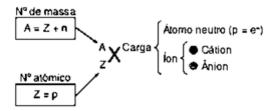
ENEM Online — Estrutura atômica e distribuição eletrônica



Prof. Dr. Eduardo Walneide

1. PARTÍCULAS FUNDAMENTAIS

- Número atômico (Z) = número de prótons
- Número de Massa (A) = número de prótons + número de nêutrons (Z + N)
- Átomo neutro: número de prótons = número de elétrons
- Cátion (íon positivo) = átomo com mais prótons do que elétrons (perdeu elétrons)
- Ânion (íon negativo) = átomo com mais elétrons do que prótons (ganhou elétrons)
- Elemento químico = conjunto de átomos com o mesmo Z.

Partícula	Carga relativa	Massa relativa	Localização
Próton	+1	1	Núcleo
Nêutron	0	1	Núcleo
Elétron	-1	1/1840 ≈ 0	Eletrosfera

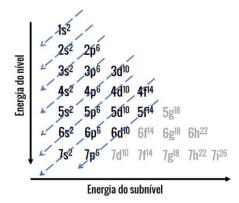
2. SEMELHANÇAS ATÔMICAS

 $^{23}_{11}Na$ $^{24}_{11}Na$ $^{24}_{12}Mg$ $^{27}_{13}Al^{+3}$ $^{20}_{10}Ne$

- **Isótopos**: mesmo elemento, Z iguais, A diferentes. Ex.: $^{23}_{11}Na = ^{24}_{11}Na$.
- **Isóbaros**: elementos diferentes, Z diferentes, A iguais. Ex.: ${}^{24}_{11}Na$ e ${}^{24}_{12}Mg$.
- Isótonos: elementos diferentes, N iguais. Ex.: ²³₁₁Na e ²⁴₁₂Mg.
- **Isoeletrônicos**: elementos diferentes, mesmo número de elétrons. Ex.: ${}_{13}^{27}Al^{+3}e {}_{10}^{20}Ne$.

3. DISTRIBUIÇÃO ELETRÔNICA

- O modelo de Bohr instituiu as camadas ou níveis quantizados na eletrosfera, onde podem ser encontrados os elétrons de acordo com suas energias;
- O trabalho de Sommerfeld trouxe à tona o conceito de subníveis ou subcamadas na eletrosfera para explicar os casos de espectros não explicados pelo modelo de Bohr;
- A Equação de Schrödinger correlacionou esses dois aspectos e nos apresentou o conceito de orbital (lugar do espaço mais provável de se encontrar um elétron);

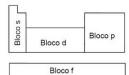

- Na resolução de Schrödinger surgiram constantes matemáticas que apresentam correspondência com as camadas, subcamadas e orbitais. São os números quânticos:
- n número quântico principal: Indica o nível ou camada onde se encontra um dado elétron: (n = 1, 2, 3, ...)
- I número quântico secundário ou orbital: Indica o subnível ou subcamada onde se encontra um dado elétron; (I = 0, 1, 2, ...)
- m_I número quântico magnético: Determina as orientações permitidas para a nuvem eletrônica no espaço. É uma função do formato do orbital (determinado por I); (m_I = -I a +I)
- S número quântico de Spin: Determina a orientação magnética do elétron; (S = ±1/2)
- Cada número quântico principal (n) se relaciona com uma camada (K, L, M, ...) prevista por Bohr. O número máximo de elétrons em cada camada é igual a 2n²;

Camada	K	L	М	N	0	Р	Q	R
n	1	2	3	4	5	6	7	8
N° máx. e-	2	8	18	32	50	72	98	128

 Cada número quântico secundário (£) se relaciona com uma subcamada (s, p, d, ...) prevista por Sommerfeld. O número máximo de elétrons em cada subcamada é 4£ + 2;

Subcamada	S	р	d	f	g	h	i
e	0	1	2	3	4	5	6
N° máx. e [.]	2	6	10	14	18	22	26

- Os dois principais números quânticos n e le permitiram a criação de um método de distribuição de elétrons na eletrosfera seguindo uma ordem crescente de energia que ficou conhecido como Diagrama de Linus Pauling;
- A notação usada indica o número da camada à frente e o subnível em seguida com o número de elétrons nele contidos em sobrescrito;


Exemplo: 11Na - 1s2 2s2 2p6 3s1

- O sódio, no estado fundamental, possui: 2 elétrons na camada K, 8 elétrons na camada L e 1 elétron na camada M, que é sua última camada (camada de valência);
- O elétron mais energético do sódio encontra-se no subnível 3s, e coincide com a camada de valência.

Exemplo: $_{22}\text{Ti} - 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^6 4\text{s}^2 3\text{d}^2$

- O Titânio, no estado fundamental, possui: 2 elétrons na camada K, 8 elétrons na camada L, 10 elétrons na camada M e 2 elétrons na camada N, que é sua última camada (camada de valência);
- O elétron mais energético do titânio encontra-se no subnível 3d, e não coincide com a camada de valência.

DANGER! Para os elementos representativos (blocos s e p da tabela) o elétron mais energético SEMPRE estará na camada de valência. Para os elementos de TRANSIÇÃO (blocos d e f da tabela) o elétron mais energético sempre estará em camadas mais internas que a camada de valência.

- A Distribuição eletrônica de íons ocorre de maneira especial:
 - Para ÂNIONS: basta acrescentar elétrons à espécie seguindo o diagrama de Linus Pauling;

 Para CÁTIONS: primeiro faça a distribuição eletrônica do átomo neutro e, depois, retire elétrons primeiro da camada de valência.

$$_{26} Fe - 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6 \\ _{26} Fe^{2+} - 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^6 \\ _{26} Fe^{3+} - 1s^2 2s^2 2p^6 3s^2 3p^6 4s^0 3d^5$$

Orientação de estudos

Livro 1 | Química 1 | Cap.1

• Partículas fundamentais

Ler: pp. 15-17

Exercícios do Hexa: pp. 426-427 - 1, 2 e 3.

Revisando: pp. 23-24 – 3, 4, 5 e 6.

Propostos: pp. 29-30 – 18, 21, 25, 28 e 30. **Complementares:** pp. 45-47 – 36, 38, 46, 47 e 49.

• Semelhanças Atômicas

Ler: pp. 17-19

Revisando: p. 24 – 7, 8 e 9

Propostos: pp. 29-30 – 22, 24, 27, 29, 31 e 32. **Complementares:** pp. 45-48 – 37, 43, 48, 51 e 55.

Lista 02 (HD)

Se seu foco é...

ENEM		
Propostos:	18, 25, 27, 30, 31.	
Complementares:	38, 46, 47, 49.	

FUVEST		
Propostos:	18, 21, 22, 24, 25, 27, 30, 31.	
Complementares:	37, 46, 47, 49, 55.	

UNESP/UNIFESP		
Propostos:	18, 22, 24, 25, 27, 28, 30, 31.	
Complementares:	36, 37, 38, 43, 46, 48, 49, 51, 55.	

	UNICAMP
Propostos:	25, 27, 30.
Complementares:	38, 47, 49.

Particulares MED		
Propostos:	18, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32.	
Complementares:	36, 37, 38, 43, 46, 47, 48, 49, 51, 55.	

Outras Particulares		
Propostos:	18, 22, 24, 25, 28, 29, 30, 31, 32.	
Complementares:	36, 38, 43, 46, 48, 49, 51, 55.	