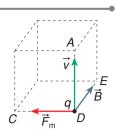
Resoluções dos exercícios propostos

P.332 Características da força magnética \vec{F}_{m} :

- direção: perpendicular a \vec{B} e a \vec{v} , isto é: da reta \overrightarrow{CD}
- sentido: determinado pela regra da mão direita n° 2, isto é: de D para C

$$F_{\rm m} = B \cdot |q| \cdot v \cdot \text{sen } \theta$$

 $F_{\rm m} = 2.5 \cdot 10^5 \cdot 3.2 \cdot 10^{-19} \cdot 3.0 \cdot 10^5 \cdot \text{sen } 90^\circ$
 $F_{\rm m} = 2.4 \cdot 10^{-8} \text{ N}$



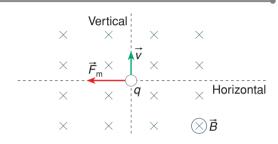
P.333 Características da força magnética \vec{F}_m :

- direção: perpendicular a \vec{B} e a \vec{v} , isto é: horizontal
- **sentido**: determinado pela regra da mão direita nº 2, isto é: da direita para a esquerda

$$F_{\rm m} = B \cdot |q| \cdot v \cdot \text{sen } \theta$$

$$F_{\rm m} = 4.0 \cdot 10^3 \cdot 2.0 \cdot 10^{-6} \cdot 20 \cdot \text{sen } 90^{\circ}$$

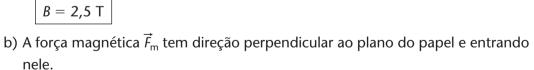
$$F_{\rm m} = 0.16 \ {\rm N}$$

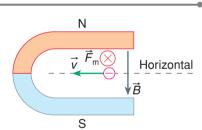


- **P.334** a) Características do vetor indução magnética \vec{B} :
 - direção: vertical
 - sentido: de cima para baixo, pois parte do norte e chega ao sul
 - intensidade:

$$F_{\rm m} = B \cdot |q| \cdot v \cdot \text{sen } \theta$$

8,0 \cdot 10^{-14} = $B \cdot 1$,6 \cdot 10^{-19} \cdot 2,0 \cdot 10^5 \cdot \text{sen } 90^\circ

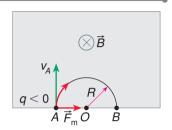




Resoluções dos exercícios propostos

P.335 De
$$R = \frac{mv}{B \cdot |q|}$$
, sendo $R = 50 \text{ cm} = 0.5 \text{ m}$, $q = 3 \mu\text{C} = 3 \cdot 10^{-6} \text{ C e } mv = 10^{-2} \text{ N} \cdot \text{s}$, temos: $0.5 = \frac{10^{-2}}{B \cdot 3 \cdot 10^{-6}} \Rightarrow B \approx 6.7 \cdot 10^{3} \text{ T}$

P.336 a) Na figura, representamos o sentido da força magnética \vec{F}_m no instante em que o elétron penetra no campo. Conhecidos os sentidos de \vec{v}_A e \vec{F}_m , determinamos, pela regra da mão direita nº 2, o sentido do vetor indução magnética \vec{B} : entrando no plano do papel (observe que o sinal de q é negativo). A direção de \vec{B} é a da reta perpendicular ao plano do papel. A intensidade de \vec{B} pode ser calculada pela fórmula do raio:



$$R = \frac{m \cdot v_A}{B \cdot |q|}$$
Sendo $R = 1,0 \cdot 10^{-2} \text{ m}; v_A = 3,52 \cdot 10^7 \text{ m/s e } \frac{m}{|q|} = \frac{1}{1,76 \cdot 10^{11}} \text{ kg/C, vem:}$

$$1,0 \cdot 10^{-2} = \frac{3,52 \cdot 10^7}{B \cdot 1,76 \cdot 10^{11}} \Rightarrow \boxed{B = 2,0 \cdot 10^{-2} \text{ T}}$$

b) O elétron descreve a semicircunferência \widehat{AB} em movimento uniforme. Assim, a medida de \widehat{AB} é igual ao produto $v_A \cdot t$. Logo:

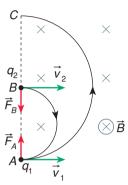
$$\pi R = v_A \cdot t \Rightarrow \pi \cdot 1,0 \cdot 10^{-2} = 3,52 \cdot 10^7 \cdot t \Rightarrow t \approx 9,0 \cdot 10^{-10} \text{ s}$$

Outra maneira de se calcular esse intervalo de tempo é observando que ele corresponde à metade do período:

$$t = \frac{T}{2} \Rightarrow t = \frac{\pi m}{|q| \cdot B} \Rightarrow t = \frac{\pi}{1,76 \cdot 10^{11} \cdot 2,0 \cdot 10^{-2}} \Rightarrow \boxed{t \approx 9,0 \cdot 10^{-10} \text{ s}}$$

