INEQUAÇÕES DE PRIMEIRO E SEGUNDO GRAU

Vamos estudar inequações, isto é, a comparação de expressões por meio de desigualdades.

Uma inequação é uma expressão que compara duas parcelas por meio de desigualdades, usando os símbolos <, ≤, >, ≥, ≠ como comparativos.

Exemplo: A expressão 3x + 2 > 0 é uma inequação.

Assim como no caso das equações, podemos somar e multiplicar valores dos dois lados da inequação, mas devemos prestar atenção a um detalhe muito importante:

Quando multiplicamos ou dividimos ambos os lados de uma inequação por um número negativo, o sinal da desigualdade deve ser invertido.

Exemplo: Considere a inequação 4x - 5 > 2.

Se multiplicarmos ambos os lados da expressão por -1, devemos inverter o sinal da desigualdade e obtemos -(4x-5) < (-2).

INEQUAÇÕES DE PRIMEIRO GRAU

Se pelo menos uma das parcelas de uma inequação for uma expressão de primeiro grau, dizemos que a inequação é de primeiro grau.

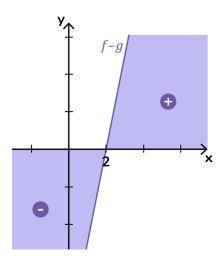
Para resolver inequações de primeiro grau, vamos usar nossos conhecimentos a respeito de funções afim e do estudo do sinal de funções. Primeiramente, iremos interpretar os dois lados da inequação como funções afim, de forma que a inequação se tornará algo como f(x)>g(x). Em seguida, iremos resolver a equação f(x)-g(x)=0 e, finalmente, analisar o sinal da função f-g para ver quando ela é positiva ou negativa. O exemplo a seguir ilustra estes passos.

Exemplo: Resolva a inequação $6x - 8 \le x + 2$.

Primeiramente, vamos definir f(x) = 6x - 8 e g(x) = x + 2. Agora, vamos resolver f(x) - g(x) = 0:

$$f(x) - g(x) = 0 \Rightarrow 6x - 8 - x - 2 = 0 \Rightarrow 5x - 10 = 0 \Rightarrow 5x = 10 \Rightarrow x = 2$$

Vamos analisar o sinal da função (f-g)(x). Se x < 2, digamos x = 0, temos (f-g)(0) = -10, ou seja, para x < 2, (f-g)(x) é negativa. Ainda, se x > 2, digamos x = 4, temos (f-g)(4) = 10, ou seja, (f-g)(x) é positiva para todo x > 2:



Agora, voltamos à inequação. Queremos ter $6x - 8 \le x + 2$, isto é, $f(x) - g(x) \le 0$. Segundo o estudo do sinal da função, os pontos que satisfazem essa condição são $x \le 2$. Logo, a solução da inequação é o intervalo $(-\infty,2]$.

INEQUAÇÕES DE SEGUNDO GRAU

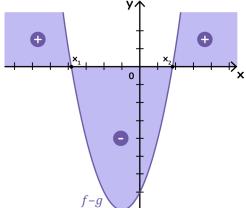
Assim como as inequações de primeiro grau, as inequações de segundo grau são comparações de expressões por meio de desigualdades representadas pelos símbolos <, \leq , >, \geq , \neq . Neste caso, porém, pelo menos uma das parcelas comparadas é de segundo grau:

Uma inequação de segundo grau é uma inequação tal que ao menos uma das parcelas comparadas é uma expressão de grau dois.

Para resolver uma inequação de segundo grau, seguimos os mesmos passos feitos para as inequações de primeiro grau. O exemplo a seguir ilustra os passos:

Exemplo: Considere a inequação $x^2 + 2x - 5 > 2$.

