = 0,1 μ F e C_2 = 0,4 μ F, estandp eletrizados com cargas Q_1 = 2 μ C e Q_2 = 3 μ C, respectivamente. Ao ligarmos esses condutores através de um fio metálico, qual será o novo potencial comum?
- **10** Em uma região onde o meio é o vácuo, são colocadas duas partículas eletrizadas com cargas de + 5.0μ C e -3.0 μ C em dois pontos A e B, respectivamente. Sabe-se que a distância entre os dois pontos é de 2.0 m e que o valor da constante eletrostática do vácuo é $9.0 \cdot 10^9$ unidades do SI. Determine:
- a. a intensidade do campo elétrico do ponto M, médio do segmento AB;
- b. o valor do potencial no ponto M;
- c. a intensidade da força que apareceria numa carga de prova de +2,0 μ C, se fosse colocada no ponto M;
- d. a energia potencial elétrica adquirida pela referida carga de prova, em M.

Este enunciado refere-se às questões 11 e 12.

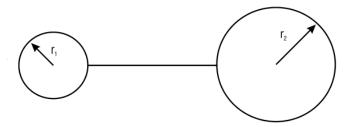

Ao se mapear uma região do espaço onde existe um campo elétrico produzido por uma determinada distribuição de carga, encontrou-se o seguinte conjunto de linhas de força:

- **11** A respeito das intensidades do campo elétrico nos pontos A, B e C, podemos afirmar que:
 - a. $E_A = E_B$.

- b. $E_A > E_C$.
- c. $E_A = E_{C.}$
- d. $E_B > E_C$.
- e. $V_C = E_C$.
- **12** A respeito dos potenciais V_A , V_B e V_C das quipotenciais que passam pelos pontos A, B e C, podemos afirmar que:
- a. $V_A = V_B$.
- b. $V_A > V_C$.
- c. $V_C > V_B$.
- d. $V_B > E_C$.
- e. $V_C = E_C$.
- **13** No vácuo (K = $9 \cdot 10^9 \text{ Nm}^2/\text{C}^2$), a intensidade do vetor campo elétrico e o potencial elétrico em um ponto P do campo gerado por uma carga pontual valem, respectivamente, $18 \cdot 10^3 \text{ N/C}$ e $36 \cdot 10^3 \text{ V}$. Qual o valor da carga elétrica que gera esse campo?
- **16** Em uma região de campo elétrico uniforme, de intensidade $2 \cdot 10^3$ N/C, a diferença de potencial, em volts, entre dois pontos, situados sobre uma linha de força do campo elétrico e separados por uma distância de 50 cm, é:
- (A) 10^3 .
- (B) 10^5 .
- (C) $4 \cdot 10^3$.
- (D) $2.5 \cdot 10^{-4}$.
- 17 Entre duas placas eletrizadas dispostas horizontalmente existe um campo elétrico uniforme. Uma partícula com carga de 3,0 μ C e massa m é colocada entre as placas, permanecendo em repouso.

Sabendo que o potencial da placa A é de 500 V, que a placa B está ligada à terra, que a aceleração da gravidade no local vale 10m/s² e que a distância d entre as placas vale 2,0cm, determine a massa m da partícula.

18 Uma esfera condutora de raio R é eletrizada com uma carga de 4,0 μ C. Qual o valor de R, sabendo-se que a 70 cm da superfície da esfera, no vácuo, o potencial vale 30 kV? Considere, nos cálculos, a constante eletrostática do vácuo igual a $9.10^9 \text{Nm}^2/\text{C}^{-2}$.

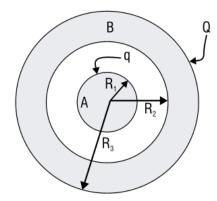

EXERCÍCIOS NÍVEL 2

01 Duas esferas condutoras A e B, de raios R_A = 4cm e R_B = 8cm, estão eletrizadas com cargas Q_A = 4 μ C e Q_B = 8 μ C. Colocadas em contato até o equilíbrio, quais serão suas novas carga elétricas?

02 Um fio condutor homogêneo de 25 cm de comprimento foi conectado entre os terminais de uma bateria de 6 V. A 5 cm do polo positivo, faz-se uma marca P sobre esse fio, e a 15 cm, uma outra marca Q. Então, a intensidade E do campo elétrico dentro desse fio e a diferença de potencial U_{PQ} existente entre os pontos P e Q dentro do fio serão, respectivamente, dados por:

- (A) 6,0 V/m e 0,6 V.
- (B) 2,4 V/m e 2,4 V.
- (C) 24 V/m e 2,4 V.
- (D) 6,0 V/m e 6,0 V.
- (E) 24 V/m e 6,0 V.