Resoluções dos exercícios propostos

P.337 a) Na figura, representamos as forças magnéticas que agem nas partículas ao penetrarem no campo. Conhecidos os sentidos das forças, das velocidades e do vetor \vec{B} , pela regra da mão direita nº 2, podemos concluir que q_1 é positiva e q_2 é negativa.



b)
$$R_1 = 2R_2 \Rightarrow \frac{m_1 v_1}{B \cdot |q_1|} = 2 \cdot \frac{m_2 v_2}{B \cdot |q_2|} \Rightarrow \boxed{\frac{m_1}{m_2} = 2}$$

P.338 Próton: $R_p = \frac{mv}{B\rho}$ ①

Dêuteron: $R_d = \frac{2mv}{Be}$ ②

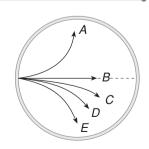
Dividindo ② por ①, vem:

$$\frac{R_{\rm d}}{R_{\rm p}} = \frac{2mv}{Be} \cdot \frac{Be}{mv}$$

$$\frac{R_{\rm d}}{R_{\rm p}}=2$$

$$R_{\rm d} = 2R_{\rm p}$$

P.339 O feixe é constituído de cinco partículas, uma com carga elétrica negativa (elétron), três com carga elétrica positiva (pósitron, próton e dêuteron) e uma eletricamante neutra (nêutron).



O **nêutron** não fica sujeito à força magnética. Logo, não sofre desvio. Sua **trajetória** é *B*.

Sabemos que as partículas positivas desviam num sentido e as negativas, em outro. Portanto, a **trajetória** *A* só pode ser do **elétron** (única partícula negativa do feixe).

Resoluções dos exercícios propostos

As três **partículas positivas** seguem as **trajetórias** *C*, *D* e *E*. Vamos identificá-las pelo raio da trajetória.

- Pósitron: $R_{\text{pósitron}} = \frac{mv}{B \cdot |q|}$ (m: massa do pósitron)
- Próton: $R_{\text{próton}} = \frac{m' \cdot v}{B \cdot |q|}$ (m': massa do próton)
- Dêuteron: $R_{\text{dêuteron}} = \frac{m'' \cdot v}{B \cdot |q|}$ (m": massa do dêuteron)

Observe que as três partículas têm cargas elétricas iguais, penetram no mesmo campo e com a mesma velocidade. Os raios de suas trajetórias diferem pelas massas. Sendo m < m' < m'', vem $R_{\text{pósitron}} < R_{\text{próton}} < R_{\text{dêuteron}}$. Logo, $\textbf{\textit{E}}$ é a **trajetória do pósitron**, $\textbf{\textit{D}}$ a do **próton** e $\textbf{\textit{C}}$ a do **dêuteron**.

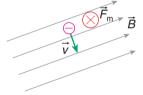
P.340 Para determinarmos a direção e o sentido da força magnética (\vec{F}_m) , utilizamos a regra da mão direita nº 2, quando a carga é positiva.

Se a carga for negativa, o sentido será contrário àquele dado por essa regra.

Para a determinação da direção e do sentido da força elétrica (\vec{F}_{e}), lembramos que ela tem a direção do campo \vec{E} e o sentido de \vec{E} , se a carga for positiva, e contrário ao de \vec{E} , se negativa.

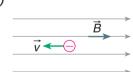
Assim, temos:

a)

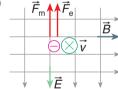


C)

b)



a)



$$F_{\rm m}=0$$
, pois $\theta=180^\circ$ (sen $180^\circ=0$)

Resoluções dos exercícios propostos

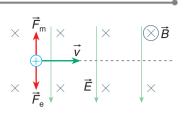
P.341 O próton percorre a região onde existem os campos sem sofrer desvio. Logo:

$$F_{\rm m} = F_{\rm e}$$

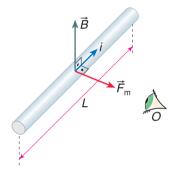
 $B \cdot |q| \cdot v \cdot \text{sen } 90^{\circ} = |q| \cdot E$

$$B \cdot v = E$$

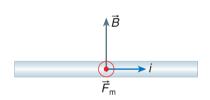
$$v = \frac{E}{B}$$



P.342 $F_{\rm m} = B \cdot i \cdot L \cdot \text{sen } \theta \Rightarrow F_{\rm m} = 1 \cdot 10 \cdot 0.20 \cdot \text{sen } 90^{\circ} \Rightarrow \boxed{F_{\rm m} = 2 \text{ N}}$



