

www.professorferretto.com.br

Biologia Molecular e Engenharia Genética - Ácidos Nucleicos I – DNA e Replicação

BIO0194 - (Uece) A base molecular da vida pode ser contemplada, em seus aspectos primários, no esquema abaixo:

Os números 1, 2 e 3 referem-se às substâncias químicas envolvidas, enquanto os números 4, 5 e 6 indicam setas que representam o processamento destas substâncias. Para dar sentido ao esquema, a sequência que apresenta, respectivamente, os números adequados aos termos é:

- a) 1-DNA; 3-proteína; 5-tradução.
- b) 1-proteína; 4-replicação; 6-tradução.
- c) 3-proteína; 5-transcrição; 6-tradução.
- d) 4-RNA; 5-transcrição; 6-tradução.

BIO0195 - (Uel) A teoria "Um Gene uma Enzima" propunha que cada gene era responsável pela síntese de uma enzima, que expressava uma determinada característica biológica. Hoje, sabe-se que a partir de um gene é produzida uma cadeia polipeptídica. Assinale a alternativa cuja sequência de eventos resulta na produção de cadeias polipeptídicas.

- a) Descondensação dos cromossomos, tradução do RNAm e transcrição da cadeia polipeptídica no citoplasma.
- b) Leitura da seguência de DNA no citoplasma, transcrição no núcleo, tradução no núcleo e síntese polipeptídica no citoplasma.
- c) Leitura da sequência de DNA específica, transcrição no citoplasma, tradução do RNAm imaturo no núcleo e síntese polipeptídica no citoplasma.
- d) Leitura da sequência de DNA específica, transcrição do DNA no citoplasma, processamento do RNAm no núcleo, síntese polipeptídica no núcleo e maturação da proteína no citoplasma.
- e) Leitura da sequência de DNA específica, produção de RNAm heterogêneo no núcleo, saída do RNAm do núcleo e síntese da cadeia polipeptídica no citoplasma.

BIO0196 - (Enem) Um fabricante afirma que um produto disponível comercialmente possui DNA elemento que proporcionaria hidratação dos cabelos.

Sobre as características químicas dessa molécula essencial à vida, é correto afirmar que o DNA

- a) de qualquer espécie serviria, já que têm a mesma composição.
- b) de origem vegetal é diferente quimicamente dos demais, pois possui clorofila.
- c) das bactérias poderia causar mutações no couro cabeludo.
- d) dos animais encontra-se sempre enovelado e é de difícil absorção.
- e) de características básicas, assegura sua eficiência hidratante.

BIO0197 - (Uerj) É como se em cada quarto de um imenso prédio existisse uma estante contendo os planos do arquiteto para todo o prédio. (...) No homem, os planos do arquiteto montam 46 volumes. Nessa analogia, proposta por Richard Dawkins no livro "O gene egoísta", cada página de cada volume contém um texto formado por uma sequência de:

- a) fenótipos.
- b) aminoácidos.
- c) cromossomos.
- d) bases nitrogenadas.

BIO0198 - (Fuvest) Os bacteriófagos são constituídos por uma molécula de DNA envolta em uma cápsula de proteína. Existem diversas espécies, que diferem entre si quanto ao DNA e às proteínas constituintes da cápsula. Os cientistas conseguem construir partículas virais ativas com DNA de uma espécie e cápsula de outra. Em um experimento, foi produzido um vírus contendo DNA do bacteriófago T2 e cápsula do bacteriófago T4.

Pode-se prever que a descendência desse vírus terá:

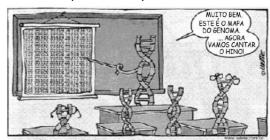
- a) cápsula de T4 e DNA de T2.
- b) cápsula de T2 e DNA de T4.
- c) cápsula e DNA, ambos de T2.
- d) cápsula e DNA, ambos de T4.
- e) mistura de cápsulas e DNA de T2 e de T4.

BIO0199 - (Fuvest) Em seu trabalho com ervilhas, publicado em 1866, Mendel representou os fatores hereditários determinantes dos estados amarelo e verde do caráter cor da semente pelas letras A e a, respectivamente. O conhecimento atual a respeito da natureza do material hereditário permite dizer que a letra A usada por Mendel simboliza

- a) um segmento de DNA com informação para uma cadeia polipeptídica.
- b) um segmento de DNA com informação para um RNA ribossômico.
- c) um aminoácido em uma proteína.
- d) uma trinca de bases do RNA mensageiro.
- e) uma trinca de bases do RNA transportador.