03 O sistema de condutores perfeitos da figura consta de duas esferas de raios r_1 =a e r_2 = 2^a , iterligadas por um fio condutor de capacidade nula. Quando o sistema é eletrizado com carga positiva Q, após o equilíbrio eletroestático ser alcançado, o condutor de raio r_1 apresenta densidade superficial de carga $\sigma 1$ e o de raio r_2 apresenta densidade superficial de carga $\sigma 2$. Nessa situação, qual a relação $\sigma 1/\sigma 2$?


04 Na figura, há dois condutores esféricos A e B concêntricos:

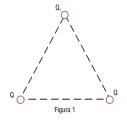
São dados:

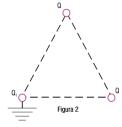
- I. $R_1 = 30$ cm, $R_2 = 60$ cm e $R_3 = 90$ cm.
- II. Carga elétrica da esfera maciça: $q = -1,0 \mu C$; carga elétrica da esfera oca: $Q = +10 \mu C$.
- III. Constante eletrostática do meio: $K_0 = 9,0.10^9 \text{Nm}^2/\text{C}^{-2}$.

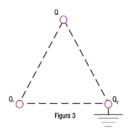
Esboce o gráfico do potencial em função da distância ao centro das esferas.

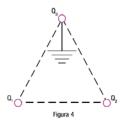
05 Uma esfera metálica isolada, de 10,0 cm de raio, é carregada no vácuo até atingir o potencial U = 9,0 V. Em seguida, ela é posta em contato com outra esfera metálica isolada, de raio R = 5,0 cm. Após atingido o equilíbrio, qual das alternativas a seguir melhor descreve a situação física?

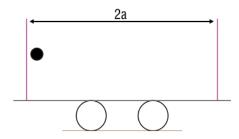
É dado que (1/4 πε) = $9.0 \cdot 10^9 \text{ Nm}^2/\text{C}^2$.


- (A) A esfera maior terá uma carga de 0,66 10⁻¹⁰ C.
- (B) A esfera maior terá um potencial de 4,5 V.
- (C) A esfera menor terá uma carga de 0,66 10⁻¹⁰ C.
- (D) A esfera menor terá um potencial de 4,5 V.
- (E) A carga total é igualmente dividida entre as 2 esferas.

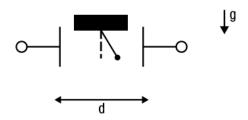

06 Considere as cargas elétricas $q_1 = 1C$, situada em x = -2 m, e $q_2 = -2$ C, situada em x = -8 m. Então, o lugar geométrico dos pontos de potencial nulo é:


- (A) uma esfera que corta o eixo x nos pontos x = -4 m e x = 4 m.
- (B) uma esfera que corta o eixo x nos pontos x = -16 m e x = 16 m.
- (C) um elipsoide que corta o eixo x nos pontos x = -4 m e x = 16 m.
- (D) um hiperboloide que corta o eixo x no ponto x = -4 m.
- (E) um plano perpendicular ao eixo x que o corta no ponto x = -4 m.


07 Três esferas condutoras, de raio a e carga Q, ocupam os vértices de um triângulo equilátero de lado b > a, conforme mostra a figura 1. Considere as figuras 2, 3 e 4, em que, respectivamente, cada uma das esferas se liga e desliga da terra, uma de cada vez. Determine, nas situações 2, 3 e 4, a carga das esferas Q_1 , Q_2 e Q_3 , respectivamente, em função de a, b e Q.



08 Um capacitor plano é formado por duas placas paralelas, separadas entre si de uma distância 2a, gerando em seu interior um campo elétrico uniforme E. O capacitor está rigidamente fixado em um carrinho que se encontra inicialmente em repouso. Na face interna de uma das placas encontra-se uma partícula de massa m e carga q presa por um fio curto e inextensível. Considere que não haja atritos e outras resistências a qualquer movimento e que seja M a massa do conjunto capacitor mais carrinho. Por simplicidade, considere ainda a inexistência da ação da gravidade sobre a partícula. O fio é rompido subitamente e a partícula move-se em direção à outra placa. A velocidade da partícula no momento do impacto resultante, vista por um observador fixo ao solo, é:



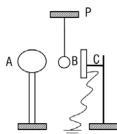
- a. $\frac{\sqrt{4qEMa}}{m(M+m)}$
- b. $\frac{\sqrt{2qEMa}}{m(M+m)}$
- C. $\frac{\sqrt{qEa}}{(M+m)}$
- d. $\frac{\sqrt{4qEMa}}{M(M+m)}$
- e. $\frac{\sqrt{4qEa}}{m}$

09 Uma pequena esfera de massa igual a 0,2 g pende por um fio isolante entre duas placas verticais e paralelas, separadas por uma distância de 5 cm. A carga na esfera é $6 \cdot 10^{-9}$ C. Qual será a diferença de potencial entre as placas se o fio permanecer em equilíbrio em um ângulo de 30° com a vertical?