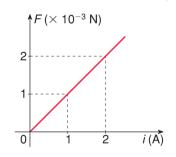
Vista em perspectiva



Vista pelo observador O

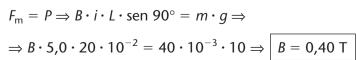
P.343 Do gráfico, para i=2 A, temos: $F=2 \cdot 10^{-3}$ N De $F_m=B \cdot i \cdot L \cdot \text{sen } \theta$, vem: $2 \cdot 10^{-3} = B \cdot 2 \cdot 0, 1 \cdot \text{sen } 90^{\circ}$

$$B = 10^{-2} \,\mathrm{T}$$



 $\bigotimes \vec{B}$

P.344 No condutor agem duas forças: o peso \vec{P} e a força magnética \vec{F}_{m} . Como \vec{P} é vertical e para baixo, \vec{F}_{m} deve ser vertical e para cima, de modo que se equilibrem. Conhecidos os sentidos de \vec{F}_{m} e \vec{B} , determinamos, pela regra da mão direita nº 2, o sentido de i: da esquerda para a direita. No equilíbrio, temos:



OS FUNDAMENTOS

3

Resoluções dos exercícios propostos

P.345 Condutor C_1 :

De $F_{\rm m}=B\cdot i\cdot L\cdot {\rm sen\ 30^{\circ}\ e\ sendo\ }B=0{,}05\ {\rm T},\,i=10\ {\rm A}$ e $L\cdot {\rm sen\ 30^{\circ}}=1\ {\rm m},\,{\rm vem}$:

$$F_{\rm m} = 0.05 \cdot 10 \cdot 1$$

$$F_{\rm m} = 0.5 \ {\rm N}$$

Condutor C_2 :

$$F_{\rm m} = B \cdot i \cdot L \cdot \text{sen } 90^{\circ}$$

$$F_{\rm m} = 0.05 \cdot 10 \cdot 1$$

$$F_{\rm m} = 0.5 \ {\rm N}$$

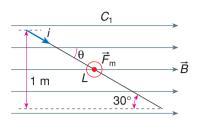
$$F_{\rm m_1} = B \cdot i \cdot L \cdot \text{sen } 60^{\circ}$$

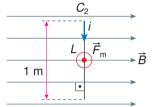
Sendo $L \cdot \text{sen } 60^\circ = 0.5 \text{ m, vem:}$

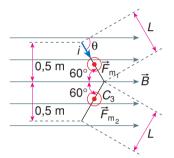
$$F_{m_1} = 0.05 \cdot 10 \cdot 0.5 \Rightarrow F_{m_1} = 0.25 \text{ N}$$

Mas
$$F_{m_2} = F_{m_1} = 0.25 \text{ N}.$$

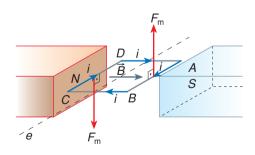
Logo:
$$F_{\rm m} = F_{\rm m_1} + F_{\rm m_2} = 0.5 \text{ N}$$







a) Observe na figura que o sentido de \vec{B} é do polo norte para o polo sul. Conhecidos os sentidos de \vec{B} e da corrente, determinamos os sentidos das forças magnéticas nos lados \overline{AB} e \overline{CD} , aplicando a regra da mão direita nº 2. Os lados \overline{BC} e \overline{DA} não ficam sujeitos a forças magnéticas, pois, nesses casos, i é paralelo a \vec{B} .



O momento de rotação da espira, na posição da figura, é dado por:

$$M = F_{\rm m} \cdot d$$

$$M = B \cdot i \cdot L \cdot \text{sen } \theta \cdot d$$

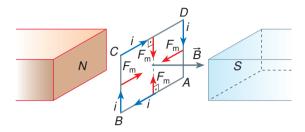
$$M = 0.8 \cdot 5 \cdot 2 \cdot 10^{-2} \cdot \text{sen } 90^{\circ} \cdot 1 \cdot 10^{-2}$$

$$M = 8 \cdot 10^{-4} \,\mathrm{N} \cdot \mathrm{m}$$

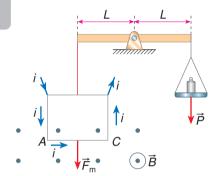
Resoluções dos exercícios propostos

b) Observando o sistema de forças magnéticas que agem na espira, concluímos que ela irá girar no sentido anti-horário.

A posição de equilíbrio corresponde ao plano da espira paralelo às faces dos ímãs ou ao plano da espira perpendicular a \vec{B} .