BIO0200 - (Fuvest) Qual das alternativas se refere a um cromossomo?

- a) Um conjunto de moléculas de DNA com todas as informações genéticas da espécie.
- b) Uma única molécula de DNA com informação genética para algumas proteínas.
- c) Um segmento de molécula de DNA com informações para uma cadeia polipeptídica.
- d) Uma única molécula de RNA com informação para uma cadeia polipeptídica.
- e) Uma sequência de três bases nitrogenadas do RNA mensageiro correspondente a um aminoácido na cadeia polipeptídica.


BIO0201 - (Ufpb) As moléculas de ácido desoxirribonucleico (DNA) contêm instruções que determinam as características do ser vivo e transmitem essas instruções de geração a geração. Da mesma forma que uma receita de bolo pode ser escrita com as letras do nosso alfabeto, repetidas várias vezes e de forma organizada, o DNA pode ser visto como uma fita composta por quatro elementos básicos repetidos ao longo da molécula. Assim, a receita de um ser vivo está escrita com um alfabeto de quatro letras que se combinam de inúmeras formas diferentes. Mas como é a organização dessa enorme receita? Assim como toda a informação contida em uma enciclopédia é dividida em vários volumes, também nossa informação está agrupada genética em estruturas: cromossomos.

Adaptado de PEREIRA, Lygia da Veiga. Sequenciaram o genoma humano... e agora? São Paulo: Moderna, 2001.

Cada cromossomo comparado no texto a um dos volumes de uma enciclopédia é constituído por

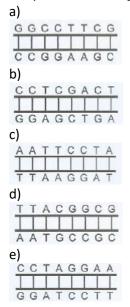
- a) uma molécula de DNA associada a proteínas histônicas.
- b) uma molécula de DNA associada a uma molécula de RNA.
- c) duas moléculas de DNA associadas entre si.
- d) uma molécula de RNA associada a proteínas histônicas.
- e) duas moléculas de RNA associadas entre si.

BIO0202 - (Unichristus)

Disponível em: https://www.google.com.br/search?biw=12.

Acesso em: 20 jul. 2018.

O conceito para o termo biológico identificado no mapa desse cartum é o seguinte:


- a) Conjunto de moléculas de proteínas de uma espécie, que contém todos os seus aminoácidos naturais e essenciais.
- b) Conjunto de moléculas de RNA de uma espécie, que contém todos os seus ácidos graxos e também as sequências de nucleotídeos que possuem informação codificada.
- c) Conjunto de moléculas de DNA de uma espécie, que contém todos os seus genes e também as sequências de bases nitrogenadas que não possuem informação codificada.
- d) Conjunto de moléculas de cromossomos de uma espécie, que contém todos os seus aminoácidos naturais e essenciais.
- e) Conjunto de moléculas de glicídios de uma espécie, que contém todos os seus genes e também as sequências de nucleotídeos que não possuem informação codificada.

BIO0203 - (Fuvest) Observe a figura abaixo, que representa o emparelhamento de duas bases nitrogenadas.

Indique a alternativa que relaciona corretamente a(s) molécula(s) que se encontra(m) parcialmente representada(s) e o tipo de ligação química apontada pela seta.

	Molécula(s)	Tipo de ligação química
a)	Exclusivamente	Ligação de hidrogênio
	DNA	
b)	Exclusivamente	Ligação covalente apolar
	RNA	
c)	DNA ou RNA	Ligação de hidrogênio
d)	Exclusivamente	Ligação covalente apolar
	DNA	
e)	DNA Exclusivamente	Ligação iônica

BIO0204 - (Enem) A reação em cadeia da polimerase (PCR, na sigla em inglês) é uma técnica de biologia molecular que permite replicação in vitro do DNA de forma rápida. Essa técnica surgiu na década de 1980 e permitiu avanços científicos em todas as áreas de investigação genômica. A dupla hélice é estabilizada por ligações hidrogênio, duas entre as bases adenina (A) e timina (T) e três entre as bases guanina (G) e citosina (C). Inicialmente, para que o DNA possa ser replicado, a dupla hélice precisa ser totalmente desnaturada (desenrolada) pelo aumento temperatura, quando são desfeitas as ligações hidrogênio entre as diferentes bases nitrogenadas. Qual dos segmentos de DNA será o primeiro a desnaturar totalmente durante o aumento da temperatura na reação de PCR?

