

FATORAÇÃO NUMÉRICA

Usada para reescrever o número como uma multiplicação de números naturais, ou seja, fatorar é decompor o número em fatores primos. Veja os exemplos:

90	2	300	2	72	2
45	3	150	2	36	2
15	3	75	3	18	2
5	5	25	5	9	3
1		5	5	3	3
'		1		1	

De outra maneira, poderíamos escrever os números da seguinte forma:

- $90 = 2 \cdot 3^2 \cdot 5$
- $300 = 2^2 \cdot 3 \cdot 5^2$
- $72 = 2^3 \cdot 3^2$

> NÚMEROS PRIMOS

Os números primos são números naturais maiores do que um que possuem somente dois divisores, ou seja, são divisíveis por um e por ele mesmo. Veja os números primos existentes entre 1 e 100:

2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97

⇒ Observe que todos têm apenas dois divisores: o um e ele mesmo.

Para saber se um número é primo, basta fazer a sua fatoração. Se o número possuir mais de dois divisores, um e ele mesmo, ele **NÃO** é primo.

OUTRAS APLICAÇÕES

⇒ MDC - Máximo divisor comum

É o maior valor que divide simultaneamente dois ou mais números.

O MDC entre dois números pode ser feita com a fatoração simultânea. Para realizar a decomposição iremos utilizar apenas valores que dividem os dois ao mesmo tempo.

Observe que apenas os números destacados dividem os dois ao mesmo tempo. Então o MDC entre 150 e 120 será: $2 \cdot 3 \cdot 5 = 60$.

\Rightarrow MMC – Mínimo Múltiplo comum

É o menor valor que é múltiplo simultaneamente de dois ou mais números. Diferente do MDC, no MMC se utiliza os valores que não dividem ambos simultaneamente, veja:

Teremos como resultado а forma fatorada do mínimo múltiplo comum entre eles. Dessa forma, o MMC entre 48 e 84 será: $2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 = 336$.

Caso o MDC fosse pedido, seriam utilizados apenas os valores que dividem os dois simultaneamente, logo: $2 \cdot 2 \cdot 3 =$ **12**.

CÁLCULO DA RAIZ

Com a fatoração, podemos encontrar o valor da raíz, veja:

Pela fatoração temos: 2 · 2 · 2 · 2 · 3 · 3. Como o índice da raiz quadrada é 2, escrevemos da seguinte forma: 22 · 22 · 3^{2} .

Agora podemos simplificar os expoentes de valor 2 com o índice da raiz.

$$\sqrt{144} = \sqrt{2^2 \cdot 2^2 \cdot 3^2} = 2 \cdot 2 \cdot 3 =$$
12 $\sqrt{144} =$ **12**

DIVISORES DE UM NÚMERO

Determinamos todos os divisores de um utilizando os número seus fatores primos.

Para descobrir a quantidade de divisores de um número inteiro positivo basta efetuar sua fatoração, somar um a cada expoente e calcular o produto entre eles.

$$300 = 2^2 \cdot 3^1 \cdot 5^2$$

Expoentes somados:

$$(2 + 1), (1 + 1) e (2 + 1)$$

Calculando o produto entre eles:

$$(2 + 1) \cdot (1 + 1) \cdot (2 + 1) = 18$$
 divisores

⇒ Para descobrir quais são os divisores:

Traçamos uma linha e escrevemos o 1 no alto, porque ele é divisor de qualquer número.

Multiplicamos sucessivamente cada fator primo pelos divisores já obtidos e escrevemos esses produtos ao lado de cada fator primo.

$$\begin{vmatrix}
300 & 2 & 1 & = 2 \\
15 & 2 & 1 & = 2 \\
0 & 75 & 3 \\
25 & 5 & 5 \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
2 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
2 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
3 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
4 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
5 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
6 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
6 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
6 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{2} \cdot \mathbf{2} \\
7 & \cdot \mathbf{1} & \cdot \mathbf{$$

Os divisores já obtidos não precisam ser repetidos

Logo, 300 possui 18 divisores: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150 e 300.