P.347



Quando não circula corrente, o quadro é equilibrado pelo prato da balança. Passando pelo quadro a corrente de intensidade 10 A, o lado

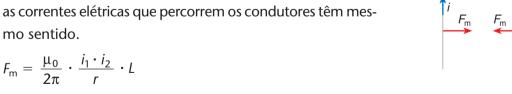
AC do quadro, imerso no campo, fica sujeito à força magnética \vec{F}_{m} indicada. A massa a ser colocada no prato tem peso igual a \vec{F}_m :

$$P = F_{\rm m}$$

 $mg = B \cdot i \cdot L \cdot \text{sen } \theta$
Sendo $\theta = 90^{\circ} \text{ e sen } 90^{\circ} = 1$, temos:
 $m \cdot 10 = 0,1 \cdot 10 \cdot 0,20 \cdot 1$
 $m = 0,02 \text{ kg}$

$$m = 20 \text{ g}$$

P.348 A força magnética entre os condutores é de atração, pois as correntes elétricas que percorrem os condutores têm mesmo sentido.



$$F_{\rm m} = \frac{2\pi}{2\pi} \cdot \frac{1}{r} \cdot L$$

$$F_{\rm m} = \frac{4\pi \cdot 10^{-7}}{2\pi} \cdot \frac{1 \cdot 1}{1} \cdot 10^{-2}$$

$$F_{\rm m} = 2 \cdot 10^{-9} \,\mathrm{N}$$

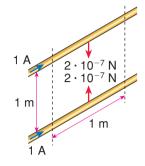
OS FUNDAMENTOS

Resoluções dos exercícios propostos

P.349

- a) É o ampère.
- b) A definição de ampère se baseia na força de interação entre condutores retos, longos e paralelos percorridos por correntes.

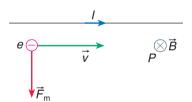
Um ampère é a intensidade de corrente constante que, mantida em dois condutores retos, longos, paralelos e de seção transversal desprezível e a 1 m de distância um do outro, origina mutuamente entre eles força de intensidade igual a $2 \cdot 10^{-7}$ N em cada metro de comprimento do condutor, no vácuo.



P.350

a) Direção: perpendicular ao plano definido pelo condutor e pelo ponto P (plano do papel); sentido: entrando no plano do papel, de acordo com a regra da mão direita nº 1.

b) Conhecidos os sentidos de \vec{B} e \vec{v} , determinamos o sentido da força magnética \vec{F}_{m} que age no elétron, no instante t, de acordo com a regra da mão direita nº 2.



P.351 a)
$$B = \frac{\mu_0}{2\pi} \cdot \frac{i}{r} \Rightarrow B = \frac{4\pi \cdot 10^{-7}}{2\pi} \cdot \frac{20}{20 \cdot 10^{-2}} \Rightarrow B = 2 \cdot 10^{-5} \text{ T}$$

b)
$$F_{\rm m} = B \cdot |q| \cdot v \cdot \text{sen } \theta$$

$$F_{\rm m} = 2 \cdot 10^{-5} \cdot 6 \cdot 10^{-6} \cdot 10 \cdot \text{sen } 90^{\circ}$$

$$F_{\rm m} = 1.2 \cdot 10^{-9} \, \rm N$$

Resoluções dos exercícios propostos

P.352 Pelo teorema da energia cinética, vem:

$$Z_{AC} = q \cdot U = \frac{mv^2}{2} - \frac{mv_0^2}{2}$$

Sendo $v_0 = 0$, vem:

$$q \cdot U = \frac{mv^2}{2}$$

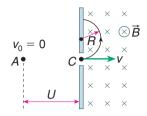
$$v^2 = \frac{2q \cdot U}{m}$$

$$v^2 = \frac{2 \cdot 1,6 \cdot 10^{-19} \cdot 2.000}{1.6 \cdot 10^{-26}}$$

$$v = 2.0 \cdot 10^5 \text{ m/s}$$

$$R = \frac{mv}{B \cdot |q|} \Rightarrow R = \frac{1,6 \cdot 10^{-26} \cdot 2,0 \cdot 10^{5}}{0,5 \cdot 1,6 \cdot 10^{-19}} \Rightarrow$$

$$\Rightarrow R = 4.0 \cdot 10^{-2} \text{ m} \Rightarrow R = 40 \text{ mm}$$



P.353 a) Dados:

$$B = 5.0 \cdot 10^{-2} \text{ T}; v = 1.0 \cdot 10^6 \text{ m/s}; \frac{|q|}{m} = 1.0 \cdot 10^9 \text{ C/kg}$$

O tempo necessário para a partícula completar uma volta é o período T do MCU que ela realiza:

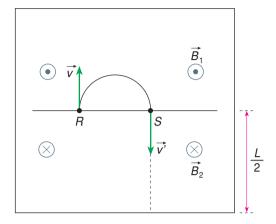
$$T = \frac{2\pi m}{|q| \cdot B} = \frac{2 \cdot 3}{1,0 \cdot 10^9 \cdot 5,0 \cdot 10^{-2}} \Rightarrow \boxed{T = 1,2 \cdot 10^{-7} \text{ s}}$$

b) Como a força magnética \vec{F} é orientada para o centro da trajetória, \vec{B} tem sentido "entrando" no plano da figura e a carga é positiva.