BIO0205 - (Uerj) A desnaturação do DNA é o processo no qual as duas cadeias da molécula se separam devido à quebra das ligações de hidrogênio entre as bases nitrogenadas. Considere um estudo que comparou a desnaturação de quatro fragmentos de DNA – W, X, Y,

Z – todos com a mesma quantidade total de bases nitrogenadas. Observe, na tabela, o percentual de timina presente em cada um:

FRAGMENTO DE DNA	PERCENTUAL DE TIMINA
W	10%
X	20%
Υ	30%
Z	40%

Para os quatro fragmentos, a desnaturação foi realizada mediante aquecimento, sem alteração de pH e com mesma temperatura inicial. No processo de aquecimento, a maior quantidade de energia foi consumida na desnaturação do seguinte fragmento:

- a) W
- b) X.
- c) Y.
- d) Z.

BIO0206 - (Uel) Em 2003 comemorou-se os 50 anos do modelo DNA, elaborado e proposto por Watson e Crick. Na época, esses cientistas se basearam, principalmente, nas relações entre as quantidades de bases nitrogenadas e o consequente emparelhamento específico entre elas, estabelecendo o modelo de dupla hélice para o DNA. Analisando a molécula de DNA de uma célula animal, constatou-se que 30% de suas bases nitrogenadas eram constituídas por Relacionando citosina. esse valor com emparelhamento específico das bases, assinale a alternativa que apresenta os valores encontrados para as demais bases nitrogenadas.

- a) 20% de adenina, 40% de timina e 10% de guanina.
- b) 20% de adenina, 20% de timina e 30% de guanina.
- c) 30% de adenina, 20% de timina e 20% de guanina.
- d) 30% de adenina, 10% de timina e 30% de guanina.
- e) 40% de adenina, 10% de timina e 20% de guanina.

BIO0207 - (Enem) Em 1950, Erwin Chargaff e colaboradores estudavam a composição química do DNA e observaram que a quantidade de adenina (A) é igual à de timina (T), e a quantidade de guanina (G) é igual à de citosina (C) na grande maioria das fitas duplas de DNA. Em outras palavras, esses cientistas descobriram que o total de purinas (A + G) e o total de pirimidinas (C + T) eram iguais. Um professor trabalhou esses conceitos em sala de aula e apresentou como exemplo uma fita simples de DNA com 20 adeninas, 25 timinas, 30 guaninas e 25 citosinas. Qual a quantidade de cada um dos nucleotídeos, quando considerada a dupla fita de DNA formada pela fita simples exemplificada pelo professor?

a) Adenina: 20; Timina: 25; Guanina: 25; Citosina: 30.

b) Adenina: 25; Timina: 20; Guanina: 45; Citosina: 45.

c) Adenina: 45; Timina: 45; Guanina: 55; Citosina: 55.

d) Adenina: 50; Timina: 50; Guanina: 50; Citosina: 50.

e) Adenina: 55; Timina: 55; Guanina: 45; Citosina: 45.

BIO0208 - (Fuvest) Considere uma sequência de DNA com 100 pares de bases de comprimento contendo 32 timinas. Quantas citosinas, guaninas e adeninas essa sequência terá, respectivamente?

a) 32, 68, 68.

b) 68, 32, 68.

c) 68, 68, 32.

d) 32, 18, 18.

e) 18, 32, 18.

BIO0209 - (Unesp) Em um laboratório, um pesquisador aqueceu um segmento de dupla fita de DNA de modo que obteve duas fitas simples complementares. Ao sequenciar uma dessas fitas, encontrou a relação (A + G)/(T + C) = 0,5, ou seja, o número de adeninas somado ao número de guaninas, quando dividido pelo número de timinas somado ao número de citosinas, resultou em 0,5. Em função dessas informações, pode-se afirmar que o aquecimento foi necessário para romper as _____ e que a relação (A + G)/(T + C) na fita complementar foi de ____.

As lacunas são preenchidas correta e respectivamente por:

- a) pontes de hidrogênio e 0,5.
- b) pontes de hidrogênio e 1,0.
- c) pontes de hidrogênio e 2,0.
- d) ligações fosfodiéster e 1,0.
- e) ligações fosfodiéster e 2,0.

BIO0210 - (Unichristus)

Disponível em:

https://rachacuca.com.br/educacao/vestibular/tags/biologia>.

Acesso em: 8 ago. 2018.