10 (ITA 01/02) Uma esfera de massa m e carga q está suspensa por um fio frágil e inextensível, feito de um material eletricamente isolante. A esfera se encontra entre as placas paralelas de um capacitor plano, como mostra a figura. A distância entre as placas é d, a diferença de potencial entre elas é V e o esforço máximo que o fio pode suportar é igual ao quádruplo do peso da esfera. Para que a esfera permaneça imóvel, em equilíbrio estável, é necessário que:

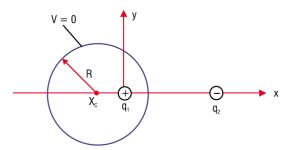
- a. $\binom{qV}{d}^2 < 15 \text{ mg.}$
- b. $\binom{qV}{d}^2 < 4 \text{ (mg)}2$.
- c. $\binom{qV}{d}^2 < 15 \text{ (mg)}2.$
- d. $\binom{qV}{d}^2 < 16 \text{ (mg)}2$.
- e. $\binom{qV}{d}^2 < 15 \text{ mg.}$

11 *N* gotas esféricas de mercúrio, iguais, se carregam até uma potencial V. Qual será o potencial V' da gota grande que se obtém como resultado da união destas gotas?


- (A) $V' = V \cdot N$.
- (B) $V' = V \cdot N^{2/3}$.
- (C) $V' = V \cdot N^2$.
- (D) $V' = V \cdot N^3$.
- (E) n.r.a.

EXERCÍCIOS NÍVEL 3

01 Duas esferas metálicas concêntricas sem cargas, cujos raios valem R_1 e R_2 , sendo R_1 < R_2 , estão unidas por um fino fio condutor. Esse fio passa por um pequeno orifício de uma outra esfera, situada concentricamente entre as duas primeiras. Essa terceira esfera tem raio R_3 e possui uma carga Q por ela distribuída. Determine o valor da carga induzida na esfera metálica interna.


02 A figura abaixo mostra, esquematicamente, uma campainha eletrostática. A e B são condutores esféricos, com diâmetros de 20 cm e 4 cm, respectivamente. B é suspenso de P por um fio isolante. A placa metálica C é ligada à terra.

Considere $(1 + x)n \cong 1 + nx$ se |x| < 1.

A esfera A, carregada inicialmente a um potencial de 50 kV, atrai B, que, após o contato, é repelida e se choca com a placa C, descarregando-se. A operação se repete enquanto o potencial de A for superior a 25 kV. Determine o número de vezes que B baterá em A.

03 Uma carga puntiforme q1 = + 6e está fixa na origem de um sistema de coordenadas retangulares, e uma segunda carga puntiforme q₂ = -10e está fixa em x = 8nm, y = 0. O lugar geométrico de todos os pontos no plano xy, com V =0, é um circulo centrado sobre sobre o eixo x, como mostra a figura abaixo.

Determine:

- a. A posição xc do centro do círculo;
- b. O raio R do círculo.

04 É dada uma esfera metálica oca, isolada, tendo em seu polo superior um pequeno orifício. O raio da esfera é R e a espessura da parede pode ser desprezada. Pelo orifício caem na esfera gotas de água esféricas de raio r e eletrizadas com potencial V. Determine o potencial V' da esfera quando ela se apresentar cheia de água até a metade.

GABARITO

Nível 1

2- A. 2,0 m/s2 b. 8,0 N

POTENCIAL ELÉTRICO

3- A. 2,0 m/s2 b. 24 N c. 48 N.

4- A. 4,0 m/s2 b. 30 N

5- A. 0,60 b. 2,0 m/s2

6- A. eu = 0.25; uc = 0.20.

7- A. 6,0 m/s2 b. 32 N

8- D1: 30 kgf; D2: 20kgf

9- A. 80 kgf b. 70 kgf

10-Letra A

11- A. 1,0 m/s2 b. 18 N

12- A. 5,0 m/s2 b. 30 N

13- A. 3,0 m/s2 b. 0,30

14- A. 2,0 m/s2 b. 48 N.

15- 1,25 N

16- 40 kgf

Nível 2

1- 25 kgf

2- Letra D

3- Letra A

4- Letra E

5- Letra B

6- Letra C

7- Letra D

8- 15,7 s

9- A = $\frac{g\sqrt{H(2R-H)}}{R-H}$

 $10-A = \frac{2xg}{L}$

11-Letra C

$$2- \qquad a = \frac{mg}{M+m}$$

3-(x + kgt2/4)2 + (y - gt2/4)2 = (gt2/4)2 (1 + k2) (eixo y orientado do ponto 0 para baixo, eixo x orientado do ponto 0 para a direita.

$$4 - \frac{F}{2m} \cdot \frac{x}{\sqrt{L2 - x2}}$$

Nível 3

b)
$$\frac{\sqrt{2LM}}{F-ug\ (m+M)}$$