A aplicação da regra da mão direita nº 2 indica que o movimento é anti-horário.

Resoluções dos exercícios propostos

P.354 Esquematicamente, a partícula descreve a seguinte trajetória:



Na parte superior, a partícula descreve uma semicircunferência em MCU, num intervalo de tempo igual à metade do período:

$$\Delta t_1 = \frac{T}{2} = \frac{\frac{2\pi m}{|q| \cdot B}}{2} \Rightarrow \Delta t_1 = \frac{\pi m}{|q| \cdot B}$$

Após o choque inelástico com a carga -q, forma-se um sistema neutro (Q=0) com massa M=2m, que se desloca com velocidade $v'=\frac{v}{2}$, realizando um MRU na parte inferior, com deslocamento $\Delta s=\frac{L}{2}$.

O intervalo de tempo nesse segundo trecho é dado por:

$$\Delta t_2 = \frac{\Delta s}{v'} \Rightarrow \Delta t_2 = \frac{\frac{L}{2}}{\frac{v}{2}} \Rightarrow \Delta t_2 = \frac{L}{v}$$

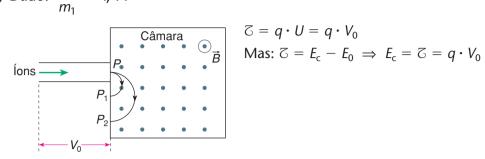
O intervalo de tempo total vale:

$$\Delta t = \Delta t_1 + \Delta t_2 \Rightarrow \Delta t = \frac{\pi m}{|q| \cdot B} + \frac{L}{v}$$

OS FUNDAMENTOS

Resoluções dos exercícios propostos

a) Dado: $\frac{m_2}{m_1} = 1,44$ P.355



$$C = q \cdot U = q \cdot V_0$$

Mas: $C = E_c - E_0 \implies E_c = C = q \cdot V_0$

- Para o íon I_1 : $\frac{m_1 v_1^2}{2} = q \cdot V_0 \Rightarrow v_1^2 = \frac{2q \cdot V_0}{m_1}$ ①
- Para o íon l_2 : $\frac{m_2 v_2^2}{2} = q \cdot V_0 \Rightarrow v_2^2 = \frac{2q \cdot V_0}{m_2}$ ②

Dividindo (1) por (2), temos:

$$\frac{v_1^2}{v_2^2} = \frac{m_2}{m_1} \Rightarrow \left(\frac{v_1}{v_2}\right)^2 = 1,44 \Rightarrow \sqrt{\frac{v_1}{v_2} = 1,2}$$

b) O raio da trajetória do íon I_1 é: $R_1 = \frac{D_1}{2} = \frac{20 \text{ cm}}{2} \Rightarrow R_1 = 10 \text{ cm}$

A força magnética atua como resultante centrípeta. Assim:

$$F_{\rm m} = F_{\rm cp} \Rightarrow B \cdot |q| \cdot v = \frac{mv^2}{R} \Rightarrow R = \frac{mv}{B \cdot |q|}$$

Aplicando a fórmula para os dois tipos de íons, teremos:

$$R_1 = \frac{m_1 v_1}{B \cdot |q|}$$
 3 e $R_2 = \frac{m_2 v_2}{B \cdot |q|}$ 4

Dividindo ③ por ④, tiramos o raio da trajetória do íon l_2 :

$$\frac{R_2}{R_1} = \frac{m_2 v_2}{m_1 v_1} \Rightarrow \frac{R_2}{10} = \frac{1,44}{1} \cdot \frac{1}{1,2} \Rightarrow R_2 = \frac{14,4}{1,2} \Rightarrow R_2 = 12 \text{ cm}$$

Logo, a distância D_2 é dada por: $D_2 = 2R_2 \Rightarrow D_2 = 24$ cm

Região com campo magnético

OS FUNDAMENTOS DA FÍSICA

Resoluções dos exercícios propostos

Região sem campo

magnético

P.356 a) Trajetória circular, pois o ângulo entre $\vec{v} \in \vec{B} \in 90^{\circ}$.