QUESTÕES – FATORAÇÃO NUMÉRICA

Questão 01 =

Relacione as colunas de cada número à sua fatoração correspondente:

- a) 140
- b) 500
- c) 5445
- d) 650
- e) 3900

- () $2^2 \cdot 3 \cdot 5^2 \cdot 13$
- $() 2^2 \cdot 5^3$ $() 2^2 \cdot 5 \cdot 7$
- $() 2 \cdot 5 \cdot 7$ $() 2 \cdot 5^2 \cdot 13$
- $()3^2 \cdot 5 \cdot 11^2$

Questão 02 ==

Qual o número cuja fatoração dá:

- a) $2^2 \cdot 3 \cdot 7^2$
- b) $2 \cdot 3^2 \cdot 5^2 \cdot 7$
- c) $2^2 \cdot 5 \cdot 11^2$
- d) $3^2 \cdot 7 \cdot 11^2$
- e) 2² · 7 · 13

Questão 03 ==

A fatoração completa de número 1200 é 2a · 3b · 5c. Qual é o valor de a + b + c?

Questão 04

Ao decompor 1620 em fatores primos, você obtém $2^2 \cdot n \cdot 5$. Qual é a fator que você deve colocar no lugar de n para que a forma fatorada represente o número 1620?

Questão 05 =

Karen decidiu fazer uma bateria de simulados de maneira não convencional. Ela decidiu fazer um simulado de matemática a cada 4 dias, um simulado de natureza a cada 5 dias e uma redação a cada 7 dias. Ela notou que, em algum momento, terá que fazer as 3 atividades num mesmo dia. Assim, se hoje ela fez as 3 atividades juntas, daqui a quanto tempo ela precisará repetir esse desafio em um único dia?

Questão 06 ==

Maísa pensou numa maneira de ajudar os colegas do curso Matemática Criativa. Assim, decidiu comprar 36 canetas, 40 lápis e 32 borrachas. Ela decide então fazer kits para distribuir esses brindes no curso. Ela deseja distribuir o maior número de brindes, garantindo que o número de brindes por kits será o mesmo. Logo,

- a) Quantos kits terão no total?
- b) Qual a quantidade de canetas, lápis e borrachas por kit?

Questão 07 =

Samuel decidiu fazer um acordo com seu pai. Ao invés de receber um valor mensal fixo de mesada, ele pede que receba 1 real no primeiro dia, 2 reais no segundo dia, 4 reais no terceiro dia e assim por diante. Professor de matemática há muitos anos, o pai de Samuel recusou a proposta. Ele notou que Samuel, em algum momento, receberia mais de 15 mil reais em um único dia. Em que dia Samuel receberia mais de 15 mil reais?

Questão 08

Dois alunos do curso Matemática Criativa, Thiago e Sara, decidiram apostar num jogo de matemática. Eles teriam que apostar quantos divisores o número 2025 possui. Thiago afirmou que seriam 12 divisores. Já Sarah afirmou que seriam 7 divisores. Quem chegou mais perto da resposta correta?

Questão 09 =

(EINSTEIN – 2021) Gabriel preparou três tipos de doces para uma festa, sendo 72 quindins, 126 trufas e 216 brigadeiros. Ele quer separar esses doces em pratos idênticos, ou seja, cada prato deverá conter o mesmo número de cada um dos tipos de doces. Se nessas condições o maior número de pratos que ele poderá fazer é N, a soma dos algarismos de N é igual a

- a) 8
- b) 9
- c) 4
- d) 5 e) 6

Questão 10 ==

(ESMAC – 2019) Uma empresa produz placas de MDF para a fabricação de móveis e pretende armazená-las em pilhas de mesma altura que contenham somente placas do mesmo tipo. Em determinado dia foram produzidas 81 placas marrons e 45 placas brancas, todas com a mesma espessura. Para o armazenamento dessas 126 placas, o menor número possível de pilhas é:

- a) 10
- b) 12
- c) 14
- d) 11
- e) 13

Questão 11 =

(ENEM 2015) Um arquiteto está reformando uma casa. De modo a contribuir com o meio ambiente, decide reaproveitar tábuas de madeira retiradas da casa. Ele dispõe de 40 tábuas de 540 cm, 30 de 810 cm e 10 de 1 080 cm, todas de mesma largura e espessura. Ele pediu a um carpinteiro que cortasse as tábuas em pedaços de mesmo comprimento, sem deixar sobras, e de modo que as novas peças ficassem com o maior tamanho possível, mas de comprimento menor que 2 m.

Atendendo o pedido do arquiteto, o carpinteiro deverá produzir

- a) 105 peças.
- b) 120 peças.
- c) 210 peças.
- d) 243 peças.
- e) 420 peças.

Questão 12 =

(ESMAC – 2015) Para realizar um estudo do meio, uma escola pretende organizar grupos com a mesma quantidade de alunos de modo que em cada grupo todos sejam do mesmo sexo. Nessa escola estudam 350 rapazes e 224 garotas e cada grupo deverá ser acompanhado de um único professor. O número mínimo de professores necessários para acompanhar todos os grupos nessa visita é:

- a) 14
- b) 16
- c) 25
- d) 30
- e) 41

Questão 13 =

O gerente de um cinema fornece anualmente ingressos gratuitos para escolas. Este ano serão distribuídos 400 ingressos para uma sessão vespertina e 320 ingressos para uma sessão noturna de um mesmo filme. Várias escolas podem ser escolhidas para receberem ingressos. Há alguns critérios para a distribuição dos ingressos:

- 1) cada escola deverá receber ingressos para uma única sessão;
- 2) todas as escolas contempladas deverão receber o mesmo número de ingressos;
- 3) não haverá sobra de ingressos (ou seja, todos os ingressos serão distribuídos).

O número mínimo de escolas que podem ser escolhidas para obter ingressos, segundo os critérios estabelecidos. é

- a) 2
- b) 4
- c) 9
- d) 40
- e) 80

Questão 14 =

(ENEM PPL – 2012) Em uma floresta, existem 4 espécies de insetos, A, B, C e P, que têm um ciclo de vida semelhante. Essas espécies passam por um período, em anos, de desenvolvimento dentro de seus casulos. Durante uma primavera, elas saem, põem seus ovos para o desenvolvimento da próxima geração e morrem.

Sabe-se que as espécies A, B e C se alimentam de vegetais e a espécie P é predadora das outras 3. Além disso, a espécie P passa 4 anos em desenvolvimento dentro dos casulos, já a espécie A passa 8 anos, a espécie B passa 7 anos e a espécie C passa 6 anos.

As espécies A, B e C só serão ameaçadas de extinção durante uma primavera pela espécie P, se apenas uma delas surgirem na primavera junto com a espécie P.

Nessa primavera atual, todas as 4 espécies saíram dos casulos juntas.

Qual será a primeira e a segunda espécies a serem ameaçadas de extinção por surgirem sozinhas com a espécie predadora numa próxima primavera?

- a) A primeira a ser ameaçada é a espécie C e a segunda é a espécie B.
- b) A primeira a ser ameaçada é a espécie A e a segunda é a espécie B.
- c) A primeira a ser ameaçada é a espécie C e a segunda é a espécie A.
- d) A primeira a ser ameaçada é a espécie A e a segunda é a espécie C.
- e) A primeira a ser ameaçada é a espécie B e a segunda é a espécie C.

Questão 15

Para a realização de um vestibular, foram inscritos de 2000 a 2200 candidatos. Sabe-se que, se eles forem distribuídos em salas com capacidade para 40, 45 ou 54 candidatos cada uma, sempre haverá uma sala com apenas 20 candidatos.

Com base nessas informações, pode-se concluir que o número de inscritos foi igual a:

- a) 2000
- b) 2070
- c) 2120
- d) 2180
- e) 2200