A seta indica, na ilustração, um tipo de ligação química que, se estiver entre uma citosina e uma guanina, corresponde a

- a) 1 ponte de hidrogênio.
- b) 2 ligações peptídicas.
- c) 3 pontes de hidrogênio.
- d) 4 ligações peptídicas.
- e) 5 ligações glicosídicas.

BIO0211 - (Uninta) Os ácidos nucleicos são substâncias orgânicas encontradas em células de todos os seres vivos. São substâncias complexas, formadas por nucleotídeos. Cada nucleotídeo é constituído de um grupo de fosfato, uma molécula de açúcar e uma base nitrogenada. Existem cinco tipos de bases nitrogenadas classificadas como púricas ou pirimídicas. Das bases nitrogenadas descritas a seguir, quais são classificadas como pirimídicas?

- a) Guanina e uracila.
- b) Adenina e guanina.
- c) Citosina, timina e uracila.
- d) Adenina, uracila e timina.
- e) Timina, uracila e adenina.

BIO0212 - (Unifor) Uma nova estratégia para perder peso – baseada nas informações contidas no material genético de cada um – está ganhando espaço no Brasil e no mundo. Batizada de 'Dieta do DNA', o método se propõe a ajudar decisivamente no emagrecimento com uso de cardápios personalizados conforme as necessidades de cada pessoa. O primeiro passo é descobrir o perfil genético do indivíduo em relação à alimentação, como, por exemplo, a velocidade do metabolismo, tendência a acumular gorduras, deficiências na digestão e absorção de certos nutrientes etc. E, em seguida, formular uma dieta adequada a partir de tais informações genéticas.

Fonte: Pereira, C. Dieta genética. Isto é, Ano 38, N. 2376, jun/2015.

Essa dieta baseada em testes genéticos tem sua lógica apoiada:

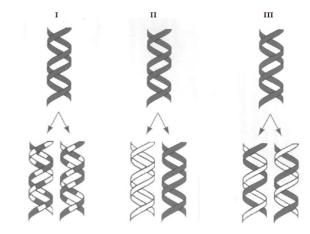
- I. Na capacidade do DNA se replicar de maneira semiconservativa, onde metade da molécula original se conserva íntegra em cada uma das moléculas-filhas.
 II. Nas diferenças naturais ou adquiridas ao longo da vida na sequência de bases nitrogenadas que determinam a molécula de DNA de cada indivíduo.
- III. Na capacidade do DNA em determinar corretamente a produção de proteínas que coordenam o metabolismo.

Está correto apenas o se afirma em

- a) I.
- b) II.
- c) I e III.
- d) II e III.
- e) I, II e III.

BIO0213 - (Unesp) Erros podem ocorrer, embora em baixa frequência, durante os processos de replicação, transcrição e tradução do DNA. Entretanto, as consequências desses erros podem ser mais graves, por serem herdáveis, quando ocorrem:

- a) na transcrição, apenas.
- b) na replicação, apenas.
- c) na replicação e na transcrição, apenas.
- d) na transcrição e na tradução, apenas.
- e) em qualquer um dos três processos.


BIO0214 - (Enem) Nos dias de hoje, podemos dizer que praticamente todos os seres humanos já ouviram em algum momento falar sobre o DNA e seu papel na hereditariedade da maioria dos organismos. Porém, foi apenas em 1952, um ano antes da descrição do modelo do DNA em dupla hélice por Watson e Crick, que foi confirmado sem sombra de dúvidas que o DNA é material genético. No artigo em que Watson e Crick descreveram a molécula de DNA, eles sugeriram um modelo de como essa molécula deveria se replicar. Em 1958, Meselson e Stahl realizaram experimentos utilizando isótopos pesados de nitrogênio que foram incorporados às bases nitrogenadas para avaliar como se daria a replicação da molécula. A partir dos resultados, confirmaram o modelo sugerido por Watson e Crick, que tinha como premissa básica o rompimento das pontes de hidrogênio entre as bases nitrogenadas.

GRIFFITHS, A. J. F. et al. Introdução à Genética. Rio de Janeiro: Guanabara Koogan, 2002.