b)
$$F_{\rm m} = B \cdot |q| \cdot v \cdot \text{sen } \theta$$

 $F_{\rm m} = 10 \cdot 100 \cdot 10^{-6} \cdot 1,0 \cdot 10^{-2} \cdot \text{sen } 90^{\circ}$
 $\boxed{F_{\rm m} = 10^{-5} \text{ N}}$

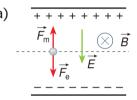
A direção da força magnética é a da reta perpendicular a \vec{v}_0 e o seu sentido está indicado na figura.

c)
$$F_R = P - F_m = ma \Rightarrow$$

$$\Rightarrow a = \frac{P - F_m}{m} \Rightarrow a = g - \frac{F_m}{m} \Rightarrow$$

$$\Rightarrow a = 10 - \frac{10^{-5}}{20 \cdot 10^{-6}} \Rightarrow a = 10 - 0.5 \Rightarrow \boxed{a = 9.5 \text{ m/s}^2}$$

P.357



O campo elétrico \vec{E} tem orientação da placa positiva para a placa negativa. A força elétrica $\vec{F}_{\rm e}$ tem o mesmo sentido, pois os íons são positivos.

Para os íons não serem desviados, a força magnética \vec{F}_m deve ter sentido contrário ao da força elétrica \vec{F}_e , para que a resultante seja nula.

Aplicando a regra da mão direita nº 2, concluímos que o campo magnético \vec{B} deve ter sentido indicado: "entrando" no plano da figura.

b) Vamos igualar as intensidades das forças elétrica e magnética, isto é: $F_e = F_m$ Como $F_e = q \cdot E$ e $F_m = B \cdot q \cdot v$, vem:

$$q \cdot E = B \cdot q \cdot v \Rightarrow B = \frac{E}{V} = \frac{U}{dV}$$

Sendo $d = 5.0 \text{ mm} = 5.0 \cdot 10^{-3} \text{ m}$, $U = 5.0 \cdot 10^{3} \text{ V e } v = 1.0 \cdot 10^{6} \text{ m/s}$, temos:

$$B = \frac{5.0 \cdot 10^3}{5.0 \cdot 10^{-3} \cdot 1.0 \cdot 10^6} \Rightarrow \boxed{B = 1.0 \text{ T}}$$

Resoluções dos exercícios propostos

P.358 a) A partícula percorre a distância *x* numa direção no mesmo intervalo de tempo em que sofre a deflexão *y* na direção perpendicular.

Na direção
$$x$$
, temos: $x = v_0 \cdot t \Rightarrow t = \frac{x}{v_0}$ ①

Na direção
$$y$$
, vem: $y = \frac{\alpha \cdot t^2}{2}$ ②

Mas:
$$\alpha = \frac{F_e}{m} = \frac{q \cdot E}{m}$$
 3

Substituindo ① e ③ em ②, obtemos:

$$y = \frac{\frac{q \cdot E}{m} \cdot \frac{x^2}{v_0^2}}{2} \Rightarrow y = \frac{q \cdot E \cdot x^2}{2 \cdot m \cdot v_0^2}$$

Logo:
$$\frac{q}{m} = \frac{2 \cdot y \cdot v_0^2}{E \cdot x^2}$$

b) Ao se introduzir o campo magnético cujo vetor indução tem módulo $B = 2.0 \cdot 10^{-4}$ T, a força magnética (\vec{F}_m) equilibra a força elétrica (\vec{F}_e), ou seja: $F_e = F_m$

Mas:
$$F_e = q \cdot E$$
 e $F_m = q \cdot v_0 \cdot B$

Logo:
$$q \cdot E = q \cdot v_0 \cdot B \Rightarrow v_0 = \frac{E}{B}$$

Como $E = 1.0 \cdot 10^3 \text{ V/m, vem:}$

$$v_0 = \frac{1.0 \cdot 10^3}{2.0 \cdot 10^{-4}} \Rightarrow v_0 = 5.0 \cdot 10^6 \text{ m/s}$$

c) Substituindo y por $3.5 \cdot 10^{-2}$ m, v_0 por $5.0 \cdot 10^6$ m/s, E por $1.0 \cdot 10^3$ V/m e x por 10 cm = $1.0 \cdot 10^{-1}$ m na fórmula obtida no item **a**, vem:

$$\frac{q}{m} = \frac{2 \cdot 3.5 \cdot 10^{-2} \cdot (5.0 \cdot 10^{6})^{2}}{1.0 \cdot 10^{3} \cdot (1.0 \cdot 10^{-1})^{2}}$$

$$\frac{q}{m} = 1,75 \cdot 10^{11} \text{ C/kg}$$

≡III Moderna PLUS >>

OS FUNDAMENTOS DA FÍSICA

Resoluções dos exercícios propostos

Quando a tensão é ajustada, a força magnética \vec{F}_{m} "substitui" as forças elásticas no equilíbrio do peso do condutor. Assim: $F_{m} = 2 \cdot F_{elást.} = 2 \cdot kx$