Para resolvê-la, iremos considerar $f(x) = x^2 + 2x - 5$ e g(x) = 2. Primeiramente, devemos resolver a equação $x^2 + 2x - 5 - 2 = 0$, isto é, encontrar as raízes de $x^2 + 2x - 7$. Pela Fórmula de Bhaskara, temos $x_1 = -1 - 2\sqrt{2}$ e $x_2 = 2\sqrt{2} - 1$. Agora, vamos realizar o estudo do sinal de f-g. Como 1>0, sabemos que (f-g)(x) será positiva para todo $x > x_2$ e para todo $x < x_1$, nula em x_1 e em x_2 e negativa para $x_1 < x < x_2$, conforme a imagem a seguir.



Voltando para a inequação, queremos ter $x^2+2x-5>2$, isto é, f(x)-g(x)>0. Assim, do estudo de sinal que realizamos, podemos concluir que os pontos que satisfazem essa desigualdade são todos os x tais que $x>x_2$ e $x< x_1$, ou seja, a solução da inequação do exemplo é $(-\infty, -1-2\sqrt{2})$ U $(2\sqrt{2}-1, \infty)$.

Note que o intervalo é aberto nos valores das raízes porque o exemplo não se preocupou com os valores de x que zeram a inequação.

INEQUAÇÕES SIMULTÂNEAS

Podemos utilizar as inequações para comparar uma expressão com duas outras simultaneamente. Neste caso, escrevemos algo como

$$h(x) \le f(x) < g(x)$$

Observação: Inequações simultâneas podem aparecer com outras desigualdades, nem sempre será da forma acima.

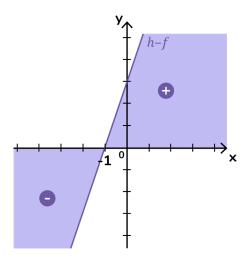
Para resolver inequações simultâneas, resolvemos cada uma das inequações separadamente e, em seguida, fazemos a intersecção das soluções. Observe o exemplo a seguir:

Exemplo: Considere a inequação simultânea $4x + 8 \le x + 5 < -3x + 9$.

Primeiramente, definimos h(x) = 4x + 8, g(x) = -3x + 9 e f(x) = x + 5. Vamos resolver $h(x) \le f(x)$. Seguindo os passos indicados anteriormente, temos:

$$h(x) \le f(x) \Rightarrow h(x) - f(x) \le 0 \Rightarrow 4x + 8 - x - 5 \le 0 \Rightarrow 3x + 3 \le 0$$

Resolvendo a equação 3x + 3 = 0, temos que (h - f)(x) se anula quando x = -1. Agora, analisando o sinal de (h - f)(x), temos que a função é positiva para x > -1 e negativa para x < -1:

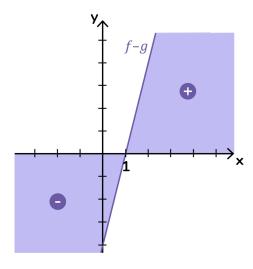


Assim, a solução de $h(x) \le f(x)$ ocorre quando $h(x) - f(x) \le 0$, isto é, quando $x \le -1$.

Agora, vamos resolver a inequação f(x) < g(x):

$$f(x) < g(x) \Rightarrow x + 5 < -3x + 9 \Rightarrow x + 5 + 3x - 9 < 0 \Rightarrow 4x - 4 < 0$$

Resolvendo a equação 4x - 4 = 0, temos que (f - g)(x) se anula quando x = 1. Estudando o sinal de (f - g)(x), temos que (f - g)(x) é positiva para x > 1 e negativa para x < 1, conforme a imagem:



Assim, a solução de f(x) < g(x) é o intervalo $(-\infty,1)$. Fazendo a intersecção das soluções das duas inequações, temos que a solução da inequação simultânea é

$$(-\infty, -1] \cap (-\infty, 1) = (-\infty, -1]$$

Observação: Nem sempre a intersecção entre as soluções das inequações que compõem uma inequação simultânea existe, isto é, pode ocorrer de a intersecção entre as soluções ser vazia. Neste caso, dizemos que a inequação simultânea não possui solução.

ANOTAÇÕES		
		· ·