Considerando a estrutura da molécula de DNA e a posição das pontes de hidrogênio na mesma, os experimentos realizados por Meselson e Stahl a respeito da replicação dessa molécula levaram à conclusão de que

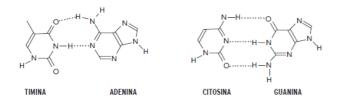
- a) a replicação do DNA é conservativa, isto é, a fita dupla filha é recém-sintetizada e o filamento parental é conservado.
- b) a replicação de DNA é dispersiva, isto é, as fitas filhas contêm DNA recém-sintetizado e parentais em cada uma das fitas.
- c) a replicação é semiconservativa, isto é, as fitas filhas consistem de uma fita parental e uma recémsintetizada.
- d) a replicação do DNA é conservativa, isto é, as fitas filhas consistem de moléculas de DNA parental.
- e) a replicação é semiconservativa, isto é, as fitas filhas consistem de uma fita molde e uma fita codificadora.

BIO0215 - (Ufrgs) Observe a figura abaixo, que ilustra os diferentes modelos propostos para a replicação do DNA.


O experimento de Meselson e Stahl, realizado em 1957, comprovou que o modelo correto para a replicação do DNA é o

- a) I, porque a dupla-hélice original não contribui com a nova dupla-hélice.
- b) I, porque, na replicação dispersiva, a densidade do novo DNA é a metade da densidade do DNA original.
- c) II, porque a dupla-hélice original é preservada, e uma nova molécula é gerada.
- d) III, porque cada nova molécula de DNA contém uma fita nova e uma antiga completas.
- e) III, porque, na replicação semiconservativa, uma das fitas do DNA original é degradada.

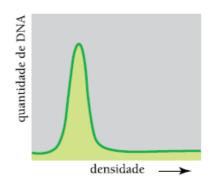
BIO0216 - (Fuvest) Bactérias foram cultivadas em um meio nutritivo contendo timina radioativa, por centenas de gerações. Dessa cultura, foram isoladas 100 bactérias e transferidas para um meio sem substâncias radioativas. Essas bactérias sofreram três divisões no novo meio, produzindo 800 bactérias. A análise dos ácidos nucléicos mostrou que dessas 800 bactérias


- a) 100 apresentavam o DNA marcado, mas não o RNA.
- b) 200 apresentavam o DNA marcado, mas não o RNA.
- c) 400 apresentavam o DNA marcado, mas não o RNA.
- d) 200 apresentavam o DNA e o RNA marcados.
- e) todas apresentavam o DNA e o RNA marcados.

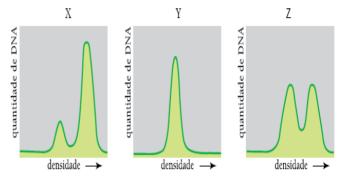
BIO0217 - (Uerj) As duas cadeias carbônicas que formam a molécula de DNA são unidas por meio de ligações de hidrogênio entre bases nitrogenadas. Há quatro tipos de bases nitrogenadas: adenina, citosina, guanina e timina.

Adaptado de mundoecucacao.bol.uol.com.br

Nas estruturas a seguir, estão representadas, em pontilhado, as ligações de hidrogênio existentes nos pareamentos entre as bases timina e adenina, e citosina e guanina, na formação da molécula de DNA.


Considere que uma molécula de DNA com todas as citosinas marcadas radioativamente foi transferida para uma célula sem qualquer substância radioativa. Após esse procedimento, a célula sofreu duas divisões mitóticas, originando quatro células-filhas. Ao final das divisões mitóticas, a quantidade de células-filhas com radioatividade é:

- a) 1.
- b) 2.
- c) 3.
- d) 4.


BIO0218 - (Uerj) Leia abaixo a descrição do experimento por meio do qual se comprovou que a replicação do DNA é do tipo semiconservativo.

Uma cultura de células teve, inicialmente, o seu ciclo de divisão sincronizado, ou seja, todas iniciavam e completavam a síntese de DNA ao mesmo tempo. A cultura foi mantida em um meio nutritivo normal e, após um ciclo de replicação, as células foram transferidas para um outro meio, onde todas as bases nitrogenadas continham o isótopo do nitrogênio ¹⁵N em substituição ao ¹⁴N. Nestas condições, essas células foram acompanhadas por três gerações seguidas. O DNA de cada geração foi preparado e separado por centrifugação conforme sua densidade.

Observe o gráfico correspondente ao resultado obtido na primeira etapa do experimento, na qual as células se reproduziram em meio normal com ¹⁴N:

Observe, agora, os gráficos correspondentes aos resultados obtidos, para cada geração, após a substituição do nitrogênio das bases por ¹⁵N:

Os gráficos que correspondem, respectivamente à primeira, à segunda e à terceira gerações são:

- a) X, Y, Z.
- b) Z, Y, X.
- c) Z, X, Y.
- d) Y, Z, X.

notas