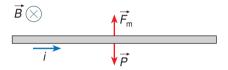
Como k = 5.0 N/m e x = 2.0 mm = $2.0 \cdot 10^{-3}$ m, vem:

$$F_{\rm m} = 2 \cdot 5.0 \cdot 2.0 \cdot 10^{-3} \Rightarrow F_{\rm m} = 2.0 \cdot 10^{-2} \,\mathrm{N}$$

Mas, $F_{\rm m} = B \cdot i \cdot L$. Assim, sendo i = 1,0 A e L = 2,5 cm $= 2,5 \cdot 10^{-2}$ m, vem:

$$2.0 \cdot 10^{-2} = B \cdot 1.0 \cdot 2.5 \cdot 10^{-2} \Rightarrow B = 0.80 \text{ T}$$

Sentido de \vec{B}



A aplicação da regra da mão direita nº 2 indica que o vetor indução magnética \vec{B} está orientado como mostra a figura, isto é, "entrando" no plano do papel.

P.360 a) Para que o elétron se mantenha em MRU, a força elétrica \vec{F}_e deve equilibrar a força magnética \vec{F}_m , ou seja: $F_e = F_m$

Mas:
$$F_e = |q| \cdot E e F_m = |q| \cdot v \cdot B$$

Assim:
$$|q| \cdot E = |q| \cdot v \cdot B \Rightarrow E = v \cdot B$$

Como
$$v = 5.0 \cdot 10^5$$
 m/s e $B = 0.010$ T, vem:

$$E = 5.0 \cdot 10^5 \cdot 0.010 \Rightarrow E = 5.0 \cdot 10^3 \text{ V/m}$$

b) Para atingir o alvo, o raio mínimo da trajetória deve ser:

$$R_{\text{mín.}} = 10 \text{ cm} = 1.0 \cdot 10^{-1} \text{ m}$$

Da fórmula
$$R_{\text{mín.}} = \frac{mv}{|q| \cdot B_{\text{máx}}}$$
, vem:

$$B_{\text{máx.}} = \frac{mv}{|q| \cdot R_{\text{míx.}}} = \frac{9 \cdot 10^{-31} \cdot 5,0 \cdot 10^5}{1,6 \cdot 10^{-19} \cdot 1,0 \cdot 10^{-1}} \Rightarrow \boxed{B_{\text{máx.}} \approx 2,8 \cdot 10^{-5} \text{ T}}$$

Resoluções dos exercícios propostos

P.361 Dados: L = 0.20 m; B = 1.5 T; $m = 6.0 \cdot 10^{-3}$ kg; i = 50 A; y = 0.12 m

a) Intensidade da força magnética:

$$F_0 = B \cdot i \cdot L \Rightarrow F_0 = 1.5 \cdot 50 \cdot 0.20 \Rightarrow \boxed{F_0 = 15 \text{ N}}$$

b) Trabalho da força magnética F_0 :

$$Z_{F_0} = F_0 \cdot y \implies Z_{F_0} = 15 \cdot 0.12 \Rightarrow \boxed{Z_{F_0} = 1.8 \text{ J}}$$

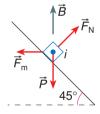
c) O trabalho resultante corresponde à variação da energia cinética: $\mathbb{Z}_R = E_{c(F)} - E_{c(0)}$ Entretanto, $E_{c(0)} = 0$ (o fio partiu do repouso) e $E_{c(F)} = 0$ (no ponto de altura máxima v = 0). Então: $\mathbb{Z}_R = 0$

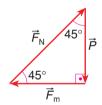
Mas $\mathbb{Z}_R = \mathbb{Z}_{F_0} + \mathbb{Z}_{P_r}$, em que $\mathbb{Z}_P = -mgH$. Portanto:

$$0 = \mathcal{Z}_{F_0} - mgH \Rightarrow mgH = \mathcal{Z}_{F_0} \Rightarrow H = \frac{\mathcal{Z}_{F_0}}{mg} \Rightarrow$$

$$\Rightarrow H = \frac{1.8}{6.0 \cdot 10^{-3} \cdot 10} \Rightarrow H = 30 \text{ m}$$

P.362 Estando a barra em equilíbrio, a linha poligonal das forças é fechada.





