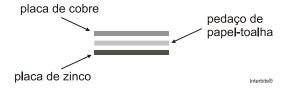
## **ELETROQUÍMICA - PILHAS**

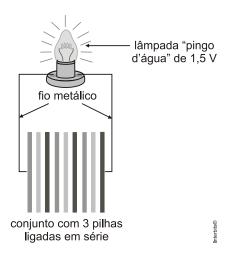
## Exercícios de Aprendizagem - Módulo 07

6. (Ufg) Algumas reações eletroquímicas ocorrem espontaneamente, resultando em eletrodepósitos. Um experimento demonstrativo de uma dessas reações é a árvore de prata, na qual íons prata (Ag+) se depositam sobre cobre metálico gerando íons cobre (Cu²+). Considerando-se os valores dos potenciais de oxidação da prata e do cobre iguais a -0,80 V e -0,34 V, respectivamente, escreva as semirreações, a reação global e determine a energia de Gibbs, em kJ/mol, da reação.

## Dados:


F = 96.500 C/mol

- 7. (Ufes) A corrosão, processo eletroquímico espontâneo, é responsável pela deterioração de utensílios e eletrodomésticos em nossos lares, pelos custos de manutenção e substituição de equipamentos, pela perda de produtos e por impactos ambientais decorrentes de vazamentos em tanques e tubulações corroídos, nas indústrias. Em equipamento feito de aço, ligas formadas de ferro e carbono, a corrosão pode ser ocasionada pela oxidação do ferro e a redução da água, em meio neutro ou básico.
- a) Escreva as equações químicas balanceadas que descrevem a oxidação do ferro em meio aquoso neutro e a formação de hidróxido ferroso.
- b) Explique a influência do pH na formação do hidróxido ferroso.
- c) Calcule o potencial da reação de oxidação de ferro e justifique a espontaneidade desse processo eletroquímico.
- d) Dê a configuração eletrônica do átomo de ferro e do íon ferroso.


## Dados: Semirreações:

$$O_2(g) + 2H_2O(\ell) + 4e^- \implies 4OH^-(aq)$$
  $E^0 = 0,40 \text{ V}$   
 $Fe^{2+}(aq) + 2e^- \implies Fe(s)$   $E^0 = -0,44 \text{ V}$ 

10. (Unesp) Em um laboratório didático, um aluno montou pilhas elétricas usando placas metálicas de zinco e cobre, separadas com pedaços de papel-toalha, como mostra a figura.



Utilizando três pilhas ligadas em série, o aluno montou o circuito elétrico esquematizado, a fim de produzir corrente elétrica a partir de reações químicas e acender uma lâmpada.



Com o conjunto e os contatos devidamente fixados, o aluno adicionou uma solução de sulfato de cobre  $(CuSO_4)$  aos pedaços de papel-toalha de modo a umedecê-los e, instantaneamente, houve o acendimento da lâmpada.

A tabela apresenta os valores de potencial-padrão para algumas semirreações.

| Equação de semirreação                                | E° (V)                                   |
|-------------------------------------------------------|------------------------------------------|
|                                                       | (1 mol·L <sup>-1</sup> , 100kPa e 25 °C) |
| $2H^{+}_{(aq)} + 2e^{-} \rightleftharpoons H_{2(g)}$  | 0,00                                     |
| $Zn^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Zn_{(s)}$ | -0,76                                    |
| $Cu^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Cu_{(s)}$ | +0,34                                    |

Considerando os dados da tabela e que o experimento tenha sido realizado nas condições ambientes, escreva a equação global da reação responsável pelo acendimento da lâmpada e calcule a diferença de potencial (ddp) teórica da bateria montada pelo estudante.