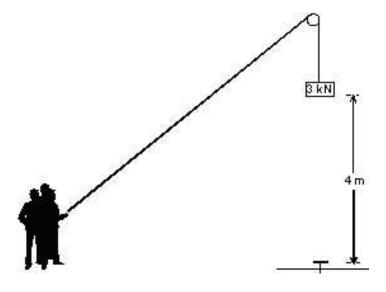
00a Questão:	Valor	:	1,0
--------------	-------	---	-----

	RASCUNHO
1	1

FÍSICA


CG

1^a Questão: Valor: 0,8

Vários homens levantam, cinco vezes por minuto, um peso de 3 kN, que é abandonado e cai sobre uma estaca. A distância entre o peso e a estaca é

sempre de 4m.

Calcule o menor número de homens necessário para executar esta tarefa, sabendo que cada um deles desenvolve 200 W de potência.

 $2^{\underline{a}}$ Questão: Valor: 0,8

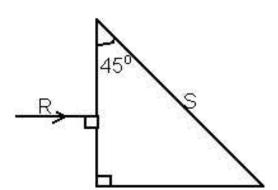
Um refrigerador opera, segundo um ciclo de Carnot, retirando 32.000 kcal/h de um ambiente mantido a -23oC. Considerando que a temperatura externa ao ambiente é de 27oC, determine a potência requerida pelo motor do refrigerador em HP.

Dado: 1 HP = 640 kcal/h.

01

RASCUNHO

10


RASCUNHO

09

 $3^{\underline{a}}$ Questão: Valor : 1,6

(A) Determine o menor valor para o índice de refração do prisma imerso no ar, de modo que o raio R sofra reflexão total na face S.

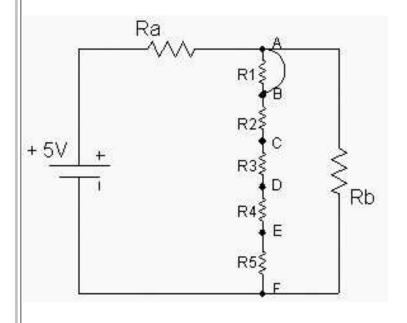
Dado: - índice de refração do ar igual a 1.

(B) Uma corda de 1,0 m, presa nas duas extremidades, está oscilando na forma de uma onda estacionária de dois comprimentos de onda cuja amplitude é 1,0 mm. A velocidade com que as ondas se propagam na corda é de 200 m/s. Determine a freqüência das oscilações e a função y(x,t) que descreve o deslocamento dos pontos da corda em função da posição e do

tempo.

02

$4^{\underline{a}}$ Questão: Valor: 1,0


Um circuito eletrônico é composto por uma bateria de +5V, por resistores R_b , R_a e por um conjunto de 5 resistores em série R1 = R2 = R3 = R4 = R5 = .

O circuito funcionava adequadamente até que um dos resistores R1, R2, R3, R4, R5 ficou danificado, passando a comportar-se como uma resistência de valor infinito.

Interessado em reparar o circuito, um técnico provocou um curto entre os pontos A e B e mediu a corrente elétrica fornecida pela bateria. Em seguida, repetiu este procedimento mais 4 vezes, só que efetuando o curto entre A e C, A e D, A e E e A e F. Com isto, obteve o gráfico de corrente abaixo.

Determine:

- a) os valores de R_a e R_b ;
- b) qual resistor deve ser substituído por estar danificado;
- c) o valor de .

6 of 11

00a	Ouestão:	Valor	•	1.0	

2			
3	RASC	CUNHO	
8			
8ª Questão: Valor : 1	,0		

Determine DH e DU para a combustão completa de 171,0 g de sacarose (C₁₂H₂₂O₁₁), a 25° C, sabendo que o calor liberado na sua combustão completa é igual a 5.635 kJ/mol e que as substâncias gasosas participantes da reação têm comportamento de gás ideal.

Dados:

Massas atômicas: H = 1 u.m.a. C = 12 u.m.a. O = 16 u.m.a.

Constante universal dos gases: R = 8.3 J/(mol.K)

9<u>a</u> Questão: Valor : 1,0

A equação abaixo representa a reação de adição do HCl a um alceno.

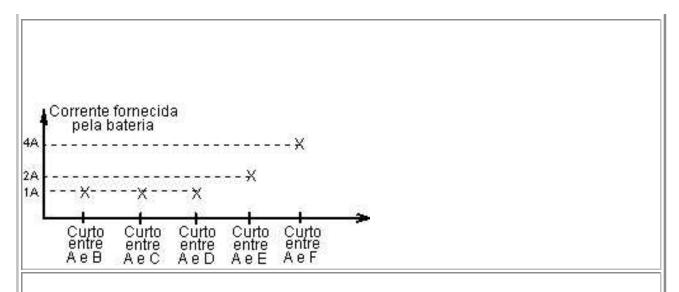
CH₃CH₂CH=CH₂ + HCl ³4® RCl

Sabendo-se que a reação segue a regra de Markovnikov, pede-se:

- a) a fórmula estrutural plana do haleto de alquila formado;
- b) o enunciado da regra de Markovnikov e o seu fundamento;
- c) no caso de a fórmula molecular plana proposta apresentar isomeria, qual(is) o(s) tipo(s) de isomeria;
- d) a nomenclatura, de acordo com a IUPAC, do alceno e do haleto de alquila.

 $10^{\underline{a}}$ Questão: Valor : 1,0

O ferro presente em uma amostra de 0,200 g de minério é reduzido totalmente a Fe⁺² e, em seguida, titulado por 20,0 ml de uma solução 0,100 N de K₂Cr₂O₇. Determine a porcentagem de Fe₂O₃ na amostra de minério.


Dados:

Massas atômicas: O = 16 u.m.a. K = 39 u.m.a.

Cr = 52 u.m.a. Fe = 56 u.m.a.

07

4^a Questão: (continuação)

 $5^{\underline{a}}$ Questão: Valor: 1,0

Soltando-se do ponto A uma partícula de massa igual a 36 mg, carregada com + 8 C, a partícula leva 0,2 s para atingir o ponto B, caindo sob ação da gravidade.

Determine o valor da carga puntiforme que se deve fixar no ponto B, de modo que a partícula anterior permaneça suspensa no ponto A, sem cair.

Despreze a resistência do ar.

Dados: g (aceleração da gravidade) = 10 m/s2;

k (constante eletrostática) = 9 x 109 (em unidades S.I.).

04

00a	Questão:	Valor		1.0
ooa	Questao.	v aioi	٠	1,0

 $6^{\underline{a}}$ Questão: Valor : 1,0

Apresente uma fórmula eletrônica para cada um dos compostos abaixo:

- a) SiO₂
- b) CO
- c) N₂
- d) HNCO
- $|e\rangle H_4 N_2 CO$

Dados:

Números atômicos: H = 1 C = 6 N = 7 O = 8 Si = 14

 $7^{\underline{a}}$ Questão: Valor: 1,0

A prata metálica reage com ácido sulfídrico, em presença de oxigênio, segundo a equação química não balanceada

$$Ag + H_2S + O_2 ^3/4 A_2 + H_2O$$

Determine a massa de sal que poderá ser obtida a partir de 9,50 g de Ag, 1,40 g de H₂S e 0,80 g de O₂.

Dados:

Massas atômicas: H = 1 u.m.a. O = 16 u.m.a. S = 32 u.m.a.

Ag = 108 u.m.a.

06