Portanto:

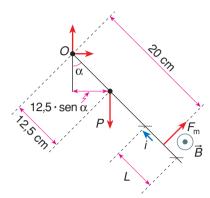
$$F_{\rm m} = P$$

$$B \cdot i \cdot L = P$$

$$0.5 \cdot i \cdot 1 = 2$$

Resoluções dos exercícios propostos

P.363 Com a regra da mão direita n° 2, determinamos o sentido da força magnética que atua no trecho de fio de 19 cm a 21 cm (L=2 cm).



No equilíbrio, temos:

$$M_0 = 0$$

$$F_{\rm m} \cdot 20 - P \cdot 12,5 \cdot {\rm sen} \ \alpha = 0$$

$$B \cdot i \cdot L \cdot 20 - m \cdot g \cdot 12,5 \cdot \text{sen } \alpha = 0$$

$$0.05 \cdot 5 \cdot 2 \cdot 10^{-2} \cdot 20 - 8 \cdot 10^{-3} \cdot 10 \cdot 12.5 \cdot \text{sen } \alpha = 0$$

$$sen \; \alpha = \textbf{0,1}$$

 α é o ângulo cujo seno é 0,1.

P.364
$$AC = BC = L; AB = L \cdot \sqrt{2};$$

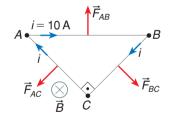
$$F_{AC} = F_{BC} = B \cdot i \cdot L \text{ e } F_{AB} = B \cdot i \cdot L \cdot \sqrt{2}$$

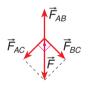
A resultante \vec{F} entre \vec{F}_{AC} e \vec{F}_{BC} tem intensidade:

$$F = B \cdot i \cdot L \cdot \sqrt{2}$$

Note que \vec{F}_{AB} e \vec{F} se equilibram; portanto, a força magnética resultante é nula:

$$F_{\rm R}=0$$





P.365 a) Sendo $R = 2.5 \Omega$ e i = 0.80 A, a aplicação da lei de Ohm fornece:

$$U = R \cdot i = 2,5 \cdot 0,80 \Rightarrow \boxed{U = 2,0 \text{ V}}$$

b) A força magnética atuante em \overline{AB} ou em \overline{CD} tem intensidade dada por:

$$F_m = B \cdot i \cdot L$$

Como
$$B = 0.50$$
 T, $i = 0.80$ A e $L = 0.050$ m, vem:

$$F_{\rm m} = 0.50 \cdot 0.80 \cdot 0.050 \Rightarrow F_{\rm m} = 2.0 \cdot 10^{-2} \,\mathrm{N}$$

Resoluções dos exercícios propostos

$$P.366 \quad F_{12} = \frac{\mu_0}{2\pi} \cdot \frac{i \cdot i}{a} \cdot L \quad \textcircled{1}$$

$$F_{13} = \frac{\mu_0}{2\pi} \cdot \frac{i \cdot i}{3a} \cdot L \quad ②$$

Dividindo ① por ②:
$$\frac{F_{12}}{F_{13}} = 3$$

P.367 a) A intensidade de corrente elétrica (i), determinada pelo feixe de elétrons atra-

vés de uma seção transversal no interior do tubo, é dada por: $i = \frac{\Delta q}{\Delta t}$

Para calcularmos a quantidade de carga Δq na órbita circular, devemos observar que o intervalo de tempo Δt é igual ao período T do movimento das partículas. Assim:

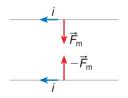
$$v = \frac{2\pi R}{T} \Rightarrow 3 \cdot 10^8 = \frac{2\pi \cdot 32}{T} \Rightarrow T = \frac{64\pi}{3 \cdot 10^8} \text{ s}$$

Portanto:
$$i = \frac{\Delta q}{T} \Rightarrow 0.12 = \frac{\Delta q}{\frac{64\pi}{3 \cdot 10^8}} \Rightarrow \Delta q = 2.56\pi \cdot 10^{-8} \text{ C}$$

Por outro lado:

$$\Delta q = ne \Rightarrow 2,56\pi \cdot 10^{-8} = n \cdot 1,6 \cdot 10^{-19} \Rightarrow n \approx 5,0 \cdot 10^{11}$$

b) Considerando que o campo produzido pelo feixe pode ser calculado como o de um fio retilíneo, temos o seguinte esquema:



A intensidade da força magnética $F_{\rm m}$ é dada por:

$$F_{\rm m} = B \cdot i \cdot L$$

Na situação, temos:
$$B = 2 \cdot 10^{-7} \cdot \frac{i}{r}$$
 e $L = 2\pi R$

Assim:

$$F_{\rm m} = 2 \cdot 10^{-7} \cdot \frac{0.12}{0.01} \cdot 0.12 \cdot 2\pi \cdot 32 \Rightarrow F_{\rm m} \simeq 5.8 \cdot 10^{-5} \,\mathrm{N}$$